Zero field spin splitting in asymmetric quantum wells
International Nuclear Information System (INIS)
Hao Yafei
2012-01-01
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.
Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas
International Nuclear Information System (INIS)
Morrison, C.; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.
2014-01-01
We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10 −28 eVm 3 and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.
Biktagirov, Timur; Schmidt, Wolf Gero; Gerstmann, Uwe
2018-03-01
For high-spin centers, one of the key spectroscopic fingerprints is the zero-field splitting (ZFS) addressable by electron paramagnetic resonance. In this paper, an implementation of the spin-spin contribution to the ZFS tensor within the projector augmented-wave (PAW) formalism is reported. We use a single-determinant approach proposed by M. J. Rayson and P. R. Briddon [Phys. Rev. B 77, 035119 (2008), 10.1103/PhysRevB.77.035119], and complete it by adding a PAW reconstruction term which has not been taken into account before. We benchmark the PAW approach against a well-established all-electron method for a series of diatomic radicals and defects in diamond and cubic silicon carbide. While for some of the defect centers the PAW reconstruction is found to be almost negligible, in agreement with the common assumption, we show that in general it significantly improves the calculated ZFS towards the all-electron results.
International Nuclear Information System (INIS)
Liu Jia; Xiao Jingling
2006-01-01
We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.
Spin Splitting in Different Semiconductor Quantum Wells
International Nuclear Information System (INIS)
Hao Yafei
2012-01-01
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Nakata, Kouki
2013-01-01
On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance. (paper)
Tachikawa, Takashi; Kobori, Yasuhiro; Akiyama, Kimio; Katsuki, Akio; Steiner, Ulrich; Tero-Kubota, Shozo
2002-01-01
The spin dynamics of the duroquinone anion radical generated by photoinduced electron transfer reactions from triplet erythrosin B to duroquinone has been studied by using transient absorption and pulsed FT-EPR spectroscopy. Triplet exciplex formation as the reaction intermediate is verified by the observation of spin orbit coupling induced electron spin polarization. The kinetic parameters for exciplex formation and the intrinsic enhancement factors of electron spin polarization are determin...
International Nuclear Information System (INIS)
Rudowicz, C.
2008-01-01
For respective quantities, i.e., Hamiltonians, parameters, and energy level splittings, related to two physically distinct notions X and Y, various cases of confused terminology have been identified in literature. Referring to a quantity related actually to the notion Y using incorrectly the name of another well-defined notion X constitutes, what may be defined for short as, the type X=Y confusion. An ongoing survey of magnetism literature indicates that quantities related to zero-field splitting (ZFS) or equivalently fine structure (FS) are most often confused with those related to crystal-field (CF) or equivalently ligand field (LF). In this review the CF=ZFS confusion cases, i.e., labelling actual ZFS/FS quantities as purportedly 'CF/LF' ones, appearing in magnetism studies are surveyed and clarified. Part I covers the cases occurring in literature dealing with specific compounds. In this part model studies of spin systems are surveyed. The cases of terminology mixing up actual ZFS/FS quantities with purported CF/LF ones are identified and presented comprehensively in tabular form. To facilitate discussion, problems pertinent for the CF=ZFS confusion are categorized into several groups, including origin of the two notions, physical consequences, usage of specific numerical values, invoking real magnetic spin systems, and properties of spin S=1/2 systems. Physical implications of this confusion for interpretation of model results are also considered. Overall implications of incorrect terminology go beyond simple semantic issues and concern possible misinterpretation of data describing various physical properties of models studied. Such terminology contributes also to misleading keyword classifications of papers in journals and scientific databases. Other types of confusion identified in survey of magnetism literature will be discussed in separate reviews
International Nuclear Information System (INIS)
Zhao, M.G.; Lei, Y.
2004-01-01
Serious difficulties exist in explaining the zero-field splitting (ZFS) of 3d 5 ions in crystal, with the current crystal-field theory. The calculated cubic ZFS a-value of 3d 5 ion is positive identically. However, K.A. Mueller and W. Low found experimentally that a is negative for some ZnS:Mn 2+ crystals. In this work, an unified explanation is developed for the ZFS, optical spectra and pressure-induced spectral shift for the ZnS:Mn 2+ (bulk/nanocrystal) by considering the influence of the spin-orbit coupling to the ZFS and spectral bands. The excellent agreement between calculation and experiments shows that the above-mentioned difficulties can be removed based on the calculation model proposed by authors. Calculation result shows that there are two kinds of stable electron states with (λ π , λ σ , λ s ) = (0.2713448, -0.1619936, -0.08) and (0.2713448, 0.346885, -0.220), respectively, where (λ π , λ σ , λ s ) denote the mixing coefficients of Mn 2+ - 4S 2- anti-bonding in ZnS:Mn 2+
Does the `Higgs' have Spin Zero?
Ellis, John
2012-01-01
The Higgs boson is predicted to have spin zero. The ATLAS and CMS experiments have recently reported of an excess of events with mass ~ 125 GeV that has some of the characteristics expected for a Higgs boson. We address the questions whether there is already any evidence that this excess has spin zero, and how this possibility could be confirmed in the near future. The excess observed in the gamma gamma final state could not have spin one, leaving zero and two as open possibilities. We calculate the angular distribution of gamma gamma pairs from the decays of a spin-two boson produced in gluon-gluon collisions, showing that is unique and distinct from the spin-zero case. We also calculate the distributions for lepton pairs that would be produced in the W W* decays of a spin-two boson, which are very different from those in Higgs decays, and note that the kinematics of the event selection used to produce the excess observed in the W W* final state have reduced efficiency for spin two.
Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods
DEFF Research Database (Denmark)
Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo
2011-01-01
The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FSCC......) methods are used as well as two-step methods Spin-Orbit Complete Active Space Perturbation Theory at 2nd order (SO-CASPT2) and Spin-Orbit Difference Dedicated Configuration Interaction (SODDCI). The energy of the X21 state corresponds to the Zero-Field Splitting (ZFS) of the ground state spin triplet...
Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers
Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo
2013-01-01
. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te
Giant Rashba spin splitting in Bi2Se3: Tl
Singh, Nirpendra; Saeed, Yasir; Schwingenschlö gl, Udo
2014-01-01
First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Electron refrigeration in hybrid structures with spin-split superconductors
Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.
2018-01-01
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
Energy Technology Data Exchange (ETDEWEB)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Ilyushin, V. V.; Mescheryakov, A. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Alekseev, E. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Quantum Radiophysics Department of V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkov (Ukraine); Hougen, J. T., E-mail: jon.hougen@nist.gov [Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States); Xu, Li-Hong [Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 (Canada)
2016-07-14
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
Zhu, Zhiyong
2011-10-14
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
Spin-polarized spin-orbit-split quantum-well states in a metal film
Energy Technology Data Exchange (ETDEWEB)
Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)
2008-07-01
Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.
Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo
2011-01-01
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect
Energy Technology Data Exchange (ETDEWEB)
Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)
2014-10-13
We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.
International Nuclear Information System (INIS)
Ribbing, C.; Odelius, M.; Laaksonen, A.; Kowalewski, J.; Roos, B.
1990-01-01
A simple nonempirical scheme is presented for calculating the splittings of ground state multiplets (the zero-field splitting) is transition metal complexes. The method employs single reference, single excitation CI calculations based on open-shell RHF. The spin-orbit coupling is described using an effective one-electron, one-center operators. The method is applied to the triplet state Ni(II) complexes with one to six water molecules. the validity of the second-order perturbation theory approach and of the spin-Hamiltonian formalism is found to be limited to slightly distorted octahedral systems. Generally, small changes in the geometries of the complexes are found to cause substantial variations of the splitting pattern
Spin-valley splitting of electron beam in graphene
Directory of Open Access Journals (Sweden)
Yu Song
2016-11-01
Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.
Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals
International Nuclear Information System (INIS)
Chen Zhide; Liang, J.-Q.; Pu, F.-C.
2003-01-01
Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved
Nuclear spin-orbit splitting from an intermediate Δ excitation
International Nuclear Information System (INIS)
Ohta, K.; Terasawa, T.; Tohyama, M.
1980-01-01
The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings
Giant Rashba spin splitting in Bi2Se3: Tl
Singh, Nirpendra
2014-07-25
First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under compression and decreases under tension, whereas the dependence of the Rashba spin splitting on the strain is the opposite. Large values of αR = 1.57 eV Å at the bottom of the conduction band (electrons) and αR = 3.34 eV Å at the top of the valence band (holes) are obtained without strain. These values can be further enhanced to αR = 1.83 eV Å and αR = 3.64 eV Å, respectively, by 2% tensile strain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis
2015-10-14
The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking
Sunko, Veronika; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O. J.; Riley, J. M.; Kasinathan, D.; Haverkort, M. W.; Kim, T. K.; Hoesch, M.; Fujii, J.; Vobornik, I.; MacKenzie, A. P.; King, P. D. C.
2017-09-01
Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.
Quark potential model of baryon spin-orbit mass splittings
International Nuclear Information System (INIS)
Wang Fan; Wong Chunwa
1987-01-01
We show that it is possible to make the P-wave spin-orbit mass splittings in Λ baryons consistent with those of nonstrange baryons in a naive quark model, but only by introducing additional terms in the quark-quark effective interaction. These terms might be related to contributions due to pomeron exchange and sea excitations. The implications of our model in meson spectroscopy and nuclear forces are discussed. (orig.)
Isospin dependence of the spin-orbit splitting in nuclei
International Nuclear Information System (INIS)
Isakov, V.I.
2007-01-01
The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru
Spin-splitting in p-type Ge devices
Energy Technology Data Exchange (ETDEWEB)
Holmes, S. N., E-mail: s.holmes@crl.toshiba.co.uk; Newton, P. J.; Llandro, J.; Mansell, R.; Barnes, C. H. W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Morrison, C.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-08-28
Compressively strained Ge quantum well devices have a spin-splitting in applied magnetic field that is entirely consistent with a Zeeman effect in the heavy hole valence band. The spin orientation is determined by the biaxial strain in the quantum well with the relaxed SiGe buffer layers and is quantized in the growth direction perpendicular to the conducting channel. The measured spin-splitting in the resistivity ρ{sub xx} agrees with the predictions of the Zeeman Hamiltonian where the Shubnikov-deHaas effect exhibits a loss of even filling factor minima in the resistivity ρ{sub xx} with hole depletion from a gate field, increasing disorder or increasing temperature. There is no measurable Rashba spin-orbit coupling irrespective of the structural inversion asymmetry of the confining potential in low p-doped or undoped Ge quantum wells from a density of 6 × 10{sup 10} cm{sup −2} in depletion mode to 1.7 × 10{sup 11} cm{sup −2} in enhancement.
Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers
Cheng, Yingchun
2013-06-01
The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.
Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He
International Nuclear Information System (INIS)
Roger, M.; Delrieu, J.M.
1981-08-01
The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff
Single-Particle Spin-Orbit Splittings in Nuclei
Kazuhiko, ANDO; Hiroharu, BANDO; Department of Physics, Kyoto University; Division of Mathematical Physics, Fukui University
1981-01-01
Single-particle spin-orbit splittings (Δ^) in ^O and ^Ca nuclei are evaluated within the framework of the effective interaction theory by employing the Reid soft-core potential and meson-exchange three-body forces (TBF). Among the two-body force contributions, the Pauli-rearrangement effect on Δ^ is studied with special care. The TBF contribution to Δ^ is found to be significant. The G-matrix, the second-order pauli-rearrangement and the TBF contribute to Δ^ by the amount of ～1/2, ～1/5 and ～1...
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
International Nuclear Information System (INIS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-01-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Energy Technology Data Exchange (ETDEWEB)
Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn; Wen, Shuangchun [Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)
2015-07-27
We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.
Korenev, V. L.
2005-01-01
It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.
k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals
Grytsiuk, Sergii
2016-05-23
We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.
k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals
Grytsyuk, Sergiy; Belabbes, Abderrezak; Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Stiles, M. D.; Schwingenschlö gl, Udo; Manchon, Aurelien
2016-01-01
We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.
Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model
International Nuclear Information System (INIS)
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En
2012-01-01
We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.
Proximity effect in semiconductor films with spin-splitting and spin-orbit interaction
Energy Technology Data Exchange (ETDEWEB)
Michelsen, Jens; Grein, Roland [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)
2012-07-01
Superconducting heterostructures with spin-active materials have emerged as promising platforms for engineering topological superconductors featuring Majorana bound states at surfaces, edges and vortices. Here we present a method for evaluating, from a microscopic model, the band structure of a semiconductor film of finite thickness deposited on top of a conventional superconductor. Analytical expressions for the proximity induced gap openings are presented in terms of microscopic parameters and the proximity effect in presence of spin-orbit and exchange splitting is visualized in terms of Andreev reflection processes. An expression for the topological invariant, associated with the existence of Majorana bound states, is shown to depend only on parameters of the semiconductor film. The finite thickness of the film leads to resonant states in the film giving rise to a complex band structure with the topological phase alternating between trivial and non-trivial as the parameters are tuned of the film are tuned.
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
International Nuclear Information System (INIS)
Mainland, G.B.
1988-01-01
Zero four-momentum, helicity eigenstates of the Bethe--Salpeter equation are found for a composite system consisting of a charged, spin-0 constituent and a charged, spin- 1/2 constituent bound by minimal electrodynamics. The form of the Bethe--Salpeter equation used to describe the bound state includes the contributions from both single photon exchange (ladder approximation) and the ''seagull'' diagram. Attention is restricted to zero orbital angular momentum states since these appear to be the most interesting physically
International Nuclear Information System (INIS)
Chen, J C H; Klochan, O; Micolich, A P; Hamilton, A R; Martin, T P; Ho, L H; Zuelicke, U; Reuter, D; Wieck, A D
2010-01-01
In this paper, We study the Zeeman spin-splitting in hole quantum wires oriented along the [011] and [01 1-bar] crystallographic axes of a high mobility undoped (100)-oriented AlGaAs/GaAs heterostructure. Our data show that the spin-splitting can be switched 'on' (finite g*) or 'off' (zero g*) by rotating the field from a parallel to a perpendicular orientation with respect to the wire, and the properties of the wire are identical for the two orientations with respect to the crystallographic axes. We also find that the g-factor in the parallel orientation decreases as the wire is narrowed. This is in contrast to electron quantum wires, where the g-factor is enhanced by exchange effects as the wire is narrowed. This is evidence for a k-dependent Zeeman splitting that arises from the spin-3/2 nature of holes.
Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas
DEFF Research Database (Denmark)
Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej
2015-01-01
Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic to a...
Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.
2018-03-01
The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-06-15
Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.
On the difference between proton and neutron spin-orbit splittings in nuclei
International Nuclear Information System (INIS)
Isakov, V.I.; Erokhina, K.I.; Mach, H.; Sanchez-Vega, M.; Fogelberg, B.
2002-01-01
The latest experimental data on nuclei at 132 Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly magic region and compare the case to that of 208 Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean-field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches. (orig.)
Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre
2018-04-11
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.
International Nuclear Information System (INIS)
Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.
2009-01-01
Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure
Pressure-dependence of the zero-field splittings for the Fe8 single-molecule magnet
Takahashi, S.; Thompson, E.; Hill, S.; Tozer, S. W.; Harter, A. G.; Dalal, N. S.
2006-03-01
We present a study of the pressure-dependent electron paramagnetic resonance (EPR) spectrum for the Fe8 single-molecule magnet (SMM). The biaxial [Fe8O2(OH)12(tacn)6]Br8.9H2O (Fe8) SMM has recently been studied extensively because its low-temperature magnetization dynamics are dominated by quantum tunneling of its spin S = 10 magnetic moment through a sizeable anisotropy barrier. To date, chemical methods have usually been employed in order to control the magnetic quantum tunneling (MQT) behavior of a SMM, e.g. by varying the magnetic ions in the molecular core, or the ligand/solvent environment. The advantage of this approach is that many different SMMs can be realized in this way, with widely varying MQT behavior. However, controllable variation of MQT is difficult. As an alternative approach for manipulation of the MQT, we have recently studied the effect of physical pressure on the Fe8 SMM. In this presentation, we show the pressure dependence of the zero-field splittings of Fe8, as studied by an angle and pressure-dependent high-frequency EPR technique.
Directory of Open Access Journals (Sweden)
Rudowicz Czesław
2015-07-01
Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.
International Nuclear Information System (INIS)
Wang, Yi-Ting; Huang, C F; Chen, Wei-Jen; Chang, Y H; Liang, C-T; Kim, Gil-Ho; Lo, Shun-Tsung; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Dolan, B P
2012-01-01
We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.
Tunnel splitting for a high-spin molecule in an in-plane field
Zhu, Jia-Lin
2000-08-01
Direction and strength effects of a magnetic field on the ground-state tunnel splitting for a biaxial spin molecule with the model Hamiltonian H = k1Sz2 + k2Sy2- gµBHzSz- gµBHySy have been investigated within a continuous-spin approach including the Wess-Zumino-Berry term. The topological oscillation and the non-Kramers freezing indicated in the approach are in agreement with those observed in a recent experiment on Fe8 molecular nanomagnets. The behaviour of tunnel splitting with multiple orbits induced by strong fields has been revealed clearly.
Electromagnetic structure of spin-zero light nuclei from point of view of analyticity
International Nuclear Information System (INIS)
Dubnicka, S.; Dumbrajs, O.
1975-01-01
The analysis of spin-zero light nuclei electromagnetic form factors from the point of view of analyticity is carried out. The interpretation of diffraction minima in elastic electron-nucleus scattering as real zeros of form factors is advocated. The model-independent charge radii and charge distributions are calculated on the base of present-day experimental data
Many-spin calculation of tunneling splittings in Mn12 magnetic molecules
Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.
2002-01-01
We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant
Many-spin effects and tunneling splittings in Mn12 magnetic molecules
Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.
2002-01-01
We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant
Spin torque on the surface of graphene in the presence of spin orbit splitting
Directory of Open Access Journals (Sweden)
Ji Chen
2013-06-01
Full Text Available We study theoretically the spin transfer torque of a ferromagnetic layer coupled to (deposited onto a graphene surface in the presence of the Rashba spin orbit coupling (RSOC. We show that the RSOC induces an effective magnetic field, which will result in the spin precession of conduction electrons. We derive correspondingly the generalized Landau-Lifshitz-Gilbert (LLG equation, which describes the precessional motion of local magnetization under the influence of the spin orbit effect. Our theoretical estimate indicates that the spin orbit spin torque may have significant effect on the magnetization dynamics of the ferromagnetic layer coupled to the graphene surface.
Theoretical study of AlH+: spin splitting, core polarization, and interstellar chemistry
International Nuclear Information System (INIS)
Cooper, D.L.; Black, J.H.; Everard, M.A.L.; Richards, W.G.
1983-01-01
The spin splitting constant for the X 2 μ + state of AlH + is calculated to be ν 0 = 0.058 cm - 1 . The favorable comparison of this result with experiment indicates that the uncertainty in the previously calculated spin splitting in MgH is likely to be of the order of a few percent. Calculations are presented of the so-called core polarization contribution to the spin-orbit coupling constant in the A 2 Pi/sub r/ state of AlH + . Results are also given for MgH and SiH. Astronomical applications of such calculations are discussed and the abundances of aluminum-bearing molecules in interstellar clouds are estimated
Controlled enhancement of spin-current emission by three-magnon splitting.
Kurebayashi, Hidekazu; Dzyapko, Oleksandr; Demidov, Vladislav E; Fang, Dong; Ferguson, A J; Demokritov, Sergej O
2011-07-03
Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin-lattice coupling acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon-magnon interactions for developing spin-current based electronics.
Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
Energy Technology Data Exchange (ETDEWEB)
Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States)
2017-01-01
IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside the ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.
Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions
Manchon, Aurelien
2011-05-17
Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.
Band splitting and relative spin alignment in two-layer systems
Ovchinnikov, A A
2002-01-01
It is shown that the single-particle spectra of the low Hubbard zone in the two-layer correlated 2D-systems sharply differ in the case of different relative alignment of the layers spin systems. The behavior of the two-layer splitting in the Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta gives all reasons for the hypothesis on the possible rearrangement of the F sub z -> AF sub z alignment configuration, occurring simultaneously with the superconducting transition. The effects of the spin alignment on the magnetic excitations spectrum, as the way for studying the spin structure of the two-layer systems, are discussed by the example of homogenous solutions for the effective spin models
Anisotropic in-plane spin splitting in an asymmetric (001 GaAs/AlGaAs quantum well
Directory of Open Access Journals (Sweden)
Zhang Xiuwen
2011-01-01
Full Text Available Abstract The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001 GaAs/Al x Ga1-x As quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe,
Effective one-band approach for the spin splittings in quantum wells
Alekseev, P. S.; Nestoklon, M. O.
2017-03-01
The spin-orbit interaction of two-dimensional electrons in quantum wells grown from the III-V semiconductors consists of two parts with different symmetry: the Bychkov-Rashba and the Dresselhaus terms. The last term is usually attributed to the bulk spin-orbit Hamiltonian which reflects the Td symmetry of the zincblende lattice. While it is known that the quantum well interfaces may also contribute to the Dresselhaus term, the exact structure and relative importance of the interface and bulk contributions are not well understood. To deal with this problem, we perform tight-binding calculations of the spin splittings of the electron levels in [100] GaAs/AlGaAs quantum wells. We show that the obtained spin splittings can be adequately described within the one-band electron Hamiltonian containing, together with the bulk contribution, the two interface contributions to the Dresselhaus term. The magnitude of the interface contribution to the spin-orbit interaction for sufficiently narrow quantum wells is of the same order as the bulk contribution.
Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers
Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.
2018-04-01
In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.
On the zeros of the Husimi functions of the spin boson model
International Nuclear Information System (INIS)
Cibils, M.B.; Cuche, Y.; Leboeuf, P.; Wreszinski, W.F.
1992-03-01
The distribution of zeros of the Husimi functions for the spin-boson model is studied, following an approach introduced by Leboeuf and Voros. The interest lies in the model's double feature of possessing both a classical integrable to chaotic transition and an unbounded four-dimensional phase space. The latter gives rise to several new questions regarding the Husimi zeros which are discussed and partially answered. Some significant results occur in spite of the fact that the case of spin one-half is treated. (authors) 20 refs., 4 figs
Spin-zero sound in one- and quasi-one-dimensional 3He
International Nuclear Information System (INIS)
Hernandez, E.S.
2002-01-01
The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension
Replica analysis of partition-function zeros in spin-glass models
International Nuclear Information System (INIS)
Takahashi, Kazutaka
2011-01-01
We study the partition-function zeros in mean-field spin-glass models. We show that the replica method is useful to find the locations of zeros in a complex parameter plane. For the random energy model, we obtain the phase diagram in the plane and find that there are two types of distributions of zeros: two-dimensional distribution within a phase and one-dimensional one on a phase boundary. Phases with a two-dimensional distribution are characterized by a novel order parameter defined in the present replica analysis. We also discuss possible patterns of distributions by studying several systems.
Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.
2001-01-01
We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,
Spin-zero DKP equation with two time-dependent interactions
Energy Technology Data Exchange (ETDEWEB)
Saeedi, K.; Hassanabadi, H. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of); Zarrinkamar, S. [Islamic Azad University, Department of Basic Sciences, Garmsar Branch, Garmsar (Iran, Islamic Republic of)
2016-11-15
The Duffin-Kemmer-Petiau equation for spin-zero bosons is considered in (1 + 1) - and (2 + 1) -dimensional space-time. Some time-dependent interactions are considered within the framework and quasi-exact solutions are provided. The results are discussed via various figures. (orig.)
