Zero field spin splitting in asymmetric quantum wells
International Nuclear Information System (INIS)
Hao Yafei
2012-01-01
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.
Mani, Ramesh G.; Hankinson, John; Berger, Claire; de Heer, Walter A.
2012-01-01
Electronic carriers in graphene show a high carrier mobility at room temperature. Thus, this system is widely viewed as a potential future charge-based high-speed electronic material to complement–or replace–silicon. At the same time, the spin properties of graphene have suggested improved capability for spin-based electronics or spintronics and spin-based quantum computing. As a result, the detection, characterization and transport of spin have become topics of interest in graphene. Here we report a microwave photo-excited transport study of monolayer and trilayer graphene that reveals an unexpectedly strong microwave-induced electrical response and dual microwave-induced resonances in the dc resistance. The results suggest the resistive detection of spin resonance, and provide a measurement of the g-factor, the spin relaxation time and the sub-lattice degeneracy splitting at zero magnetic field. PMID:22871815
Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas
International Nuclear Information System (INIS)
Morrison, C.; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.
2014-01-01
We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10 −28 eVm 3 and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.
Unravelling the zero-field-splitting parameters in Pt-rich polymers with tuned spin-orbit coupling
Peroncik, Peter; McLaughlin, Ryan; Sun, Dali; Vardeny, Z. Valy
2014-03-01
Recently pi-conjugated polymers that contain heavy metal Platinum (Pt-polymers, Scientific Reports 3, 2653, 2013) have attracted substantial interest due to their strong and tunable spin-orbit coupling (SOC). The magnetic field effect (MFE), such as magneto-photoluminescence (MPL) is considered to be a viable approach to address the SOC strength in the organics. Alas conventional MFE up to several hundred Gauss is unable to overcome the relative large spin splitting energies in Pt-polymers due to their strong SOC. To overcome this difficulty we study the MPL response in two Pt-polymers at high magnetic field (up to several Telsa). We found that the MPL response is dominated by triplet excitons that are generated in record time, and from the MPL(B) response width we could obtained the triplet zero-field splitting (ZFS) parameters. We found that the ZFS parameters in the Pt-polymers are proportional to the intrachain Pt atom concentration. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
Kool, Th.W.; Bollegraaf, B.
2010-01-01
Numerical and analytical methods are used to investigate the calculation of the zero field splitting |2D| and g(perp) parameters in EPR for octahedrally surrounded d3 spin systems (S = 3/2) in strong and moderate axial crystal fields (|D|>=h{\
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2014-05-21
The CASSCF and the hybrid CASSCF-MRMP2 methods are applied to the calculations of spin-spin and spin-orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin-orbit term of the D tensors (D(SO) tensors). The calculations reproduced experimentally determined |D| values within an error of 15%. Halogen substitutions at the 3,5-positions are less influential in the spin-spin dipolar (D(SS)) term of 2,4,6-trinitrenopyridines, although the D(SO) terms are strongly affected by the introduction of heavier halogens. The absolute sign of the D(SO) value (D = D(ZZ) - (D(XX) + D(YY))/2) of 3,5-dibromo derivative 3 is predicted to be negative, which contradicts the Pederson-Khanna (PK) DFT result previously reported. The large negative contributions to the D(SO) value of 3 arise from the excited spin-septet states ascribed mainly to the excitations of in-plane lone pair of bromine atoms → SOMO of π nature. The importance of the excited states involving electron transitions from the lone pair orbital of the halogen atom is also confirmed in the D(SO) tensors of halogen-substituted para-phenylnitrenes. A new scheme based on the orbital region partitioning is proposed for the analysis of the D(SO) tensors as calculated by means of the PK-DFT approach.
Spin Splitting in Different Semiconductor Quantum Wells
International Nuclear Information System (INIS)
Hao Yafei
2012-01-01
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Zero-field splitting of 4T2 term for 3d3 ions in tetragonal symmetry
Indian Academy of Sciences (India)
Abstract. By taking into account slight interactions, i.e. spin-spin, spin-other-orbit and orbit-orbit interactions, in addition to spin-orbit interaction, the zero-field splitting of 4T2 state for 3d3 ions at tetragonal symmetry has been studied. The convergence of the approximation perturbation formula of 4T2 state for 3d3 ions at ...
Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2008-08-18
The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2017-11-15
Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.
Phenomenology of the soft gap, zero-bias peak, and zero-mode splitting in ideal Majorana nanowires
Liu, Chun-Xiao; Setiawan, F.; Sau, Jay D.; Das Sarma, S.
2017-08-01
We theoretically consider the observed soft gap in the proximity-induced superconducting state of semiconductor nanowires in the presence of spin-orbit coupling, Zeeman spin splitting, and tunneling leads, but in the absence of any extrinsic disorder (i.e., an ideal system). We critically consider the effects of three distinct intrinsic physical mechanisms (tunnel barrier to normal leads, temperature, and dissipation) on the phenomenology of the gap softness in the differential conductance spectroscopy of the normal-superconductor junction as a function of spin splitting and chemical potential. We find that all three mechanisms individually can produce a soft gap, leading to calculated conductance spectra qualitatively mimicking experimental results. We also show through extensive numerical simulations that the phenomenology of the soft gap is intrinsically tied to the broadening and the height of the Majorana zero-mode-induced differential conductance peak above the topological quantum phase transition point with both the soft gap and the quality of the Majorana zero mode being simultaneously affected by tunnel barrier, temperature, and dissipation. We establish that the Majorana zero-mode splitting oscillations can be suppressed by temperature or dissipation (in a similar manner) but not by the tunnel barrier. Since all three mechanisms (plus disorder, not considered in the current work) are likely to be present in any realistic nanowires, discerning the effects of various mechanisms is difficult, necessitating detailed experimental data as a function of all the system parameters, some of which (e.g., dissipation, chemical potential, tunnel barrier) may not be known experimentally. While the tunneling-induced soft-gap behavior is benign with no direct adverse effect on the Majorana topological properties with the zero-bias peak remaining quantized at 2 e2/h , the soft gap induced by finite temperature and/or finite dissipation is detrimental to topological
Zero-field splitting of 4T2 term for 3d3 ions in tetragonal symmetry
Indian Academy of Sciences (India)
orbit interactions, in addition to spin-orbit interaction, the zero-field splitting of 4T2 state for 3d3 ions at tetragonal symmetry has been studied. The convergence of the approximation perturbation formula of 4T2 state for 3d3 ions at tetragonal ...
Splitting of acoustic energy by zero index metamaterials
Energy Technology Data Exchange (ETDEWEB)
Yan, Xinxin [School of Science, Hubei University of Technology, Wuhan 430068 (China); Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Wei, Wei [Hubei Cancer Hospital, Wuhan 430079 (China); Hu, Ni [School of Science, Hubei University of Technology, Wuhan 430068 (China); Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China); Liu, Fengming, E-mail: fmliu@mail.hbut.edu.cn [School of Science, Hubei University of Technology, Wuhan 430068 (China); Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)
2015-10-02
An acoustic power splitter is proposed by utilizing a zero index metamaterials (ZIM) junction. Two types of ZIM, single zero index metamaterials (SZIM) and double zero index metamaterials (DZIM), are considered. The acoustic wave transmission through the multiple leads junction is investigated theoretically and numerically. We show that perfect transmission can be achieved for the junction made of DZIM by tuning the widths of the output leads with respect to the input lead. It is also shown that the same effect is obtained for the junction made of SZIM by reducing the area of the junction or introducing a proper defect into the junction. A two-dimensional (2D) acoustic crystal (AC) with effective zero index is suggested to provide a practical realization for the splitting system. - Highlights: • An acoustic splitter is proposed by using a zero index metamaterials junction. • Perfect transmission can be achieved for the acoustic splitter. • The configuration of the acoustic splitter can be chosen at will.
Diffraction-dependent spin splitting in spin Hall effect of light on reflection.
Qiu, Xiaodong; Xie, Linguo; Qiu, Jiangdong; Zhang, Zhiyou; Du, Jinglei; Gao, Fuhua
2015-07-27
We report on a diffraction-dependent spin splitting of the paraxial Gaussian light beams on reflection theoretically and experimentally. In the case of horizontal incident polarization, the spin splitting is proportional to the diffraction length of light beams near the Brewster angle. However, the spin splitting is nearly independent with the diffraction length for the vertical incident polarization. By means of the angular spectrum theory, we find that the diffraction-dependent spin splitting is attributed to the first order expansion term of the reflection coefficients with respect to the transverse wave-vector which is closely related to the diffraction length.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Electron refrigeration in hybrid structures with spin-split superconductors
Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.
2018-01-01
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
International Nuclear Information System (INIS)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Mescheryakov, A. A.; Alekseev, E. A.; Hougen, J. T.; Xu, Li-Hong
2016-01-01
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e ±niα . The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A 1 and A 2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Spin-polarized spin-orbit-split quantum-well states in a metal film
Energy Technology Data Exchange (ETDEWEB)
Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)
2008-07-01
Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.
Zhu, Zhiyong
2011-10-14
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals
International Nuclear Information System (INIS)
Chen Zhide; Liang, J.-Q.; Pu, F.-C.
2003-01-01
Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved
Spin-valley splitting of electron beam in graphene
Directory of Open Access Journals (Sweden)
Yu Song
2016-11-01
Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
Giant Rashba spin splitting in Bi2Se3: Tl
Singh, Nirpendra
2014-07-25
First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under compression and decreases under tension, whereas the dependence of the Rashba spin splitting on the strain is the opposite. Large values of αR = 1.57 eV Å at the bottom of the conduction band (electrons) and αR = 3.34 eV Å at the top of the valence band (holes) are obtained without strain. These values can be further enhanced to αR = 1.83 eV Å and αR = 3.64 eV Å, respectively, by 2% tensile strain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonequilibrium spin transport in Zeeman-split superconductors
Krishtop, Tatiana; Houzet, Manuel; Meyer, Julia S.
2015-03-01
We investigate theoretically the nonlocal conductance through a superconducting wire in tunnel contact with normal and ferromagnetic leads. In the presence of an in-plane magnetic field, the superconducting density of states is spin split, and the current injected from the normal lead is spin polarized. A nonlocal conductance that is antisymmetric with the applied voltage can be measured with a ferromagnetic lead. It persists for a distance between the contacts that is larger than both the charge-imbalance relaxation length and the normal-state spin relaxation length. We determine its amplitude by considering two extreme models of weak and strong internal equilibration of the superconducting quasiparticles due to electron-electron interactions. We find that the nonlocal signal, which was measured in recent experiments and discussed as a spin-imbalance effect, can be interpreted alternatively as the signature of a thermoelectric effect.
Azman, Adam M.; Esteb, John J.
2016-01-01
A coin-flipping analogy and free corresponding web app have been developed to facilitate student understanding of the origins of spin-spin splitting. First-order splitting patterns can easily be derived and understood. "Complex" splitting patterns (e.g., doublet of quartets), are easily incorporated into the analogy. A study of the…
Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers
Cheng, Yingchun
2013-06-01
The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.
Spin-splitting in p-type Ge devices
Energy Technology Data Exchange (ETDEWEB)
Holmes, S. N., E-mail: s.holmes@crl.toshiba.co.uk; Newton, P. J.; Llandro, J.; Mansell, R.; Barnes, C. H. W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Morrison, C.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-08-28
Compressively strained Ge quantum well devices have a spin-splitting in applied magnetic field that is entirely consistent with a Zeeman effect in the heavy hole valence band. The spin orientation is determined by the biaxial strain in the quantum well with the relaxed SiGe buffer layers and is quantized in the growth direction perpendicular to the conducting channel. The measured spin-splitting in the resistivity ρ{sub xx} agrees with the predictions of the Zeeman Hamiltonian where the Shubnikov-deHaas effect exhibits a loss of even filling factor minima in the resistivity ρ{sub xx} with hole depletion from a gate field, increasing disorder or increasing temperature. There is no measurable Rashba spin-orbit coupling irrespective of the structural inversion asymmetry of the confining potential in low p-doped or undoped Ge quantum wells from a density of 6 × 10{sup 10} cm{sup −2} in depletion mode to 1.7 × 10{sup 11} cm{sup −2} in enhancement.
Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A
2017-11-01
Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.
Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field
Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.
2018-04-01
In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling
Caetano, R. A.
2016-03-01
The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.
Zero sound and spin fluctuations in liquid helium-3
International Nuclear Information System (INIS)
Aldrich, C.H. III; Pethick, C.J.; Pines, D.
1976-01-01
The density fluctuation spectrum of 3 He is calculated using a generalized polarization potential approach and shown to yield both zero sound and quasiparticle spectra in good agreement with the recent neutron scattering experiments. Landau Fermi-liquid theory is used to calculate the spin density fluctuation spectrum; and sum-rule arguments are presented which enable us to establish the qualitative nature of this spectrum at larger wave vectors with results in good qualitative agreement with the recent experiment of Skold et al
Zero field entanglement in dipolar coupling spin system at negative temperatures
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2013-01-01
A dipolar coupled spin system can achieve internal thermodynamic equilibrium states at negative absolute temperature. We study analytically and numerically the temperature dependence of the concurrence in a dipolar coupled spin-1/2 system in both non-zero and zero fields and show that, at negative temperatures, entangled states can exist even in zero magnetic field.
Spin-orbit splittings in heavy-light mesons and Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Riazuddin, [Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Shafiq, Sidra [National University of Science and Technology, Centre for Advance Mathematics and Physics, Islamabad (Pakistan)
2012-03-15
The spin-orbit splitting in heavy-light mesons is seen to be suppressed experimentally, which may be due to a relativistic dynamical symmetry for the Dirac Hamiltonian. An alternative derivation of such a symmetry is given. Furthermore, the dynamics necessary for a qualitative understanding of the spin-orbit splitting seen experimentally is discussed. (orig.)
Spin-orbit splittings in heavy-light mesons and Dirac equation
International Nuclear Information System (INIS)
Riazuddin; Shafiq, Sidra
2012-01-01
The spin-orbit splitting in heavy-light mesons is seen to be suppressed experimentally, which may be due to a relativistic dynamical symmetry for the Dirac Hamiltonian. An alternative derivation of such a symmetry is given. Furthermore, the dynamics necessary for a qualitative understanding of the spin-orbit splitting seen experimentally is discussed. (orig.)
Yangian and SUSY symmetry of high spin parton splitting amplitudes in generalised Yang-Mills theory
Kirschner, Roland; Savvidy, George
2017-07-01
We have calculated the high spin parton splitting amplitudes postulating the Yangian symmetry of the scattering amplitudes for tensor gluons. The resulting splitting amplitudes coincide with the earlier calculations, which were based on the BCFW recursion relations. The resulting formula unifies all known splitting probabilities found earlier in gauge field theories. It describes splitting probabilities for integer and half-integer spin particles. We also checked that the splitting probabilities fulfil the generalised Kounnas-Ross 𝒩 = 1 supersymmetry relations hinting to the fact that the underlying theory can be formulated in an explicit supersymmetric manner.
k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals
Grytsiuk, Sergii
2016-05-23
We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.
Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes.
Clayton, Jessica A; Keller, Katharina; Qi, Mian; Wegner, Julia; Koch, Vanessa; Hintz, Henrik; Godt, Adelheid; Han, Songi; Jeschke, Gunnar; Sherwin, Mark S; Yulikov, Maxim
2018-04-04
The magnetic properties of paramagnetic species with spin S > 1/2 are parameterized by the familiar g tensor as well as "zero-field splitting" (ZFS) terms that break the degeneracy between spin states even in the absence of a magnetic field. In this work, we determine the mean values and distributions of the ZFS parameters D and E for six Gd(iii) complexes (S = 7/2) and critically discuss the accuracy of such determination. EPR spectra of the Gd(iii) complexes were recorded in glassy frozen solutions at 10 K or below at Q-band (∼34 GHz), W-band (∼94 GHz) and G-band (240 GHz) frequencies, and simulated with two widely used models for the form of the distributions of the ZFS parameters D and E. We find that the form of the distribution of the ZFS parameter D is bimodal, consisting roughly of two Gaussians centered at D and -D with unequal amplitudes. The extracted values of D (σD) for the six complexes are, in MHz: Gd-NO3Pic, 485 ± 20 (155 ± 37); Gd-DOTA/Gd-maleimide-DOTA, -714 ± 43 (328 ± 99); iodo-(Gd-PyMTA)/MOMethynyl-(Gd-PyMTA), 1213 ± 60 (418 ± 141); Gd-TAHA, 1361 ± 69 (457 ± 178); iodo-Gd-PCTA-[12], 1861 ± 135 (467 ± 292); and Gd-PyDTTA, 1830 ± 105 (390 ± 242). The sign of D was adjusted based on the Gaussian component with larger amplitude. We relate the extracted P(D) distributions to the structure of the individual Gd(iii) complexes by fitting them to a model that superposes the contribution to the D tensor from each coordinating atom of the ligand. Using this model, we predict D, σD, and E values for several additional Gd(iii) complexes that were not measured in this work. The results of this paper may be useful as benchmarks for the verification of quantum chemical calculations of ZFS parameters, and point the way to designing Gd(iii) complexes for particular applications and estimating their magnetic properties a priori.
Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.
Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra
2006-03-16
The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.
Theory of Faraday rotation beatings in quantum wells with great value of spin splitting
Gridnev, V N
2001-01-01
The conductivity electrons spin dynamics in the semiconducting heterostructures when the spin splitting value exceeds the energy levels widening due to collisions is theoretically studied. It is shown that the spin density component normal to the quantum well planes may oscillate with time even by absence of the external magnetic field. These oscillations might be excited and registered through the method of the nonlinear two-pulse spectroscopy. In contrast to the small spin splitting the external cross-sectional magnetic field strongly effects the spin dynamics in this mode
Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong
2012-10-17
We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas
DEFF Research Database (Denmark)
Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej
2015-01-01
Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic...
Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.
2018-03-01
The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.
Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods
DEFF Research Database (Denmark)
Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo
2011-01-01
The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FS...... by a two-parameter model; Δε, the π* spinor splitting by spin-orbit coupling (SOC) and K, the exchange integral between the π*1 and the π*-1 spinors with respectively angular momenta 1 and −1. This model holds for all systems under study with the exception of Po2....
Symmetry-selected spin-split hybrid states in C-60/ferromagnetic interfaces
DEFF Research Database (Denmark)
Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo
2016-01-01
The understanding of orbital hybridization and spin polarization at the organic-ferromagnetic interface is essential in the search for efficient hybrid spintronic devices. Here, using first-principles calculations, we report a systematic study of spin-split hybrid states of C60 deposited on various...
Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre
2018-04-11
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.
Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface
Yaji, Koichiro; Ohtsubo, Yoshiyuki; Hatta, Shinichiro; Okuyama, Hiroshi; Miyamoto, Koji; Okuda, Taichi; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki; Aruga, Tetsuya
2010-01-01
The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and first-principles electronic structure calculation. We demonstrate that a metallic surface-state band with a dominant Pb 6p character exhibits a large Rashba spin splitting of 200 meV and an effective mass of 0.028 me at the Fermi level. This finding provides a material basis for the novel field of spin transport/accumulation on semiconductor surfaces. Charge density analysis of the surface state indicated that large spin splitting was induced by asymmetric charge distribution in close proximity to the nuclei of Pb atoms. PMID:20975678
Pressure-dependence of the zero-field splittings for the Fe8 single-molecule magnet
Takahashi, S.; Thompson, E.; Hill, S.; Tozer, S. W.; Harter, A. G.; Dalal, N. S.
2006-03-01
We present a study of the pressure-dependent electron paramagnetic resonance (EPR) spectrum for the Fe8 single-molecule magnet (SMM). The biaxial [Fe8O2(OH)12(tacn)6]Br8.9H2O (Fe8) SMM has recently been studied extensively because its low-temperature magnetization dynamics are dominated by quantum tunneling of its spin S = 10 magnetic moment through a sizeable anisotropy barrier. To date, chemical methods have usually been employed in order to control the magnetic quantum tunneling (MQT) behavior of a SMM, e.g. by varying the magnetic ions in the molecular core, or the ligand/solvent environment. The advantage of this approach is that many different SMMs can be realized in this way, with widely varying MQT behavior. However, controllable variation of MQT is difficult. As an alternative approach for manipulation of the MQT, we have recently studied the effect of physical pressure on the Fe8 SMM. In this presentation, we show the pressure dependence of the zero-field splittings of Fe8, as studied by an angle and pressure-dependent high-frequency EPR technique.
Directory of Open Access Journals (Sweden)
Rudowicz Czesław
2015-07-01
Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.
Spin splitting in bulk wurtzite AlN under biaxial strain
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Lee, Meng-En; Wu, C. L.; Wang, W. T.; Chen, Chun-Nan; Hsu, Y. C.
2012-05-01
The spin-splitting energies in biaxially strained bulk wurtzite material AlN are calculated using the linear combination of atomic orbital (LCAO) method, and the equi-spin-splitting distributions in k-space near the minimum-spin-splitting (MSS) surfaces are illustrated. These data are compared with those derived analytically by two-band k . p (2KP) model. It is found that the results from these two methods are in good agreement for small k. However, the ellipsoidal MSS surface under biaxial compressive strain does not exist in the 2KP model, because the data points are far from the Γ point. Instead, three basic shapes of the MSS surface occur in the wurtzite Brillouin zone: a hyperboloid of two sheets, a hexagonal cone, and a hyperboloid of one sheet, evaluated from the LCAO method across the range of biaxial strains from compressive to tensile.
International Nuclear Information System (INIS)
Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.
2009-01-01
Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure
Zeeman splitting spin filter in a single quantum dot electron transport with Coulomb blockade effect
Lai, Wenxi
2014-01-01
Electron spin filter induced by Zeeman splitting in a few-electron quantum dot coupled to two normal electrodes is studied considering Coulomb blockade effect. Based on the Anderson model and Liouville-von Neumann equation, equation of motion of the system is derived and analytical solutions are achieved. Transport windows for perfectly polarized current, partially polarized current and non-polarized current induced by the Zeeman splitting energy and Coulomb blockade potential are exploited. ...
Tunnel splitting for a high-spin molecule in an in-plane field
Zhu, Jia-Lin
2000-08-01
Direction and strength effects of a magnetic field on the ground-state tunnel splitting for a biaxial spin molecule with the model Hamiltonian H = k1Sz2 + k2Sy2- gµBHzSz- gµBHySy have been investigated within a continuous-spin approach including the Wess-Zumino-Berry term. The topological oscillation and the non-Kramers freezing indicated in the approach are in agreement with those observed in a recent experiment on Fe8 molecular nanomagnets. The behaviour of tunnel splitting with multiple orbits induced by strong fields has been revealed clearly.
Conductance of Rashba spin-split systems with ferromagnetic contacts
DEFF Research Database (Denmark)
Larsen, M. Høgsbro; Lunde, A.M.; Flensberg, Karsten
2002-01-01
We study theoretically the conductance of heterostructures with ferromagnetic (F) conductors and a two-dimensional electron gas with Rashba (R) spin-orbit interaction using a two-channel Landauer formula. Assuming a one-dimensional model, we first find the S matrix for the FR interface. This result...
Gate voltage and structure parameter modulated spin splitting in AlGaN/GaN quantum wells
Energy Technology Data Exchange (ETDEWEB)
Li, M.; Zhang, R.; Zhang, Z.; Liu, B.; Fu, Deyi; Zhao, C.Z.; Xie, Z.L.; Xiu, X.Q.; Zheng, Y.D. [Nanjing National Lab of Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and Department of Physics, Nanjing University, Nanjing 210093 (China)
2011-01-15
In this paper, considerable magnitude of spin splitting for the conduction subband at the Fermi energy is obtained in AlGaN quantum wells (QWs) grown along the c-axis. We have analyzed how the magnitude of spin splitting of the first electron subband in AlGaN QWs with different sheet carrier concentration changes as a function of applied gate voltage, well width, and Al content in the barrier. It is also found that the contribution to spin splitting from Dresselhaus term is much larger than that from Rashba term, the contribution of Dresselhaus term to the total spin splitting depends greatly on the carrier concentrations, the change of well width has little effect on total spin splitting, and the magnitude of spin splitting can be greatly modulated by Al content in the barrier, gate voltage, and sheet carrier concentration. The internal polarized electric field is crucial for considerable spin splitting in III-nitride QWs. Moreover, the magnitude of total spin splitting calculated here is comparable with other theoretical and experimental values observed in III-nitride heterostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Rabi splitting in a quantum well system with Rashba spin-orbital coupling
Ma, Wenjie; Wang, Zhihai; Zhu, Hongbo
2017-01-01
We study the Rabi splitting phenomenon in a quantum well system with Rashba spin-orbital coupling where the spin degree of freedom is driven weakly by an external field. The dynamics of the system can be described by the Jaynes-Cummings model. As we increase the strength of spin-orbital coupling, the system undergoes an energy-level crossing which does not occure in the traditional cavity and circuit QED setups. We find that the intuitive rotating wave approximation in the driving Hamiltonian is ineffective when the energy-level crossing occurs. We also give a physical understanding based on the dressed-state representation.
Many-spin calculation of tunneling splittings in Mn12 magnetic molecules
Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.
2002-01-01
We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant
Many-spin effects and tunneling splittings in Mn12 magnetic molecules
Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.
2002-01-01
We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant
Effects of tensor forces in nuclear spin-orbit splittings from ab initio calculations
Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan
2018-03-01
A systematic and specific pattern due to the effects of the tensor forces is found in the evolution of spin-orbit splittings in neutron drops. This result is obtained from relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. It forms an important guide for future microscopic derivations of relativistic and nonrelativistic nuclear energy density functionals.
Theoretical models of Rashba spin splitting in asymmetric SrTiO3-based heterostructures
van Heeringen, L. W.; McCollam, A.; de Wijs, G. A.; Fasolino, A.
2017-04-01
Rashba spin splitting in two-dimensional (2D) semiconductor systems is generally calculated in a k .p Luttinger-Kohn approach where the spin splitting due to asymmetry emerges naturally from the bulk band structure. In recent years, several new classes of 2D systems have been discovered where electronic correlations are believed to have an important role. In these correlated systems, the effects of asymmetry leading to Rashba splitting have typically been treated phenomenologically. We compare these two approaches for the case of 2D electron systems in SrTiO3-based heterostructures, and find that the two models produce fundamentally different behavior in regions of the Brillouin zone that are particularly relevant for magnetotransport. Our results demonstrate the importance of identifying the correct approach in the quantitative interpretation of experimental data, and are likely to be relevant to a range of 2D systems in correlated materials.
Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
Energy Technology Data Exchange (ETDEWEB)
Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States)
2017-01-01
IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside the ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.
Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions
Manchon, Aurelien
2011-05-17
Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.
Anisotropic in-plane spin splitting in an asymmetric (001 GaAs/AlGaAs quantum well
Directory of Open Access Journals (Sweden)
Zhang Xiuwen
2011-01-01
Full Text Available Abstract The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001 GaAs/Al x Ga1-x As quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe,
Effective one-band approach for the spin splittings in quantum wells
Alekseev, P. S.; Nestoklon, M. O.
2017-03-01
The spin-orbit interaction of two-dimensional electrons in quantum wells grown from the III-V semiconductors consists of two parts with different symmetry: the Bychkov-Rashba and the Dresselhaus terms. The last term is usually attributed to the bulk spin-orbit Hamiltonian which reflects the Td symmetry of the zincblende lattice. While it is known that the quantum well interfaces may also contribute to the Dresselhaus term, the exact structure and relative importance of the interface and bulk contributions are not well understood. To deal with this problem, we perform tight-binding calculations of the spin splittings of the electron levels in [100] GaAs/AlGaAs quantum wells. We show that the obtained spin splittings can be adequately described within the one-band electron Hamiltonian containing, together with the bulk contribution, the two interface contributions to the Dresselhaus term. The magnitude of the interface contribution to the spin-orbit interaction for sufficiently narrow quantum wells is of the same order as the bulk contribution.
Spin Splitting in GaAs (100) Two-Dimensional Holes
Habib, B.; Tutuc, E.; Melinte, S.; Shayegan, M.; Wasserman, D.; Lyon, S. A.; Winkler, R.
2004-01-01
We measured Shubnikov-de Haas (SdH) oscillations in GaAs (100) two-dimensional holes to determine the inversion asymmetry-induced spin splitting. The Fourier spectrum of the SdH oscillations contains two peaks, at frequencies $f_-$ and $f_+$, that correspond to the hole densities of the two spin subbands and a peak, at frequency $f_\\mathrm{tot}$, corresponding to the total hole density. In addition, the spectrum exhibits an anomalous peak at $f_\\mathrm{tot}/2$. We also determined the effectiv...
Spin waves in terbium. III. Magnetic anisotropy at zero wave vector
DEFF Research Database (Denmark)
Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.
1975-01-01
The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...
Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst.