The angular dependence of spin-state energy splittings in the ? core
Groß, Lynn; Steenbock, Torben; Herrmann, Carmen
2013-07-01
Spin-state energy splittings are highly relevant for catalysis, molecular magnetism, and materials science, yet continue to pose a challenge for electronic structure methods. For a Fe2O2+ 2 core, we evaluate the bridging angle dependence of energy splittings between ferromagnetically and antiferromagnetically coupled states for different exchange-correlation functionals, and compare with complete active space self-consistent field (CASSCF) values, also including second-order perturbative corrections (CASPT2). CASSCF and CASPT2 yield strong antiferromagnetic coupling, with the smallest coupling at 100°, and a smooth dependence on the angle for Fe-O-Fe angles of 70° to 120°. Interestingly, this is qualitatively the same behaviour as often found for stable dinuclear transition metal complexes. While all functionals show the same angular dependence as CASPT2, they favour the antiferromagnetic state less strongly. Pure functionals such as BP86, BLYP, SSB-D, and TPSS come closer to the CASPT2 results (with energy splittings by about 60 kJ/mol smaller than the CASPT2 ones) than hybrid functionals. The hybrid functionals B3LYP, B3LYP⋆, and PBE0 favour the antiferromagnetic state even less strongly, resulting in ferromagnetic coupling for angles around 100°. The good qualitative agreement between CASPT2 and CASSCF on the one hand and CASPT2 and density functional theory on the other hand for angles between 70° and 110° suggests that the chosen active space of 18 electrons in 14 orbitals may be adequate for spin-state energy splitting of Fe2O2+ 2 in that region (possibly due to error cancellation), while angles of 60° or 120° may require larger active spaces. This study is complemented by an analysis of local spins, local charges, and CASSCF natural orbitals.
DEFF Research Database (Denmark)
Chantis, Athanasios N.; Christensen, Niels Egede; Svane, Axel
2010-01-01
. In the first, the spin splitting is completely suppressed for one of the bands and doubled for the other. In the second, the absolute value of the splitting is markedly enhanced for both bands approaching the magnitude of the hybridization gap. We demonstrate these effects in zinc-blende semiconductors...
Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions
Manchon, Aurelien
2011-01-01
be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from
Strain-induced large spin splitting and persistent spin helix at LaAlO$_3$/SrTiO$_3$ interface
Yamaguchi, Naoya; Ishii, Fumiyuki
2017-01-01
We investigated the effect of the tensile strain on the spin splitting at the n-type interface in LaAlO$_3$/SrTiO$_3$ in terms of the spin-orbit coupling coefficient $\\alpha$ and spin texture in the momentum space using first-principles calculations. We found that the $\\alpha$ could be controlled by the tensile strain and be enhanced up to 5 times for the tensile strain of 7%, and the effect of the tensile strain leads to a persistent spin helix, which has a long spin lifetime. These results ...
Conduction-band valley spin splitting in single-layer H-T l2O
Ma, Yandong; Kou, Liangzhi; Du, Aijun; Huang, Baibiao; Dai, Ying; Heine, Thomas
2018-02-01
Despite numerous studies, coupled spin and valley physics is currently limited to two-dimensional (2D) transition-metal dichalcogenides (TMDCs). Here, we predict an exceptional 2D valleytronic material associated with the spin-valley coupling phenomena beyond 2D TMDCs—single-layer (SL) H-T l2O . It displays large valley spin splitting (VSS), significantly larger than that of 2D TMDCs, and a finite band gap, which are both critically attractive for the integration of valleytronics and spintronics. More importantly, in sharp contrast to all the experimentally confirmed 2D valleytronic materials, where the strong valence-band VSS (0.15-0.46 eV) supports the spin-valley coupling, the VSS in SL H-T l2O is pronounced in its conduction band (0.61 eV), but negligibly small in its valence band (21 meV), thus opening a way for manipulating the coupled spin and valley physics. Moreover, SL H-T l2O possesses extremely high carrier mobility, as large as 9.8 ×103c m2V-1s-1 .
Study of superdeformation at zero spin with Skyrme-Hartree-Fock method
Energy Technology Data Exchange (ETDEWEB)
Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)
1998-03-01
Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)
Spin critical opalescence in zero-temperature Bose-Einstein condensates
Santamore, D. H.; Timmermans, E.
2012-02-01
Cold-atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensates of boson atoms in two distinct hyperfine spin states. The mean-field description breaks down as the system approaches the transition from the miscible side. An effective spin description clarifies the ferromagnetic nature of the transition. We show that a difference in the scattering lengths for the bosons in the same spin state leads to an effective internal magnetic field. The point at which the internal magnetic field vanishes (i.e., equal values of the like-boson scattering lengths) is a special point. We show that the long-range density fluctuations are suppressed near that point, while the effective spin exhibits the long-range fluctuations that characterize critical points. The zero-temperature system exhibits critical opalescence with respect to long-wavelength waves of impurity atoms that interact with the bosons in a spin-dependent manner.
Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe
2007-01-14
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.
Ortmann, Frank; Roche, Stephan
2013-02-22
We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-01-01
The zero field splitting parameter D of Cr{sup 3+} doped diammonium hexaaqua magnesium sulfate (DHMS) are calculated with perturbation formula using crystal field (CF) parameters from superposition model. The theoretically calculated ZFS parameters for Cr{sup 3+} in DHMS single crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). The theoretical ZFS parameter D is similar to that from experiment. The energy band positions of optical absorption spectra of Cr{sup 3+} doped DHMS single crystal are calculated with CFA package, which are in good match with experimental values.
Energy Technology Data Exchange (ETDEWEB)
Montegrossi, G. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), via G. La Pira 4, I-50121, Florence (Italy)]. E-mail: giordano@geo.unifi.it; Di Benedetto, F. [Museo di Storia Naturale, Universita di Firenze, via G. La Pira 4, I-50121, Florence (Italy); Minissale, A. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), via G. La Pira 4, I-50121, Florence (Italy); Paladini, M. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), via G. La Pira 4, I-50121, Florence (Italy); Pardi, L.A. [Istituto per i Processi Chimico-Fisici, CNR, via G. Moruzzi 1, I-56124 Pisa (Italy); Romanelli, M. [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, I-50019 Sesto Fiorentino (Italy); Romei, F. [Dipartimento di Biologia Animale e Genetica, Universita di Firenze, Via Romana 17, I-50100 Florence (Italy)
2006-05-15
An analytical approach, based on the electron paramagnetic resonance (EPR) spectroscopy of Mn(II) in travertines, has been developed in order to obtain relevant information about the local inhomogeneity of calcite and about the thermodynamic conditions which control the formation of travertine deposits. This information is crucial to constrain the precipitation of travertine under different geochemical contexts. An empirical correlation between the spectral features and the zero-field splitting (ZFS) interaction has been established through numerical simulations of EPR spectra. The variability of the investigated parameters and the applicability of the method have been tested on several travertines from Central Italy.
International Nuclear Information System (INIS)
Montegrossi, G.; Di Benedetto, F.; Minissale, A.; Paladini, M.; Pardi, L.A.; Romanelli, M.; Romei, F.
2006-01-01
An analytical approach, based on the electron paramagnetic resonance (EPR) spectroscopy of Mn(II) in travertines, has been developed in order to obtain relevant information about the local inhomogeneity of calcite and about the thermodynamic conditions which control the formation of travertine deposits. This information is crucial to constrain the precipitation of travertine under different geochemical contexts. An empirical correlation between the spectral features and the zero-field splitting (ZFS) interaction has been established through numerical simulations of EPR spectra. The variability of the investigated parameters and the applicability of the method have been tested on several travertines from Central Italy
Anomalous dimensions of spin-zero four-quark operators without derivatives
International Nuclear Information System (INIS)
Jamin, M.; Kremer, M.
1986-01-01
The anomalous dimensions of local spin-zero four-quark operators without derivatives are calculated for the case of three flavours. We also give the result in the approximation that no flavour mixing occurs, because this may be relevant for lattice calculations of four-quark condensates in the quenched approximation. We demonstrate the influence of the operator mixing in a specific example. (orig.)
Zero and finite field μSR spin glass Ag:Mn
International Nuclear Information System (INIS)
Brown, J.A.; Heffner, R.H.; Leon, M.; Olsen, C.E.; Schillaci, M.E.; Dodds, S.A.; Estle, T.L.; MacLaughlin, D.E.
1981-01-01
In this paper we present μSR data taken in both zero and finite fields for a Ag:Mn (1.6 at%) spin glass sample. The data allow us to determine, in the context of a particular model, the fluctuation rate of the Mn ions as a function of temperature. This rate decreases smoothly but very rapidly near the glass temperature, Tsub(g). The corresponding behavior in Cu:Mn is more gradual. (orig.)
James Gillies
2011-01-01
This week saw the increasingly familiar sight of hordes of journalists descending on CERN to hear the latest news from the LHC. There were 66 of them to be precise, many of whom announced to us they planned to come for the seminar long before they were invited. It’s a sign of the times that science that used to be conducted in private is now carried out in the public domain. That has the potential to be very good news for science, and for society as a whole, particularly when CERN’s scientists do such a great job of conveying the passion and excitement of their research. A typical Higgs candidate event in the CMS detector. We live in a science-dominated age, where everyone has to make science-based decisions on a daily basis. Yet at the same time, apathy towards science has been growing while pseudo-science gains ground. For that reason, it’s incumbent upon scientists to push science further up the popular agenda. The fact that the LHC has got the ‘...
Spin waves in terbium. III. Magnetic anisotropy at zero wave vector
DEFF Research Database (Denmark)
Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.
1975-01-01
The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin........ The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...
Spin-Rotation Hyperfine Splittings at Moderate to High J Values in Methanol
Xu, Li-Hong; Hougen, Jon T.; Belov, Sergey; Golubiatnikov, G. Yu; Lapinov, Alexander; Ilyushin, V.; Alekseev, E. A.; Mescheryakov, A. A.
2015-06-01
In this talk we present a possible explanation, based on torsionally mediated proton-spin-overall-rotation interaction operators, for the surprising observation in Nizhny Novgorod several years ago of doublets in some Lamb-dip sub-millimeter-wave transitions between torsion-rotation states of E symmetry in methanol. These observed doublet splittings, some as large as 70 kHz, were later confirmed by independent Lamb-dip measurements in Kharkov. In this talk we first show the observed J-dependence of the doublet splittings for two b-type Q branches (one from each laboratory), and then focus on our theoretical explanation. The latter involves three topics: (i) group theoretically allowed terms in the spin-rotation Hamiltonian, (ii) matrix elements of these terms between the degenerate components of torsion-rotation E states, calculated using wavefunctions from an earlier global fit of torsion-rotation transitions of methanol in the vt = 0, 1, and 2 states, and (iii) least-squares fits of coefficients of these terms to about 35 experimentally resolved doublet splittings in the quantum number ranges of K = -2 to +2, J = 13 to 34, and vt = 0. Rather pleasing residuals are obtained for these doublet splittings, and a number of narrow transitions, in which no doublet splitting could be detected, are also in agreement with predictions from the theory. Some remaining disagreements between experiment and the present theoretical explanation will be mentioned. G. Yu. Golubiatnikov, S. P. Belov, A. V. Lapinov, "CH_3OH Sub-Doppler Spectroscopy," (Paper MF04) and S.P. Belov, A.V. Burenin, G.Yu. Golubiatnikov, A.V. Lapinov, "What is the Nature of the Doublets in the E-Methanol Lamb-dip Spectra?" (Paper FB07), 68th International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2013. Li-Hong Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman, "Torsion-Rotation Global Analysis of the First Three Torsional States (vt = 0, 1, 2
Ideue, T.; Checkelsky, J. G.; Bahramy, M. S.; Murakawa, H.; Kaneko, Y.; Nagaosa, N.; Tokura, Y.
2014-10-01
BiTeI is a polar semiconductor with gigantic Rashba spin-split bands in bulk. We have investigated the effect of pressure on the electronic structure of this material via magnetotransport. Periods of Shubunikov-de Haas (SdH) oscillations originating from the spin-split outer Fermi surface and inner Fermi surface show disparate responses to pressure, while the carrier number derived from the Hall effect is unchanged with pressure. The associated parameters which characterize the spin-split band structure are strongly dependent on pressure, reflecting the pressure-induced band deformation. We find the SdH oscillations and transport response are consistent with the theoretically proposed pressure-induced band deformation leading to a topological phase transition. Our analysis suggests the critical pressure for the quantum phase transition near Pc=3.5 GPa.
Zero-field spin relaxation of the positive muon in copper
International Nuclear Information System (INIS)
Clawson, C.W.
1982-07-01
The spin relaxation of the μ + in high purity single crystal and polycrystalline copper has been measured at temperatures between 0.5 0 K and 5.2 0 K by the zero-field μ + SR technique. In both types of sample the experiments show a temperature independent dipolar width Δ/sub z/ = 0.389 +- 0.003 μs -1 and a hopping rate decreasing from approx. 0.5 μs -1 at 0.5 0 K to approx. 0.05 μs -1 above 5 0 K. This is the first direct proof of a dynamic effect in the low temperature μ + spin relaxation in copper. The relationship between the zero-field and transverse-field dipolar widths is discussed, and the measured zero-field width is found to be approx. 10% larger than expected based on the known transverse-field widths. A new μ + SR spectrometer has been constructed and used in this work. The spectrometer and the associated beam lines and data acquisition facilities are discussed
Gigantic spin splitting of exciton states in CdSe:Mn hexagonal crystal
International Nuclear Information System (INIS)
Komarov, A.V.; Ryabchenko, S.M.; Semenov, Yu.G.; Shanina, B.D.; Vitrikhovskij, N.I.; AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)
1980-01-01
Gigantic spin splitting of exciton states in magneto-doped semiconductors is observed for the first time in the CdSe: Mn hexagonal crystal. A theoretical interpretation of some features of the effect due to the anisotropy of the crystal is presented. The parameters of the band structure are determined by comparing with the experiments: Δ 1 =46+-3, Δ 2 =137+-1, Δ 3 =140.6+-0.3 meV. It is shown that in CdSe:Mn just as in cubic semiconductors, exchange interaction with magnetic impurities is ferromagnetic for electrons of the conductivity band and antiferromagnetic for electrons of the valence band. The exchange constants are of the same order of magnetude as those for the CdTe:Mn, ZnTe:Mn and ZnSe:Mn crystals
International Nuclear Information System (INIS)
Mizushima, T.; Machida, K.
2010-01-01
We investigate how the vortex-vortex separation changes Majorana zero modes in the vicinity of the BCS-BEC (Bose-Einstein condensation) topological phase transition of p-wave resonant Fermi gases. By analytically and numerically solving the Bogoliubov-de Gennes equation for spinless p-wave superfluids with plural vortices, it is demonstrated that the quasiparticle tunneling between neighboring vortices gives rise to the quantum oscillation of the low-lying spectra on the scale of the Fermi wavelength in addition to the exponential splitting. This rapid oscillation, which appears in the weak-coupling regime as a consequence of quantum oscillations of quasiparticle wave functions, disappears in the vicinity of the BCS-BEC topological phase transition. This is understandable from that the wave function of the Majorana zero modes is described by the modified Bessel function in the strong-coupling regime, and thus it becomes spread over the vortex core region. Due to the exponential divergence of the modified Bessel function, the concrete realization of the Majorana zero modes near the topological phase transition requires the neighboring vortices to be separated beyond the length scale defined by the coherence length and the dimensionless coupling constant. All these behaviors are also confirmed by carrying out the full numerical diagonalization of the nonlocal Bogoliubov-de Gennes equation in a two-dimensional geometry. Furthermore, this argument is expanded into the case of three-vortex systems, where a pair of core-bound and edge-bound Majorana states survive at zero-energy state regardless of the vortex separation.
Paul, Ganesh C.; Saha, Arijit; Das, Sourin
2018-05-01
We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.
The zero-moment half metal: How could it change spin electronics?
International Nuclear Information System (INIS)
Betto, Davide; Rode, Karsten; Thiyagarajah, Naganivetha; Lau, Yong-Chang; Borisov, Kiril; Atcheson, Gwenael; Stamenov, Plamen; Coey, J. M. D.; Žic, Mario; Archer, Thomas
2016-01-01
The Heusler compound Mn_2Ru_xGa (MRG) may well be the first compensated half metal. Here, the structural, magnetic and transport properties of thin films of MRG are discussed. There is evidence of half-metallicity up to x = 0.7, and compensation of the two Mn sublattice moments is observed at specific compositions and temperatures, leading to a zero-moment half metal. There are potential benefits for using such films with perpendicular anisotropy for spin-torque magnetic tunnel junctions and oscillators, such as low critical current, high tunnel magnetoresistance ratio, insensitivity to external fields and resonance frequency in the THz range.
International Nuclear Information System (INIS)
Dalmazi, D; Sa, F L
2010-01-01
Here we study the partition function zeros of the one-dimensional Blume-Emery-Griffiths model close to their edge singularities. The model contains four couplings (H, J, Δ, K) including the magnetic field H and the Ising coupling J. We assume that only one of the three couplings (J, Δ, K) is complex and the magnetic field is real. The generalized zeros z i tend to form continuous curves on the complex z-plane in the thermodynamic limit. The linear density at the edges z E diverges usually with ρ(z) ∼ |z - z E | σ and σ = -1/2. However, as in the case of complex magnetic fields (Yang-Lee edge singularity), if we have a triple degeneracy of the transfer matrix eigenvalues a new critical behavior with σ = -2/3 can appear as we prove here explicitly for the cases where either Δ or K is complex. Our proof applies for a general three-state spin model with short-range interactions. The Fisher zeros (complex J) are more involved; in practice, we have not been able to find an explicit example with σ = -2/3 as far as the other couplings (H, Δ, K) are kept as real numbers. Our results are supported by numerical computations of zeros. We show that it is absolutely necessary to have a non-vanishing magnetic field for a new critical behavior. The appearance of σ = -2/3 at the edge closest to the positive real axis indicates its possible relevance for tricritical phenomena in higher-dimensional spin models.
Strong interaction scattering of a spin-zero particle by a 1/2 spin particle
International Nuclear Information System (INIS)
Derem, Andre
1969-03-01
This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0 - + 1 + /2 → 0 - + 1 + /2 (in the notation S P , S being the spin and P the parity). The two particles 0 - will be two mesons M and M', the two particles 1 + /2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [fr
Hybridization Gap and Dresselhaus Spin Splitting in EuIr4In2Ge4.
Calta, Nicholas P; Im, Jino; Rodriguez, Alexandra P; Fang, Lei; Bugaris, Daniel E; Chasapis, Thomas C; Freeman, Arthur J; Kanatzidis, Mercouri G
2015-08-03
EuIr4In2Ge4 is a new intermetallic semiconductor that adopts a non-centrosymmetric structure in the tetragonal I4̄2m space group with unit cell parameters a=6.9016(5) Å and c=8.7153(9) Å. The compound features an indirect optical band gap E(g)=0.26(2) eV, and electronic-structure calculations show that the energy gap originates primarily from hybridization of the Ir 5d orbitals, with small contributions from the Ge 4p and In 5p orbitals. The strong spin-orbit coupling arising from the Ir atoms, and the lack of inversion symmetry leads to significant spin splitting, which is described by the Dresselhaus term, at both the conduction- and valence-band edges. The magnetic Eu(2+) ions present in the structure, which do not play a role in gap formation, order antiferromagnetically at 2.5 K. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James
2017-04-01
Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of
Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
Energy Technology Data Exchange (ETDEWEB)
Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States)
2017-01-01
This project was created from a partnership between the U.S. Department of Energy’s (DOE’s) Building America research team IBACOS, Inc. and Imagine Homes, a production homebuilder of high-performance homes in San Antonio, Texas—a hot-humid climate. The primary purpose was to evaluate the performance of a multihead mini-split heat pump (MSHP) space-conditioning system, which consists of ducted and ductless indoor units, in maintaining uniform comfort in an occupied test house. The research team evaluated the MSHP space-conditioning strategy for its effectiveness in achieving uniform temperature and relative humidity (RH) levels throughout the test house and for overall constructability and cost. This evaluation was based on data that were collected from short-term tests and monitoring during 1 year of occupancy, as well as from builder and occupant feedback. Design considerations for integrating an MSHP system into the builder’s full range of production home designs were also explored, with a focus on minimizing the cost and complexity of the system design while meeting the thermal loads of the house and providing occupant comfort according to ANSI/ASHRAE Standard 55-2010 (ASHRAE 2010a).
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)
2015-01-01
Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and
International Nuclear Information System (INIS)
Hansen, J.B.; Divin, Y.Y.; Mygind, J.
1986-01-01
We report on the observation of full splitting of the first zero-field steps in the I-V curves of Josephson transmission lines of intermediate length Lroughly-equal(3--5)lambda/sub J/, where lambda/sub J/ is the Josephson penetration length. We study in detail how this splitting of the step into two branches depends on the temperature of the junction and on a weak applied magnetic field. We relate the splitting to excitations in the junctions whose behavior is described by the perturbed Sine-Gordon equation
Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept
Energy Technology Data Exchange (ETDEWEB)
Dey, Shobhana; Bhattacharyya, K.K. [Mineral Processing Division, National Metallurgical Laboratory, Jamshedpur-831007 (India)
2007-06-15
The medium coking coal fines of - 0.5 mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of - 0.5 mm coal indicated that - 0.5 + 0.15 mm fraction contains less ash than - 0.15 mm fraction. Thus, the composite feed was split into - 0.5 + 0.15 mm and - 0.15 mm fractions and subjected to flotation separately. The low ash bearing fraction (- 0.5 + 0.15 mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the - 0.15 mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from - 0.5 + 0.15 mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal. (author)
Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel
2018-02-01
Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.
Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki
2018-06-01
Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the
Energy Technology Data Exchange (ETDEWEB)
Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Faculty of Chemistry, A. Mickiewicz University, 61-614 Poznań (Poland); Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland); Açıkgöz, Muhammed [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Gnutek, Paweł [Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland)
2017-07-15
Graphical abstract: Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. - Highlights: • Semiempirical study of potential SMM [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br). • Superposition model analysis of zero field splitting (ZFS) parameters carried out. • Jahn-Teller distortions revealed by DFT geometry optimization considered. • SPM predicts D(ZFS) of observed magnitudes with positive or negative signs. • Results corroborate giant ZFS, which shall not be equated with magnetic anisotropy. - Abstract: Potential single-ion magnet Ni{sup 2+} systems: [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) D{sub expt} = −120 to −180 cm{sup −1} was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: −100 to −200 cm{sup −1}. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm{sup −1} for Ni{sup 2+} ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as ‘giant uniaxial magnetic anisotropy’) and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni{sup 2+} systems. Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn
The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling
Zhao, Jingxiang; Yan, Xu; Gu, Qiang
2017-10-01
The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.
Ormondt, van D.; Andriessen, J.; Dam, J.A.M.; Ast, van M.A.; Hartog, den H.W.; Bijvank, E.J.
1979-01-01
The electric field gradients (EFG) Vzz and Vxx-Vyy at the nucleus of 157Gd3+ have been determined, using ENDOR, for CaF2:Gd3+M+(M+=Li,K+) and SrCl2:Gd3+Na+. The results are compared with the electronic zero-field splitting parameters of Gd3+, B20 and B22 for the same sites. A simple relation between
International Nuclear Information System (INIS)
Faria, A.C. de.
1990-01-01
A detailed study of the S-K model through the analysis of the zeros of the partition function in the complex temperature plane is performed. By the exact way, the notable thermodynamical properties of the system to a variety of the length (N=5→25 spins) are calculated, using only standards concepts (without the use of tricks like that of replicas). Dilute models had been also considered. The principal result of this work is the characterization of the zeros of the partition function of the S-K model. (author)
International Nuclear Information System (INIS)
Huang, C F; Chang, Y H; Cheng, H H; Yang, Z P; Yeh, H D; Hsu, C H; Liang, C-T; Hang, D R; Lin, H H
2007-01-01
Magnetic-field-induced phase transitions were studied with a two-dimensional electron AlGaAs/GaAs system. The temperature-driven flow diagram shows features of the Γ(2) modular symmetry, which includes distorted flowlines and a shifted critical point. The deviation of the critical conductivities is attributed to a small but resolved spin splitting, which reduces the symmetry in Landau quantization (Dolan 2000 Phys. Rev. B 62 10278). Universal scaling is found under the reduction of the modular symmetry. It is also shown that the Hall conductivity can still be governed by the scaling law when the semicircle law and the scaling on the longitudinal conductivity are invalid
Rudowicz, Czesław; Karbowiak, Mirosław
2015-01-01
Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and
Energy Technology Data Exchange (ETDEWEB)
Zhou Yan; Bonetti, S; Zha, C L; Akerman, Johan [Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden)], E-mail: zhouyan@kth.se
2009-10-15
Using nonlinear system theory and numerical simulations, we map out the static and dynamic phase diagrams in the zero applied field of a spin torque nano device with a tilted polarizer (TP). We find that for sufficiently large currents, even very small tilt angles ({beta}>1 deg.) will lead to steady free layer precession in zero field. Within a rather large range of tilt angles, 1 deg. <{beta}<19 deg., we find coexisting static states and hysteretic switching between these using only current. In a more narrow window (1 deg. <{beta}<5 deg.) one of the static states turns into a limit cycle (precession). The coexistence of current-driven static and dynamic states in the zero magnetic field is unique to the TP device and leads to large hysteresis in the upper and lower threshold currents for its operation. The nano device with TP can facilitate the generation of large amplitude mode of spin torque signals without the need for cumbersome magnetic field sources and thus should be very important for future telecommunication applications based on spin transfer torque effects.
Directory of Open Access Journals (Sweden)
Andrzej Fleszar
2015-01-01
of the many-body effects (self-interaction corrections beyond the LDA or GGA approximations. The most interesting property of this surface system is the large spin splitting of its metallic surface bands and the undulating spin texture along the hexagonal Fermi contours, which highly resembles the spin texture at the Dirac state of the topological insulator Bi2Te3. These properties make this system particularly interesting from both fundamental and technological points of view.
Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4
de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.
2007-03-01
We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.
Mass splitting induced by gravitation
International Nuclear Information System (INIS)
Maia, M.D.
1982-08-01
The exact combination of internal and geometrical symmetries and the associated mass splitting problem is discussed. A 10-parameter geometrical symmetry is defined in a curved space-time in such a way that it is a combination of de Sitter groups. In the flat limit it reproduces the Poincare-group and its Lie algebra has a nilpotent action on the combined symmetry only in that limit. An explicit mass splitting expression is derived and an estimation of the order of magnitude for spin-zero mesons is made. (author)
Bunyaev, S. A.; Golub, V. O.; Salyuk, O. Yu.; Tartakovskaya, E. V.; Santos, N. M.; Timopheev, A. A.; Sobolev, N. A.; Serga, A. A.; Chumak, A. V.; Hillebrands, B.; Kakazei, G. N.
2015-01-01
The spin wave dynamics in patterned magnetic nanostructures is under intensive study during the last two decades. On the one hand, this interest is generated by new physics that can be explored in such structures. On the other hand, with the development of nanolithography, patterned nanoelements and their arrays can be used in many practical applications (magnetic recording systems both as media and read-write heads, magnetic random access memory, and spin-torque oscillators just to name a fe...
Shao, Yangfan; Pang, Rui; Pan, Hui; Shi, Xingqiang
2018-03-01
The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.
DEFF Research Database (Denmark)
Sharma, S.; Pittalis, S.; Kurth, S.
2007-01-01
The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....
Directory of Open Access Journals (Sweden)
Bin Fang
2016-12-01
Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.
Competition of multiplet and spin-orbit splitting in open-shells
Energy Technology Data Exchange (ETDEWEB)
Zhang, Qian; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich (Germany)
2016-07-01
To study the trends in the spectra of open-shells across the periodic table, we perform density functional calculations for atoms and ions. We collect the Slater-Condon and spin-orbit parameters from the resulting self-consistent radial wave functions and potentials. To make these easily accessible, we provide a simple least squares fitting formula in the spirit of Slater's rules. Given these parameters we calculate the many-body spectra in LS-, intermediate-, and jj-coupling. To assess the relative importance of Coulomb and spin-orbit interactions, we estimate the width of the spectra by calculating the eigen-energy variance of the corresponding Hamiltonian using a simple formula that does not require diagonalizing a complicated many-body Hamiltonian.
Harrison, Neil; Shekhter, Arkady
2015-03-01
We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.
Energy Technology Data Exchange (ETDEWEB)
Derem, Andre [Commissariat a l' Energie Atomique - CEA, Centre d' Etudes Nucleaires de Saclay, Departement de Physique des Particules Elementaires (France)
1969-03-15
This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0{sup -} + 1{sup +}/2 → 0{sup -} + 1{sup +}/2 (in the notation S{sup P}, S being the spin and P the parity). The two particles 0{sup -} will be two mesons M and M', the two particles 1{sup +}/2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [French] Nous rassemblons ici un certain nombre de formules cinematiques qui sont utilisees couramment lorsqu'on veut decrire la diffusion, avec conservation de la parite, 0{sup -} + 1{sup +}/2 → 0{sup -} + 1{sup +}/2 (dans la notation S{sup P}, S etant le spin et P la parite). Les deux particules 0{sup -} seront deux mesons M et M', les deux particules 1{sup +}/2 deux baryons B et B'. Nous supposerons que les masses de ces quatre particules sont toutes differentes. Les notations et les definitions sont introduites au chapitre 1. Dans le chapitre 2 sont reprises les notions essentielles concernant l'equation de Dirac. La section efficace differentielle, invariante relativiste, est calculee au chapitre 3 en fonction des amplitudes invariantes A'(s,t) et B(s,t). Le formalisme habituel de Pauli dans le systeme du centre de masse est donne au chapitre 4, de meme que le moyen de passer des amplitudes f(θ) et g(θ) aux amplitudes A' et B. Le chapitre 5 concerne la diffusion elastique. Les formules sont numerotees independamment dans chaque paragraphe. Lorsque les renvois se font d
Spin-dependent tunneling conductance in 2D structures in zero magnetic field
International Nuclear Information System (INIS)
Rozhansky, I.V.; Averkiev, N.S.
2009-01-01
The influence of the spin-orbit interaction on the tunneling between two-dimensional electron layers is considered. A general expression for the tunneling current is obtained with the Rashba and Dresselhaus effects and also elastic scattering of charge carriers on impurities taken into account. It is shown that the particular form of the tunneling conductance as a function of the voltage between layers is extremely sensitive to the relationship between the Rashba and Dresselhaus parameters. This makes it possible to determine the parameters of the spin-orbit interaction and the quantum scattering time directly from measurements of the tunneling conductance in the absence of magnetic field
Mück, Leonie Anna; Gauss, Jürgen
2012-03-21
We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics
A two-component wave equation for particles of spin 1/2 and non-zero rest mass
International Nuclear Information System (INIS)
Srivastava, T.
1981-11-01
We have discussed here the qualifications of the equation (delta 0 +sigmasup(k)deltasub(k))psi = -kappaTpsi, where deltasub(μ) is identical to delta/deltaxsup(μ), sigmasup(k) are the Pauli spin matrices, T is the linear operator which changes the sign of t, kappa=m 0 c/(h/2π) and psi a function with two components, as a suitable wave equation for a spin 1/2 particle with non-zero rest mass. We have established that both components of all its solutions satisfy the Klein-Gordon equation and that a 1-1 correspondence can be set up between its solutions and the positive energy solutions of the Dirac equation which preserves inner products (suitably defined for our case). We have then gone on to show covariance under transformations of the proper Lorentz group as also under space and time inversions and translations. Eigenfunctions of energy-momentum and spin have been explicitly found and it is shown that causality is preserved and a Green's function exists. A list appears, at the end, of points to be discussed in Part II of this paper, points which, it is hoped, will complete the acceptability of the theory. (author)
In search of a quasi-zero dimensional quantum spin-switching device
International Nuclear Information System (INIS)
Hancock, Y.
2002-01-01
Full text: In this paper, we propose a theoretical mechanism and potential application for quantum spin switching systems of the generic NMMMMMN type. In this case, N and M respectively refer to non-magnetic and magnetic atoms, of a 7-site finite, inhomogeneous system. We base our understanding on recent investigations into the magnetic induction mechanism on the N-type sites. Such investigations were performed within the context of the Hubbard Model, using both Hartree-Fock and Exact Diagonalization studies. In this work, we have used exact diagonalization studies to probe the spin-spin (2-site) correlation results of these systems, as a function of the model parameters and electron filling. Such calculations were performed within the context of the Hubbard and the Extended Hubbard Models. We have used our results as a means of investigating the proposed quantum spin-switching mechanism within the context of the full many-body problem. In addition to investigating this mechanism, we aim to propose a more realistic theoretical context in which the potential of these systems can be further explored
Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A
2001-05-28
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.
Ground State of Quasi-One Dimensional Competing Spin Chain Cs2Cu2Mo3O12 at zero and Finite Fields
Matsui, Kazuki; Goto, Takayuki; Angel, Julia; Watanabe, Isao; Sasaki, Takahiko; Hase, Masashi
The ground state of competing-spin-chain Cs2Cu2Mo3O12 with the ferromagnetic exchange interaction J1 = -93 K on nearest-neighboring spins and the antiferromagnetic one J2 = +33 K on next-nearest-neighboring spins was investigated by ZF/LF-μSR and 133Cs-NMR in the 3He temperature range. The zero-field μSR relaxation rate λ shows a significant increase below 1.85 K, suggesting the existence of magnetic order, which is consistent with the recent report on the specific heat. However, LF decoupling data at the lowest temperature 0.3 K indicate that the spins fluctuate dynamically, suggesting that the system is in a quasi-static ordered state under zero field. This idea is further supported by the fact that the broadening in NMR spectra below TN is weakened at low field below 2 T.
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)
2014-10-15
The single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, especially the single molecule magnets (SMM) or molecular nanomagnets (MNM), have been extensively studied in recent decades using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. Interpretation of magnetic and spectroscopic properties of transition ions is based on two physically distinct types of Hamiltonians: the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the effective spin Hamiltonians (SH), which include the zero-field splitting (ZFS) Hamiltonians. Survey of recent literature has revealed a number of terminological confusions and specific problems occurring at the interface between these Hamiltonians (denoted CF (LF)↔SH (ZFS)). Elucidation of sloppy or incorrect usage of crucial notions, especially those describing or parameterizing crystal fields and zero field splittings, is a very challenging task that requires several reviews. Here we focus on the prevailing confusion between the CF (LF) and SH (ZFS) quantities, denoted as the CF=ZFS confusion, which consists in referring to the parameters (or Hamiltonians), which are the true ZFS (or SH) quantities, as purportedly the CF (LF) quantities. The inverse ZFS=CF confusion, which pertains to the cases of labeling the true CF (LF) quantities as purportedly the ZFS quantities, is considered in a follow-up paper. The two reviews prepare grounds for a systematization of nomenclature aimed at bringing order to the zoo of different Hamiltonians. Specific cases of the CF=ZFS confusion identified in the recent textbooks, review articles, and SMM (MNM)- and EMR-related papers are surveyed and the pertinent misconceptions are outlined. The consequences of the terminological confusions go far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. Serious
Directory of Open Access Journals (Sweden)
Rimiene J
2010-01-01
Full Text Available Background: Studies for liquid-based Papanicolaou (Pap tests reveal that liquid-based cytology (LBC is a safe and effective alternative to the conventional Pap smear. Although there is research on ThinPrep and SurePath systems, information is lacking to evaluate the efficiency and effectiveness of systems based on cytocentrifugation. This study is designed to determine the sensitivity and specificity of the Shandon PapSpin (ThermoShandon, Pittsburgh, Pennsylvania, USA liquid-based gynecological system. We used split-sample and direct-to-vial study design. Materials and Methods: 2,945 women referred to prophylactic check-up were enrolled in this study. Split sample design was used in 1,500 women and residual cervical cytology specimen from all these cases was placed in fluid for PapSpin preparation after performing conventional smear. The direct-to-vial study was carried out in another cohort of 1,445 women in whom the entire cervical material was investigated using only the PapSpin technique. Follow up histological diagnoses for 141 women were obtained from both study arms following 189 abnormal cytology cases. 80 LBC cases from the split sample group and 61 LBC cases in the direct-to-vial group were correlated with the histology results. The sensitivity and secificity of the conventional smear and PapSpin tests in both study arms were compared. Results: In the split sample group, conventional smears showed a higher proportion of ASC-US (atypical cells undetermined significance: 31 (2.1% vs 10 (0.7% in PapSpin (P = 0.001. A higher proportion of unsatisfactory samples was found in the conventional smear group: 25 (1.7% vs 6 (0.4% cases (P = 0.001. In the split sample group, the sensitivity of the conventional and PapSpin tests was 68.7% vs 78.1%, and the specificity 93.8% vs 91.8%, respectively. In the direct to vial group PapSpin sensitivity was 75.9% and specificity 96.5%. The differences in sensitivity and specificity were not significant. The
Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O
DEFF Research Database (Denmark)
Thrane, N.; Trumpy, Georg
1970-01-01
. Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...
Khan, Shehryar; Pollet, Rodolphe; Vuilleumier, Rodolphe; Kowalewski, Jozef; Odelius, Michael
2017-12-01
In this work, we present ab initio calculations of the zero-field splitting (ZFS) of a gadolinium complex [Gd(iii)(HPDO3A)(H2O)] sampled from an ab initio molecular dynamics (AIMD) simulation. We perform both post-Hartree-Fock (complete active space self-consistent field—CASSCF) and density functional theory (DFT) calculations of the ZFS and compare and contrast the methods with experimental data. Two different density functional approximations (TPSS and LC-BLYP) were investigated. The magnitude of the ZFS from the CASSCF calculations is in good agreement with experiment, whereas the DFT results in varying degrees overestimate the magnitude of the ZFS for both functionals and exhibit a strong functional dependence. It was found in the sampling over the AIMD trajectory that the fluctuations in the transient ZFS tensor derived from DFT are not correlated with those of CASSCF nor does the magnitude of the ZFS from CASSCF and DFT correlate. From the fluctuations in the ZFS tensor, we extract a correlation time of the transient ZFS which is on the sub-picosecond time scale, showing a faster decay than experimental estimates.
Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide
International Nuclear Information System (INIS)
Chen, M.C.
1982-01-01
Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses
Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy
2018-04-01
The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.
Split Fermi Surfaces of the Spin-Orbit-Coupled Metal Cd2Re2O7 Probed by de Haas-van Alphen Effect
Matsubayashi, Yasuhito; Sugii, Kaori; Hirose, Hishiro T.; Hirai, Daigorou; Sugiura, Shiori; Terashima, Taichi; Uji, Shinya; Hiroi, Zenji
2018-05-01
The superconducting pyrochlore oxide Cd2Re2O7 shows a structural transition with inversion symmetry breaking (ISB) at Ts1 = 200 K. A recent theory [https://doi.org/10.1103/PhysRevLett.115.026401" xlink:type="simple">L. Fu, Phys. Rev. Lett. 115, 026401 (2015)] suggests that the origin is an electronic instability that leads to a multipolar order in the spin-orbit-coupled metal. To observe the Fermi surface of the low-temperature phase of Cd2Re2O7, we perform de Haas-van Alphen effect measurements by means of magnetic torque. In reference to a calculated band structure, the spin-split Fermi surfaces with large cyclotron masses of 5-9m0 are revealed. The splitting is suggested to be due to an antisymmetric spin-orbit coupling induced by ISB, the strength of which is estimated to be approximately 67 K, which is rather smaller than those of typical non-centrosymmetric metals.
Simulations of Resonant Intraband and Interband Tunneling Spin Filters
Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.
2001-01-01
This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).
Study of leading strange meson resonances and spin-orbit splittings in K-p → K-π+n at 11 GeV/c
International Nuclear Information System (INIS)
Honma, A.K.
1980-11-01
The results from a high-statistics study of Kπ elastic scattering in the reaction K - p → K - π + n are presented. The data for this analysis are taken from an 11-GeV/c K - p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K - π + events, a sample consisting of data for the Kπ → Kπ elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1 - K*(895), the 2 + K*(1430), and the 3 - K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4 - K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0 + kappa (1490) and propose the existence of a second scalar meson resonance, the 0 + kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables
Energy Technology Data Exchange (ETDEWEB)
Honma, A.K.
1980-11-01
The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.
Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.
2018-01-01
A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.
Quantum spin transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Schindler, Christoph
2012-05-15
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Quantum spin transport in semiconductor nanostructures
International Nuclear Information System (INIS)
Schindler, Christoph
2012-01-01
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Lavrentiev, Vasily; Chvostova, Dagmar; Stupakov, Alexandr; Lavrentieva, Inna; Vacik, Jiri; Motylenko, Mykhaylo; Barchuk, Mykhailo; Rafaja, David; Dejneka, Alexandr
2018-04-01
Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.
Symmetry-selected spin-split hybrid states in C-_{60}/ferromagnetic interfaces
DEFF Research Database (Denmark)
Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo
2016-01-01
ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001), and hcp-Co(0001). We show that the adsorption geometry of the molecule with respect to the surface crystallographic orientation of the magnetic substrate as well as the strength of the interaction play a crucial role in the spin...... tunneling spectroscopy measurements on single C60 adsorbed on Cr(001) and Co/Pt(111) also confirm that the symmetry both of the substrate and of the molecular conformation has a strong influence on the induced spin polarization. Our finding may give valuable insights for further engineering of spin...
International Nuclear Information System (INIS)
Brambleby, J.; Goddard, P. A.; Singleton, John; Jaime, Marcelo; Lancaster, T.
2017-01-01
We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.
International Nuclear Information System (INIS)
Lu Jianduo; Li Jianwen
2010-01-01
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.
Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons
International Nuclear Information System (INIS)
Souma, Satofumi; Ogawa, Matsuto
2014-01-01
We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated
International Nuclear Information System (INIS)
Derrick, G.H.
1987-12-01
This is the second of a series of papers preparing the mathematical framework for a past light cone formulation for the quantum mechanics of particles of arbitrary mass and spin. The aim of past light cone quantum theory is to define quantum states solely in terms of data accessible to an observer, i.e. information from within his current past light cone. In order to set up such a theory one needs to define on the past light cone complete orthonormal sets of functions which belong to the appropriate representation of the Poincare group. Such functions are interpreted as energy-momentum eigenfunctions. The present paper treats the case of spin 1/2 and non-zero rest mass. (author). 7 refs
Energy Technology Data Exchange (ETDEWEB)
Hassanabadi, Hassan; Zare, Soroush; Sobhani, Hadi [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); Chung, Won Sang [Gyeongsang National University, Department of Physics and Research Institute of Natural Science, College of Natural Science, Jinju (Korea, Republic of)
2018-01-15
This paper contains a discussion of a relativistic spin-0 system in the presence of a Goedel-type background space-time. The Duffin-Kemmer-Petiau (DKP) equation in the presence of a Goedel-type background space-time is studied in detail. After a derivation of the final form of this equation in the considered framework, free spin-0 particles have been studied. (orig.)
Geometrical Applications of Split Octonions
Directory of Open Access Journals (Sweden)
Merab Gogberashvili
2015-01-01
Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.
Yu, Jinling; Zeng, Xiaolin; Cheng, Shuying; Chen, Yonghai; Liu, Yu; Lai, Yunfeng; Zheng, Qiao; Ren, Jun
2016-12-01
The ratio of Rashba and Dresselhaus spin splittings of the (001)-grown GaAs/AlGaAs quantum wells (QWs), investigated by the spin photocurrent spectra induced by circular photogalvanic effect (CPGE) at inter-band excitation, has been effectively tuned by changing the well width of QWs and by inserting a one-monolayer-thick InAs layer at interfaces of GaAs/AlGaAs QWs. Reflectance difference spectroscopy (RDS) is also employed to study the interface asymmetry of the QWs, whose results are in good agreement with that obtained by CPGE measurements. It is demonstrated that the inserted ultra-thin InAs layers will not only introduce structure inversion asymmetry (SIA), but also result in additional interface inversion asymmetry (IIA), whose effect is much stronger in QWs with smaller well width. It is also found that the inserted InAs layer brings in larger SIA than IIA. The origins of the additional SIA and IIA introduced by the inserted ultra-thin InAs layer have been discussed.
Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field
Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V
2003-01-01
A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Hugdal, Henning G.; Sudbø, Asle
2018-01-01
We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.
Qu, Chen; Bowman, Joel M
2016-09-14
We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)
2016-09-15
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields
Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-05-01
We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite
International Nuclear Information System (INIS)
Wang Haobin; Thoss, Michael
2010-01-01
Graphical abstract: □□□ - Abstract: The dynamics of the spin-boson model at zero temperature is studied for a bath characterized by a sub-Ohmic spectral density. Using the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method, the population dynamics of the two-level subsystem has been investigated in a broad range of parameter space. The results show the transition of the dynamics from weakly damped coherent motion to localization upon increase of the system-bath coupling strength. Comparison of the exact ML-MCTDH simulations with the non-interacting blip approximation (NIBA) shows that the latter performs rather poorly in the weak coupling regime with small Kondo parameters. However, NIBA improves significantly upon increase in the coupling strength and is quantitatively correct in the strong coupling, nonadiabatic limit. The transition from coherent motion to localization as a function of the different parameters of the model is analyzed in some detail.
Sakaguchi, Hidetsugu; Sherman, E Ya; Malomed, Boris A
2016-09-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ∼1.5×10^{4}. The results are obtained by means of combined analytical and numerical methods.
Directory of Open Access Journals (Sweden)
Karl Illmensee
2010-04-01
Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)
2015-10-05
An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.
Standard Model Particles from Split Octonions
Directory of Open Access Journals (Sweden)
Gogberashvili M.
2016-01-01
Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Spin filling of valley-orbit states in a silicon quantum dot
Energy Technology Data Exchange (ETDEWEB)
Lim, W H; Yang, C H; Zwanenburg, F A; Dzurak, A S, E-mail: wee.lim@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052 (Australia)
2011-08-19
We report the demonstration of a low-disorder silicon metal-oxide-semiconductor (Si MOS) quantum dot containing a tunable number of electrons from zero to N = 27. The observed evolution of addition energies with parallel magnetic field reveals the spin filling of electrons into valley-orbit states. We find a splitting of 0.10 meV between the ground and first excited states, consistent with theory and placing a lower bound on the valley splitting. Our results provide optimism for the realisation in the near future of spin qubits based on silicon quantum dots.