Krewald, Vera; Retegan, Marius; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas
2016-01-19
In transition-metal complexes, the geometric structure is intimately connected with the spin state arising from magnetic coupling between the paramagnetic ions. The tetramanganese-calcium cofactor that catalyzes biological water oxidation in photosystem II cycles through five catalytic intermediates, each of which adopts a specific geometric and electronic structure and is thus characterized by a specific spin state. Here, we review spin-structure correlations in Nature's water-splitting catalyst. The catalytic cycle of the Mn4O5Ca cofactor can be described in terms of spin-dependent reactivity. The lower "inactive" S states of the catalyst, S0 and S1, are characterized by low-spin ground states, SGS = 1/2 and SGS = 0. This is connected to the "open cubane" topology of the inorganic core in these states. The S2 state exhibits structural and spin heterogeneity in the form of two interconvertible isomers and is identified as the spin-switching point of the catalytic cycle. The first S2 state form is an open cubane structure with a low-spin SGS = 1/2 ground state, whereas the other represents the first appearance of a closed cubane topology in the catalytic cycle that is associated with a higher-spin ground state of SGS = 5/2. It is only this higher-spin form of the S2 state that progresses to the "activated" S3 state of the catalyst. The structure of this final metastable catalytic state was resolved in a recent report, showing that all manganese ions are six-coordinate. The magnetic coupling is dominantly ferromagnetic, leading to a high-spin ground state of SGS = 3. The ability of the Mn4O5Ca cofactor to adopt two distinct structural and spin-state forms in the S2 state is critical for water binding in the S3 state, allowing spin-state crossing from the inactive, low-spin configuration of the catalyst to the activated, high-spin configuration. Here we describe how an understanding of the magnetic properties of the catalyst in all S states has allowed conclusions on
Non-Local Spin Blocking Effect of Zero-Energy Majorana Fermions
Ren, Chongdan; Yang, Jianglan; Xiang, Jin; Wang, Sake; Tian, Hongyu
2017-12-01
One of the fascinating properties of a pair of spatially separated Majorana Fermions emerged in solid state materials is their inherent non-locality. We consider two half metals coupled to a one-dimensional finite-length topological superconductor. We find that zero-energy Majorana Fermions (ZMFs) induce a striking non-local spin-blocking effect, in which the one side tunneling process is affected by the spin polarization of the other side ZMF, similar to the electron teleportation phenomena reported by Fu [https://doi.org/10.1103/PhysRevLett.104.056402" xlink:type="simple">Phys. Rev. Lett. 104, 056402 (2010)]. In contrast, for non-zero-energy Majorana Fermions (NMFs), the right and left spin-relating tunneling processes are completely independent. These findings reveal that, for uncoupled but paired ZMFs, there exists cross-correlation between the tunneling events. Our finding may provide some new insight into identify Majorana Fermions.
Optically detecting spin-split bands in semiconductors in magnetic fields
Pan, X.; Sun, Y.; Saha, D.; Sanders, G. D.; Santos, M. B.; Doezema, R. E.; Hayes, S.; Khodaparast, G.; Munekata, H.; Matsuda, Y. H.; Kono, J.; Stanton, C. J.
2012-10-01
We report on combined theoretical and experimental studies of spin-split bands in semiconductors in magnetic fields. We have studied a wide range of systems including: 1) electron and valence band splitting in dilute magnetically doped semiconductors (DMS) systems like InMnAs, 2) electron and valence band splitting in strained InSb/AlInSb heterostructures and 3) valence band splitting in GaAs. The systems have been studied with a variety of experimental techniques including: i) ultra-high magnetic field cyclotron resonance ii) magnetoabsorption and iii) optically pumped NMR (OPNMR). Calculations are based on the 8-band Pidgeon-Brown model generalized to include the effects of the quantum confinement potential as well as pseudomorphic strain at the interfaces and sp-d coupling between magnetic impurities and conduction band electrons and valence band holes. Optical properties are calculated within the golden rule approximation and compared with experiments. Detailed comparison to experiment allows one to accurately determine conduction and valence band parameters including effective masses and g-factors. Results for InMnAs show shifts in the cyclotron resonance peaks with Mn doping. For InSb, we find a sensitive dependence of the elecronic structure on the strain at the pseudomorphic interfaces. For GaAs, we show that OPNMR allows us to spin-resolve the valence bands and that structure in the OPNMR signal is dominated by the weaker light hole to conduction band Landau level transitions.
Energy Technology Data Exchange (ETDEWEB)
Krishtopenko, S. S. [Institute for Physics of Microstructures RAS, GSP-105, 603950, Nizhny Novgorod, Russia and Laboratoire National des Champs Magnétiques Intenses (LNCMI-T), CNRS UPR 3228 Université de Toulouse, 143 Avenue de Rangueil, F-31400 Toulouse (France); Malyzhenkov, A. V.; Kalinin, K. P.; Ikonnikov, A. V.; Maremyanin, K. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures RAS, GSP-105, 603950, Nizhny Novgorod (Russian Federation); Goiran, M. [Laboratoire National des Champs Magnétiques Intenses (LNCMI-T), CNRS UPR 3228 Université de Toulouse, 143 Avenue de Rangueil, F-31400 Toulouse (France)
2013-12-04
We report a study of electron spin resonance (ESR) in a perpendicular magnetic field in n-type narrow-gap quantum well (QW) heterostructures. Using the Hartree-Fock approximation, based on the 8×8 k⋅p Hamiltonian, the many-body corrections to the ESR energy are found to be nonzero in symmetric and asymmetric narrow-gap QWs. We demonstrate a significant enhancement of the ESR energy in asymmetric QWs, induced by the Rashba spin splitting and exchange interaction, as well as the exchange-induced enhancement of the ESR energy in symmetric QWs. The ESR energies estimated for 2DEG in InAs/AlSb QWs are compared with experimental results in weak magnetic fields.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Energy Technology Data Exchange (ETDEWEB)
Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-05-15
We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Directory of Open Access Journals (Sweden)
Yuan-Yuan Guo
2015-05-01
Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.
Zero-temperature phase of the XY spin glass in two dimensions: Genetic embedded matching heuristic
Weigel, Martin; Gingras, Michel J. P.
2008-03-01
For many real spin-glass materials, the Edwards-Anderson model with continuous-symmetry spins is more realistic than the rather better understood Ising variant. In principle, the nature of an occurring spin-glass phase in such systems might be inferred from an analysis of the zero-temperature properties. Unfortunately, with few exceptions, the problem of finding ground-state configurations is a nonpolynomial problem computationally, such that efficient approximation algorithms are called for. Here, we employ the recently developed genetic embedded matching (GEM) heuristic to investigate the nature of the zero-temperature phase of the bimodal XY spin glass in two dimensions. We analyze bulk properties such as the asymptotic ground-state energy and the phase diagram of disorder strength vs disorder concentration. For the case of a symmetric distribution of ferromagnetic and antiferromagnetic bonds, we find that the ground state of the model is unique up to a global O(2) rotation of the spins. In particular, there are no extensive degeneracies in this model. The main focus of this work is on an investigation of the excitation spectrum as probed by changing the boundary conditions. Using appropriate finite-size scaling techniques, we consistently determine the stiffness of spin and chiral domain walls and the corresponding fractal dimensions. Most noteworthy, we find that the spin and chiral channels are characterized by two distinct stiffness exponents and, consequently, the system displays spin-chirality decoupling at large length scales. Results for the overlap distribution do not support the possibility of a multitude of thermodynamic pure states.
DEFF Research Database (Denmark)
Chantis, Athanasios N.; Christensen, Niels Egede; Svane, Axel
2010-01-01
. In the first, the spin splitting is completely suppressed for one of the bands and doubled for the other. In the second, the absolute value of the splitting is markedly enhanced for both bands approaching the magnitude of the hybridization gap. We demonstrate these effects in zinc-blende semiconductors...
Study of superdeformation at zero spin with Skyrme-Hartree-Fock method
Energy Technology Data Exchange (ETDEWEB)
Takahara, S.; Tajima, N.; Onishi, N. [Tokyo Univ. (Japan)
1998-03-01
Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)
Zero-field Spin Depolarization of Low-Energy Muons in Ferromagnetic Nickel and Silver Metal
Saadaoui, H.; Salman, Z.; Prokscha, T.; Suter, A.; Wojek, B. M.; Morenzoni, E.
We present zero-field muon-spin depolarization measurements in nickel and silver performed using low-energy muon-spin relaxation technique.Ni or Ag are usually used in this depth-resolved technique as a backing material to enable background subtraction when studying small crystals or materials with weak magnetism. The depolarization rate of the asymmetry in silver and that of the slow relaxing part of the asymmetry in nickel are small(≤ 0.05 μs-1), and weakly temperature and energy-dependent.
Quantum field theory of material properties. Its application to models of Rashba spin splitting
International Nuclear Information System (INIS)
Schober, Giulio Albert Heinrich
2016-01-01
In this thesis, we argue that microscopic field theories - which as such are already scientifically established - have emerged as a new paradigm in materials physics. We hence seek to elaborate on such field theories which underlie modern ab initio calculations, and we apply them to the bismuth tellurohalides (BiTeX with X=I,Br,Cl) as a prototypical class of spin-based materials. For this purpose, we begin by constructing tight-binding models which approximately describe the spin-split conduction bands of BiTeI. Following this, we derive the theory of temperature Green functions systematically from their fundamental equations of motion. This in turn enables us to develop a combined functional renormalization and mean-field approach which is suitable for application to multiband models. For the Rashba model including an attractive, local interaction, this approach yields an unconventional superconducting phase with a singlet gap function and a mixed singlet-triplet order parameter. We further investigate the unusual electromagnetic response of BiTeI, which is caused by the Rashba spin splitting and which includes, in particular, an orbital paramagnetism. Finally, we conclude by summarizing the Functional Approach to electrodynamics of media as a microscopic field theory of electromagnetic material properties which sits in accordance with ab initio physics.
Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics
Sobhani, H.; Chung, W. S.; Hassanabadi, H.
2018-04-01
In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.
Impact of spin-zero particle-photon interactions on light polarization in external magnetic fields
International Nuclear Information System (INIS)
Liao Yi
2007-01-01
If the recent PVLAS results on polarization changes of a linearly polarized laser beam passing through a magnetic field are interpreted by an axion-like particle, it is almost certain that it is not a standard QCD axion. Considering this, we study the general effective interactions of photons with spin-zero particles without restricting the latter to be a pseudo-scalar or a scalar, i.e., a parity eigenstate. At the lowest order in effective field theory, there are two dimension-5 interactions, each of which has previously been treated separately for a pseudo-scalar or a scalar particle. By following the evolution in an external magnetic field of the system of spin-zero particles and photons, we compute the changes in light polarization and the transition probability for two experimental set-ups: one-way propagation and round-trip propagation. While the first may be relevant for astrophysical sources of spin-zero particles, the second applies to laboratory optical experiments like PVLAS. In the one-way propagation, interesting phenomena can occur for special configurations of polarization where, for instance, transition occurs but light polarization does not change. For the round-trip propagation, however, the standard results of polarization changes for a pseudoscalar or a scalar are only modified by a factor that depends on the relative strength of the two interactions
James Gillies
2011-01-01
This week saw the increasingly familiar sight of hordes of journalists descending on CERN to hear the latest news from the LHC. There were 66 of them to be precise, many of whom announced to us they planned to come for the seminar long before they were invited. It’s a sign of the times that science that used to be conducted in private is now carried out in the public domain. That has the potential to be very good news for science, and for society as a whole, particularly when CERN’s scientists do such a great job of conveying the passion and excitement of their research. A typical Higgs candidate event in the CMS detector. We live in a science-dominated age, where everyone has to make science-based decisions on a daily basis. Yet at the same time, apathy towards science has been growing while pseudo-science gains ground. For that reason, it’s incumbent upon scientists to push science further up the popular agenda. The fact that the LHC has got the ‘...
Spin-orbit splitting in graphene, silicene and germanene: Dependence on buckling
Singh, Ranber
2018-02-01
The spin-orbit splitting (Eso) of valence band maximum at the Γ point is significantly smaller in 2D planner honeycomb structures of graphene, silicene, germanene and BN than that in the corresponding 3D bulk counterparts. For 2D planner honeycomb structure of SiC, it is almost same as that for 3D bulk cubic SiC. The bandgap which opens at the K and K‧ points due to spin-orbit coupling (SOC) is very small in flat honeycomb structures of graphene and silicene, while in germanene it is about 2 meV. The buckling in these structures of graphene, silicene and germanene increases the bandgap opened at the K and K‧ points due to SOC quadratically, while the Eso of valence band maximum at the Γ point decreases quadratically with an increase in the magnitude of buckling.
International Nuclear Information System (INIS)
Keatley, Paul Steven; Hicken, Robert James; Sani, Sohrab Redjai; Åkerman, Johan; Hrkac, Gino; Mohseni, Seyed Majid; Dürrenfeld, Philipp
2017-01-01
Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of
Hybridization Gap and Dresselhaus Spin Splitting in EuIr4In2Ge4.
Calta, Nicholas P; Im, Jino; Rodriguez, Alexandra P; Fang, Lei; Bugaris, Daniel E; Chasapis, Thomas C; Freeman, Arthur J; Kanatzidis, Mercouri G
2015-08-03
EuIr4In2Ge4 is a new intermetallic semiconductor that adopts a non-centrosymmetric structure in the tetragonal I4̄2m space group with unit cell parameters a=6.9016(5) Å and c=8.7153(9) Å. The compound features an indirect optical band gap E(g)=0.26(2) eV, and electronic-structure calculations show that the energy gap originates primarily from hybridization of the Ir 5d orbitals, with small contributions from the Ge 4p and In 5p orbitals. The strong spin-orbit coupling arising from the Ir atoms, and the lack of inversion symmetry leads to significant spin splitting, which is described by the Dresselhaus term, at both the conduction- and valence-band edges. The magnetic Eu(2+) ions present in the structure, which do not play a role in gap formation, order antiferromagnetically at 2.5 K. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Igarashi, J.; Watabe, A.
1991-01-01
Quantum corrections to the longitudinal spin-correlation function and the spin-stiffness constant are calculated up to 1/(2S) 2 in a two-dimensional Heisenberg antiferromagnet at zero temperature by using the Holstein-Primakoff transformation. The equal-time longitudinal spin-correlation function is found to compensate almost entirely the reduction caused by the second-order correction in the transverse spin-correlation function, making the spherically averaged correlation function very close to the value given by linear spin-wave theory. In the spin-stiffness constant, a partial cancellation is found between the ''paramagnetic'' and ''diamagnetic'' terms, leading to a small second-order correction
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)
2015-01-01
Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and
Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
Energy Technology Data Exchange (ETDEWEB)
Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States)
2017-01-01
This project was created from a partnership between the U.S. Department of Energy’s (DOE’s) Building America research team IBACOS, Inc. and Imagine Homes, a production homebuilder of high-performance homes in San Antonio, Texas—a hot-humid climate. The primary purpose was to evaluate the performance of a multihead mini-split heat pump (MSHP) space-conditioning system, which consists of ducted and ductless indoor units, in maintaining uniform comfort in an occupied test house. The research team evaluated the MSHP space-conditioning strategy for its effectiveness in achieving uniform temperature and relative humidity (RH) levels throughout the test house and for overall constructability and cost. This evaluation was based on data that were collected from short-term tests and monitoring during 1 year of occupancy, as well as from builder and occupant feedback. Design considerations for integrating an MSHP system into the builder’s full range of production home designs were also explored, with a focus on minimizing the cost and complexity of the system design while meeting the thermal loads of the house and providing occupant comfort according to ANSI/ASHRAE Standard 55-2010 (ASHRAE 2010a).
Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi
Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments
Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James
2017-04-01
Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of
International Nuclear Information System (INIS)
Hansen, J.B.; Divin, Y.Y.; Mygind, J.
1986-01-01
We report on the observation of full splitting of the first zero-field steps in the I-V curves of Josephson transmission lines of intermediate length Lroughly-equal(3--5)lambda/sub J/, where lambda/sub J/ is the Josephson penetration length. We study in detail how this splitting of the step into two branches depends on the temperature of the junction and on a weak applied magnetic field. We relate the splitting to excitations in the junctions whose behavior is described by the perturbed Sine-Gordon equation
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Divin, Yu. Ya.; Mygind, Jesper
1986-01-01
We report on the observation of full splitting of the first zero-field steps in the I-V curves of Josephson transmission lines of intermediate length L≊(3–5)λJ, where λJ is the Josephson penetration length. We study in detail how this splitting of the step into two branches depends...... on the temperature of the junction and on a weak applied magnetic field. We relate the splitting to excitations in the junctions whose behavior is described by the perturbed sine-Gordon equation....
Tay, Z. J.; Soh, W. T.; Ong, C. K.
2018-02-01
This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.
Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel
2018-02-01
Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.
One- and two-dimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting
Sakaguchi, Hidetsugu; Malomed, Boris A.
2018-01-01
We elaborate a mechanism for the formation of stable solitons of the semivortex type (with vorticities 0 and 1 in their two components), populating a finite band gap in the spectrum of the spin-orbit-coupled binary Bose-Einstein condensate with the Zeeman splitting, in the two-dimensional (2D) free space, under conditions which make the kinetic-energy terms in the respective coupled Gross-Pitaevskii equations negligible. Unlike a recent work which used long-range dipole-dipole interactions to construct stable gap solitons in a similar setting, we here demonstrate that stable solitons are supported by generic local interactions of both attractive and repulsive signs, provided that the relative strength of the cross- and self-interactions in the two-component system does not exceed a critical value ≈0.77 . A boundary between stable and unstable fundamental 2D gap solitons is precisely predicted by the Vakhitov-Kolokolov criterion, while all excited states of the 2D solitons, with vorticities (m ,1 +m ) in the two components, m =1 ,2 ,... , are unstable. The analysis of the one-dimensional (1D) reduction of the system produces an exact analytical solution for the family of gap solitons which populate the entire band gap, the family being fully stable. Motion of the 1D solitons in the trapping potential is considered too, showing that their effective mass is positive or negative if the cubic nonlinearity is attractive or repulsive, respectively.
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Faculty of Chemistry, A. Mickiewicz University, 61-614 Poznań (Poland); Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland); Açıkgöz, Muhammed [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Gnutek, Paweł [Institute of Physics, West Pomeranian University of Technology, Szczecin (Poland)
2017-07-15
Graphical abstract: Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. - Highlights: • Semiempirical study of potential SMM [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br). • Superposition model analysis of zero field splitting (ZFS) parameters carried out. • Jahn-Teller distortions revealed by DFT geometry optimization considered. • SPM predicts D(ZFS) of observed magnitudes with positive or negative signs. • Results corroborate giant ZFS, which shall not be equated with magnetic anisotropy. - Abstract: Potential single-ion magnet Ni{sup 2+} systems: [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) D{sub expt} = −120 to −180 cm{sup −1} was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: −100 to −200 cm{sup −1}. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm{sup −1} for Ni{sup 2+} ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as ‘giant uniaxial magnetic anisotropy’) and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni{sup 2+} systems. Using crystal structure data for [Ni(Me{sub 6}tren)Cl](ClO{sub 4}) and [Ni(Me{sub 6}tren)Br](Br) as well as taking into account the Jahn
Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3.
Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J
2015-11-02
The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.
Energy Technology Data Exchange (ETDEWEB)
Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Misra, Sushil K; Andronenko, Serguei I; Chand, Prem; Earle, Keith A; Paschenko, Sergei V; Freed, Jack H
2005-06-01
EPR measurements have been carried out on a single crystal of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) at 170-GHz in the temperature range of 312-4.2K. The spectra have been analyzed (i) to estimate the spin-Hamiltonian parameters; (ii) to study the temperature variation of the zero-field splitting (ZFS) parameter; (iii) to confirm the negative absolute sign of the ZFS parameter unequivocally from the temperature-dependent relative intensities of hyperfine sextets at temperatures below 10K; and (iv) to detect the occurrence of a structural phase transition at 4.35K from the change in the structure of the EPR lines with temperature below 10K.
International Nuclear Information System (INIS)
Faria, A.C. de.
1990-01-01
A detailed study of the S-K model through the analysis of the zeros of the partition function in the complex temperature plane is performed. By the exact way, the notable thermodynamical properties of the system to a variety of the length (N=5→25 spins) are calculated, using only standards concepts (without the use of tricks like that of replicas). Dilute models had been also considered. The principal result of this work is the characterization of the zeros of the partition function of the S-K model. (author)
The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling
Zhao, Jingxiang; Yan, Xu; Gu, Qiang
2017-10-01
The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.
Rudowicz, Czesław; Karbowiak, Mirosław
2015-01-01
Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and
Theoretical evaluation of the electron paramagnetic resonance spin ...
Indian Academy of Sciences (India)
The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic factors) for a 3d5 (with high spin = 5/2) and a 4d5 (with low spin = 1/2) ion in trigonal symmetry, respectively. According ...
Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4
de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.
2007-03-01
We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.
DEFF Research Database (Denmark)
Sharma, S.; Pittalis, S.; Kurth, S.
2007-01-01
The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....
Shao, Yangfan; Pang, Rui; Pan, Hui; Shi, Xingqiang
2018-03-01
The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.
Directory of Open Access Journals (Sweden)
Bin Fang
2016-12-01
Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.
Leconte, Nicolas; Soriano, David; Roche, Stephan; Ordejon, Pablo; Charlier, Jean-Christophe; Palacios, J J
2011-05-24
Spin-dependent transport in hydrogenated two-dimensional graphene is explored theoretically. Adsorbed atomic hydrogen impurities can either induce a local antiferromagnetic, ferromagnetic, or nonmagnetic state depending on their density and relative distribution. To describe the various magnetic possibilities of hydrogenated graphene, a self-consistent Hubbard Hamiltonian, optimized by ab initio calculations, is first solved in the mean field approximation for small graphene cells. Then, an efficient order N Kubo transport methodology is implemented, enabling large scale simulations of functionalized graphene. Depending on the underlying intrinsic magnetic ordering of hydrogen-induced spins, remarkably different transport features are predicted for the same impurity concentration. Indeed, while the disordered nonmagnetic graphene system exhibits a transition from diffusive to localization regimes, the intrinsic ferromagnetic state exhibits unprecedented robustness toward quantum interference, maintaining, for certain resonant energies, a quasiballistic regime up to the micrometer scale. Consequently, low temperature transport measurements could unveil the presence of a magnetic state in weakly hydrogenated graphene.
Spin-dependent tunneling conductance in 2D structures in zero magnetic field
International Nuclear Information System (INIS)
Rozhansky, I.V.; Averkiev, N.S.
2009-01-01
The influence of the spin-orbit interaction on the tunneling between two-dimensional electron layers is considered. A general expression for the tunneling current is obtained with the Rashba and Dresselhaus effects and also elastic scattering of charge carriers on impurities taken into account. It is shown that the particular form of the tunneling conductance as a function of the voltage between layers is extremely sensitive to the relationship between the Rashba and Dresselhaus parameters. This makes it possible to determine the parameters of the spin-orbit interaction and the quantum scattering time directly from measurements of the tunneling conductance in the absence of magnetic field
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Yakunin, M.V.; de Visser, A.; Galistu, G.; Podgornykh, S.M.; Sadofyev, Y.G.; Shelushinina, N.G.; Harus, G.I.
2009-01-01
Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B|| is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk
Jin, Jingjing; Zhang, Suying; Han, Wei
2014-06-01
We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin-orbit coupled Bose-Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling.
Ground State of Quasi-One Dimensional Competing Spin Chain Cs2Cu2Mo3O12 at zero and Finite Fields
Matsui, Kazuki; Goto, Takayuki; Angel, Julia; Watanabe, Isao; Sasaki, Takahiko; Hase, Masashi
The ground state of competing-spin-chain Cs2Cu2Mo3O12 with the ferromagnetic exchange interaction J1 = -93 K on nearest-neighboring spins and the antiferromagnetic one J2 = +33 K on next-nearest-neighboring spins was investigated by ZF/LF-μSR and 133Cs-NMR in the 3He temperature range. The zero-field μSR relaxation rate λ shows a significant increase below 1.85 K, suggesting the existence of magnetic order, which is consistent with the recent report on the specific heat. However, LF decoupling data at the lowest temperature 0.3 K indicate that the spins fluctuate dynamically, suggesting that the system is in a quasi-static ordered state under zero field. This idea is further supported by the fact that the broadening in NMR spectra below TN is weakened at low field below 2 T.
Mück, Leonie Anna; Gauss, Jürgen
2012-03-21
We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)
2014-10-15
The single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, especially the single molecule magnets (SMM) or molecular nanomagnets (MNM), have been extensively studied in recent decades using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. Interpretation of magnetic and spectroscopic properties of transition ions is based on two physically distinct types of Hamiltonians: the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the effective spin Hamiltonians (SH), which include the zero-field splitting (ZFS) Hamiltonians. Survey of recent literature has revealed a number of terminological confusions and specific problems occurring at the interface between these Hamiltonians (denoted CF (LF)↔SH (ZFS)). Elucidation of sloppy or incorrect usage of crucial notions, especially those describing or parameterizing crystal fields and zero field splittings, is a very challenging task that requires several reviews. Here we focus on the prevailing confusion between the CF (LF) and SH (ZFS) quantities, denoted as the CF=ZFS confusion, which consists in referring to the parameters (or Hamiltonians), which are the true ZFS (or SH) quantities, as purportedly the CF (LF) quantities. The inverse ZFS=CF confusion, which pertains to the cases of labeling the true CF (LF) quantities as purportedly the ZFS quantities, is considered in a follow-up paper. The two reviews prepare grounds for a systematization of nomenclature aimed at bringing order to the zoo of different Hamiltonians. Specific cases of the CF=ZFS confusion identified in the recent textbooks, review articles, and SMM (MNM)- and EMR-related papers are surveyed and the pertinent misconceptions are outlined. The consequences of the terminological confusions go far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. Serious
International Nuclear Information System (INIS)
Siqueira, J.R.R.
1984-01-01
The question of how far the requirement of invariance under the continuous conformal group determines relativistic Schroedinger wave equations for (free) zero mass particles of arbitrary spin is rised. First, the conditions to be satisfied by the Hamiltonian operator appearing in the Schroedinger wave equation i∂Ψ/∂t= H Ψ (with Ψ transforming locally under homogeneous Lorentz transformations) are derived such that the wave equation is invariant individually under boosts, dilatations and special conformal transformations of the conformal group whose generators are in the local forms given by Mack and Salam for Type Ia fields. Then starting with the most general form of the Hamiltonian for the spin s case, invariant under translations and rotations, the boost, dilatational and special conformal invariance conditions are applied on H so as to make an explicit determination of the solutions for H when ψ transforms according (i) D(o,s) (ii) D(s,o) and (iii) D(o,s) + D(s,o) representation of the Homogeneous Lorentz group. (E.G.) [pt
Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O
DEFF Research Database (Denmark)
Thrane, N.; Trumpy, Georg
1970-01-01
. Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...
Directory of Open Access Journals (Sweden)
Rimiene J
2010-01-01
Full Text Available Background: Studies for liquid-based Papanicolaou (Pap tests reveal that liquid-based cytology (LBC is a safe and effective alternative to the conventional Pap smear. Although there is research on ThinPrep and SurePath systems, information is lacking to evaluate the efficiency and effectiveness of systems based on cytocentrifugation. This study is designed to determine the sensitivity and specificity of the Shandon PapSpin (ThermoShandon, Pittsburgh, Pennsylvania, USA liquid-based gynecological system. We used split-sample and direct-to-vial study design. Materials and Methods: 2,945 women referred to prophylactic check-up were enrolled in this study. Split sample design was used in 1,500 women and residual cervical cytology specimen from all these cases was placed in fluid for PapSpin preparation after performing conventional smear. The direct-to-vial study was carried out in another cohort of 1,445 women in whom the entire cervical material was investigated using only the PapSpin technique. Follow up histological diagnoses for 141 women were obtained from both study arms following 189 abnormal cytology cases. 80 LBC cases from the split sample group and 61 LBC cases in the direct-to-vial group were correlated with the histology results. The sensitivity and secificity of the conventional smear and PapSpin tests in both study arms were compared. Results: In the split sample group, conventional smears showed a higher proportion of ASC-US (atypical cells undetermined significance: 31 (2.1% vs 10 (0.7% in PapSpin (P = 0.001. A higher proportion of unsatisfactory samples was found in the conventional smear group: 25 (1.7% vs 6 (0.4% cases (P = 0.001. In the split sample group, the sensitivity of the conventional and PapSpin tests was 68.7% vs 78.1%, and the specificity 93.8% vs 91.8%, respectively. In the direct to vial group PapSpin sensitivity was 75.9% and specificity 96.5%. The differences in sensitivity and specificity were not significant. The
Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide
International Nuclear Information System (INIS)
Chen, M.C.
1982-01-01
Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses
Simulations of Resonant Intraband and Interband Tunneling Spin Filters
Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.
2001-01-01
This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).
Salman, Z.; Kiefl, R. F.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Schultz, J. D.; Smadella, M.; Wang, D.; Macfarlane, W. A.
2006-04-01
We demonstrate that zero-field β-detected nuclear quadrupole resonance and spin relaxation of low energy Li8 can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO3 single crystal occurs at Tc˜150K, i.e., ˜45K higher than Tcbulk, and that the tetragonal domains formed below Tc are randomly oriented.
Quantum spin transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Schindler, Christoph
2012-05-15
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Quantum spin transport in semiconductor nanostructures
International Nuclear Information System (INIS)
Schindler, Christoph
2012-01-01
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Energy Technology Data Exchange (ETDEWEB)
Honma, A.K.
1980-11-01
The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.
Discovery of a novel linear-in-k spin splitting for holes in the 2D GaAs/AlAs system.
Luo, Jun-Wei; Chantis, Athanasios N; van Schilfgaarde, Mark; Bester, Gabriel; Zunger, Alex
2010-02-12
The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wave vector k. Whereas for 3D bulk zinc blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells, the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of hole states in 2D. This scaling emerges from coupling of hole bands that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k scaling for holes in 2D implies a different understanding of hole physics in low dimensions.
Lavrentiev, Vasily; Chvostova, Dagmar; Stupakov, Alexandr; Lavrentieva, Inna; Vacik, Jiri; Motylenko, Mykhaylo; Barchuk, Mykhailo; Rafaja, David; Dejneka, Alexandr
2018-04-01
Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.
International Nuclear Information System (INIS)
Lu Jianduo; Li Jianwen
2010-01-01
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.
Meeker, M. A.; Magill, B. A.; Khodaparast, G. A.; Saha, D.; Stanton, C. J.; McGill, S.; Wessels, B. W.
2015-09-01
Carrier-induced ferromagnetism in magnetic III-V semiconductors has opened up several opportunities for spintronic device applications as well as for fundamental studies of a material system in which itinerant carriers interact with the localized spins of magnetic impurities. In order to understand the hole mediated ferromagnetism, probing the band structure in these material systems is crucial. Here we present magnetic circular dichroism (MCD) studies on MOVPE grown InMnSb and InMnAs, both with the Curie temperatures above 300 K. The measurements were performed on samples with different Mn contents with the excitation energy tuned from 0.92-1.42 eV and external magnetic fields up to 31 T. The large g factors in these systems allow us to measure the MCD at relatively high temperatures (190 K). These measurements are compared with MCD calculations based on an eight-band Pidgeon-Brown model, which is generalized to include the coupling between the electron/hole and the Mn spin in a ferromagnetic state. Comparison of the observed MCD with the theoretical calculations provides a direct method to probe the band structure including the temperature dependence of the spin-orbit split-off gap and g factors, and to estimate the s p -d coupling constants.
Darradi, R.; Richter, J.; Farnell, D. J. J.
2004-01-01
We investigate the phase diagram of the Heisenberg antiferromagnet on the square lattice with two different nearest-neighbor bonds $J$ and $J'$ ($J$-$J'$ model) at zero temperature. The model exhibits a quantum phase transition at a critical value $J'_c > J$ between a semi-classically ordered N\\'eel and a magnetically disordered quantum paramagnetic phase of valence-bond type, which is driven by local singlet formation on $J'$ bonds. We study the influence of spin quantum number $s$ on this p...
Salman, Z; Kiefl, R F; Chow, K H; Hossain, M D; Keeler, T A; Kreitzman, S R; Levy, C D P; Miller, R I; Parolin, T J; Pearson, M R; Saadaoui, H; Schultz, J D; Smadella, M; Wang, D; MacFarlane, W A
2006-04-14
We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.
Spin-split Surface States and Superconductivity at Twin Boundaries of Non-centrosymmetric BiPd
Yim, Chi Ming; Trainer, Christopher; Maldonado, Ana; Peets, Darren C.; Wahl, Peter
In non-magnetic bulk materials lacking a center of inversion symmetry, spin-orbit interactions can lift the spin degeneracy, resulting in Rashba metals whose Fermi surfaces exhibit an intricate spin texture. Combined with superconductivity, this can lead to an admixture of both singlet and triplet components of the superconducting pairing. Using scanning tunneling spectroscopy we study the surface electronic structure in the superconducting state of BiPd, which has previously been reported to exhibit a Dirac-like surface state with a non-trivial spin texture. Topographic images reveal domains of [0 1 0] and [010] terminations corresponding to opposing faces of the crystal structure, separated by twin boundaries. From differential conductance spectra obtained on the two terminations we can characterize the surface electronic structure of the two non-equivalent surfaces. The signature of the surface state within domains of the two terminations are located at 0.4 eV above the Fermi level with only small differences. Intriguingly, we find an additional bound state localized at the twin boundary, the precise energy of which depends on the orientation of the twin boundary. Superconductivity between the two surface terminations and at the twin boundaries is discussed.
Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field
Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V
2003-01-01
A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.
Yu, Jinling; Zeng, Xiaolin; Cheng, Shuying; Chen, Yonghai; Liu, Yu; Lai, Yunfeng; Zheng, Qiao; Ren, Jun
2016-12-01
The ratio of Rashba and Dresselhaus spin splittings of the (001)-grown GaAs/AlGaAs quantum wells (QWs), investigated by the spin photocurrent spectra induced by circular photogalvanic effect (CPGE) at inter-band excitation, has been effectively tuned by changing the well width of QWs and by inserting a one-monolayer-thick InAs layer at interfaces of GaAs/AlGaAs QWs. Reflectance difference spectroscopy (RDS) is also employed to study the interface asymmetry of the QWs, whose results are in good agreement with that obtained by CPGE measurements. It is demonstrated that the inserted ultra-thin InAs layers will not only introduce structure inversion asymmetry (SIA), but also result in additional interface inversion asymmetry (IIA), whose effect is much stronger in QWs with smaller well width. It is also found that the inserted InAs layer brings in larger SIA than IIA. The origins of the additional SIA and IIA introduced by the inserted ultra-thin InAs layer have been discussed.
Geometrical Applications of Split Octonions
Directory of Open Access Journals (Sweden)
Merab Gogberashvili
2015-01-01
Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.
McKenzie, Iain; Salman, Zaher; Giblin, Sean R; Han, Yun Yu; Leach, Gary W; Morenzoni, Elvezio; Prokscha, Thomas; Suter, Andreas
2014-02-01
The results of many experiments on polymers such as polystyrene indicate that the polymer chains near a free surface exhibit enhanced dynamics when compared with the bulk. We have investigated whether this is the case for poly(tetrafluoroethylene) (PTFE) by using zero-field muon-spin-relaxation spectroscopy to characterize a local probe, the F-Mu(+)-F state, which forms when spin-polarized positive muons are implanted in PTFE. Low-energy muons (implantation energies from 2.0 to 23.0 keV) were used to study the F-Mu(+)-F state between ∼ 23 and 191 nm from the free surface of PTFE. Measurements were also made with surface muons (4.1 MeV) where the mean implantation depth is on the order of ∼ 0.6 mm. The relaxation rate of the F-Mu(+)-F state up to ∼ 150 K was found to be significantly higher for muons implanted at 2.0 keV than for higher implantation energies, which suggests that the polymer chains in a region on the order of a few tens of nanometers from the free surface are more mobile than those in the bulk.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)
2015-10-05
An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.
Sakaguchi, Hidetsugu; Sherman, E Ya; Malomed, Boris A
2016-09-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ∼1.5×10^{4}. The results are obtained by means of combined analytical and numerical methods.
Karl Illmensee; Mike Levanduski
2010-01-01
Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...
Directory of Open Access Journals (Sweden)
Karl Illmensee
2010-04-01
Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.
Indian Academy of Sciences (India)
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .
Standard Model Particles from Split Octonions
Directory of Open Access Journals (Sweden)
Gogberashvili M.
2016-01-01
Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Energy Technology Data Exchange (ETDEWEB)
Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)
2016-11-15
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
International Nuclear Information System (INIS)
Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok
2016-01-01
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
Antenna Splitting Functions for Massive Particles
Energy Technology Data Exchange (ETDEWEB)
Larkoski, Andrew J.; Peskin, Michael E.; /SLAC
2011-06-22
An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.
Probing photoinduced spin states in spin-crossover molecules with neutron scattering
Ridier, K.; Craig, G. A.; Damay, F.; Fennell, T.; Murrie, M.; Chaboussant, G.
2017-03-01
We report a neutron-scattering investigation of the spin-crossover compound [Fe (ptz) 6] (BF4)2 , which undergoes an abrupt thermal spin transition from high spin (HS), S =2 , to low spin (LS), S =0 , around 135 K. The HS magnetic state can be restored at low temperature under blue/green light irradiation. We have developed a specially designed optical setup for neutron scattering to address the magnetic properties of the light-induced HS state. By using neutron diffraction, we demonstrate that significant HS/LS ratios (of up to 60%) can be obtained with this experimental setup on a sample volume considered large (400 mg), while a complete recovery of the LS state is achieved using near-infrared light. Finally, with inelastic neutron scattering (INS) we have observed magnetic transitions arising from the photo-induced metastable HS S =2 state split by crystal-field and spin-orbit coupling. We interpret the INS data assuming a spin-only model with a zero-field splitting of the S =2 ground state. The obtained parameters are D ≈-1.28 ±0.03 meV and |E |≈0.08 ±0.03 meV. The present results show that in situ magnetic inelastic neutron-scattering investigations on a broad range of photomagnetic materials are now possible.
Energy Technology Data Exchange (ETDEWEB)
Sinha, A.K., E-mail: anil@rrcat.gov.in [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Singh, M.N. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Achary, S.N. [Chemistry Division, BARC, Anushaktinagar, Mumbai 400085 (India); Sagdeo, A. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Shukla, D.K.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Indore 452010 (India)
2017-08-01
Highlights: • Co ions in Co{sub 1.5}Fe{sub 1.5}O{sub 4} are found to be in high spin states. • XAS measurements have been used to estimate TM crystal field and core hole contributions to 3d orbital splitting. • The polycrystalline Co{sub 1.5}Fe{sub 1.5}O{sub 4} sample show two pinning centers and large magneto crystalline anisotropy. - Abstract: Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (T{sub H}) and octahedral (O{sub H}) sites. Spin states of Co{sup 3+} ions in T{sub H} sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L{sub 2,3}-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t{sub 2g} and e{sub g} absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at O{sub H} and T{sub H} sites. The results are in agreement with those obtained from magnetization data, and favors Co{sup 3+} ions in T{sub H} sites in high spin states. Normalized areas of the satellite peaks in TM L{sub 2},{sub 3}-edge XAS spectra have been used to estimate 3d{sub n+1}L contribution in ground state wave function and the contributions were found to be significant.
Chu, Mei-Lan; Chang, Hing-Chiu; Oshio, Koichi; Chen, Nan-Kuei
2018-01-01
To develop a high-speed T 2 mapping protocol that is capable of accurately measuring T 2 relaxation time constants from a single-shot acquisition. A new echo-split single-shot gradient-spin-echo (GRASE) pulse sequence is developed to acquire multicontrast data while suppressing signals from most nonprimary echo pathways in Carr-Purcell-Meiboom-Gill (CPMG) echoes. Residual nonprimary pathway signals are taken into consideration when performing T 2 mapping using a parametric multiplexed sensitivity encoding based on projection onto convex sets (parametric-POCSMUSE) reconstruction method that incorporates extended phase graph modeling of GRASE signals. The single-shot echo-split GRASE-based T 2 mapping procedure was evaluated in human studies at 3 Tesla. The acquired data were compared with reference data obtained with a more time-consuming interleaved spin-echo echo planar imaging protocol. T 2 maps derived from conventional single-shot GRASE scans, in which nonprimary echo pathways were not appropriately addressed, were also evaluated. Using the developed single-shot T 2 mapping protocol, quantitatively accurate T 2 maps can be obtained with a short scan time (parametric-POCSMUSE reconstruction. Magn Reson Med 79:383-393, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Liu, Jie; Potter, Andrew C; Law, K T; Lee, Patrick A
2012-12-28
One of the simplest proposed experimental probes of a Majorana bound state is a quantized (2e(2)/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak can remain. Such a nonquantized zero-bias peak has been recently reported for semiconducting nanowires with proximity induced superconductivity. In this Letter we analyze the relation of the zero-bias peak to the presence of Majorana end states, by simulating the tunneling conductance for multiband wires with realistic amounts of disorder. We show that this system generically exhibits a (nonquantized) zero-bias peak even when the wire is topologically trivial and does not possess Majorana end states. We make comparisons to recent experiments, and discuss the necessary requirements for confirming the existence of a Majorana state.
Energy Technology Data Exchange (ETDEWEB)
Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)
2008-07-01
A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)
Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A
2016-04-04
X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied
Czech Academy of Sciences Publication Activity Database
Lavrentiev, Vasyl; Chvostová, Dagmar; Stupakov, Alexandr; Lavrentieva, Inna; Vacík, Jiří; Motylenko, M.; Barchuk, M.; Rafaja, D.; Dejneka, Alexandr
2018-01-01
Roč. 29, č. 13 (2018), č. článku 135701. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2015088; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : fullerene * nanocomposites * quantum plasmon * optical spectra * energy band splitting Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Nano-materials (production and properties); Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 3.440, year: 2016
Testing PVLAS axions with resonant photon splitting
Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo
2007-01-01
The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.
Relativistic and perturbational calculations of fine structure splittings in F2 and F2
Mark, F.; Marian, C.; Schwarz, W. H. E.
Dirac-Fock calculations near the SCF limit using the recently developed basis set expansion technique of Mark and Schwarz have been performed on the F2 ground state with particular consideration of the relativistic splitting of the πg and πu orbitals. The magnetic contribution to the Breit interaction has been included by first-order perturbation theory. Fine structure splittings of the ionic states F2+(X 2Πg) and F2+(A 2Πu) have been calculated by first-order perturbation theory within the Breit-Pauli framework at three levels of approximation for the zero-order wavefunction. The results of the Dirac-Breit and the Breit-Pauli approaches are compared with experimental data. The calculated splittings are analysed by partitioning them into physically meaningful contributions. Aided by results of numerical Dirac-Fock calculations on atoms the general conclusion is drawn that ionic reorganization of the wavefunction increases the fine structure splitting at the Breit-Pauli level, whereas it decreases the splitting at the Dirac-Breit level. Using a model of Ishiguro and Kobori the ratios of Πg and Πu spin-orbit splittings of halogen molecular ions X2+ are discussed.
Bifurcation of the spin-wave equations
International Nuclear Information System (INIS)
Cascon, A.; Koiller, J.; Rezende, S.M.
1990-01-01
We study the bifurcations of the spin-wave equations that describe the parametric pumping of collective modes in magnetic media. Mechanisms describing the following dynamical phenomena are proposed: (i) sequential excitation of modes via zero eigenvalue bifurcations; (ii) Hopf bifurcations followed (or not) by Feingenbaum cascades of period doubling; (iii) local and global homoclinic phenomena. Two new organizing center for routes to chaos are identified; in the classification given by Guckenheimer and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary eigenvalues and a zero eigenvalue, to which many dynamical consequences are known; secondly, global homoclinic bifurcations associated to splitting of separatrices, in the limit where the system can be considered a Hamiltonian subjected to weak dissipation and forcing. We outline what further numerical and algebraic work is necessary for the detailed study following this program. (author)
Atom beams split by gentle persuasion
International Nuclear Information System (INIS)
Pool, R.
1994-01-01
Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state
DEFF Research Database (Denmark)
Schilhab, Theresa
2007-01-01
Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...
Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts
Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.
2008-05-01
Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.
Pal, Avradeep; Blamire, M. G.
2015-11-01
The differential conductance of NbN/GdN/TiN superconductor/ferromagnetic insulator/normal-metal junctions, with a thick NbN layer shows a large zero-field voltage offset interpreted as a spin-filtered Zeeman splitting of the NbN density of states by an effective exchange field (H0) from the GdN. The splitting increases linearly, with applied field (Hext) enabling the relative sign of H0 and Hext to be determined. We show that the short NbN coherence length concentrates H0 at the NbN/GdN interface and eliminates any averaging over the GdN domain structure leading to a large zero-field splitting.
Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene
Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.
2018-04-01
We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.
Jones, Rebecca
1997-01-01
So far the courts have supported most schools' zero-tolerance policies--even those banning toy weapons, over-the-counter drugs, and unseemly conduct. However, wide-ranging get-tough policies can draw criticism. Policy experts advise school boards to ask the community, decide what people want, allow some wiggle room, create an appeals process,…
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanisch, Stefanie; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz
2016-11-05
This paper presents a dedicated search for exotic decays of the Higgs boson to a pair of new spin-zero particles, $H \\rightarrow aa$, where the particle $a$ decays to $b$-quarks and has a mass in the range of 20-60 GeV. The search is performed in events where the Higgs boson is produced in association with a $W$ boson, giving rise to a signature of a lepton (electron or muon), missing transverse momentum, and multiple jets from $b$-quark decays. The analysis is based on the full dataset of $pp$ collisions at $\\sqrt{s} = 13$ TeV recorded in 2015 by the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. No significant excess of events above the Standard Model prediction is observed, and a $95\\%$ confidence-level upper limit is derived for the product of the production cross section for $pp \\rightarrow WH$ times the branching ratio for the decay $H \\rightarrow aa \\rightarrow 4b$. The upper limit ranges from 6.2 pb for an $a$-boson mass $m_a = 20$ GeV to ...
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Spin-orbit interaction in multiple quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Spin-orbit interaction in multiple quantum wells
International Nuclear Information System (INIS)
Hao, Ya-Fei
2015-01-01
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices
Dirac cone with helical spin polarization in ultrathin α-Sn(001) films.
Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina
2013-11-22
Spin-split two-dimensional electronic states have been observed on ultrathin Sn(001) films grown on InSb(001) substrates. Angle-resolved photoelectron spectroscopy (ARPES) performed on these films revealed Dirac-cone-like linear dispersion around the Γ¯ point of the surface Brillouin zone, suggesting nearly massless electrons belonging to 2D surface states. The states disperse across a band gap between bulklike quantum well states in the films. Moreover, both circular dichroism of ARPES and spin-resolved ARPES studies show helical spin polarization of the Dirac-cone-like surface states, suggesting a topologically protected character as in a bulk topological insulator (TI). These results indicate that a quasi-3D TI phase can be realized in ultrathin films of zero-gap semiconductors.
Symplectic integrators for spin systems
McLachlan, Robert I.; Modin, Klas; Verdier, Olivier
2014-06-01
We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R3. Unlike splitting methods, it is defined for all Hamiltonians and is O (3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.
Bukhan'ko, F. N.; Bukhan'ko, A. F.
2017-12-01
The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.
International Nuclear Information System (INIS)
Entin-Wohlman, O.
2005-01-01
Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other
Mechanisms of relaxation and spin decoherence in nanomagnets
van Tol, Johan
Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.
Majorana Zero Modes in Graphene
Directory of Open Access Journals (Sweden)
P. San-Jose
2015-12-01
Full Text Available A clear demonstration of topological superconductivity (TS and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.
Competition between disorder and exchange splitting in superconducting ZrZn sub 2
Powell, B J; Györffy, B L
2003-01-01
We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T sub S sub C , in ZrZn sub 2. According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E sub x sub c , leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D subsigma (epsilon sub F). Assuming p-wave pairing T sub S sub C is dependent on D subsigma (epsilon sub F) which ensures that, in the absence of non-magnetic impurities, T sub S sub C decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does. (letter to the editor)
Tadyszak, Krzysztof; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2017-10-01
The spin Hamiltonian (SH) parameters experimentally determined by EMR (EPR) may be corroborated or otherwise using various theoretical modeling approaches. To this end semiempirical modeling is carried out for high-spin (S=2) manganese (III) 3d 4 ions in complex of tetraphenylporphyrinato manganese (III) chloride (MnTPPCl). This modeling utilizes the microscopic spin Hamiltonians (MSH) approach developed for the 3d 4 and 3d 6 ions with spin S=2 at orthorhombic and tetragonal symmetry sites in crystals, which exhibit an orbital singlet ground state. Calculations of the zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors (g || =g z , g ⊥ =g x =g y ) are carried out for wide ranges of values of the microscopic parameters using the MSH/VBA package. This enables to examine the dependence of the theoretically determined ZFS parameters b k q (in the Stevens notation) and the Zeeman factors g i on the spin-orbit (λ), spin-spin (ρ) coupling constant, and the ligand-field energy levels (Δ i ) within the 5 D multiplet. The results are presented in suitable tables and graphs. The values of λ, ρ, and Δ i best describing Mn(III) ions in MnTPPCl are determined by matching the theoretical second-rank ZFSP b 2 0 (D) parameter and the experimental one. The fourth-rank ZFS parameters (b 4 0 , b 4 4 ) and the ρ (spin-spin)-related contributions, which have been omitted in previous studies, are considered for the first time here and are found important. Semiempirical modeling results are compared with those obtained recently by the density functional theory (DFT) and/or ab initio methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase
International Nuclear Information System (INIS)
Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N.
2013-01-01
Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems
Majorana spin in magnetic atomic chain systems
Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei
2018-03-01
In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
International Nuclear Information System (INIS)
Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu
2002-01-01
Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region
Coded Splitting Tree Protocols
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar
2013-01-01
This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....
Directory of Open Access Journals (Sweden)
Yurdal Gezercan
2015-06-01
Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207
Jun, Jae Hyuck; Han, Koon Hee; Park, Jong Kyu; Seo, Hyun Il; Kim, Young Don; Lee, Sang Jin; Jun, Baek Gyu; Hwang, Min Sik; Park, Yoon Kyoo; Kim, Myeong Jong; Cheon, Gab Jin
2017-08-28
To compare the efficacy of fixed-time split dose and split dose of an oral sodium picosulfate for bowel preparation. This is study was prospective, randomized controlled study performed at a single Institution (2013-058). A total of 204 subjects were assigned to receive one of two sodium picosulfate regimens ( i.e ., fixed-time split or split) prior to colonoscopy. Main outcome measurements were bowel preparation quality and subject tolerability. There was no statistical difference between the fixed-time split dose regimen group and the split dose regimen group (Ottawa score mean 2.57 ± 1.91 vs 2.80 ± 2.51, P = 0.457). Cecal intubation time and physician's satisfaction of inspection were not significantly different between the two groups ( P = 0.428, P = 0.489). On subgroup analysis, for afternoon procedures, the fixed-time split dose regimen was equally effective as compared with the split dose regimen (Ottawa score mean 2.56 ± 1.78 vs 2.59 ± 2.27, P = 0.932). There was no difference in tolerability or compliance between the two groups. Nausea was 21.2% in the fixed-time split dose group and 14.3% in the split dose group ( P = 0.136). Vomiting was 7.1% and 2.9% ( P = 0.164), abdominal discomfort 7.1% and 4.8% ( P = 0.484), dizziness 1% and 4.8% ( P = 0.113), cold sweating 1% and 0% ( P = 0.302) and palpitation 0% and 1% ( P = 0.330), respectively. Sleep disturbance was two (2%) patients in the fixed-time split dose group and zero (0%) patient in the split dose preparation ( P = 0.143) group. A fixed-time split dose regimen with sodium picosulfate is not inferior to a split dose regimen for bowel preparation and equally effective for afternoon colonoscopy.
Spin-Dependent Quasiparticle Transport in Aluminum Single Electron Transistors
Ferguson, A. J.; Andresen, S. E.; Brenner, R.; Clark, R. G.
2006-01-01
We investigate the effect of Zeeman-splitting on quasiparticle transport in normal-superconducting-normal (NSN) aluminum single electron transistors (SETs). In the above-gap transport the interplay of Coulomb blockade and Zeeman-splitting leads to spin-dependence of the sequential tunneling. This creates regimes where either one or both spin species can tunnel onto or off the island. At lower biases, spin-dependence of the single quasiparticle state is studied and operation of the device as a...
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2016-03-21
The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.
Spin-dependent thermoelectric effects in superconductor-ferromagnet tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)
2016-07-01
Recently, large thermoelectric effects were predicted to occur in superconductor-ferromagnet tunnel junctions with a spin-splitting of the density of states. We have reported on the observation of these effects in samples where the spin splitting was induced by an applied magnetic field. Here, we show results on samples where the spin splitting is enhanced by exchange coupling to the ferromagnetic insulator europium sulfide.
Spin tunnelling in mesoscopic systems
Indian Academy of Sciences (India)
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic ﬁeld, vanishing completely at special points in the ...
International Nuclear Information System (INIS)
Solontsov, A.
2015-01-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
About Twistor Spinors with Zero in Lorentzian Geometry
Directory of Open Access Journals (Sweden)
Felipe Leitner
2009-07-01
Full Text Available We describe the local conformal geometry of a Lorentzian spin manifold (M,g admitting a twistor spinor φ with zero. Moreover, we describe the shape of the zero set of φ. If φ has isolated zeros then the metric g is locally conformally equivalent to a static monopole. In the other case the zero set consists of null geodesic(s and g is locally conformally equivalent to a Brinkmann metric. Our arguments utilise tractor calculus in an essential way. The Dirac current of φ, which is a conformal Killing vector field, plays an important role for our discussion as well.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
The continuous spin limit of higher spin field equations
Energy Technology Data Exchange (ETDEWEB)
Bekaert, Xavier [Institut des Hautes Etudes Scientifiques, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette (France); Mourad, Jihad [APC, Universite Paris VII, 2 place Jussieu, 75251 Paris Cedex 05 (France); LPT, Bat. 210, Universite Paris XI, 91405 Orsay Cedex (France)
2006-01-15
We show that the Wigner equations describing the continuous spin representations can be obtained as a limit of massive higher-spin field equations. The limit involves a suitable scaling of the wave function, the mass going to zero and the spin to infinity with their product being fixed. The result allows to transform the Wigner equations to a gauge invariant Fronsdal-like form. We also give the generalisation of the Wigner equations to higher dimensions with fields belonging to arbitrary representations of the massless little group.
Khatua, Subhankar; Shankar, R.; Ganesh, R.
2018-02-01
A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.
Point splitting in a curved space-time background
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1979-01-01
A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)
Aspects of Split Supersymmetry
Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A
2005-01-01
We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...
Roland, Erling; Midthassel, Unni Vere
2012-01-01
Zero is a schoolwide antibullying program developed by the Centre for Behavioural Research at the University of Stavanger, Norway. It is based on three main principles: a zero vision of bullying, collective commitment among all employees at the school using the program, and continuing work. Based on these principles, the program aims to reduce…
Moore, Brian N.
2010-01-01
The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…
CSIR Research Space (South Africa)
Lindeque, M
2013-01-01
Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...
Valley photonic crystals for control of spin and topology.
Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang
2017-03-01
Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.
Valley photonic crystals for control of spin and topology
Energy Technology Data Exchange (ETDEWEB)
Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang
2016-11-28
Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.
Charge and spin transport in mesoscopic superconductors
Directory of Open Access Journals (Sweden)
M. J. Wolf
2014-02-01
Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.
Arjoranta, Juho; Heikkilä, Tero T.
2016-01-01
We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor-nanowire-superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically [The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we show how rotating the field leads to a sequence of transitions between the 0 and π states as a function of the angle between the exchange field and the spin-orbit field. Simultaneously, the triplet pairing leads to a zero-energy peak in the density of states. We proceed by solving the linearized Usadel equations, showing the correspondence to the solutions of the full equations and detail the emergence of the long-range supercurrent components. Our studies are relevant for ongoing investigations of supercurrent in semiconductor nanowires in the limit of several channels and in the presence of disorder.
Strong Linear Dichroism in Spin-Polarized Photoemission from Spin-Orbit-Coupled Surface States.
Bentmann, H; Maaß, H; Krasovskii, E E; Peixoto, T R F; Seibel, C; Leandersson, M; Balasubramanian, T; Reinert, F
2017-09-08
A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0011-0022. Keywords. Cometary ...
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Energy Technology Data Exchange (ETDEWEB)
2016-09-01
The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.
^51V NMR Study of the Magnetic Structure of the Frustrated Zig-Zag Spin-1 Chain Compound CaV2O4
Zong, X.; Suh, B. J.; Niazi, A.; Johnston, D. C.
2007-03-01
^51V NMR measurements have been performed on a single crystal of orthorhombic (at room temperature) CaV2O4 in zero applied magnetic field and with a small perturbing field up to H = 2 T, at temperatures well below the N'eel temperature TN= 78 K@. The c-axis is parallel to the chains. At H = 0, a broad ^51V NMR spectrum with a peak at 237 MHz was observed. The effective local hyperfine field Heff = 21.2 T corresponding to the peak frequency 237 MHz is in good agreement with expectation for the V^3+ S = 1 spin state. In Hc, the spectrum splits into two parts that are equally separated from the peak position at zero field. The separation of the parts depends strongly both on the magnitude and direction of H with respect to the crystal axes. Our NMR results are consistent with a collinear antiferromagnetic spin structure with the spin direction along the b-axis, which together with the magnetization data suggest that the antiferromagnetic long-range order arises from an order-from-disorder mechanism. We also present the temperature and orientation dependence of the spin-lattice relaxation rate 1/T1.
Energy Technology Data Exchange (ETDEWEB)
Amorim, R.; Barcelos-Neto, J.
1988-05-01
We describe bosonic strings by using a kind of Lagrangian compatible with the zero tension limit. The work is developed on an extended configuration space and the quantization is carried out with details.
Sinha, Supurna
2005-01-01
We present an analytical study of the loss of quantum coherence at absolute zero. Our model consists of a harmonic oscillator coupled to an environment of harmonic oscillators at absolute zero. We find that for an Ohmic bath, the offdiagonal elements of the density matrix in the position representation decay as a power law in time at late times. This slow loss of coherence in the quantum domain is qualitatively different from the exponential decay observed in studies of high temperature envir...
Spin tunnelling in mesoscopic systems
Garg, Anupam
2001-02-01
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.
Split warhead simultaneous impact
Directory of Open Access Journals (Sweden)
Rahul Singh Dhari
2017-12-01
Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.
Indian Academy of Sciences (India)
We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
Hung, Yu-Ming
ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.
Spin-wave propagation and spin-polarized electron transport in single-crystal iron films
Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.
2017-11-01
The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.
Electrical Control, Read-out and Initialization of Single Electron Spins
Shafiei, M.
2013-01-01
An electron, in addition to its electric charge, possesses a small magnetic moment, called spin. The spin of an electron can point parallel (spin-up) or antiparallel (spin-down) to the magnetic field. These two states are analogous to zero and one of the logical bit in current digital electronic
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
International Nuclear Information System (INIS)
Weymann, I.; Barnas, J.