Energy Technology Data Exchange (ETDEWEB)
Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)
2016-11-15
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
International Nuclear Information System (INIS)
Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok
2016-01-01
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?
Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian
2017-11-30
The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.
Magnetization processes in quantum spin chains with regularly alternating intersite interactions
International Nuclear Information System (INIS)
Derzhko, O.
2001-01-01
We consider the dependence of magnetization on field at zero temperature for spin-1/2 chains in which intersite interactions regularly vary from site to site with period p. In the limiting case, where the smallest value of the intersite interactions tends to zero, the chain splits into noninteracting identical fragments of p sites and the dependence of magnetization on field can be examined rigorously. We comment on the influence of an anisotropy in the inter spin interaction on the magnetization profiles. Finally, we show how the case of a nonzero smallest value of the intersite interactions can be considered
Energy Technology Data Exchange (ETDEWEB)
Sinha, A.K., E-mail: anil@rrcat.gov.in [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Singh, M.N. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Achary, S.N. [Chemistry Division, BARC, Anushaktinagar, Mumbai 400085 (India); Sagdeo, A. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Shukla, D.K.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Indore 452010 (India)
2017-08-01
Highlights: • Co ions in Co{sub 1.5}Fe{sub 1.5}O{sub 4} are found to be in high spin states. • XAS measurements have been used to estimate TM crystal field and core hole contributions to 3d orbital splitting. • The polycrystalline Co{sub 1.5}Fe{sub 1.5}O{sub 4} sample show two pinning centers and large magneto crystalline anisotropy. - Abstract: Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (T{sub H}) and octahedral (O{sub H}) sites. Spin states of Co{sup 3+} ions in T{sub H} sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L{sub 2,3}-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t{sub 2g} and e{sub g} absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at O{sub H} and T{sub H} sites. The results are in agreement with those obtained from magnetization data, and favors Co{sup 3+} ions in T{sub H} sites in high spin states. Normalized areas of the satellite peaks in TM L{sub 2},{sub 3}-edge XAS spectra have been used to estimate 3d{sub n+1}L contribution in ground state wave function and the contributions were found to be significant.
Resonant spin Hall effect in two dimensional electron gas
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Sinha, A. K.; Singh, M. N.; Achary, S. N.; Sagdeo, A.; Shukla, D. K.; Phase, D. M.
2017-08-01
Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co1.5Fe1.5O4 is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (TH) and octahedral (OH) sites. Spin states of Co3+ ions in TH sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L2,3-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t2g and eg absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at OH and TH sites. The results are in agreement with those obtained from magnetization data, and favors Co3+ ions in TH sites in high spin states. Normalized areas of the satellite peaks in TM L2,3-edge XAS spectra have been used to estimate 3dn+1L contribution in ground state wave function and the contributions were found to be significant.
Conformal scalar fields and chiral splitting on super Riemann surfaces
International Nuclear Information System (INIS)
D'Hoker, E.; Phong, D.H.
1989-01-01
We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)
Liu, Jie; Potter, Andrew C; Law, K T; Lee, Patrick A
2012-12-28
One of the simplest proposed experimental probes of a Majorana bound state is a quantized (2e(2)/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak can remain. Such a nonquantized zero-bias peak has been recently reported for semiconducting nanowires with proximity induced superconductivity. In this Letter we analyze the relation of the zero-bias peak to the presence of Majorana end states, by simulating the tunneling conductance for multiband wires with realistic amounts of disorder. We show that this system generically exhibits a (nonquantized) zero-bias peak even when the wire is topologically trivial and does not possess Majorana end states. We make comparisons to recent experiments, and discuss the necessary requirements for confirming the existence of a Majorana state.
Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.
2018-04-01
An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.
Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A
2016-04-04
X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in
Directory of Open Access Journals (Sweden)
Zunlue Zhu
2012-07-01
Full Text Available The potential energy curves (PECs of the X^{2}Π and A^{2}Π electronic states of the SO^{+} ion are calculated using the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction (MRCI approach for internuclear separations from 0.08 to 1.06 nm. The spin-orbit coupling effect on the spectroscopic parameters is included using the Breit-Pauli operator. To improve the quality of PECs and spin-orbit coupling constant (A_{0}, core-valence correlation and scalar relativistic corrections are included. To obtain more reliable results, the PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q. At the MRCI+Q/aug-cc-pV5Z+CV+DK level, the A_{0} values of the SO^{+}(X^{2}Π_{1/2, 3/2} and SO^{+}(A^{2}Π_{1/2, 3/2} are 362.13 and 58.16 cm^{−1} when the aug-cc-pCVTZ basis set is used to calculate the spin-orbit coupling splitting, and the A_{0} of the SO^{+}(X^{2}Π_{1/2, 3/2} and SO^{+}(A^{2}Π_{1/2, 3/2} are 344.36 and 52.90 cm^{−1} when the aug-cc-pVTZ basis set is used to calculate the spin-orbit coupling splitting. The conclusion is drawn that the core-valence correlations correction makes the A_{0} slightly larger. The spectroscopic results are obtained and compared with those reported in the literature. Excellent agreement exists between the present results and the measurements. The vibrational manifolds are calculated, and those of the first 30 vibrational states are reported for the J = 0 case. Comparison with the measurements shows that the present vibrational manifolds are both reliable and accurate.
Energy Technology Data Exchange (ETDEWEB)
Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)
2008-07-01
A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied
Effect of spin rotation coupling on spin transport
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-12-15
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.
Czech Academy of Sciences Publication Activity Database
Lavrentiev, Vasyl; Chvostová, Dagmar; Stupakov, Alexandr; Lavrentieva, Inna; Vacík, Jiří; Motylenko, M.; Barchuk, M.; Rafaja, D.; Dejneka, Alexandr
Roč. 29, č. 13 ( 2018 ), č. článku 135701. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2015088; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : fullerene * nanocomposites * quantum plasmon * optical spectra * energy band splitting Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Nano-materials (production and properties); Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 3.440, year: 2016
International Nuclear Information System (INIS)
Cooke, D.W.; Jahan, M.S.; Kwok, R.S.; Lichti, R.L.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Kebede, A.; Schwegler, J.; Crow, J.E.; Mihalsin, T.
1990-01-01
Zero-field muon-spin-rotation (μSR) measurements on (Y 1-x Pr x )Ba 2 Cu 3 O 7 [x = 1.0, 0.8, 0.6, and 0.54] show evidence for antiferromagnetic ordering of the Cu moments within the Cu--O planes, with Neel temperatures 285,220, 35, 30, and 20 K respectively. For x = 1.0 the local muon magnetic field is ∼16 mT, but decreases to ∼12 mT at 17 K, due to additional magnetic ordering. The zero-field data, in conjunction with transport data, allow construction of a complete diagram for this system. Transverse-field (1 kOe) μSR data for x = 0.2 (T c = 75 K) show that the muon depolarization is determined primarily by the Cu nuclear moments for T>T c . Fitting the superconducting-state data to a BCS model yields an extrapolated zero-temperature magnetic penetration depth of 2170 angstrom. 9 refs., 3 figs
Gorlov, A. D.
2015-07-01
The EPR spectra of Gd3+ in CaWO4 single crystals have been studied at temperatures T = 1.8, 4.2, and 114-300 K, and the temperature dependence of the parameters b {/n m } ( T) of the spin Hamiltonian has been found. The behavior of b {2/0}( T) has been analyzed. The spin-phonon and static lattice contributions b {2/0}( F) and b {2/0}( L) to b {2/0}( T) have been revealed. For this purpose, the variation of b {2/0}( L) has been calculated taking into account the thermal shifts of oxygen ions in CaWO4. Similar analysis has been carried out for CaWO4: Eu2+ based on the EPR data of other authors (Bronstein, Voterra and Harvey, Kiefte). It has been shown that at b {2/0}( F) > 0, the variation of b {2/0}( F) as a function of T for these impurity centers is described well by the Pfister model and a sign change of b {2/0}( T) for Eu2+ is determined by thermal expansion of the lattice.
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
DEFF Research Database (Denmark)
Schilhab, Theresa
2007-01-01
Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...
Atom beams split by gentle persuasion
International Nuclear Information System (INIS)
Pool, R.
1994-01-01
Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state
Bifurcation of the spin-wave equations
International Nuclear Information System (INIS)
Cascon, A.; Koiller, J.; Rezende, S.M.
1990-01-01
We study the bifurcations of the spin-wave equations that describe the parametric pumping of collective modes in magnetic media. Mechanisms describing the following dynamical phenomena are proposed: (i) sequential excitation of modes via zero eigenvalue bifurcations; (ii) Hopf bifurcations followed (or not) by Feingenbaum cascades of period doubling; (iii) local and global homoclinic phenomena. Two new organizing center for routes to chaos are identified; in the classification given by Guckenheimer and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary eigenvalues and a zero eigenvalue, to which many dynamical consequences are known; secondly, global homoclinic bifurcations associated to splitting of separatrices, in the limit where the system can be considered a Hamiltonian subjected to weak dissipation and forcing. We outline what further numerical and algebraic work is necessary for the detailed study following this program. (author)
Polarization of nuclear spins by a cold nanoscale resonator
International Nuclear Information System (INIS)
Butler, Mark C.; Weitekamp, Daniel P.
2011-01-01
A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy
Majorana splitting from critical currents in Josephson junctions
Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa
2017-11-01
A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.
Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts
Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.
2008-05-01
Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.
Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells
International Nuclear Information System (INIS)
Hong, S. P.; Yi, K. S.; Quinn, J. J.
2000-01-01
The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society
Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene
Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.
2018-04-01
We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.
International Nuclear Information System (INIS)
Wang Ruiqiang; Jiang Kaiming
2010-01-01
We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Directory of Open Access Journals (Sweden)
Der-you Kao
2017-10-01
Full Text Available Without self-interaction corrections or the use of hybrid functionals, approximations to the density-functional theory (DFT often favor intermediate spin systems over high-spin systems. In this paper, we apply the recently proposed Fermi–Löwdin-orbital self-interaction corrected density functional formalism to a simple tetra-coordinated Fe(II-porphyrin molecule and show that the energetic orderings of the S = 1 and S = 2 spin states are changed qualitatively relative to the results of Generalized Gradient Approximation (developed by Perdew, Burke, and Ernzerhof, PBE-GGA and Local Density Approximation (developed by Perdew and Wang, PW92-LDA. Because the energetics, associated with changes in total spin, are small, we have also calculated the second-order spin–orbit energies and the zero-point vibrational energies to determine whether such corrections could be important in metal-substituted porphins. Our results find that the size of the spin–orbit and vibrational corrections to the energy orderings are small compared to the changes due to the self-interaction correction. Spin dependencies in the Infrared (IR/Raman spectra and the zero-field splittings are provided as a possible means for identifying the spin in porphyrins containing Fe(II.
Source of spin polarized electrons
International Nuclear Information System (INIS)
Pierce, D.T.; Meier, F.A.; Siegmann, H.C.
1976-01-01
A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Energy Technology Data Exchange (ETDEWEB)
Aaboud, M. [Universite Mohamed Premier et LPTPM, Faculte des Sciences, Oujda (Morocco); Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others
2016-11-15
This paper presents a dedicated search for exotic decays of the Higgs boson to a pair of new spin-zero particles, H → aa, where the particle a decays to b-quarks and has a mass in the range of 20-60 GeV. The search is performed in events where the Higgs boson is produced in association with a W boson, giving rise to a signature of a lepton (electron or muon), missing transverse momentum, and multiple jets from b-quark decays. The analysis is based on the full dataset of pp collisions at √(s) = 13 TeV recorded in 2015 by the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb{sup -1}. No significant excess of events above the Standard Model prediction is observed, and a 95% confidence-level upper limit is derived for the product of the production cross section for pp → WH times the branching ratio for the decay H → aa → 4b. The upper limit ranges from 6.2 pb for an a-boson mass m{sub a} = 20 GeV to 1.5 pb for m{sub a} = 60 GeV. (orig.)
Uniqueness of Gibbs measure for Potts model with countable set of spin values
International Nuclear Information System (INIS)
Ganikhodjaev, N.N.; Rozikov, U.A.
2004-11-01
We consider a nearest-neighbor Potts model with countable spin values 0,1,..., and non zero external field, on a Cayley tree of order k (with k+1 neighbors). We study translation-invariant 'splitting' Gibbs measures. We reduce the problem to the description of the solutions of some infinite system of equations. For any k≥1 and any fixed probability measure ν with ν(i)>0 on the set of all non negative integer numbers Φ={0,1,...} we show that the set of translation-invariant splitting Gibbs measures contains at most one point, independently on parameters of the Potts model with countable set of spin values on Cayley tree. Also we give a full description of the class of measures ν on Φ such that wit respect to each element of this class our infinite system of equations has unique solution {a i =1,2,...}, where a is an element of (0,1). (author)
Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting
Liao, Bingjin; Li, Shoubo; Huang, Chunqing; Luo, Zhihuan; Pang, Wei; Tan, Haishu; Malomed, Boris A.; Li, Yongyao
2017-10-01
Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semivortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs—horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC—may be effectively controlled by the strength Ω of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of Ω is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. The mobility of horizontal AVSs is studied, too, with the conclusion that, with the increase of Ω , their negative effective mass changes the sign to positive via a point at which the effective mass diverges. Lastly, we report a new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.
Quantitative analysis on electric dipole energy in Rashba band splitting.
Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji
2015-09-01
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.
Spin-orbit interaction in multiple quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Spin-orbit interaction in multiple quantum wells
International Nuclear Information System (INIS)
Hao, Ya-Fei
2015-01-01
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices
Fourier transform zero field NMR and NQR
International Nuclear Information System (INIS)
Zax, D.B.
1985-01-01
In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI
Magnetic ground state of low-doped manganites probed by spin dynamics under magnetic field
International Nuclear Information System (INIS)
Kober, P.; Hennion, M.; Moussa, F.; Ivanov, A.; Regnault, L.-P.; Pinsard, L.; Revcolevschi, A.
2004-01-01
We present a neutron scattering study of spin dynamics under magnetic field in La 0.9 Ca 0.1 MnO 3 . In zero field, the spin wave spectrum consists of two branches, a high and a low-energy one. In applied field, the high-energy branch splits into two branches due to twinned domains. The gap of the new intermediate-energy branch strongly decreases above a spin-flop transition that occurs for H//b and H>2 T. Furthermore, this branch, that we could attribute to the twinned domain H//b, shows a q-discontinuity under field. The low-energy branch, measurable only around ferromagnetic zone centers at H=0, appears at all q-values under field
International Nuclear Information System (INIS)
Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2011-01-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin
Logic circuits from zero forcing.
Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael
We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.
Zero Gravity Research Facility (Zero-G)
Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...
Competition between disorder and exchange splitting in superconducting ZrZn sub 2
Powell, B J; Györffy, B L
2003-01-01
We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T sub S sub C , in ZrZn sub 2. According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E sub x sub c , leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D subsigma (epsilon sub F). Assuming p-wave pairing T sub S sub C is dependent on D subsigma (epsilon sub F) which ensures that, in the absence of non-magnetic impurities, T sub S sub C decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does. (letter to the editor)
Competition between disorder and exchange splitting in superconducting ZrZn2
International Nuclear Information System (INIS)
Powell, B J; Annett, James F; Gyoerffy, B L
2003-01-01
We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T SC , in ZrZn 2 . According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E xc , leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D σ (ε F ). Assuming p-wave pairing T SC is dependent on D σ (ε F ) which ensures that, in the absence of non-magnetic impurities, T SC decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does. (letter to the editor)
Mechanisms of relaxation and spin decoherence in nanomagnets
van Tol, Johan
Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.
International Nuclear Information System (INIS)
Entin-Wohlman, O.
2005-01-01
Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other
Spin-orbit induced electronic spin separation in semiconductor nanostructures.
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
International Nuclear Information System (INIS)
Mookerjee, Abhijit
1976-01-01
''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)
Majorana Zero Modes in Graphene
Directory of Open Access Journals (Sweden)
P. San-Jose
2015-12-01
Full Text Available A clear demonstration of topological superconductivity (TS and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.
Coded Splitting Tree Protocols
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar
2013-01-01
This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...
Multiplet mass splitting in a gravitational field
International Nuclear Information System (INIS)
Maia, M.D.
An expression for the mass splitting of particles belonging to the same spin multiplet defined in a space-time of general relativity is derived. The geometrical symmetry is a subgroup of SO(r,s), 9 >=r > 3, 5 >=s >=1, the mass operator being proportional to the second order Casimir operator of that subgroup. A brief analysis of the calculated values as compared to the experimental data is included. (Author) [pt
Spin-triplet excitons and anisotropy effects in the S=12 gapped antiferromagnet BaCuSi2O6
International Nuclear Information System (INIS)
Zvyagin, S.A.; Wosnitza, J.; Krzystek, J.; Stern, R.; Jaime, M.; Sasago, Y.; Uchinokura, K.
2007-01-01
BaCuSi 2 O 6 can be regarded as an almost ideal realization of an S=12 system of weakly interacting spin dimers with spin-singlet ground state and gapped excitation spectrum. We argue that the fine structure observed in low-temperature EPR spectra of BaCuSi 2 O 6 is a fingerprint of triplet excitations (excitons). Analyzing the angular dependence of the exciton modes allows us to precisely calculate the zero-field splitting within the triplet states and, correspondingly, the anisotropy parameter, D=0.07cm -1 . The proposed procedure can be applied for studying anisotropy effects in a large number of S=12 gapped quantum antiferromagnets with dimerized or alternating spin structure
Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase
International Nuclear Information System (INIS)
Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N.
2013-01-01
Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems
Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase
Energy Technology Data Exchange (ETDEWEB)
Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N., E-mail: ovolkov@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)
2013-09-15
Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems.
Lewis, Robert
2015-01-01
The history of the number zero is an interesting one. In early times, zero was not used as a number at all, but instead was used as a place holder to indicate the position of hundreds and tens. This article briefly discusses the history of zero and challenges the thinking where divisions using zero are used.
Majorana spin in magnetic atomic chain systems
Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei
2018-03-01
In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.
Graphene spin diode: Strain-modulated spin rectification
Energy Technology Data Exchange (ETDEWEB)
Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
2014-08-04
Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.
Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene
International Nuclear Information System (INIS)
Wang, Y.; Liu, Y.; Wang, B.
2014-01-01
The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter
Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
2014-03-15
The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.
Measurement of the ground-state hyperfine splitting of antihydrogen
Juhász, B; Federmann, S
2011-01-01
The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.
A Kohn-Sham system at zero temperature
DEFF Research Database (Denmark)
Cornean, Horia; Hoke, K.; Neidhardt, H.
2008-01-01
A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues...... by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero....
Directory of Open Access Journals (Sweden)
D. H. Berman
2014-03-01
Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Many-body spin related phenomena in ultra-low-disorder quantum wires
International Nuclear Information System (INIS)
Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Stiles, P.J.; O'Brien, J.L.; Lumpkin, N.E.
2000-01-01
Full text: Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 x 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs AlGaAs quantum wires with nominal lengths l=0 and 2μm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparison we observe structure near 0.7 x 2e 2 /h for l=0 whereas the l = 2μm wires show structure evolving with increasing density to 0.5 x 2e 2 /h in zero magnetic field, the value expected for an ideal spin split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region
Enhancing or suppressing the spin Hall effect of light in layered nanostructures
Energy Technology Data Exchange (ETDEWEB)
Luo Hailu; Ling Xiaohui; Zhou Xinxing; Shu Weixing; Wen Shuangchun; Fan Dianyuan [Key Laboratory for Micro/Nano Opto-Electronic Devices of Ministry of Education, College of Information Science and Engineering, Hunan University, Changsha 410082 (China)
2011-09-15
The spin Hall effect (SHE) of light in layered nanostructures is investigated theoretically in this paper. A general propagation model describing the spin-dependent transverse splitting of wave packets in the SHE of light is established from the viewpoint of classical electrodynamics. We show that the transverse displacement of the wave-packet centroid can be tuned to either a negative or a positive value, or even zero, by just adjusting the structure parameters, suggesting that the SHE of light in layered nanostructures can be enhanced or suppressed in a desired way. The inherent physics behind this interesting phenomenon is attributed to the optical Fabry-Perot resonance. We believe that these findings will open the possibility for developing new nanophotonic devices.
Market Structure and Stock Splits
David Michayluk; Paul Kofman
2001-01-01
Enhanced liquidity is one possible motivation for stock splits but empirical research frequently documents declines in liquidity following stock splits. Despite almost thirty years of inquiry, little is known about all the changes in a stock's trading activity following a stock split. We examine how liquidity measures change around more than 2,500 stock splits and find a pervasive decline in most measures. Large stock splits exhibit a more severe liquidity decline than small stock splits, esp...
International Nuclear Information System (INIS)
Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu
2002-01-01
Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region
Stapleton, Thomas J. (Inventor)
2015-01-01
A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Stochastic split determinant algorithms
International Nuclear Information System (INIS)
Horvatha, Ivan
2000-01-01
I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed
Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2016-03-21
The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.
Ogden, Daniel M., Jr.
1978-01-01
Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Energy Technology Data Exchange (ETDEWEB)
Avram, C.N. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Gruia, A.S., E-mail: adigruia@yahoo.com [Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Barb, A.M. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania)
2015-12-01
Calculations of the Cr{sup 3+} energy levels, spin-Hamiltonian parameters and vibrational spectra for the layered CrCl{sub 3} crystals are reported for the first time. The crystal field parameters and the energy level scheme were calculated in the framework of the Exchange Charge Model of crystal field. The spin-Hamiltonian parameters (zero-field splitting parameter D and g-factors) for Cr{sup 3+} ion in CrCl{sub 3} crystals were obtained using two independent techniques: i) semi-empirical crystal field theory and ii) density functional theory (DFT)-based model. In the first approach, the spin-Hamiltonian parameters were calculated from the perturbation theory method and the complete diagonalization (of energy matrix) method. The infrared (IR) and Raman frequencies were calculated for both experimental and fully optimized geometry of the crystal structure, using CRYSTAL09 software. The obtained results are discussed and compared with the experimental available data.
Spin tunnelling in mesoscopic systems
Indian Academy of Sciences (India)
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic ﬁeld, vanishing completely at special points in the ...
International Nuclear Information System (INIS)
Solontsov, A.
2015-01-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects
Energy Technology Data Exchange (ETDEWEB)
Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-04-15
Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)
International Nuclear Information System (INIS)
Safari, Mahmoud
2016-01-01
Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)
Conformal description of spinning particles
International Nuclear Information System (INIS)
Todorov, I.T.
1986-01-01
This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Point splitting in a curved space-time background
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1979-01-01
A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)
Application of Zeeman spatial beam-splitting in polarized neutron reflectometry
Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.
2017-01-01
Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.
International Nuclear Information System (INIS)
Kawarabayashi, Tohru; Hasugai, Yasuhiro; Aoki, Hideo
2013-01-01
The stability of the zero-energy Landau levels in bilayer graphene against the chiral symmetric disorder is examined in the presence of the trigonal warping. Based on the tight-binding lattice model with a bond disorder correlated over several lattice constants, it is shown that among the four Landau levels per spin and per valley, two Landau levels exhibit the anomalous sharpness as in the absence of the trigonal warping, while the other two are broadened, yielding split peaks in the density of states. This can be attributed to the fact that the total chirality in each valley is ±2, which is protected topologically even in the presence of an intra-valley scattering due to disorder
Wilkins, Jesse L. M.; Norton, Anderson
2011-01-01
Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…
Norton, Anderson; Wilkins, Jesse L. M.