2006-01-01
The influence of intrinsic spin relaxation on spin-polarized cotunneling through quantum dots coupled to ferromagnetic leads is analyzed theoretically. It is shown that the zero bias anomaly, which occurs due to the interplay of single-barrier and double-barrier cotunneling processes, becomes suppressed by spin relaxation processes on the dot. Diode-like features of the transport characteristics in the cotunneling regime have been found in asymmetrical systems. These features are also suppressed by the spin relaxation processes
Horitani, Masaki; Yashiro, Haruhiko; Hagiwara, Masayuki; Hori, Hiroshi
2008-04-01
We investigate the electronic state of Mn(III) center with an integer electron spin S=2 in the manganese(III) protoporphyrin IX reconstituted myoglobin, Mn(III)Mb, by means of multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. Using a bimodal cavity resonator, X-band EPR signal from Mn(III) center in the Mn(III)Mb was observed near zero-field region. The temperature dependence of this signal indicates a negative axial zero-field splitting value, DEPR analysis shows that this signal is attributed to the transition between the closely spaced M(s)=+/-2 energy levels for the z-axis, corresponding to the heme normal. To determine the zero-field splitting (ZFS) parameters, EPR experiments on the Mn(III)Mb were performed at various temperatures for some frequencies between 30GHz and 130GHz and magnetic fields up to 14T. We observed several EPR spectra which are analyzed with a spin Hamiltonian for S=2, yielding highly accurate ZFS parameters; D=-3.79cm(-1) and |E|=0.08cm(-1) for an isotropic g=2.0. These ZFS parameters are compared with those in some Mn(III) complexes and Mn(III) superoxide dismutase (SOD), and effects on these parameters by the coordination and the symmetry of the ligands are discussed. To the best of our knowledge, these EPR spectra in the Mn(III)Mb are the very first MFEPR spectra at frequencies higher than Q-band in a metalloprotein with an integer spin.
2003-08-01
applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the
Vozková, Markéta
2011-01-01
1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...
Muon zero point motion and the hyperfine field in nickel
International Nuclear Information System (INIS)
Elzain, M.E.
1984-09-01
It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)
De Marco, N
2013-01-01
Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.
Wilson, A.; Lawrence, J.; Yang, E.-C.; Nakano, M.; Hendrickson, D. N.; Hill, S.
2006-10-01
Electron paramagnetic resonance (EPR) studies of a Ni4 single-molecule magnet (SMM) yield the zero-field-splitting (ZFS) parameters D , B40 , and B44 , based on the giant spin approximation (GSA) with S=4 ; B44 is responsible for the magnetization tunneling in this SMM. Experiments on an isostructural Ni-doped Zn4 crystal establish the NiII ion ZFS parameters. The fourth-order ZFS parameters in the GSA arise from the interplay between the Heisenberg interaction Jŝ1•ŝ2 and the second-order single-ion anisotropy, giving rise to mixing of higher-lying S≠4 states into the S=4 state. Consequently, J directly influences the ZFS in the ground state, enabling its determination by EPR.
Pulsed zero field NMR of solids and liquid crystals
International Nuclear Information System (INIS)
Thayer, A.M.
1987-02-01
This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs
Dolphin, Andrew
2005-07-01
The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes. The reason for this is that the ACS calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS images of the omega Cen standard field with all nine broadband ACS/WFC filters. This will permit the direct determination of the ACS zero points by comparison with excellent ground-based photometry, and should reduce their uncertainties to less than 0.01 magnitudes. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager. Finally, three of the filters will be repeated from my Cycle 12 observations, allowing for a measurement of any change in sensitivity.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. Approach to Absolute Zero 0.3 K. to a Few Milli-Kelvin. R Srinivasan. Series Article Volume 2 Issue 6 June 1997 pp 6-14. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/06/0006-0014 ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. Approach to Absolute Zero From 4. 22 K. to 0. 3 K. R Srinivasan. Series Article Volume 2 Issue 2 February 1997 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/02/0008-0016 ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Approach to Absolute Zero Below 10 milli-Kelvin. R Srinivasan. Series Article Volume 2 Issue 10 October 1997 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/10/0008-0016 ...
Harvey, L. James
The concept of Zero-Base Budgeting (ZBB) is discussed in terms of its application, advantages, disadvantages, and implementation in an effective planning, management, and evaluation (PME) system. A ZBB system requires administrators to: review all programs and expenditures annually, set clear cut goals, and analyze all possible alternatives for…
Yagielski, John
In outline form, this document presents basic information on the school district, the reasons the district considered zero-base budgeting (ZBB), the formation and membership of the advisory School Cost Analysis Team, the district's investigation of the ZBB concept, an overview of the ways the district used the ZBB process, the identification of…
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Approach to Absolute Zero Below 10 milli-Kelvin. R Srinivasan. Series Article Volume 2 Issue 10 October 1997 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/10/0008-0016 ...
Creating and manipulating nonequilibrium spins in nanoscale superconductors
Energy Technology Data Exchange (ETDEWEB)
Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.
My objective: zero contempt, not zero risk
International Nuclear Information System (INIS)
Delevoye, J.P.
2009-01-01
With technology, scientific research and dissemination of knowledge, medical practice has improved thereby achieving an efficient health care system. However, it would be appropriate to consider the human dimension of medicine as a key development. There are two major challenges in risk management: organizational management of risk on one hand and the management of human relationship with the patient especially when problems arise, on the other. It is therefore a question of achieving awareness, managing a culture change in the medical circle i.e. moving from a culture of guilt to a culture of error and finally relaxing the atmosphere of mutual distrust that exists between health professionals and patients. Indeed, the relation 'health professional-patient' has deteriorated over time due to poor risk management. An educational effort must be done to avoid frustration of the patient and contribute to zero contempt. On reflection, this means that the quality of a system is due to the individual quality of its members, the quality of methods and the organization in place. (author)
Lee, Eduardo J H; Jiang, Xiaocheng; Houzet, Manuel; Aguado, Ramón; Lieber, Charles M; De Franceschi, Silvano
2014-01-01
The physics and operating principles of hybrid superconductor-semiconductor devices rest ultimately on the magnetic properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be lifted without destroying superconductivity. We show that a spin-split Andreev level crossing the Fermi energy results in a quantum phase transition to a spin-polarized state, which implies a change in the fermionic parity of the system. This crossing manifests itself as a zero-bias conductance anomaly at finite magnetic field with properties that resemble those expected for Majorana modes in a topological superconductor. Although this resemblance is understood without evoking topological superconductivity, the observed parity transitions could be regarded as precursors of Majorana modes in the long-wire limit.
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Unconventional spin texture of a topologically nontrivial semimetal Sb(110)
DEFF Research Database (Denmark)
Strózecka, A.; Eiguren, A.; Bianchi, Marco
2012-01-01
of Sb(110). The existence of the unconventional spin texture is corroborated by the investigations of the electron scattering on this surface. The charge interference patterns formed around single scattering impurities, imaged by scanning tunneling microscopy, reveal the absence of direct backscattering......The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands...
Phase transitions in continuum ferromagnets with unbounded spins
Energy Technology Data Exchange (ETDEWEB)
Daletskii, Alexei, E-mail: alex.daletskii@york.ac.uk [Department of Mathematics, University of York, York YO10 DD (United Kingdom); Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de [Fakultät für Mathematik, Universität Bielefeld, Bielefeld D-33615 (Germany); Kozitsky, Yuri, E-mail: jkozi@hektor.umcs.lublin.pl [Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, 20-031 Lublin (Poland)
2015-11-15
States of thermal equilibrium of an infinite system of interacting particles in ℝ{sup d} are studied. The particles bear “unbounded” spins with a given symmetric a priori distribution. The interaction between the particles is pairwise and splits into position-position and spin-spin parts. The position-position part is described by a superstable potential, and the spin-spin part is attractive and of finite range. Thermodynamic states of the system are defined as tempered Gibbs measures on the space of marked configurations. It is proved that the set of such measures contains at least two elements if the activity is big enough.
Thermal stability of tunneling spin polarization
International Nuclear Information System (INIS)
Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de
2005-01-01
We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet
Proton and deuterium NMR experiments in zero field
International Nuclear Information System (INIS)
Millar, J.M.
1986-02-01
High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution 2 H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs
Intersubband spin relaxation mechanism in n-doped[110] GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Schmid, Lena; Chen, Shijian; Doehrmann, Stefanie; Oertel, Stefan; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover, Appelstr. 2, 30167 Hannover (Germany); Schuh, Dieter; Wegscheider, Werner [Institute of Experimental and Applied Physics, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany)
2008-07-01
The intersubband spin relaxation mechanism most likely represents the major spin dephasing channel in room temperature applications based upon heterostructures in (110) oriented GaAs for spins oriented along the growth direction. The electron spin relaxation time {tau}{sub s} in n-doped (110)GaAs/AlGaAs quantum wells is investigated by time- and polarisation-resolved photoluminescence measurements in dependence on the subband energy splitting and subband occupancy. The influence by the subband energy splitting on {tau}{sub s} is deduced from well width dependent measurements, whereas different occupancies are adjusted by different sample temperatures. The n-doping suppresses the spin dephasing influence of holes created by the optical excitation. The (110) structure suppresses the Dyakonov-Perel relaxation mechanism for spins pointing in growth direction. Therefore the resulting spin relaxation times are long even at room temperature and the intersubband spin relaxation mechanism becomes the dominating spin relaxation mechanism.
High frequency spin torque oscillators with composite free layer spin valve
International Nuclear Information System (INIS)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-01-01
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.
2014-10-07
Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.
DEFF Research Database (Denmark)
Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike
2010-01-01
The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...
DEFF Research Database (Denmark)
Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike
2010-01-01
The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...... and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo...
2011-05-12
Update 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...Opened to Collect Supplemental Data from Candidate Installations 15 Mar 11 Supplemental Data received from Army Commands 16-31 Mar 11 DOE...hierarchy (reduction, re-purpose, recycling & composting , energy recovery, and disposal) • Complied with Net Zero definitions • Demonstrated
On the electrodynamics of spinning particles
International Nuclear Information System (INIS)
Holten, J.W. van
1990-01-01
The electrodynamics of spinning point particles is considered. A modification of the Lorentz force law is introduced which can be interpreted as a classical limit of the Dirac-Klein-Gordon equation. An improved version of the inhomogeneous Maxwell equations is constructed to describe the classical fields of spinning particles. Both classical and quantum electrodynamics are shown to predict relativistic time-dilatation effects for spinning particles in an electromagnetic field, even in the limit of zero velocity. The life-time of unstable charged particles moving in a Coulomb field is computed for both spin-zero and spin-half particles. Comparison shows spin effects to be present but relatively small. The magnitude of further spin-dependent correction from hyperfine interactions is computed. A measurement of the life-time of muons in atomic bound states separated by such spin-dependent hyperfine interactions would provide a clean test for the effect predicted. Similar effects are shown to arise in non-abelian gauge theories such as QCD. (author). 18 refs
Spin thermoelectric effects in organic single-molecule devices
Energy Technology Data Exchange (ETDEWEB)
Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn
2017-05-25
Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.
A white beam neutron spin splitter
Energy Technology Data Exchange (ETDEWEB)
Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)
1997-07-23
The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.
Spin-polarized deuterium in magnetic traps
International Nuclear Information System (INIS)
Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.
1987-01-01
We have calculated the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero-temperature limit. Results indicate that a gas of low-field--seeking deuterium atoms trapped in a static magnetic field minimum decays rapidly into an ultrastable gas of doubly spin-polarized deuterium. We also discuss the temperature dependence of various effects
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect
Directory of Open Access Journals (Sweden)
Saburo Takahashi and Sadamichi Maekawa
2008-01-01
Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.
Orbital-angular-momentum based origin of Rashba-type surface band splitting.
Park, Seung Ryong; Kim, Choong H; Yu, Jaejun; Han, Jung Hoon; Kim, Changyoung
2011-10-07
We propose that the existence of local orbital angular momentum (OAM) on the surfaces of high-Z materials plays a crucial role in the formation of Rashba-type surface band splitting. Local OAM state in a Bloch wave function produces an asymmetric charge distribution (electric dipole). The surface-normal electric field then aligns the electric dipole and results in chiral OAM states and the relevant Rashba-type splitting. Therefore, the band splitting originates from electric dipole interaction, not from the relativistic Zeeman splitting as proposed in the original Rashba picture. The characteristic spin chiral structure of Rashba states is formed through the spin-orbit coupling and thus is a secondary effect to the chiral OAM. Results from first-principles calculations on a single Bi layer under an external electric field verify the key predictions of the new model.
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
International Nuclear Information System (INIS)
Fischer, K.H.; Hertz, J.A.
1993-01-01
Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses
Strong CP, flavor, and twisted split fermions
International Nuclear Information System (INIS)
Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri
2005-01-01
We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)
Higher-spin fields in braneworlds
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)]. E-mail: c.germani@damtp.cam.ac.uk; Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)]. E-mail: kehagias@central.ntua.gr
2005-10-03
The dynamics of higher-spin fields in braneworlds is discussed. In particular, we study fermionic and bosonic higher-spin fields in AdS{sub 5} and their localization on branes. We find that four-dimensional zero modes exist only for spin-one fields, if there are no couplings to the boundaries. If boundary couplings are allowed, as in the case of the bulk graviton, all bosons acquire a zero mode irrespective of their spin. We show that there are boundary conditions for fermions, which generate chiral zero modes in the four-dimensional spectrum. We also propose a gauge invariant on-shell action with cubic interactions by adding non-minimal couplings, which depend on the Weyl tensor. In addition, consistent couplings between higher-spin fields and matter on the brane are presented. Finally, in the AdS/CFT correspondence, where bulk 5D theories on AdS are related to 4D CFTs, we explicitly discuss the holographic picture of higher-spin theories in AdS{sub 5} with and without boundaries.
Baumgart, Matthew; Zorawski, Thomas
2014-01-01
Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.
Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.
2012-12-01
River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.
Split supersymmetry radiates flavor
Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas
2014-09-01
Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.
Milián Martínez, Irene; Vink, Willem; Ortiz Braulio, Ruben
2008-01-01
The zero energy house project talks about sustainability. In general terms the house is designed to produce as much energy as it consume. If you take a look to the house its possible to find several systems that takes as much profit as possible to the renewable energies like photovoltaic electricity production, geothermal energy used to run a heat pump or a well thought isolated house. First of all it’s possible to find general information about the topics in house, to make people understa...
Theoretical Study of Spin Crossover in 30 Iron Complexes
DEFF Research Database (Denmark)
Kepp, Kasper Planeta
2016-01-01
Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor...
Effect of ferromagnetic exchange field on band gap and spin ...
Indian Academy of Sciences (India)
Partha Goswami
2018-02-19
Feb 19, 2018 ... these systems as a function of magnetisation strength. We also discuss the ..... require the discriminant of the quadratic in the variableε to be zero. This yields .... system for graphene in WSe2 at the Dirac point K. The band identification is as follows: spin-up valence band: '− *', spin-up conduction band: '−' ...
Critical properties of a simple spin glass model
International Nuclear Information System (INIS)
Aharony, A.; Imry, Y.