2012-01-01
Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
International Nuclear Information System (INIS)
Rudowicz, C.; Piwowarska, D.
2011-01-01
Magnetic and spectroscopic properties of the planar antiferromagnet K 2 FeF 4 are determined by the Fe 2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K 2 FeF 4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe 2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K 2 FeF 4 , the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe 2+ ions in K 2 FeF 4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5 D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe 2+ ions in K 2 FeF 4 and Fe 2+ :K 2 ZnF 4 . Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe 2+ ions at axial symmetry sites in related systems, i.e. Fe:K 2 MnF 4 , Rb 2 Co 1-x Fe x F 4 , Fe 2+ :Rb 2 CrCl 4 , and Fe 2+ :Rb 2 ZnCl 4 . - Highlights: → Truncated zero field splitting (ZFS) terms for Fe 2+ in K
Boekema, C.; Brabers, V.A.M.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.
1986-01-01
Zero-field longitudinal muon-spin-relaxation (µSR) experiments have been performed on single crystals of pseudo-brookite (Fe2-xTil+x O 5; x=0.25), an anisotropic spin-glass system. The spinglass temperature (Tg) is determined to be 44.0±0.5K. Above Tg, a distinct exponential muon-spin-relaxation
Ising ferromagnet: zero-temperature dynamic evolution
International Nuclear Information System (INIS)
Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L
2006-01-01
The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit
Unconventional spin texture of a topologically nontrivial semimetal Sb(110)
DEFF Research Database (Denmark)
Strózecka, A.; Eiguren, A.; Bianchi, Marco
2012-01-01
The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands...... signal.We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion....
Transport and spin effects in homogeneous magnetic superlattice
International Nuclear Information System (INIS)
Cardoso, J.L.; Pereyra, P.; Anzaldo-Meneses, A.
2000-09-01
Homogeneous semiconductors under spacially periodic external magnetic fields exhibit spin-band splitting and displacements, more clearly defined than in diluted magnetic semiconductor superlattices. We study the influence of the geometrical parameters and the spin-field interaction on the electronic transport properties. We show that by varying the external magnetic field, one can easily block the transmission of either the spin-up or the spin-down electrons. (author)
Spin of two-nucleon system and nucleon-antinucleon combination in the S-state
International Nuclear Information System (INIS)
Baranik, A.T.; El-Naghy, A.; Ramadan, S.
1988-08-01
The spin of the two nucleon combination was studied. It was found that the resultant combination could be treated as a boson with spin one or zero, and the spin one state is more stable than the spin zero state. In the case of nucleon-antinucleon combination the spin zero state is more stable than the spin one state. The approach succeeded in describing the general features of the nucleon-nucleon and nucleon antinucleon scattering and polarization. (author). 3 refs, 4 figs
Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid
International Nuclear Information System (INIS)
Zayets, V.
2014-01-01
It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model
Wichowski, Chester
1979-01-01
The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…
Generalized zero point anomaly
International Nuclear Information System (INIS)
Nogueira, Jose Alexandre; Maia Junior, Adolfo
1994-01-01
It is defined Zero point Anomaly (ZPA) as the difference between the Effective Potential (EP) and the Zero point Energy (ZPE). It is shown, for a massive and interacting scalar field that, in very general conditions, the renormalized ZPA vanishes and then the renormalized EP and ZPE coincide. (author). 3 refs
CSIR Research Space (South Africa)
Lindeque, M
2013-01-01
Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...
Split warhead simultaneous impact
Directory of Open Access Journals (Sweden)
Rahul Singh Dhari
2017-12-01
Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.
Valley photonic crystals for control of spin and topology.
Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang
2017-03-01
Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.
Valley photonic crystals for control of spin and topology
Energy Technology Data Exchange (ETDEWEB)
Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang
2016-11-28
Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.
Charge and spin transport in mesoscopic superconductors
Directory of Open Access Journals (Sweden)
M. J. Wolf
2014-02-01
Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.
International Nuclear Information System (INIS)
Varga, Kalman; Genovese, Marco; Richard, Jean-Marc; Silvestre-Brac, Bernard
1998-01-01
We discuss the isospin-breaking mass differences among baryons, with particular attention in the charm sector to the Σ c + -Σ c 0 , Σ c ++ -Σ c 0 , and Ξ c + -Ξ c 0 splittings. Simple potential models cannot accommodate the trend of the available data on charm baryons. More precise measurements would offer the possibility of testing how well potential models describe the non-perturbative limit of QCD
Zeeman splitting of surface-scattered neutrons
International Nuclear Information System (INIS)
Felcher, G.P.; Adenwalla, S.; De Haan, V.O.; Van Well, A.A.
1995-01-01
If a beam of slow neutrons impinges on a solid at grazing incidence, the neutrons reflected can be used to probe the composition and magnetization of the solid near its surface. In this process, the incident and reflected neutrons generally have identical kinetic energies. Here we report the results of an experiment in which subtle inelastic scattering processes are revealed as relatively large deviations in scattering angle. The neutrons are scattered from a ferromagnetic surface in the presence of a strong ambient magnetic field, and exhibit a small but significant variation in kinetic energy as a function of the reflection angle. This effect is attributable to the Zeeman splitting of the energies of the neutron spin states due to the ambient magnetic field: some neutrons flip their spins upon reflection from the magnetized surface, thereby exchanging kinetic energy for magnetic potential energy. The subtle effects of Zeeman splitting are amplified by the extreme sensitivity of grazing-angle neutron scattering, and might also provide a useful spectroscopic tool if significant practical obstacles (such as low interaction cross-sections) can be overcome. (author)
Energy Technology Data Exchange (ETDEWEB)
Benakli, Karim; Darmé, Luc; Goodsell, Mark D. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589,LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France)
2015-11-16
We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale M{sub S}, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on M{sub S}, which we derive. On the other hand, we show that renormalisation group running of soft masses aboveM{sub S} barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.
Spin correlations in quantum wires
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
International Nuclear Information System (INIS)
Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.
2011-01-01
We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Magnetic and electric order in the spin-1/2 XX model with three-spin interactions
Energy Technology Data Exchange (ETDEWEB)
Thakur, Pradeep; Durganandini, P. [Department of Physics, University of Pune, Ganeshkhind, Pune - 411007 (India)
2016-05-23
We study the spin-1/2 XX model in the presence of three-spin interactions of the XZX+YZY and XZY-YZX types. We solve the problem exactly and show that there is both finite magnetization and electric polarization for low non-zero strengths of the three-spin interactions.
Energy Technology Data Exchange (ETDEWEB)
2016-09-01
The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.
Thermal spin pumping mediated by magnons in the semiclassical regime
International Nuclear Information System (INIS)
Nakata, Kouki
2012-01-01
We microscopically analyze thermal spin pumping mediated by magnons, at the interface between a ferromagnetic insulator and a non-magnetic metal, in the semiclassical regime. The generation of a spin current is discussed by calculating the thermal spin transfer torque, which breaks the spin conservation law for conduction electrons and operates the coherent magnon state. Inhomogeneous thermal fluctuations between conduction electrons and magnons induce a net spin current, which is pumped into the adjacent non-magnetic metal. The pumped spin current is proportional to the temperature difference. When the effective temperature of magnons is lower than that of conduction electrons, localized spins lose spin angular momentum by emitting magnons and conduction electrons flip from down to up by absorbing all the emitted momentum, and vice versa. Magnons at the zero mode cannot contribute to thermal spin pumping because they are eliminated by the spin-flip condition. Consequently thermal spin pumping does not cost any kind of applied magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do; Creedon, Daniel L.; Le Floch, Jean-Michel [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Probst, Sebastian [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Bushev, Pavel [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany); Tobar, Michael E., E-mail: michael.tobar@uwa.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Western Australia, Crawley 6009 (Australia)
2015-06-08
Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at much lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.
Fischer, William B.; Stauffer, Robert A.
1978-01-01
Erie County Community College (New York) has developed a zero-based program budgeting system to meet current fiscal problems and diminished resources. The system allocates resources on the basis of program effectiveness and market potential. (LH)
Energy Technology Data Exchange (ETDEWEB)
Polly, Benjamin J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-05-04
This presentation shows how NREL is approaching Zero Energy Districts, including key opportunities, design strategies, and master planning concepts. The presentation also covers URBANopt, an advanced analytical platform for district that is being developed by NREL.
Indian Academy of Sciences (India)
more and more difficult to remove heat as one approaches absolute zero. This is the ... A new and active branch of engineering ... This temperature is called the critical temperature, Te' For sulfur dioxide the critical ..... adsorbent charcoal.
Spin tunnelling in mesoscopic systems
Garg, Anupam
2001-02-01
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.
DEFF Research Database (Denmark)
Faber, Rasmus; Sauer, Stephan P. A.
2015-01-01
We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation ...
Higher-spin flat space cosmologies with soft hair
Energy Technology Data Exchange (ETDEWEB)
Ammon, Martin [Theoretisch-Physikalisches Institut, Friedrich-Schiller University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Grumiller, Daniel [Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); CMCC-Universidade Federal do ABC,Santo André, S.P. (Brazil); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); Riegler, Max [Université libre de Bruxelles, Boulevard du Triomphe, Campus de la Plaine,1050 Bruxelles (Belgium); Wutte, Raphaela [Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)
2017-05-08
We present and discuss near horizon boundary conditions for flat space higher-spin gravity in three dimensions. As in related work our boundary conditions ensure regularity of the solutions independently of the charges. The asymptotic symmetry algebra is given by a set of û(1) current algebras. The associated charges generate higher-spin soft hair. We derive the entropy for solutions that are continuously connected to flat space cosmologies and find the same result as in the spin-2 case: the entropy is linear in the spin-2 zero-mode charges and independent from the spin-3 charges. Using twisted Sugawara-like constructions of higher-spin currents we show that our simple result for entropy of higher-spin flat space cosmologies coincides precisely with the complicated earlier results expressed in terms of higher-spin zero mode charges.
Low-temperature spin transport in a S = 1 one-dimensional antiferromagnet
International Nuclear Information System (INIS)
Pires, A S T; Lima, L S
2009-01-01
We study spin transport in the insulating antiferromagnet with S = 1 in one dimension. The spin conductivity is calculated, at zero temperature, using a modified spin wave theory and the Kubo formalism, within the ladder approximation. Two-magnon processes provide the dominant contribution to the spin conductivity. At finite temperature, free magnons are activated, and turn the system into a perfect spin conductor, i.e., the spin conductivity has a Drude form with infinite scattering time.
Debray, Philippe; Shorubalko, Ivan; Xu, Hongqi
2007-03-01
We have studied polarized spin transport in a device consisting of three quantum point contacts (QPCs) in series made on InGaAs/InP quantum-well (QW) structures. The QPCs were created by independent pairs of side gates, each pair for one QPC. By adjusting the bias voltages of the side gates, the widths of the QPCs are independently tuned to have transport in the fundamental mode. An external magnetic field of a few T causes spin splitting of the lowest one-dimensional (1D) subbands. The widths of the end QPCs are adjusted to position the Fermi level in the spin-split energy gap, while that of the central QPC is kept wide enough to populate both spin-split bands. Measurement of the conductance of the end QPCs at low temperatures (spinFET.
Spin-wave propagation and spin-polarized electron transport in single-crystal iron films
Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.
2017-11-01
The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.
Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state
International Nuclear Information System (INIS)
Yoshii, Ryosuke; Tsuchiya, Shunji; Marmorini, Giacomo; Nitta, Muneto
2011-01-01
We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation
Brabers, V.A.M.; Boekema, C.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.
1987-01-01
Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a
Transverse Ising spin-glass model
International Nuclear Information System (INIS)
Santos, Raimundo R. dos; Santos, R.M.Z. dos.
1984-01-01
The zero temperature behavior of the Transverse Ising spin-glass (+-J 0 ) model is discussed. The d-dimensional quantum model is shown to be equivalent to a classical (d + 1)- dimensional Ising spin-glass with correlated disorder. An exact Renormalization Group treatment of the one-dimensional quantum model indicates the existence of a spin-glass phase. The Migdal-Kadanoff approximation is used to obtain the phase diagram of the quantum spin-glass in two-dimensions. (Author) [pt
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix
2016-12-23
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.
International Nuclear Information System (INIS)
Brik, M.G.; Avram, C.N.; Avram, N.M.
2006-01-01
The effective spin-Hamiltonian (SH) parameters (zero-field splitting D and g factors g - parallel and g - perpendicular ) for Cr 3+ ions in LiSr(Al,Ga)F 6 crystals are calculated from the complete high-order perturbation formulae for a d 3 ion. Parameters of trigonal crystal field acting on the Cr 3+ ion are calculated. The magnitude of trigonal distortion of the [CrF 6 ] 3- clusters is related to the experimental measurements of the spin-Hamiltonian parameters in the considered systems. Since in both crystals g parallel perpendicular , [CrF 6 ] 3- clusters undergo an axial compression along the C 3 axis. Experimental values of the hyperfine structure constants A parallel and A perpendicular are used to evaluate the core polarization constant κ for Cr 3+ ion in both crystals
Geometrical splitting in Monte Carlo
International Nuclear Information System (INIS)
Dubi, A.; Elperin, T.; Dudziak, D.J.
1982-01-01
A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs
Vozková, Markéta
2011-01-01
1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...
International Nuclear Information System (INIS)
Burgunder, G.
2011-12-01
The spin-orbit interaction depends on the spin orientation of the nucleons with respect to their angular momenta as well as on the derivative of the nuclear density. Even though this density dependence is used in all mean field model, it has never been tested yet due to the lack of data. We propose an original method to test this density dependence by comparing a bubble nucleus ( 34 Si) to a normal nucleus ( 36 S). The 34 Si exhibits a central density which is depleted by a factor of two which induces a non-zero central density derivative and should change the strength of the spin orbit interaction for the inner orbits such as the p orbits (L=1). By performing (d,p) transfer reactions with 36 S and 34 Si beams, the p(3/2) and p(1/2) spin orbit splitting can be inferred for these nuclei. Depending on the models, the spin-orbit splitting varies from 7% (VlowK interaction) up to 70% (Relativistic mean field approach). Beams of 36 S and 34 Si, produced at the LISE spectrometer at 20 A.MeV, were impinged onto a CD 2 target. Tracking the beam particles was achieved using 2 xy beam tracking gas detectors. Protons emitted were detected by 4 multi-segmented Si detectors (MUST2) placed at backwards angles. Gammas issued from the excited states decay were detected in the 4 EXOGAM segmented Germanium detectors. Transfer like nuclei were identified with an ionization chamber and a plastic detector. The excitation energy spectra of the 37 S and 35 Si are determined up to about 7 MeV. Spectroscopic factors and energies of p and f states are derived for the first time in 35 Si. The two nuclei show strong similarity for the f spin-orbit partners, whereas the p(3/2) - p(1/2) energy gap is reduced by 55%. (author)
Wilson, A.; Lawrence, J.; Yang, E.-C.; Nakano, M.; Hendrickson, D. N.; Hill, S.
2006-10-01
Electron paramagnetic resonance (EPR) studies of a Ni4 single-molecule magnet (SMM) yield the zero-field-splitting (ZFS) parameters D , B40 , and B44 , based on the giant spin approximation (GSA) with S=4 ; B44 is responsible for the magnetization tunneling in this SMM. Experiments on an isostructural Ni-doped Zn4 crystal establish the NiII ion ZFS parameters. The fourth-order ZFS parameters in the GSA arise from the interplay between the Heisenberg interaction Jŝ1•ŝ2 and the second-order single-ion anisotropy, giving rise to mixing of higher-lying S≠4 states into the S=4 state. Consequently, J directly influences the ZFS in the ground state, enabling its determination by EPR.
Electronic properties in a two-dimensional disordered electron liquid: Spin-valley interplay
International Nuclear Information System (INIS)
Burmistrov, I. S.; Chtchelkatchev, N. M.
2008-01-01
We report a detailed study of the influence of the spin and valley splittings on such physical observables of the two-dimensional disordered electron liquid as resistivity and spin and valley susceptibilities. We explain qualitatively the nonmonotonic dependence of the resistivity on temperature in the presence of a parallel magnetic field. In the presence of either spin or valley splitting we predict a temperature dependence of the resistivity with two maximum points
Muon zero point motion and the hyperfine field in nickel
International Nuclear Information System (INIS)
Elzain, M.E.
1984-09-01
It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)
De Marco, N
2013-01-01
Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.
DEFF Research Database (Denmark)
Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild
2010-01-01
and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...
Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; Abouzeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adiguzel, Aytul; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar Saavedra, Juan Antonio; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara Caroline; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allaire, Corentin; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Alvarez Piqueras, Damian; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Ambroz, Luca; Amelung, Christoph; Amidei, Dante Eric; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amrouche, Cherifa Sabrina; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anelli, Christopher Ryan; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Annovi, Alberto; Antel, Claire; Anthony, Matthew Thomas; Antonelli, Mario; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Araque Espinosa, Juan Pedro; Araujo Ferraz, Victor; Araujo Pereira, Rodrigo; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Armbruster, Aaron James; Armitage, Lewis James; Armstrong, Alexander Iii; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asimakopoulou, Eleni Myrto; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkin, Ryan Justin; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Avramidou, Rachel Maria; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Baluch Bahrasemani, Sina; Bailey, Adam; Baines, John; Bajic, Milena; Bakalis, Christos; Baker, Keith; Bakker, Pepijn Johannes; Bakshi Gupta, Debottam; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Balz, Johannes; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barbe, William Mickael; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tylor Colt; Barklow, Timothy; Barlow, Nick; Barnea, Rotem; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batlamous, Souad; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Helge Christoph; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas Alfons; Begalli, Marcia; Begel, Michael; Behera, Arabinda; Behr, Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Bellos, Panagiotis; Belotskiy, Konstantin; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, Juerg; Berlendis, Simon Paul; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Besjes, Geert-jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Birman, Mattias; Bisanz, Tobias; Biswal, Jyoti Prakash; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Bouaouda, Khalil; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brahimi, Nihal; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Brickwedde, Bernard; Briglin, Daniel Lawrence; Britton, Dave; Britzger, Daniel Andreas; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin Hylton; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas; Buescher, Daniel; Buescher, Volker; Buschmann, Eric; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabras, Grazia; Cabrera Urban, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina Maria; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Calvetti, Milene; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Cao, Yumeng; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carra, Sonia; Carrillo Montoya, German David; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo, Florencia Luciana; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Jue; Chen, Shion; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yu-heng; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, I-huan; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Clark, Allan G; Clark, Michael Ryan; Clark, Philip James; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coimbra, Artur Cardoso; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Conde Muino, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conventi, Francesco; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, Francois; Cortes-Gonzalez, Arely; Costa, Maria Jose; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Crane, Jonathan; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael Ann; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Croft, Vincent; Crosetti, Giovanni; Cueto Gomez, Ana Rosario; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cuth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dahbi, Salah-eddine; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; D'amen, Gabriele; Damp, Johannes Frederic; Dandoy, Jeffrey Rogers; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nicholas Stuart; Danninger, Matthias; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dartsi, Olympia; Dattagupta, Aparajita; Daubney, Thomas; D'Auria, Saverio; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Beurs, Marcus; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Del Gaudio, Michela; Del Peso, Jose; Delabat Diaz, Yasiel; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Della Pietra, Massimo; della Volpe, Domenico; Dell'Acqua, Andrea; Dell'Asta, Lidia; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; Demarco, David; Demers, Sarah; Demichev, Mikhail; Denisov, Sergey; Denysiuk, Denys; D'eramo, Louis; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; De Almeida Dias, Flavia; Dias do vale, Tiago; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fido; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donini, Julien; D'onofrio, Adelina; D'Onofrio, Monica; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dreyer, Etienne; Dreyer, Timo; Du, Yanyan; Duarte Campderros, Jorge; Dubinin, Filipp; Dubovsky, Michal; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Duehrssen, Michael; Dulsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; Dueren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dysch, Samuel; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Errede, Steven; Escalier, Marc; Escobar, Carlos; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel John; Faisca Rodrigues Pereira, Rui Miguel; Fakhrutdinov, Rinat; Falciano, Speranza; Falke, Peter Johannes; Falke, Saskia; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; FARRELL, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Woiciech; Feickert, Matthew; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipcic, Andrej; Filthaut, Frank; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Cora; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy Mac Gregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores, Lucas Macrorie; Flores Castillo, Luis; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; Foerster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia Maria; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz Pawel; Gadatsch, Stefan; Gadow, Paul Philipp; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram; Gamboa Goni, Rodrigo; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; García, Carmen; García Navarro, José Enrique; Garcia Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gasnikova, Ksenia; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gavrilyuk, Alexander; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Helene; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gessner, Gregor; Ghasemi, Sara; Ghasemi Bostanabad, Meisam; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Giannini, Antonio; Gibson, Stephen; Gignac, Matthew; Gillberg, Dag Ingemar; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giulini, Maddalena; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian Maximilian Volker; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Goncalves Gama, Rafael; Goncalo, Ricardo; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia Lynne; Gonzalez de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Goshaw, Alfred; Goessling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gravili, Francesco Giuseppe; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Jorn; Grossi, Giulio Cornelio; Grout, Zara Jane; Grud, Christopher; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guerguichon, Antinea; Guescini, Francesco; Guest, Daniel; Gugel, Ralf; Gui, Bin; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Guo, Ziyu; Gupta, Ruchi; Gurbuz, Saime; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageboeck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Hanke, Paul; Hansen, Eva; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew Straiton; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard; Hayden, Daniel; Hayes, Christopher; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heath, Matthew Peter; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heilman, Jesse; Heim, Sarah; Heim, Timon Frank-thomas; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernandez Jimenez, Yesenia; Herr, Holger; Herrmann, Maximilian Georg; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higon-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Honle, Andreas; Hooberman, Benjamin Henry; Hopkins, Walter Howard; Horii, Yasuyuki; Horn, Philipp; Horton, Arthur James; Horyn, Lesya Anna; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hrynevich, Aliaksei; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis; Huo, Peng; Hupe, Andre Marc; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche Speiser, Franziska; Introzzi, Gianluca; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Islam, Wasikul; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivina, Anna; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jacka, Petr; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakel, Gunnar; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Goeran; Javadov, Namig; Javurek, Tomas; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeong, Jihyun; Jezequel, Stephane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Morales, Fabricio Andres; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Junggeburth, Johannes Josef; Juste Rozas, Aurelio; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanjir, Luka; Kano, Yuya; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis Fawn; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John Stakely; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James Andrew; Kepka, Oldrich; Kersten, Susanne; Kersevan, Borut Paul; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kiehn, Moritz; Kilby, Callum Robert; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith B F G; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koehler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Natalia; Koeneke, Karsten; Koenig, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinides, Vasilis; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Konstantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Krstic, Jelena; Kruchonak, Uladzimir; Krueger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, Joern Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laudrain, Antoine; Lavorgna, Marco; Law, Alexander Thomas; Laycock, Paul; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi Paul; Leblanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee JR, Lawrence; Lee, Shih-Chang; Lefebvre, Benoit; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann, Niklaus; Lehmann Miotto, Giovanna; Leight, William Axel; Leisos, Antonios; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liem Arvidsson, Sebastian; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Tai-hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Little, Jared David; Liu, Bo; Liu, Bingxuan; Liu, Hongbin; Liu, Hao; Liu, Jianbei; Liu, Jesse Kar Kee; Liu, Kun; Liu, Minghui; Liu, Peilian; Liu, Yanwen; Liu, Yang; Liu, Yanlin; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez Lopez, Jorge Andres; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Losel, Philipp Jonathan; Lou, Xuanhong; Lou, Xinchou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lozano Bahilo, Jose Julio; Lu, Haonan; Lu, Miaoran; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Fred; Luise, Ilaria; Lukas, Wolfgang; Luminari, Lamberto; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, LianLiang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Jumpei; Maekawa, Koki; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maidantchik, Carmen; Maier, Thomas; Maio, Amelia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandic, Igor; Maneira, Jose; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantoani, Matteo; Manzoni, Stefano; Marceca, Gino; March Ruiz, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel Edison; Marroquim, Fernando; Marshall, Zach; Martensson, Ulf Fredrik Mikael; Marti i Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez Perez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Massarotti, Paolo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Maettig, Peter; Maurer, Julien; Macek, Bostjan; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Tom; McClymont, Laurie Iain; McDonald, Emily; Mcfayden, Joshua Angus; Mchedlidze, Gvantsa; McKay, Madalyn Ann; McLean, Kayla Dawn; McMahon, Steve; Mcnamara, Peter Charles; Mcnicol, Christopher John; McPherson, Robert; Mdhluli, Joyful Elma; Meadows, Zachary Alden; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Mendes Gouveia, Emanuel Demetrio; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jochen; Meyer, Jean-Pierre; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuz, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh Pradip; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjoernmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; Moenig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llacer, Maria; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, Alice Polyxeni; Morris, John; Morvaj, Ljiljana; Moschovakos, Paraschos; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey Andre; Munoz Sanchez, Francisca Javiela; Murin, Pavel; Murray, Bill; Murrone, Alessia; Muskinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myers, John; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanjo, Hajime; Napolitano, Fabrizio; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Yan Wing; Nguyen, Hoang Dai Nghia; Nguyen Manh, Tuan; Nibigira, Emery; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; BIN NORJOHARUDDEEN, Nurfikri; Novak, Tadej; Novgorodova, Olga; Novotny, Radek; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Abreu Juliao Ochoa De Castro, Maria Ines; Ochoa, Jean-pierre; O'Connor, Kelsey; Oda, Susumu; Odaka, Shigeru; Oerdek, Serhat; Oh, Alexander; Oh, Seog; Ohm, Christian; Oide, Hideyuki; Okawa, Hideki; Okazaki, Yuta; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver, Jason Lea; Olsson, Mats Joakim Robert; Olszewski, Andrzej; Olszowska, Jolanta; O'Neil, Dugan; Onofre, Antonio; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; O'Rourke, Abigail Alexandra; Orr, Robert; Osculati, Bianca; O'Shea, Val; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacalt, Josef; Pacey, Holly Ann; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, Jose Guillermo; Pani, Priscilla; Panizzo, Giancarlo; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Paredes Saenz, Santiago Rafael; Parida, Bibhuti; Parker, Adam Jackson; Parker, Kerry Ann; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pasuwan, Patrawan; Pataraia, Sophio; Pater, Joleen; Pathak, Atanu; Pauly, Thilo; Pearson, Benjamin; Pedersen, Maiken; Pedraza Diaz, Lucia; Costa Batalha Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Sotto-Maior Peralva, Bernardo; Perego, Marta Maria; Pereira Peixoto, Ana Paula; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Reinhild; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettee, Mariel Nelson; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Pham, Thu; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pitt, Michael; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia Maria; Pospisil, Stanislav; Potamianos, Karolos Jozef; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Powell, Thomas Dennis; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-maitland, Michaela; Qureshi, Anum; Rados, Petar Kevin; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Ramirez Morales, Andres; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel Mauricio; Rauscher, Felix; Rave, Stefan; Ravina, Baptiste; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Ricci, Ester; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristic, Branislav; Ritsch, Elmar; Riu, Imma; Rivera Vergara, Juan Cristobal; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Rodriguez Vera, Ana Maria; Roe, Shaun; Rogan, Christopher Sean; Rohne, Ole; Roehrig, Rainer; Roland, Christophe Pol A; Roloff, Jennifer Kathryn; Romaniouk, Anatoli; Romano, Marino; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-arne; Rossi, Edoardo; Rossi, Elvira; Rossi, Leonardo Paolo; Rossini, Lorenzo; Rosten, Jonatan Hans; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Ruehr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather Lynn; Rutherfoord, John; Ruttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Sabatini, Paolo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Sahu, Arunika; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakharov, Alexander; Salamani, Dalila; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Samarati, Jerome; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval Usme, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, Joao; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savard, Pierre; Savic, Natascha; Sawada, Ryu; Sawyer, Craig; Sawyer, Lee; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Timothy Paul; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Schaefer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharmberg, Nicolas; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillaci, Zachary Michael; Schioppa, Enrico Junior; Schioppa, Marco; Schleicher, Katharina; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schulte, Alexandra; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Scyboz, Ludovic Michel; Searcy, Jacob; Sebastiani, Cristiano David; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seiss, Todd; Seixas, Jose; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen Jacob; Semprini-Cesari, Nicola; Sen, Sourav; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shahinian, Jeffrey David; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Sharma, Abhishek; Sharma, Abhishek; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, Jose Manuel; Silva, Manuel Jr; Silva Oliveira, Marcos Vinicius; Silverstein, Samuel; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simon, Manuel; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjoelin, Joergen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Smykiewicz, Andrzej; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Soffa, Aaron Michael; Soffer, Abner; Sogaard, Andreas; Su, Daxian; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila- Serrano, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Weimin; Sopczak, Andre; Sopkova, Filomena; Sosa Corral, David Eduardo; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin Charles; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spano, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spiteri, Dwayne Patrick; Spousta, Martin; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanislaus, Beojan; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon Holtsberg; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Staerz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara Kristina; Strauss, Michael; Strizenec, Pavol; Stroehmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Stupak, John; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, Dms; Sultanov, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian J; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc Bao; Tackmann, Kerstin; Kinghorn-taenzer, Joseph Peter; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarek Abouelfadl Mohamed, Ahmed; Tarem, Shlomit; Tarna, Grigore; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Tee, Amy Selvi; Teixeira-Dias, Pedro; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timothee; Thiele, Fabian; Thomas, David William; Thomas, Juergen; Thompson, Stan; Thompson, Paul; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokar, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomiwa, Kehinde Gbenga; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia; Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torro Pastor, Emma; Tosciri, Cecilia; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocme, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Trovato, Fabrizio; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsai, Fang-ying; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tzovara, Eftychia; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Vallance, Robert Adam; Vallier, Alexis Roger Louis; Valls Ferrer, Juan Antonio; Van Daalen, Tal Roelof; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Varvell, Kevin; Vasquez Arenas, Gerardo Alexis; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Vecchio, Valentina; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Vergel Infante, Carlos Miguel; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Vicente Barreto Pinto, Mateus; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Von Buddenbrock, Stefan Erich; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Sfiligoj, Tina; Vuillermet, Raphael; Vukotic, Ilija; Zenis, Tibor; Zivkovic, Lidija; Wagner, Peter; Wagner, Wolfgang; Wagner-kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walbrecht, Verena Maria; Walder, James; Walker, Rodney; Walker, Stuart Derek; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Ann Miao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jin; Wang, Jike; Wang, Peilong; Wang, Qing; Wang, Renjie; Wang, Rongkun; Wang, Rui; Wang, Song-Ming; Wang, Wei; Wang, Wenxiao; Wang, Weitao; Wang, Yufeng; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Christian; Weber, Michele; Weber, Stephen Albert; Weber, Sebastian Mario; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Pippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas Daniel; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Wilkins, Lewis Joseph; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Wozniak, Krzysztof; Wraight, Kenneth; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Hanlin; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yajima, Kazuki; Yallup, David Paul; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Siqi; Yang, Yi-lin; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Christopher John; Young, Charles; Yu, Jaehoon; Yu, Jie; Yue, Xiaoguang; Yuen, Stephanie Pui Yan; Zabinski, Bartlomiej; Zacharis, George; Zaffaroni, Ettore; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zambito, Stefano; Zanzi, Daniele; Zaripovas, Donatas Ramilas; Zeissner, Sonja Verena; Zeitnitz, Christian; Zemaityte, Gabija; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Zerwas, Dirk; Zgubic, Miha; Zhang, Dongliang; Zhang, Dengfeng; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Ruiqi; Zhang, Rui; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Heling; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zhulanov, Vladimir; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; Zoch, Knut; Zorbas, Theodoros Georgio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz
2018-01-01
A search for exotic decays of the Higgs boson into a pair of spin-zero particles, $H \\rightarrow aa$, where the $a$-boson decays into $b$-quarks promptly or with a mean proper lifetime $c\\tau_a$ up to 6 mm and has a mass in the range of $20-60$ GeV, is presented. The search is performed in events where the Higgs boson is produced in association with a $W$ or $Z$ boson, giving rise to a signature of one or two charged leptons (electrons or muons) and multiple jets from $b$-quark decays. The analysis is based on the dataset of proton-proton collisions at $\\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of $36.1$ fb$^{-1}$. No significant excess of events above the Standard Model background prediction is observed, and 95% confidence-level upper limits are derived for the production cross-sections for $pp \\rightarrow WH$, $ZH$ and their combination, times the branching ratio of the decay chain $H \\rightarrow aa \\righta...
Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.
2014-10-07
Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.
The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Basile, Thomas [Group of Mechanics and Gravitation, Physique théorique et mathématique,University of Mons - UMONS,20 Place du Parc, 7000 Mons (Belgium); Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche du CNRS,Fédération de Recherche Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Bonezzi, Roberto; Boulanger, Nicolas [Group of Mechanics and Gravitation, Physique théorique et mathématique,University of Mons - UMONS,20 Place du Parc, 7000 Mons (Belgium)
2017-04-11
A first-order differential equation is provided for a one-form, spin-s connection valued in the two-row, width-(s−1) Young tableau of GL(5). The connection is glued to a zero-form identified with the spin-s Cotton tensor. The usual zero-Cotton equation for a symmetric, conformal spin-s tensor gauge field in 3D is the flatness condition for the sum of the GL(5) spin-s and background connections. This presentation of the equations allows to reformulate in a compact way the cohomological problem studied in https://arxiv.org/abs/1511.07389, featuring the spin-s Schouten tensor. We provide full computational details for spin 3 and 4 and present the general spin-s case in a compact way.
Zero-norm states and stringy symmetries
International Nuclear Information System (INIS)
Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Yang Yi; Teraguchi, Shunsuke
2006-01-01
We identify spacetime symmetry charges of string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculation. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory
Zero-norm states and stringy symmetries
International Nuclear Information System (INIS)
Chan, C-T; Ho, P-M; Lee, J-C; Teraguchi, Shunsuke; Yang Yi
2006-01-01
We identify spacetime symmetry charges of 26D open bosonic string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculations. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory
Pulsed zero field NMR of solids and liquid crystals
International Nuclear Information System (INIS)
Thayer, A.M.
1987-02-01
This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs
The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho
International Nuclear Information System (INIS)
Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.
1978-01-01
The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)
Spin dynamics in polarized neutron interferometry
International Nuclear Information System (INIS)
Buchelt, R.J.
2000-05-01
Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental
Creating and manipulating nonequilibrium spins in nanoscale superconductors
Energy Technology Data Exchange (ETDEWEB)
Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.
International Nuclear Information System (INIS)
Anton, Gisela
1990-01-01
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
Anton, Gisela
1990-12-15
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)
2003-02-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.
International Nuclear Information System (INIS)
D'Ariano, G M; Maccone, L; Paini, M
2003-01-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique
Large spin accumulation due to spin-charge coupling across a break-junction
Chen, Shuhan; Zou, Han; Chui, Siu-Tat; Ji, Yi
2013-03-01
We investigate large spin signals in break-junction nonlocal spin valves (NLSV). The break-junction is a nanometer-sized vacuum tunneling gap between the spin detector and the nonmagnetic channel, formed by electro-static discharge. The spin signals can be either inverted or non-inverted and the magnitudes are much larger than those of standard NLSV. Spin signals with high percentage values (10% - 0%) have been observed. When the frequency of the a.c. modulation is varied, the absolute magnitudes of signals remain the same although the percentage values change. These observations affirm the nonlocal nature of the measurements and rule out local magnetoresistive effects. Owing to the spin-charge coupling across the break-junction, the spin accumulation in a ferromagnet splits into two terms. One term decays on the charge screening length (0.1 nm) and the other decays on the spin diffusion length (10 nm nm). The magnitude of the former is proportional to the resistance of the junction. Therefore a highly resistive break-junction leads to a large spin accumulation and thereby a large spin signal. The signs of the spin signal are determined by the relationship between spin-dependent conductivities, diffusion constants, and density of states of the ferromagnet. This work was supported by US DOE grant No. DE-FG02-07ER46374.
Dolphin, Andrew
2005-07-01
The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes. The reason for this is that the ACS calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS images of the omega Cen standard field with all nine broadband ACS/WFC filters. This will permit the direct determination of the ACS zero points by comparison with excellent ground-based photometry, and should reduce their uncertainties to less than 0.01 magnitudes. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager. Finally, three of the filters will be repeated from my Cycle 12 observations, allowing for a measurement of any change in sensitivity.
A. Preta (Augusto); P. Peng (Peng)
2016-01-01
textabstractZero rating (toll-free data) is the practice of internet service providers (ISPs) and mobile operators not charging end users for data usage of specific internet content and applications of content providers through their network. On one hand it may benefit consumers from using the
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Approach to Absolute Zero Below 10 milli-Kelvin. R Srinivasan. Series Article Volume 2 Issue 10 October 1997 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/10/0008-0016 ...
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-01-15
The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.
Spin-dependent dwell time through ferromagnetic graphene barrier
International Nuclear Information System (INIS)
Sattari, F.
2014-01-01
We investigated the dwell time of electrons tunneling through a ferromagnetic (FM) graphene barrier. The results show that the spin polarization can be efficiently controlled by the barrier width, barrier height, and the incident electron energy. Furthermore, it is found that electrons with different spin orientations will spend different times through the barrier. The difference of the dwell time between spin-up and spin-down electrons arises from the exchange splitting, which is induced by the FM strip. Study results indicate that a ferromagnetic graphene barrier can cause a nature spin filter mechanism in the time domain
Thermal stability of tunneling spin polarization
International Nuclear Information System (INIS)
Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de
2005-01-01
We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet
Strong CP, flavor, and twisted split fermions
International Nuclear Information System (INIS)
Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri
2005-01-01
We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)
My objective: zero contempt, not zero risk
International Nuclear Information System (INIS)
Delevoye, J.P.
2009-01-01
With technology, scientific research and dissemination of knowledge, medical practice has improved thereby achieving an efficient health care system. However, it would be appropriate to consider the human dimension of medicine as a key development. There are two major challenges in risk management: organizational management of risk on one hand and the management of human relationship with the patient especially when problems arise, on the other. It is therefore a question of achieving awareness, managing a culture change in the medical circle i.e. moving from a culture of guilt to a culture of error and finally relaxing the atmosphere of mutual distrust that exists between health professionals and patients. Indeed, the relation 'health professional-patient' has deteriorated over time due to poor risk management. An educational effort must be done to avoid frustration of the patient and contribute to zero contempt. On reflection, this means that the quality of a system is due to the individual quality of its members, the quality of methods and the organization in place. (author)
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
High frequency spin torque oscillators with composite free layer spin valve
International Nuclear Information System (INIS)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-01-01
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
High frequency spin torque oscillators with composite free layer spin valve
Energy Technology Data Exchange (ETDEWEB)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-07-15
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
Proton and deuterium NMR experiments in zero field
International Nuclear Information System (INIS)
Millar, J.M.
1986-02-01
High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution 2 H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs
Rashba splitting of 100 meV in Au-intercalated graphene on SiC
Energy Technology Data Exchange (ETDEWEB)
Marchenko, D.; Varykhalov, A.; Sánchez-Barriga, J.; Rader, O. [Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Seyller, Th. [Institut für Physik, Technische Universität Chemnitz, Reichenhainer Strasse 70, 09126 Chemnitz (Germany)
2016-04-25
Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene, but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy in the case of p-type graphene after Au intercalation. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni.
Caspers, W J
1989-01-01
This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy
A white beam neutron spin splitter
International Nuclear Information System (INIS)
Krist, T.; Klose, F.; Felcher, G.P.
1997-01-01
The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co 0.11 Fe 0.89 supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 angstrom -1 , whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths
A white beam neutron spin splitter
Energy Technology Data Exchange (ETDEWEB)
Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)
1997-07-23
The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.
Spin thermoelectric effects in organic single-molecule devices
Energy Technology Data Exchange (ETDEWEB)
Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn
2017-05-25
Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.
Thermoelectric effects and spin injection into superconductors with exchange field
Energy Technology Data Exchange (ETDEWEB)
Heikkilae, Tero [Dept. Phys., Univ. Jyvaeskylae (Finland); Silaev, Mihail [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Dept. Theor. Physics, KTH, Stockholm (Sweden); Virtanen, Pauli [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Giazotto, Francesco [NEST CNR-INFM and SNS Pisa (Italy); Ozaeta, Asier; Bergeret, Sebastian [CFM-CSIC and DIPC, San Sebastian (Spain)
2015-07-01
When a thin superconducting film is exposed to a longitudinal magnetic field or is in proximity to a ferromagnet, an exchange field separating the spin bands emerges in it. For low enough exchange fields superconductivity survives, but its response to external driving is strongly modified. In my talk I will show how at linear response such systems exhibit very strong thermoelectric response with an almost ideal efficiency. For strong driving, this effect creates a spin accumulation that can only relax via thermalization, and therefore at low temperatures has a very long range. Therefore our work explains recent observations of the long-range spin accumulation in spin-split superconductors. When injecting spin from injectors with non-collinear magnetization compared to the exchange field, the spins start to rotate around the latter. I will describe how superconductivity modifies this spin Hanle effect so that the resulting nonlocal magnetoresistance depends on the details of spin relaxation, therefore allowing for probing them.
Violent collisions of spinning protons
Energy Technology Data Exchange (ETDEWEB)
Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)
2005-07-01
The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.
On the electrodynamics of spinning particles
International Nuclear Information System (INIS)
Holten, J.W. van
1990-01-01
The electrodynamics of spinning point particles is considered. A modification of the Lorentz force law is introduced which can be interpreted as a classical limit of the Dirac-Klein-Gordon equation. An improved version of the inhomogeneous Maxwell equations is constructed to describe the classical fields of spinning particles. Both classical and quantum electrodynamics are shown to predict relativistic time-dilatation effects for spinning particles in an electromagnetic field, even in the limit of zero velocity. The life-time of unstable charged particles moving in a Coulomb field is computed for both spin-zero and spin-half particles. Comparison shows spin effects to be present but relatively small. The magnitude of further spin-dependent correction from hyperfine interactions is computed. A measurement of the life-time of muons in atomic bound states separated by such spin-dependent hyperfine interactions would provide a clean test for the effect predicted. Similar effects are shown to arise in non-abelian gauge theories such as QCD. (author). 18 refs
Energy Technology Data Exchange (ETDEWEB)
Popovic, D; Takac, S; Markovic, H; Raisic, N; Zdravkovic, Z; Radanovic, Lj [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)
1959-03-15
In 1958 the zero energy reactor RB was built with the purpose of enabling critical experiments with various reactor systems to be carried out. The first core assembly built in this reactor consists of heavy water as moderator and natural uranium metal as fuel. In order to be able to obtain very accurate results when measuring the main characteristics of the assembly the reactor was built as a completely bare system. (author)
Split-illumination electron holography
Energy Technology Data Exchange (ETDEWEB)
Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)
2012-07-23
We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.
Split-illumination electron holography
International Nuclear Information System (INIS)
Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira
2012-01-01
We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.
International Nuclear Information System (INIS)
Bern, Z.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.J.; Kosower, D.A.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
Rigorous decoupling between edge states in frustrated spin chains and ladders
Chepiga, Natalia; Mila, Frédéric
2018-05-01
We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).
Directory of Open Access Journals (Sweden)
Torsten Karzig
2013-11-01
Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.
Spin-3/2 Pentaquark Resonance Signature
International Nuclear Information System (INIS)
Ben Lasscock; John Hedditch; Derek Leinweber; Anthony Williams; Waseem Kamleh; Wolodymyr Melnitchouk; Anthony Thomas; Ross Young; James Zanotti
2005-01-01
We search for the standard lattice resonance signature of attraction between the resonance constituents which leads to a bound state at quark masses near the physical regime. We study a variety of spin-1/2 interpolators and for the first time, interpolators providing access to spin-3/2 pentaquark states. In looking for evidence of binding, a precise determination of the mass splitting between the pentaquark state and its lowest-lying decay channel is performed by constructing the effective mass splitting from the various two-point correlation functions. While the binding of the pentaquark state is not a requirement, the observation of such binding would provide compelling evidence for the existence of the theta+ pentaquark resonance. Evidence of binding is observed in the isoscalar spin-3/2 positive parity channel, making it an interesting state for further research
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
International Nuclear Information System (INIS)
Anon.
1983-01-01
The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets
Novel ordered phases in the orthogonal dimer spin system SrCu2(BO3)2
International Nuclear Information System (INIS)
Takigawa, Masashi; Waki, Takeshi; Horvatic, Mladen; Berthier, Claude
2010-01-01
The magnetic properties of SrCu 2 (BO 3 ) 2 , a model spin system on the two-dimensional (2D) Shastry-Sutherland lattice, are reviewed with particular emphasis on the nuclear magnetic resonance (NMR) experiments. SrCu 2 (BO 3 ) 2 has a dimer singlet ground state at zero magnetic field and shows a sequence of magnetization plateaux at high magnetic fields. The plateaux are attributed to the localization of triplets into a superlattice due to mutual repulsion. Such a superstructure has been indeed observed at the 1/8 plateau by NMR experiments. Furthermore, the superstructure persists above the 1/8 plateau, where new phases have been identified by the torque and NMR measurements. SrCu 2 (BO 3 ) 2 also has the anisotropic Dzyaloshinski-Moriya interactions, which significantly change the ground state in magnetic fields. A recent development is the discovery of a new magnetic phase transition under high pressure. At 2.4 GPa, the 11 B NMR spectrum exhibits line splitting as a function of temperature in two steps. A gradual splitting below 30 K indicating loss of four-fold symmetry is followed by a further sudden splitting below 4 K marking a clear magnetic phase transition. The low-T phase has a doubled unit cell, yet with no spontaneous magnetic moment. A new type of valence-bond-solid (VBS) order is proposed. (author)
Higher-spin fields in braneworlds
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)]. E-mail: c.germani@damtp.cam.ac.uk; Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)]. E-mail: kehagias@central.ntua.gr
2005-10-03
The dynamics of higher-spin fields in braneworlds is discussed. In particular, we study fermionic and bosonic higher-spin fields in AdS{sub 5} and their localization on branes. We find that four-dimensional zero modes exist only for spin-one fields, if there are no couplings to the boundaries. If boundary couplings are allowed, as in the case of the bulk graviton, all bosons acquire a zero mode irrespective of their spin. We show that there are boundary conditions for fermions, which generate chiral zero modes in the four-dimensional spectrum. We also propose a gauge invariant on-shell action with cubic interactions by adding non-minimal couplings, which depend on the Weyl tensor. In addition, consistent couplings between higher-spin fields and matter on the brane are presented. Finally, in the AdS/CFT correspondence, where bulk 5D theories on AdS are related to 4D CFTs, we explicitly discuss the holographic picture of higher-spin theories in AdS{sub 5} with and without boundaries.
Woeginger, G.J.
1998-01-01
In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).
CERN PhotoLab
1975-01-01
The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.
Spin waves in quantum crystals
International Nuclear Information System (INIS)
Kondratenko, P.S.
1975-01-01
The paper considers the spectrum of spin waves of a quantum magnetic crystal. It has been assumed that the crystal is characterized by gapless Fermi excitations. The properties of a single-particle Green function for a magnetic crystal are briefly outlined. The dispersion equation system describing the spin wave spectrum has been derived. The spectrum described by the equation system comprises a group of Goldstone modes and a family of spin waves of the zero sound type, associated with the group by an interaction. The maximum number of Goldstone modes in an antiferromagnet is three, whereas in a ferromagnet it is two. At frequencies higher than the characteristic frequencies of magnetic interactions, in an antiferromagnet all three modes have a linear spectrum, whereas in a ferromagnet the longitudinal mode is represented by a linear spectrum and the transverse mode, by a quadratic one. The dynamical susceptibility of a magnetically ordered crystal has been calculated. The thermodynamical potential of the crystal has been proved to vary as a function of the angular crystal orientation in a spin subspace. The results have been obtained by methods of the quantum field theory for the case of zero temperature
Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors
Matsuzaki, Tomoaki; Shimahara, Hiroshi
2017-02-01
In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.
On Models with Uncountable Set of Spin Values on a Cayley Tree: Integral Equations
International Nuclear Information System (INIS)
Rozikov, Utkir A.; Eshkobilov, Yusup Kh.
2010-01-01
We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order k ≥ 1. We reduce the problem of describing the 'splitting Gibbs measures' of the model to the description of the solutions of some nonlinear integral equation. For k = 1 we show that the integral equation has a unique solution. In case k ≥ 2 some models (with the set [0, 1] of spin values) which have a unique splitting Gibbs measure are constructed. Also for the Potts model with uncountable set of spin values it is proven that there is unique splitting Gibbs measure.
van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap
2018-04-01
In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.
Generalized parton distribution for non zero skewness
International Nuclear Information System (INIS)
Kumar, Narinder; Dahiya, Harleen; Teryaev, Oleg
2012-01-01
In the theory of strong interactions the main open question is how the nucleon and other hadrons are built from quarks and gluons, the fundamental degrees of freedom in QCD. An essential tool to investigate hadron structure is the study of deep inelastic scattering processes, where individual quarks and gluons can be resolved. The parton densities extracted from such processes encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within a fast moving hadron. They have provided much to shape the physical picture of hadron structure. In the recent years, it has become clear that appropriate exclusive scattering processes may provide such information encoded in the general parton distributions (GPDs). Here, we investigate the GPD for deep virtual compton scattering (DVCS) for the non zero skewness. The study has investigated the GPDs by expressing them in terms of overlaps of light front wave functions (LFWFs). The work represented a spin 1/2 system as a composite of spin 1/2 fermion and spin 1 boson with arbitrary masses
The Rashba-split surface state of Sb{sub 2}Te{sub 3}(0 0 0 1) and its interaction with bulk states
Energy Technology Data Exchange (ETDEWEB)
Seibel, Christoph; Maaß, Henriette [Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Bentmann, Hendrik, E-mail: Hendrik.Bentmann@physik.uni-wuerzburg.de [Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Braun, Jürgen [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); Sakamoto, Kazuyuki [Department of Nanomaterials Science, Chiba University, Chiba 263-8522 (Japan); Arita, Masashi; Shimada, Kenya [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Minár, Jan [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Ebert, Hubert [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); and others
2015-05-15
Highlights: • We investigate a spin–orbit split surface state on the Sb{sub 2}Te{sub 3}(0 0 0 1) surface. • The spin-splitting and dispersion follow the Rashba model at small wave vectors. • At higher wave vectors the spin-splitting shows an unsual non-monotonic evolution. • The spin-polarized surface bands connect with different bulk bands at the gap edge. - Abstract: The electronic structure of the Sb{sub 2}Te{sub 3}(0 0 0 1) surface exhibits a spin–orbit split surface state in a local energy gap of the projected bulk valence band continuum. We investigate this surface state by high-resolution angle-resolved photoemission spectroscopy (ARPES), spin-resolved ARPES and relativistic one-step photoemission calculations. At low wave vectors the dispersion and spin splitting are well-captured by the predictions of the Rashba model for a two-dimensional electron system. With increasing wave vectors, however, the surface state dispersion becomes more complex and the spin splitting size exhibits an unusual non-monotonic evolution. These deviations from the Rashba model arise from the influence of bulk continuum states near the edge of the projected gap. The spin polarization of the surface state remains intact despite the coupling to bulk states.
Calculation of zero-norm states and reduction od stringy scattering amplitudes
International Nuclear Information System (INIS)
Lee Jen-Chi
2005-01-01
We give a simplified method to generate two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. Zero-norm states up to the fourth massive level and general formulas of some zero-norm tensor states at arbitrary mass levels are calculated. On-shell Ward identities generated by zero-norm states and the factor-ization property of stringy vertex operators can then be used to argue that the string-tree scattering amplitudes of the degenerate lower spin propagating states are fixed by those of higher spin propagating states at each fixed mass level. This decoupling phenomenon is, in contrast to Gross's high-energy symmetries, valid to all energies. As examples, we explicitly demonstrate this stringy phenomenon up to fourth massive level (spin-five), which justifies the calculation of two other previous approaches based on the massive worldsheet sigma-model and Witten's string field theory (WSFT). (author)
Long distance propagation of a polarized neutron beam in zero magnetic field
International Nuclear Information System (INIS)
Schmidt, U.; Bitter, T.; El-Muzeini, P.
1992-01-01
A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)
Relaxation of electron–hole spins in strained graphene nanoribbons
International Nuclear Information System (INIS)
Prabhakar, Sanjay; Melnik, Roderick
2015-01-01
We investigate the influence of magnetic field originating from the electromechanical effect on the spin-flip behaviors caused by electromagnetic field radiation in the strained graphene nanoribbons (GNRs). We show that the spin splitting energy difference (≈10 meV) due to pseudospin is much larger than the spin-orbit coupling effect (Balakrishnan et al 2013 Nat. Phys. 9 284) that might provide an evidence of broken symmetry of degeneracy. The induced spin splitting energy due to ripple waves can be further enhanced with increasing values of applied tensile edge stress for potential applications in straintronic devices. In particular, we show that the enhancement in the magnitude of the ripple waves due to externally applied tensile edge stress extends the tuning of spin-flip behaviors to larger widths of GNRs. (paper)
DEFF Research Database (Denmark)
Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.
2011-01-01
The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires......, (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses...
Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements
Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun
2014-01-01
Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043
Observation of spin Hall effect in photon tunneling via weak measurements.
Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun
2014-12-09
Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications.
Theoretical Study of Spin Crossover in 30 Iron Complexes
DEFF Research Database (Denmark)
Kepp, Kasper Planeta
2016-01-01
Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor...
Critical properties of a simple spin glass model
International Nuclear Information System (INIS)
Aharony, A.; Imry, Y.
1976-01-01
The Mattis spin glass model is described as following from a particular quenched random solid solution picture, and its zero-field properties are discussed. The random field model is reviewed. The application to the spin glass problem is made and the more general scaling theory presented, and the limitations of the model are discussed
Nuclear and hadronic reaction mechanisms producing spin asymmetry
Indian Academy of Sciences (India)
naka
are predominantly u and d quarks, act as the leading partons to form the hyperons. Extension of the quark recombination concept with this mechanism is successful in providing a good account of the anomalous spin observables. Another kind of anomaly, the non-zero analysing power and spin depolarization in the A ...
Directory of Open Access Journals (Sweden)
Matjaž Potrč
2016-04-01
Full Text Available Perhaps the most important controversy in which ordinary language philosophy was involved is that of definite descriptions, presenting referential act as a community-involving communication-intention endeavor, thereby opposing the direct acquaintance-based and logical proper names inspired reference aimed at securing truth conditions of referential expression. The problem of reference is that of obtaining access to the matters in the world. This access may be forthcoming through the senses, or through descriptions. A review of how the problem of reference is handled shows though that one main practice is to indulge in relations of acquaintance supporting logical proper names, demonstratives, indexicals and causal or historical chains. This testifies that the problem of reference involves the zero point, and with it phenomenology of intentionality. Communication-intention is but one dimension of rich phenomenology that constitutes an agent’s experiential space, his experiential world. Zero point is another constitutive aspect of phenomenology involved in the referential relation. Realizing that the problem of reference is phenomenology based opens a new perspective upon the contribution of analytical philosophy in this area, reconciling it with continental approach, and demonstrating variations of the impossibility related to the real. Chromatic illumination from the cognitive background empowers the referential act, in the best tradition of ordinary language philosophy.
Driving spin transition at interface: Role of adsorption configurations
Zhang, Yachao
2018-01-01
A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.
International Nuclear Information System (INIS)
Lee, S.Y.
1990-01-01
The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs
The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory
International Nuclear Information System (INIS)
Liu, B.-G.; Pu, F.-C.
2001-01-01
The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood
A Kohn-Sham system at zero temperature
International Nuclear Information System (INIS)
Cornean, H; Hoke, K; Neidhardt, H; Racec, P N; Rehberg, J
2008-01-01
A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues of the Schroedinger operator with effective Kohn-Sham potential and obtain W 1,2 -bounds of the associated particle density operator. Afterwards, compactness and continuity results allow us to apply Schauder's fixed point theorem. In the case of vanishing exchange-correlation potential uniqueness is shown by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero
Greenberg, Noah; Kunz, Andrew
2018-05-01
Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.
Spin fine structure of optically excited quantum dot molecules
Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2007-06-01
The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.
Splitting: The Development of a Measure.
Gerson, Mary-Joan
1984-01-01
Described the development of a scale that measures splitting as a psychological structure. The construct validity of the splitting scale is suggested by the positive relationship between splitting scores and a diagnostic measure of the narcissistic personality disorder, as well as a negative relationship between splitting scores and levels of…
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
Zero tillage: A potential technology to improve cotton yield
Directory of Open Access Journals (Sweden)
Abbas Hafiz Ghazanfar
2016-01-01
Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.
Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6
Slagle, Kevin; Choi, Wonjune; Chern, Li Ern; Kim, Yong Baek
2018-03-01
We propose a theoretical model for a gapless spin liquid phase that may have been observed in a recent experiment on H3LiIr2O6 . Despite the insulating and nonmagnetic nature of the material, the specific heat coefficient C /T ˜1 /√{T } in zero magnetic field and C /T ˜T /B3 /2 with finite magnetic field B have been observed. In addition, the NMR relaxation rate shows 1 /(T1T ) ˜(C/T ) 2 . Motivated by the fact that the interlayer/in-plane lattice parameters are reduced/elongated by the hydrogen intercalation of the parent compound Li2IrO3 , we consider four layers of the Kitaev honeycomb lattice model with additional interlayer exchange interactions. It is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic mode is split into four Majorana cones with the velocity v ˜B3 /4 . We suggest that the spin liquid phase in these "defect" layers, placed between different stacking patterns of the honeycomb layers, can explain the major phenomenology of the experiment, which can be taken as evidence that the Kitaev interaction plays the primary role in the formation of a quantum spin liquid in this material.
Accurate and efficient spin integration for particle accelerators
Directory of Open Access Journals (Sweden)
Dan T. Abell
2015-02-01
Full Text Available Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
Zero Temperature Hope Calculations
International Nuclear Information System (INIS)
Rozsnyai, B. F.
2002-01-01
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
International Nuclear Information System (INIS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-01-01
The Klein-Gordon and Dirac equations in a semi-infinite lab (x>0), in the background metric ds 2 =u 2 (x)(-dt 2 +dx 2 )+dy 2 +dz 2 , are investigated. The resulting equations are studied for the special case u(x)=1+gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℎc. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other
Microscopic Stern-Gerlach effect and spin-orbit pendulum
International Nuclear Information System (INIS)
Rozmej, P.; Arvieu, R.
1996-01-01
The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs
A switchable spin-wave signal splitter for magnonic networks
Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.
2017-09-01
The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.
Higher spin black holes with soft hair
Energy Technology Data Exchange (ETDEWEB)
Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-10-21
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Invariant functionals in higher-spin theory
Directory of Open Access Journals (Sweden)
M.A. Vasiliev
2017-03-01
Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Rashba split surface states in BiTeBr
International Nuclear Information System (INIS)
Eremeev, S V; Rusinov, I P; Nechaev, I A; Chulkov, E V
2013-01-01
Within density functional theory, we study the bulk band structure and surface states of BiTeBr. We consider both ordered and disordered phases, which differ in atomic order in the Te–Br sublattice. On the basis of relativistic ab initio calculations, we show that the ordered BiTeBr is energetically preferable as compared with the disordered one. We demonstrate that both Te- and Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant spin–orbit splitting. The Te-terminated surface-state spin splitting has Rashba-type behavior with the coupling parameter α R ∼ 2 eVÅ. (paper)
ZnIr2O4: An efficient photocatalyst with Rashba splitting
Singh, Nirpendra; Schwingenschlö gl, Udo
2013-01-01
spin splitting of 220 meV Å. The valence band edge potential is 2.89 V against the standard hydrogen electrode, which is sufficient for photocatalytic water oxidation and pollutant degradation. The optical absorption of S-doped ZnIr2O4 is strongly
Parahydrogen-enhanced zero-field nuclear magnetic resonance
Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.
2011-07-01
Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.
Schwarz, H.
2017-01-01
The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1
Spin Orbit Torque in Ferromagnetic Semiconductors
Li, Hang
2016-06-21
effect on spin orbit torque in nanoribbons with a hexagonal lattice. We find a dramatic modification of the nature of the torque (field like and damping-like component) when crossing the topological phase transition. The relative agnitude of the two torque components can be significantly modifies by changing the magnetization direction. Finally, motivated by recent experimental results, we conclude by investigating the features of spin-orbit torque in magnetic transition metal dichalcogenides. We find the torque is associated with the valley polarization. By changing the magnetization direction, the torque can be changed from a finite value to zero when the valley polarization decreases from a finite value to zero.
Photonic spin Hall effect at metasurfaces.
Yin, Xiaobo; Ye, Ziliang; Rho, Junsuk; Wang, Yuan; Zhang, Xiang
2013-03-22
The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.
Split NMSSM with electroweak baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)
2016-11-24
In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.
Split ring containment attachment device
International Nuclear Information System (INIS)
Sammel, A.G.
1996-01-01
A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs
Splitting strings on integrable backgrounds
Energy Technology Data Exchange (ETDEWEB)
Vicedo, Benoit
2011-05-15
We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)
Lima, L. S.
2018-05-01
We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.
Electronic structures and valence band splittings of transition metals doped GaNs
International Nuclear Information System (INIS)
Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan
2007-01-01
For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials
A split hand-split foot (SHFM3) gene is located at 10q24{yields}25
Energy Technology Data Exchange (ETDEWEB)
Gurrieri, F.; Genuardi, M.; Nanni, L.; Sangiorgi, E.; Garofalo, G. [Catholic Univ. of Rome (Italy)] [and others
1996-04-24
The split hand-split foot (SHSF) malformation affects the central rays of the upper and lower limbs. It presents either as an isolated defect or in association with other skeletal or non-skeletal abnormalities. An autosomal SHSF locus (SHFM1) was previously mapped to 7q22.1. We report the mapping of a second autosomal SHSF locus to 10q24{yields}25 region. Maximum lod scores of 3.73, 4.33 and 4.33 at a recombination fraction of zero were obtained for the loci D10S198, PAX2 and D10S1239, respectively. An 19 cM critical region could be defined by haplotype analysis and several genes with a potential role in limb morphogenesis are located in this region. Heterogeneity testing indicates the existence of at least one additional autosomal SHSF locus. 36 refs., 3 figs., 3 tabs.
Long coherence times for edge spins
Kemp, Jack; Yao, Norman Y.; Laumann, Christopher R.; Fendley, Paul
2017-06-01
We show that in certain one-dimensional spin chains with open boundary conditions, the edge spins retain memory of their initial state for very long times, even at infinite temperature. The long coherence times do not require disorder, only an ordered phase. In the integrable Ising and XYZ chains, the presence of a strong zero mode means the coherence time is infinite. When Ising is perturbed by interactions breaking the integrability, the coherence time remains exponentially long in the perturbing couplings. We show that this is a consequence of an edge ‘almost’ strong zero mode that almost commutes with the Hamiltonian. We compute this operator explicitly, allowing us to estimate accurately the plateau value of edge spin autocorrelator.
Vertically coupled double quantum rings at zero magnetic field
Malet, Francesc; Barranco, Manuel; Lipparini, Enrico; Pi, Ricardo Mayol Martí; Climente, Juan Ignacio; Planelles, Josep
2006-01-01
Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble thos...
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
Hung, Yu-Ming
demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.
International Nuclear Information System (INIS)
Aksenov, V.L.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Fredrikze, H.; Rekveldt, M.Th.; Schreiber, J.
1998-01-01
In the conducted experimental investigation of neutron refraction on the interface of two magnetically non-collinear media spatial splitting of a polarized neutron beam was observed. The beam of neutrons initially in the spin state '+' or '-' splits into two beams of neutrons in the states '+' and '-'. All four split beams have different spatial positions. The reported phenomenon has been observed for the first time
Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.
Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry
2018-06-01
Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.
Induced Rashba splitting of electronic states in monolayers of Au, Cu on a W(110) substrate
International Nuclear Information System (INIS)
Shikin, A M; Rybkina, A A; Rybkin, A G; Marchenko, D; Korshunov, A S; Kudasov, Yu B; Frolova, N V; Sánchez-Barriga, J; Varykhalov, A; Rader, O
2013-01-01
The paper sums up a theoretical and experimental investigation of the influence of the spin–orbit coupling in W(110) on the spin structure of electronic states in deposited Au and Cu monolayers. Angle-resolved photoemission spectroscopy reveals that in the case of monolayers of Au and Cu spin–orbit split bands are formed in a surface-projected gap of W(110). Spin resolution shows that these states are spin polarized and that, therefore, the spin–orbit splitting is of Rashba type. The states evolve from hybridization of W 5d, 6p-derived states with the s, p states of the deposited metal. Interaction with Au and Cu shifts the original W 5d-derived states from the edges toward the center of the surface-projected gap. The size of the spin–orbit splitting of the formed states does not correlate with the atomic number of the deposited metal and is even higher for Cu than for Au. These states can be described as W-derived surface resonances modified by hybridization with the p, d states of the adsorbed metal. Our electronic structure calculations performed in the framework of the density functional theory correlate well with the experiment and demonstrate the crucial role of the W top layer for the spin–orbit splitting. It is shown that the contributions of the spin–orbit interaction from W and Au act in opposite directions which leads to a decrease of the resulting spin–orbit splitting in the Au monolayer on W(110). For the Cu monolayer with lower spin–orbit interaction the resulting spin splitting is higher and mainly determined by the W. (paper)
S-wave spectroscopy and Hyperne splitting of Bc meson
International Nuclear Information System (INIS)
Shah, Manan; Bhavsar, Tanvi; Vinodkumar, P.C.
2017-01-01
B c meson is the only heavy meson with two open flavours. This system is also interesting because they cannot annihilate into gluons. The mass spectra and hyperfine splitting of the B c meson are investigated in the Dirac framework with the help of linear + constant potential. The spin-spin interactions are also included in the calculation of the pseudoscalar and vector meson masses. Our computed result for the B c meson are in very good agreement with experimental results as well as other available theoretical result. Decay properties are also interesting because it is expected that decay of B c meson occur in to neutral meson. We hope our theoretical results are helpful for future experimental observations
Muon spin relaxation and nonmagnetic Kondo state in PrInAg2
International Nuclear Information System (INIS)
MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.
2000-01-01
Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society
Zero modes and entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)
2017-04-26
Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.
Split supersymmetry in brane models
Indian Academy of Sciences (India)
Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split ... quantum picture of the Universe. It was then ... where the integers m, n correspond to the respective magnetic and electric charges; m is the ...
VBSCan Split 2017 Workshop Summary
Energy Technology Data Exchange (ETDEWEB)
Anders, Christoph Falk; et al.
2018-01-12
This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
Stability of split Stirling refrigerators
Waele, de A.T.A.M.; Liang, W.
2009-01-01
In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the
Spin-dependent potentials from lattice QCD
International Nuclear Information System (INIS)
Koma, Y.
2006-09-01
The spin-dependent corrections to the static inter-quark potential are phenomenologically relevant to describing the fine and hyperfine spin splitting of the heavy quarkonium spectra. We investigate these corrections, which are represented as the field strength correlators on the quark-antiquark source, in SU(3) lattice gauge theory. We use the Polyakov loop correlation function as the quark-antiquark source, and by employing the multi-level algorithm, we obtain remarkably clean signals for these corrections up to intermediate distances of around 0.6 fm. Our observation suggests several new features of the corrections. (orig.)
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus
2018-05-01
Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.
Split-Field Magnet facility upgraded
CERN PhotoLab
1977-01-01
The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...
International Nuclear Information System (INIS)
Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.
2001-01-01
55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state
Cool covered sky-splitting spectrum-splitting FK
Energy Technology Data Exchange (ETDEWEB)
Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)
2014-09-26
Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.
Dzhusupova, R.
2012-01-01
Creating a zero energy environment is a hot topic. The developments in this field are based on the concept of the "Trias Energetica": reducing energy consumption, using renewable energy sources, and efficiently using fossil fuels. A zero energy concept can also be applied to road tunnels to improve
Spin Coherence in Semiconductor Nanostructures
National Research Council Canada - National Science Library
Flatte, Michael E
2006-01-01
... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...
A zero-one programming approach to Gulliksen's matched random subtests method
van der Linden, Willem J.; Boekkooi-Timminga, Ellen
1988-01-01
Gulliksen’s matched random subtests method is a graphical method to split a test into parallel test halves. The method has practical relevance because it maximizes coefficient α as a lower bound to the classical test reliability coefficient. In this paper the same problem is formulated as a zero-one
Spin Tunneling in a Rotating Nanomagnet
O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team
2011-03-01
We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.
Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells
Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu
2017-07-01
Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.
Spin–orbit induced electronic spin separation in semiconductor nanostructures
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136
Accurate and efficient spin integration for particle accelerators
International Nuclear Information System (INIS)
Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.
2015-01-01
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
Accurate and efficient spin integration for particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Abell, Dan T.; Meiser, Dominic [Tech-X Corporation, Boulder, CO (United States); Ranjbar, Vahid H. [Brookhaven National Laboratory, Upton, NY (United States); Barber, Desmond P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-01-15
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
Spin interactions in InAs quantum dots
Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)
Spin current and electrical polarization in GaN double-barrier structures
Litvinov, V. I.
2007-01-01
Tunnel spin polarization in a piezoelectric AlGaN/GaN double barrier structure is calculated. It is shown that the piezoelectric field and the spontaneous electrical polarization increase an efficiency of the tunnel spin injection. The relation between the electrical polarization and the spin orientation allows engineering a zero magnetic field spin injection manipulating the lattice-mismatch strain with an Al-content in the barriers.
Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si
International Nuclear Information System (INIS)
Abe, Eisuke; Isoya, Junichi; Itoh, Kohei M.
2006-01-01
We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals. The samples are isotopically controlled so that they may possess various concentrations (from 4.7% to 99.2%) of 29 Si, which is the only non-zero-spin stable isotope of silicon. The orientation dependence of electron-spin coherence times are presented, and electron spin echo envelope modulation is analyzed in time-frequency space
Spinning superfluid 4He nanodroplets
Ancilotto, Francesco; Barranco, Manuel; Pi, Martí
2018-05-01
We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.
Spin current relaxation time in thermally evaporated pentacene films
Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji
2017-01-01
The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...
Field dependent spin transport of anisotropic Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2016-04-01
We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.
Spin-polarized current generated by magneto-electrical gating
International Nuclear Information System (INIS)
Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee
2012-01-01
We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.
Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator.
Chen, Haoqi; Li, Bin; Yang, Jinlong
2017-11-08
Black phosphorus is a promising candidate for future nanoelectronics with a moderate electronic band gap and a high carrier mobility. Introducing the magnetism into black phosphorus will widely expand its application scope and may present a bright prospect in spintronic nanodevices. Here, we report our first-principles calculations of spin-polarized electronic structure of monolayer black phosphorus (phosphorene) adsorbed on a magnetic europium oxide (EuO) substrate. Effective spin injection into the phosphorene is realized by means of interaction with the nearby EuO(111) surface, i.e., proximity effect, which results in spin-polarized electrons in the 3p orbitals of phosphorene, with the spin polarization at Fermi level beyond 30%, together with an exchange-splitting energy of ∼0.184 eV for conduction-band minimum of the adsorbed phosphorene corresponding to an energy region where only one spin channel is conductive. The energy region of these exchange-splitting and spin-polarized band gaps of the adsorbed phosphorene can be effectively modulated by in-plane strain. Intrinsically high and anisotropic carrier mobilities at the conduction-band minimum of the phosphorene also become spin-polarized mainly due to spin polarization of deformation potentials and are not depressed significantly after the adsorption. These extraordinary properties would endow black phosphorus with great potentials in the future spintronic nanodevices.
International Nuclear Information System (INIS)
Popescu, Voicu; Ebert, Hubert; Papanikolaou, Nikolaos; Zeller, Rudolf; Dederichs, Peter H
2004-01-01
We present a fully relativistic generalization of the Landauer-Buettiker formalism that has been implemented within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker Green function method. This approach, going beyond the two-current model, supplies a more general description of the electronic transport. It is shown that the relativistic conductance can be split in terms of individual spin-diagonal and spin-off-diagonal (spin-flip) components, which allows a detailed analysis of the influence of spin-orbit-coupling-induced spin-flip processes on the spin-dependent transport. We apply our method to calculate the ballistic conductance in Fe/GaAs/Fe magnetic tunnel junctions. We find that, by removing the spin selection rules, the spin-orbit coupling strongly influences the conductance, not only qualitatively but also quantitatively, especially in the anti-parallel alignment of the magnetization in the two Fe leads
2-Photon tandem device for water splitting
DEFF Research Database (Denmark)
Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard
2014-01-01
Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Neutron spin optics: Fundamentals and verification
Energy Technology Data Exchange (ETDEWEB)
Pleshanov, N.K., E-mail: pleshanov_nk@pnpi.nrcki.ru
2017-05-01
Neutron spin optics (NSO) based on quantum aspects of the neutron interaction with magnetically anisotropic layers signifies transition in polarized neutron optics from 1D (spin selection) to 3D (spin manipulations). It may essentially widen the functionality of neutron optics. Among the advantages of NSO are compactness, zero-field option (guide fields are optional) and multi-functionality (beam spectrum, beam divergence and spin manipulations can be handled at the same time). Prospects in improving and developing neutron mirror spin turners (incl. flippers) are discussed. Two approaches to measurement of the efficiency of mirror flippers are introduced. The efficiency of a multilayer-backed neutron mirror flipper for monochromatic beams was found to be 97.5±0.5%. Such mirror flippers can combine monochromatization of a polarized beam with flipping spins of the monochromatized neutrons. To improve their performance, account of the spin-dependent refraction in the magnetic layer should be taken. For a monochromatic beam, supermirror-backed flippers are shown to be more advantageous, with a gain in intensity up to 4 times.
Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells
International Nuclear Information System (INIS)
Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L
2013-01-01
Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)
Li, Pengke; Appelbaum, Ian
2018-03-01
The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2015-10-15
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
Innovative wedge axe in making split firewood
International Nuclear Information System (INIS)
Mutikainen, A.
1998-01-01
Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)
Pramanik, S.; bandyopadhyay, S.; Cahay, M.
2003-01-01
We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...
Spin fluctuation theory of itinerant electron magnetism
Takahashi, Yoshinori
2013-01-01
This volume shows how collective magnetic excitations determine most of the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.
Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates
Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar
2017-05-01
We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.
Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure
International Nuclear Information System (INIS)
Peter, A. John; Lee, Chang Woo
2012-01-01
Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration
Spin-resolved photoemission of surface states of W(110)-(1x1)H
International Nuclear Information System (INIS)
Hochstrasser, M.; Tobin, J.G.; Rotenberg, Eli; Kevan, S.D.
2002-01-01
The surface electronic states of W(110)-(1x1)H have been measured using spin- and angle-resolved photoemission. We directly demonstrate that the surface bands are both split and spin-polarized by the spin-orbit interaction in association with the loss of inversion symmetry near a surface. We observe 100 percent spin polarization of the surface states, with the spins aligned in the plane of the surface and oriented in a circular fashion relative to the S-bar symmetry point. In contrast, no measurable polarization of nearby bulk states is observed
Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers
International Nuclear Information System (INIS)
Tang, N.Y.
2009-01-01
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.
Magneto-spin Hall conductivity of a two-dimensional electron gas
Milletari', M.; Raimondi, R.; Schwab, P.
2008-01-01
It is shown that the interplay of long-range disorder and in-plane magnetic field gives rise to an out-of-plane spin polarization and a finite spin Hall conductivity of the two-dimensional electron gas in the presence of Rashba spin-orbit coupling. A key aspect is provided by the electric-field induced in-plane spin polarization. Our results are obtained first in the \\textit{clean} limit where the spin-orbit splitting is much larger than the disorder broadening of the energy levels via the di...
Foucault's Pendulum, Analog for an Electron Spin State
Linck, Rebecca
2012-11-01
The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
Non-linear spin transport in magnetic semiconductor superlattices
International Nuclear Information System (INIS)
Bejar, Manuel; Sanchez, David; Platero, Gloria; MacDonald, A.H.
2004-01-01
The electronic spin dynamics in DC-biased n-doped II-VI semiconductor multiquantum wells doped with magnetic impurities is presented. Under certain range of electronic doping, conventional semiconductor superlattices present self-sustained oscillations. Magnetically doped wells (Mn) present large spin splittings due to the exchange interaction. The interplay between non-linear interwell transport, the electron-electron interaction and the exchange between electrons and the magnetic impurities produces interesting time-dependent features in the spin polarization current tuned by an external magnetic field
A typology of split conjunction
Palancar , Enrique L.
2012-01-01
International audience; In this paper, I study instances of noun phrase conjunction where the conjoined noun phrase is subject and the referents of the conjuncts are human, of the type ‘John and Mary are having lunch’. More specifically, I study different, possible splits that occur in such structures, which involve the disruption of the phrasal continuity of the conjuncts, resulting in structures roughly equivalent to ‘they are having lunch with Mary’ and ‘John are having lunch with Mary’. I...
Voltage-controlled spin selection in a magnetic resonant tunneling diode.
Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W
2003-06-20
We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.
Spin trapping of cyanoalkyl radicals in the liquid phase γ radiolysis of nitriles
International Nuclear Information System (INIS)
Mao, S.W.; Kevan, L.
1976-01-01
The following radicals have been identified in the liquid phase γ radiolysis of several nitriles by spin trapping with phenyl tert-butyl nitrone: CH 2 CN in acetonitrile, H and CH 3 CHCN(question) in propionitrile, CH(CN) 2 in malononitrile, and H, CN, and CH 2 CH 2 CN in succinonitrile. γ proton splittings are observed for the CH 2 CN and CH(CH) 2 spin adducts. The results are discussed in comparison with solid phase radiolysis data and with alkyl radical spin adduct splittings
Quantum Entanglement of a Tunneling Spin with Mechanical Modes of a Torsional Resonator
Directory of Open Access Journals (Sweden)
D. A. Garanin
2011-08-01
Full Text Available We solve the Schrödinger equation for various quantum regimes describing a tunneling macrospin coupled to a torsional oscillator. The energy spectrum and freezing of spin tunneling are studied. Magnetic susceptibility, noise spectrum, and decoherence due to entanglement of spin and mechanical modes are computed. We show that the presence of a tunneling spin can be detected via splitting of the mechanical mode at the resonance. Our results apply to experiments with magnetic molecules coupled to nanoresonators.
Kondo peak splitting and Kondo dip in single molecular magnet junctions
Energy Technology Data Exchange (ETDEWEB)
Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2016-01-15
Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.
Zero Thermal Noise in Resistors at Zero Temperature
Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran
2016-06-01
The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.
Spin-polarizated transmissivity in an asymmetrical double barrier
International Nuclear Information System (INIS)
Teixeira, J D S; Frota, H O; Bittencourt, A C R
2014-01-01
The spin-polarized electron resonant tunnelling at zero magnetic field through a double barrier heterostructure like InAs/GaSb/InAs/GaSb/InAs has been calculated as a function of the electron energy. A model is proposed to study the combined effects of Dresselhaus and in-plane Rashba spin-orbit interactions on the spin-dependent tunnelling, taking into account the k 3 dependence of the Dresselhaus Hamiltonian. For the directions ϕ=45 ∘ and 135 ∘ the spin mixing produces a 100% efficiency of polarization. Moreover, the effect of the Dresselhaus and Rashba spin-orbit interactions are shown to be quite favorable for the fabrication of spin filters and spintronic devices. (paper)
Valley and spin thermoelectric transport in ferromagnetic silicene junctions
International Nuclear Information System (INIS)
Ping Niu, Zhi; Dong, Shihao
2014-01-01
We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene
Spin polarized states in strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density
Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon
Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.
2018-03-01
Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.
Nakazawa, Toru
2015-03-01
comprehensive expression analyses or imaging data. This is an important area of research, since it promises to enable the exploration of targets for drug discovery and the identification of new biomarkers to efficiently detect glaucoma progression by applying new analysis strategies to the complex mass data. The project not only depends on the collaborative efforts of various types of clinical settings including private practices, medical centers and university hospitals, but also contributions of the pharmaceutical and the medical device industries. Thus, uniting a wide range of Japanese interests and resources is the key for success. In summary, in order to aim for ZERO BLINDNESS, a drastic improvement in the quality of our patient care, drug development research for unmet medical demands, and a strategic collaboration of various professionals in the ophthalmic industry are essential. With the deep appreciation we fell towards the selfless support extended during the earthquake disaster, we wish to translate our "gratitude" into "power" from Tohoku. In doing so, we as academicians are determined to keep on contributing to the society by making progress in the medicine.
Spin-0± portal induced Dark Matter
Dutta, Sukanta; Goyal, Ashok; Saini, Lalit Kumar
2018-02-01
Standard model (SM) spin-zero singlets are constrained through their di-Bosonic decay channels via an effective coupling induced by a vector-like quark (VLQ) loop at the LHC for √{s}=13 TeV. These spin-zero resonances are then considered as portals for scalar, vector or fermionic dark matter particle interactions with SM gauge bosons. We find that the model is validated with respect to the observations from LHC data and from cosmology, indirect and direct detection experiments for an appreciable range of scalar, vector and fermionic DM masses greater than 300 GeV and VLQ masses ≥ 400 GeV, corresponding to the three choice of portal masses 270 GeV, 500 GeV and 750 GeV respectively.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Weak antilocalization and spin precession in quantum wells
Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.
1996-02-01
The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.
Foucault's pendulum, a classical analog for the electron spin state
Linck, Rebecca A.
Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
Destructive quantum interference in spin tunneling problems
von Delft, Jan; Henley, Christopher L.
1992-01-01
In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...
Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.
Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M
2018-03-14
A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.
International Nuclear Information System (INIS)
Gammag, Rayda; Villagonzalo, Cristine
2012-01-01
A two-dimensional electron gas in a tilted magnetic field with Rashba spin-orbit interaction (RSOI) was studied. The RSOI is accredited to the asymmetry of the heterostructure where the two-dimensional electron gas is found. The effects of the disorder-attributed Landau level broadening and the RSOI on the spin splitting were identified by simulating the density of states which was assumed to take a Gaussian shape. Increased Landau level broadening obscures the spin splitting and increases the overlap between spin states resulting to stout Gaussian peaks. On the other hand, stronger RSOI amplifies the splitting and lessens the overlap between spin states of the Landau levels. The splitting, however, results to stouter peaks. The similarity in the RSOI and Landau level broadening effects can be explained by recognizing that the asymmetry of the heterostructure is in itself a form of structural disorder.
International Nuclear Information System (INIS)
Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong
2015-01-01
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics
Spin dependent disorder in a junction device with spin orbit couplings
International Nuclear Information System (INIS)
Ganguly, Sudin; Basu, Saurabh
2016-01-01
Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)
Towards the measurement of the ground-state hyperfine splitting of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)
2012-12-15
The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.
Symmetry realization of texture zeros
International Nuclear Information System (INIS)
Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.
2004-01-01
We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brocato, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed at Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].
Additive operator-difference schemes splitting schemes
Vabishchevich, Petr N
2013-01-01
Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy
Iterative Splitting Methods for Differential Equations
Geiser, Juergen
2011-01-01
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential
Zero-rest-mass fields in an algebraically special curved space-time
Energy Technology Data Exchange (ETDEWEB)
Fordy, A P [King' s Coll., London (UK). Dept. of Mathematics
1977-04-01
Zero-rest-mass higher-spin fields in algebraically special vacuum back-ground space-times are considered. It is shown that the algebraic speciality of the background metric strongly restricts the form of the solutions of these fields. These results are used to study perturbations of the Schwarzschild black hole.
Coupling spin qubits via superconductors
DEFF Research Database (Denmark)
Leijnse, Martin; Flensberg, Karsten
2013-01-01
We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....
International Nuclear Information System (INIS)
Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2010-01-01
The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.
Photon-splitting cross sections
International Nuclear Information System (INIS)
Johannessen, A.M.; Mork, K.J.; Overbo, I.
1980-01-01
The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Salt splitting with ceramic membranes
International Nuclear Information System (INIS)
Kurath, D.
1996-01-01
The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures
Splitting tests on rock specimens
Energy Technology Data Exchange (ETDEWEB)
Davies, J D; Stagg, K G
1970-01-01
Splitting tests are described for a square-section sandstone specimens line loaded through steel or timber packings on the top face and supported on the bottom face either on similar packings (type A specimen) or directly on the lower platen plate of the testing machine (type B specimens). The stress distribution across the vertical central plane and the horizontal central plane were determined from a linear elastic finite element analysis for both types. Two solutions were obtained for the type B specimen: one assuming no friction between the base of the specimen and the platen plate and the other assuming no relative slip between the surfaces. Vertical and horizontal strains were measured at the center of the specimens for all loads up to failure.
Split supersymmetry in unified models
International Nuclear Information System (INIS)
Dutta, Bhaskar; Mimura, Yukihiro
2005-01-01
In the context of split supersymmetry, the gaugino mass spectrum seems to be very important to satisfy the dark matter content of the universe and the gauge coupling unification. In this Letter, we have considered various sources of gaugino masses in the context of unified models. We show that the gaugino mass spectrum varies in different unification pictures. In the context of SU(5), we have found that the bino/wino mass ratio can be close to one at the weak scale which is helpful to satisfy the WMAP data. The gluino/wino mass ratio is also different from the usual scenario of unified gaugino masses. The gaugino masses can be around one TeV and m SUSY is chosen so that the gluino mass does not create any cosmological problem. In the context of the Pati-Salam model, we show that the gluino mass can be made very heavy even after maintaining the unification of the gauge couplings
Convergence of Batch Split-Complex Backpropagation Algorithm for Complex-Valued Neural Networks
Directory of Open Access Journals (Sweden)
Huisheng Zhang
2009-01-01
Full Text Available The batch split-complex backpropagation (BSCBP algorithm for training complex-valued neural networks is considered. For constant learning rate, it is proved that the error function of BSCBP algorithm is monotone during the training iteration process, and the gradient of the error function tends to zero. By adding a moderate condition, the weights sequence itself is also proved to be convergent. A numerical example is given to support the theoretical analysis.
Salt splitting using ceramic membranes
Energy Technology Data Exchange (ETDEWEB)
Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)
1997-10-01
Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.
Geometric phase in a split-beam experiment measured with coupled neutron interference loops
International Nuclear Information System (INIS)
Hasegawa, Yuji; Zawisky, M.; Rauch, H.; Ioffe, A.
1996-01-01
A geometric phase factor is derived for a split-beam experiment as an example of cyclic evolutions. The geometric phase is given by one half of the solid angle independent of the spin of the beam. We observe this geometric phase with a two-loop neutron interferometer, where a reference beam can be added to the beam from one interference loop. All the experimental results show complete agreement with our theoretical treatment. (author)
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1978-01-01
A prescription is given for point-splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current which can be differentiated straightforwardly, and that it involves a natural way of averaging (four dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g. to spin -3/2 Rarita-Schwinger fermions. (author)
Spin-polarized spin excitation spectroscopy
International Nuclear Information System (INIS)
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2010-01-01
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
The influence of split doses of γ-radiation on human erythrocytes
International Nuclear Information System (INIS)
Koziczak, R.; Gonciarz, M.; Krokosz, A.; Szweda-Lewandowska, Z.
2003-01-01
Human erythrocyte suspensions in an isotonic Na-phosphate buffer, pH 7.4, of hematocrit of 2% were exposed under air to gamma radiation at a dose rate of 2.2 kGy. Erythrocytes were irradiated with single doses, and identical doses split into two fractions with an interval time of 3.5 h between following exposures. The obtained results indicated that the irradiation of enucleated human erythrocytes with split doses caused a reduction of hemolysis (2.4 times), a decrease in the level of damage to membrane lipids and the contents of MetHb, compared with identical single doses. However, the splitting of radiation doses did not change the level of damage to the membrane proteins, as was estimated with a maleimide spin label. The obtained results suggest that a decrease in the level of damage to lipids was related to a decrease in hemolysis. (author)
Prarokijjak, Worasak; Soodchomshom, Bumned
2018-04-01
Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.
Two-photon spin generation and detection
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)
2009-02-21
A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.
Two-photon spin generation and detection
International Nuclear Information System (INIS)
Miah, M Idrish
2009-01-01
A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.
Spin transitions in semiconductor quantum rings
International Nuclear Information System (INIS)
Baxevanis, Benjamin; Pfannkuche, Daniela
2010-01-01
We adopt the path integral Monte Carlo method to accurately resolve the total spin of the ground state of electrons confined in a quantum ring with different geometries. Using this method, an evaluation of the ground state of three electrons in a ring shows a spin transition to the fully polarized state by increasing the radius and thereby enhancing the Coulomb interaction. The total spin of the ground state is determined by the mutual interplay of confinement and electron-electron interaction. An analysis of the four-electron ring demonstrates that in this case no spin transitions take place. Furthermore, the effect of geometric distortion of the ring on its ground state has been investigated. Elliptically deforming the ring breaks the symmetry of the system and leads to the removal of orbital degeneracy. For strong distortion the splitting between hybridized states is sufficient to overcome the exchange-energy saving associated with a higher spin state. We have found that this effect removes the polarization of three electrons. Even in a four-electron ring the ground state is forced by the distortion to be unpolarized and thus suppressing the Hund's rule ground state.
Energy Technology Data Exchange (ETDEWEB)
Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)
2017-04-15
By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3
International Nuclear Information System (INIS)
Lukac, M.; Otto, F.W.; Hahn, E.L.
1989-01-01
We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs
Solving discrete zero point problems
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2004-01-01
In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and
2017-12-01
How old is zero? That question has opened up a row between an international group of researchers and the University of Oxford after the Bodleian Library in Oxford noted that an ancient Indian text, known as the Bakhshali manuscript, had been dated to between 300 and 900 CE.
Geiger, Philip E.
1993-01-01
Zero-based, programmatic budgeting involves four basic steps: (1) define what needs to be done; (2) specify the resources required; (3) determine the assessment procedures and standards to use in evaluating the effectiveness of various programs; and (4) assign dollar figures to this information. (MLF)
ACS Photometric Zero Point Verification
Dolphin, Andrew
2003-07-01
The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes in the Johnson filters. The reason for this is that ACS observations of excellent ground-based standard fields, such as the omega Cen field used for WFPC2 calibrations, have not been obtained. Instead, the ACS photometric calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS broadband images of the omega Cen standard field with both the WFC and HRC. This will permit the direct determination of the ACS transformations, and is expected to double the accuracy to which the ACS zero points are known. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager.
SplitDist—Calculating Split-Distances for Sets of Trees
DEFF Research Database (Denmark)
Mailund, T
2004-01-01
We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....
Spin-flip and spin orbit interactions in heavy ion systems
International Nuclear Information System (INIS)
Bybell, D.P.
1983-01-01
The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included
Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman
Directory of Open Access Journals (Sweden)
Pascal Getreuer
2012-05-01
Full Text Available Denoising is the problem of removing noise from an image. The most commonly studied case is with additive white Gaussian noise (AWGN, where the observed noisy image f is related to the underlying true image u by f=u+η and η is at each point in space independently and identically distributed as a zero-mean Gaussian random variable. Total variation (TV regularization is a technique that was originally developed for AWGN image denoising by Rudin, Osher, and Fatemi. The TV regularization technique has since been applied to a multitude of other imaging problems, see for example Chan and Shen's book. We focus here on the split Bregman algorithm of Goldstein and Osher for TV-regularized denoising.
Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing
2016-01-01
The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E
Hyperfine splitting of low-lying heavy baryons
Energy Technology Data Exchange (ETDEWEB)
Harada, M.; Qamar, A.; Schechter, J. [Syracuse Univ., NY (United States). Dept. of Physics; Sannino, F. [Syracuse Univ., NY (United States). Dept. of Physics]|[Dipartimento di Scienze Fisiche and Istituto Nazionale di Fisica Nucleare, Mostra D`Oltremare Pad. 19, 80125, Napoli (Italy); Weigel, H. [Institute for Theoretical Physics, Tuebingen University, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)
1997-11-10
We calculate the next-to-leading order contribution to the masses of the heavy baryons in the bound-state approach for baryons containing a heavy quark. These 1/N{sub C} corrections arise when states of good spin and isospin are generated from the background soliton of the light meson fields. Our study is motivated by the previously established result that light vector meson fields are required for this soliton in order to reasonably describe the spectrum of both the light and the heavy baryons. We note that the inclusion of light vector mesons significantly improves the agreement of the predicted hyperfine splitting with experiment. A number of aspects of this somewhat complicated calculation are discussed in detail. (orig.). 33 refs.