1976-01-01
The Mattis spin glass model is described as following from a particular quenched random solid solution picture, and its zero-field properties are discussed. The random field model is reviewed. The application to the spin glass problem is made and the more general scaling theory presented, and the limitations of the model are discussed
Exchange cotunneling through quantum dots with spin-orbit coupling
DEFF Research Database (Denmark)
Paaske, Jens; Andersen, Andreas; Flensberg, Karsten
2010-01-01
We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we...
Observation of spin Hall effect in photon tunneling via weak measurements.
Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun
2014-12-09
Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications.
Directory of Open Access Journals (Sweden)
Matjaž Potrč
2016-04-01
Full Text Available Perhaps the most important controversy in which ordinary language philosophy was involved is that of definite descriptions, presenting referential act as a community-involving communication-intention endeavor, thereby opposing the direct acquaintance-based and logical proper names inspired reference aimed at securing truth conditions of referential expression. The problem of reference is that of obtaining access to the matters in the world. This access may be forthcoming through the senses, or through descriptions. A review of how the problem of reference is handled shows though that one main practice is to indulge in relations of acquaintance supporting logical proper names, demonstratives, indexicals and causal or historical chains. This testifies that the problem of reference involves the zero point, and with it phenomenology of intentionality. Communication-intention is but one dimension of rich phenomenology that constitutes an agent’s experiential space, his experiential world. Zero point is another constitutive aspect of phenomenology involved in the referential relation. Realizing that the problem of reference is phenomenology based opens a new perspective upon the contribution of analytical philosophy in this area, reconciling it with continental approach, and demonstrating variations of the impossibility related to the real. Chromatic illumination from the cognitive background empowers the referential act, in the best tradition of ordinary language philosophy.
Ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates
Irikura, Naoki; Eto, Yujiro; Hirano, Takuya; Saito, Hiroki
2018-02-01
We investigate the ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates at zero magnetic field. In addition to the intraspin interactions, two spin-dependent interaction coefficients are introduced to describe the interspin interaction. We systematically explore the wide parameter space, and obtain phase diagrams containing a rich variety of phases. For example, there exists a phase in which the spin-1 and spin-2 vectors are tilted relative to each other breaking the axial symmetry.
A Kohn-Sham system at zero temperature
DEFF Research Database (Denmark)
Cornean, Horia; Hoke, K.; Neidhardt, H.
2008-01-01
A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues...... of the Schrödinger operator with effective Kohn-Sham potential and obtain W1,2-bounds of the associated particle density operator. Afterwards, compactness and continuity results allow us to apply Schauder's fixed point theorem. In the case of vanishing exchange-correlation potential uniqueness is shown...... by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero....
Global Locator, Local Locator, and Identifier Split (GLI-Split
Directory of Open Access Journals (Sweden)
Michael Menth
2013-03-01
Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.
Split-illumination electron holography
International Nuclear Information System (INIS)
Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira
2012-01-01
We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.
Driving spin transition at interface: Role of adsorption configurations
Zhang, Yachao
2018-01-01
A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.
Greenberg, Noah; Kunz, Andrew
2018-05-01
Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.
International Nuclear Information System (INIS)
Lee, S.Y.
1990-01-01
The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs
Zero tillage: A potential technology to improve cotton yield
Directory of Open Access Journals (Sweden)
Abbas Hafiz Ghazanfar
2016-01-01
Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.
Spin injection from a normal metal into a mesoscopic superconductor
Energy Technology Data Exchange (ETDEWEB)
Wolf, Michael J.; Kolenda, Stefan [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Huebler, Florian [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Loehneysen, Hilbert v. [Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Physikalisches Institut, KIT, 76128 Karlsruhe (Germany); Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany)
2013-07-01
We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation of the spin relaxation length.
Accurate and efficient spin integration for particle accelerators
Directory of Open Access Journals (Sweden)
Dan T. Abell
2015-02-01
Full Text Available Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
DEFF Research Database (Denmark)
Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.
2011-01-01
clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...... on the review of the most of the existing ZEB definitions and the various approaches towards possible ZEB calculation methodologies. It presents and discusses possible answers to the abovementioned issues in order to facilitate the development of a consistent ZEB definition and a robust energy calculation......The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires...
Solitons and spin transport in graphene boundary
Indian Academy of Sciences (India)
2015-10-16
Oct 16, 2015 ... It is shown that in (2+1)-dimensional condensed matter systems, induced gravitational Chern–Simons (CS) action can play a crucial role for coherent spin transport in a finite geometry, provided zero-curvature condition is satisfied on the boundary. The role of the resultant KdV solitons is explicated. The fact ...
Higher spin black holes with soft hair
Energy Technology Data Exchange (ETDEWEB)
Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-10-21
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
CERN PhotoLab
1975-01-01
The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.
Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids
Sonnenschein, Jonas; Reuther, Johannes
2017-12-01
Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.
Army Net Zero Prove Out. Net Zero Waster Best Practices
2014-11-18
Investment Ratio SRM Sustainment, Restoration and Modernization WWTP Waste Water Treatment Plant iii Task 0818, “Army Net Zero Prove Out” Net... WWTP ) to be free of the municipal system. In some cases, this may significantly enhance the installation’s ability to reduce water use and achieve...Net Zero. WWTP Design – Installations should include Net Zero considerations in the design and operation of WWTPs . There are many opportunities to
Spin noise spectroscopy beyond thermal equilibrium and linear response.
Glasenapp, P; Sinitsyn, N A; Yang, Luyi; Rickel, D G; Roy, D; Greilich, A; Bayer, M; Crooker, S A
2014-10-10
Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the system's linear response functions. However, by including weak radio frequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles can reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study nonequilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of (41)K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.
Spin Orbit Torque in Ferromagnetic Semiconductors
Li, Hang
2016-06-21
effect on spin orbit torque in nanoribbons with a hexagonal lattice. We find a dramatic modification of the nature of the torque (field like and damping-like component) when crossing the topological phase transition. The relative agnitude of the two torque components can be significantly modifies by changing the magnetization direction. Finally, motivated by recent experimental results, we conclude by investigating the features of spin-orbit torque in magnetic transition metal dichalcogenides. We find the torque is associated with the valley polarization. By changing the magnetization direction, the torque can be changed from a finite value to zero when the valley polarization decreases from a finite value to zero.
Spin-dependent quasiparticle transport in aluminum single-electron transistors.
Ferguson, A J; Andresen, S E; Brenner, R; Clark, R G
2006-08-25
We investigate the effect of Zeeman splitting on quasiparticle transport in normal-superconducting-normal (NSN) aluminum single-electron transistors (SETs). In the above-gap transport, the interplay of Coulomb blockade and Zeeman splitting leads to spin-dependence of the sequential tunneling. This creates regimes where either one or both spin species can tunnel onto or off the island. At lower biases, spin-dependence of the single quasiparticle state is studied, and operation of the device as a bipolar spin filter is suggested.
Coupling spin qubits via superconductors
DEFF Research Database (Denmark)
Leijnse, Martin; Flensberg, Karsten
2013-01-01
We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...
DEFF Research Database (Denmark)
Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen
2015-01-01
on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...
Schwarz, H.
2017-01-01
The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1
Engineering the spin polarization of one-dimensional electrons
Yan, C.; Kumar, S.; Thomas, K.; See, P.; Farrer, I.; Ritchie, D.; Griffiths, J.; Jones, G.; Pepper, M.
2018-02-01
We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin–orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes.
Photonic spin Hall effect in metasurfaces: a brief review
Directory of Open Access Journals (Sweden)
Liu Yachao
2016-07-01
Full Text Available The photonic spin Hall effect (SHE originates from the interplay between the photon-spin (polarization and the trajectory (extrinsic orbital angular momentum of light, i.e. the spin-orbit interaction. Metasurfaces, metamaterials with a reduced dimensionality, exhibit exceptional abilities for controlling the spin-orbit interaction and thereby manipulating the photonic SHE. Spin-redirection phase and Pancharatnam-Berry phase are the manifestations of spin-orbit interaction. The former is related to the evolution of the propagation direction and the latter to the manipulation with polarization state. Two distinct forms of splitting based on these two types of geometric phases can be induced by the photonic SHE in metasurfaces: the spin-dependent splitting in position space and in momentum space. The introduction of Pacharatnam-Berry phases, through space-variant polarization manipulations with metasurfaces, enables new approaches for fabricating the spin-Hall devices. Here, we present a short review of photonic SHE in metasurfaces and outline the opportunities in spin photonics.
Itinerant Double-Q Spin-Density Wave in Iron Arsenide Superconductors
Osborn, Raymond; Allred, Jared; Chmaissem, Omar; Rosenkranz, Stephan; Brown, Dennis; Taddei, Keith; Krogstad, Matthew; Bugaris, Daniel; Chung, Duck-Young; Claus, Helmut; Lapidus, Saul; Kanatzidis, Mercouri; Kang, Jian; Fernandes, Rafael; Eremin, Ilya
The recent observation of a tetragonal magnetic (C4) phase in hole-doped iron arsenide superconductors has provided evidence of a magnetic origin for the electronic nematicity in the C2 phase of these compounds. Now, Mössbauer data shows that the new phase also establishes the itinerant character of the antiferromagnetism of these materials and the primary role played by magnetic over orbital degrees of freedom. Neutron diffraction had shown that the magnetic order in the C4 phase was compatible with a double-Q structure arising from a collinear spin-density wave along both the X and Y directions simultaneously. The coherent superposition of the two modulations produces a non-uniform magnetic structure, in which the spin amplitudes vanish on half of the sites and double on the others, a uniquely itinerant effect that is incompatible with local moment magnetism. Mössbauer spectra in the C4 phase confirm this double-Q structure, with 50% of the spectral weight in a zero-moment peak and 50% with double the magnetic splitting seen in the C2 phase. Supported by the US DOE Office of Science, Materials and Engineering Division.
Theory of quantum kagome ice and vison zero modes
Huang, Yi-Ping; Hermele, Michael
2017-02-01
We derive an effective Z2 gauge theory to describe the quantum kagome ice (QKI) state that has been observed by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421] in Monte Carlo studies of the S =1/2 kagome XYZ model in a Zeeman field. The numerical results on QKI are consistent with, but do not confirm or rule out, the hypothesis that it is a Z2 spin liquid. Our effective theory allows us to explore this hypothesis and make a striking prediction for future numerical studies, namely, that symmetry-protected vison zero modes arise at lattice disclination defects, leading to a Curie defect term in the spin susceptibility, and a characteristic (Ndis-1 )ln2 contribution to the entropy, where Ndis is the number of disclinations. Only the Z2 Ising symmetry is required to protect the vison zero modes. This is remarkable because a unitary Z2 symmetry cannot be responsible for symmetry-protected degeneracies of local degrees of freedom. We also discuss other signatures of symmetry fractionalization in the Z2 spin liquid, and phase transitions out of the Z2 spin liquid to nearby ordered phases.
In a spin at Brookhaven spin physics
Makdisi, Y I
2003-01-01
The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).
Ultrafast reduction of exchange splitting in ferromagnetic nickel
International Nuclear Information System (INIS)
Zhang, G P; Bai, Y H; George, Thomas F
2016-01-01
A decade ago Rhie et al (2003 Phys. Rev. Lett . 90 247201) reported that when ferromagnetic nickel is subject to an intense ultrashort laser pulse, its exchange splitting is reduced quickly. But to simulate such reduction remains a big challenge. The popular rigid band approximation (RBA), where both the band structure and the exchange splitting are held fixed before and after laser excitation, is unsuitable for this purpose, while the time-dependent density functional theory could be time-consuming. To overcome these difficulties, we propose a time-dependent Liouville and density functional theory (TDLDFT) that integrates the time-dependent Liouville equation into the density functional theory. As a result, the excited charge density is reiterated back into the Kohn–Sham equation, and the band structure is allowed to change dynamically. Even with the ground-state density functional, a larger demagnetization than RBA is found; after we expand Ortenzi’s spin scaling method into an excited-state (laser) density functional, we find that the exchange splitting is indeed strongly reduced, as seen in the experiment. Both the majority and minority bands are shifted toward the Fermi level, but the majority shifts a lot more. The ultrafast reduction in exchange splitting occurs concomitantly with demagnetization. While our current theory is still unable to yield the same percentage loss in the spin moment as observed in the experiment, it predicts a correct trend that agrees with the experiments. With a better functional, we believe that our results can be further improved. (paper)
Spin-Circuit Representation of Spin Pumping
Roy, Kuntal
2017-07-01
Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.
Energy Technology Data Exchange (ETDEWEB)
Jaščur, M., E-mail: michal.jascur@upjs.sk [Department of Theoretical Physics and Astrophysics, Institute of Physics, P.J. Šafárik University in Košice, Park Angelinum 9, 040 01 Košice (Slovakia); Štubňa, V., E-mail: viliamstubna@yahoo.com [Department of Theoretical Physics and Astrophysics, Institute of Physics, P.J. Šafárik University in Košice, Park Angelinum 9, 040 01 Košice (Slovakia); Szałowski, K., E-mail: kszalowski@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ul. Pomorska 149/153, 90-236 Łódź (Poland); Balcerzak, T., E-mail: tadeusz.balcerzak@gmail.com [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ul. Pomorska 149/153, 90-236 Łódź (Poland)
2016-11-01
Competitive effects of so-called three-site four-spin interactions, single ion anisotropy and bilinear interactions is studied in the mixed spin-1/2 and spin-1 Ising model on a decorated square lattice. Exploring the decoration–iteration transformation, we have obtained exact closed-form expressions for the partition function and other thermodynamic quantities of the model. From these relations, we have numerically determined ground-state and finite-temperature phase diagrams of the system. We have also investigated temperature variations of the correlation functions, internal energy, entropy, specific heat and Helmholtz free energy of the system. From the physical point of view, the most interesting result represents our observation of a partially ordered ferromagnetic or phase in the system with zero bilinear interactions. It is remarkable, that due to strong frustrations disordered spins survive in the system even at zero temperature, so that the ground state of the system becomes macroscopically degenerate with non-zero entropy. Introduction of arbitrarily small bilinear interaction completely removes degeneracy and the entropy always goes to zero at the ground state. - Highlights: • Mixed-spin Ising model with three-site four-spin interactions has been studied. • Original phases have been observed in the system with pure multi-spin interactions. • Non-zero entropy has been found at zero absolute temperature.
Spin Coherence in Semiconductor Nanostructures
National Research Council Canada - National Science Library
Flatte, Michael E
2006-01-01
... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...
A split hand-split foot (SHFM3) gene is located at 10q24{yields}25
Energy Technology Data Exchange (ETDEWEB)
Gurrieri, F.; Genuardi, M.; Nanni, L.; Sangiorgi, E.; Garofalo, G. [Catholic Univ. of Rome (Italy)] [and others
1996-04-24
The split hand-split foot (SHSF) malformation affects the central rays of the upper and lower limbs. It presents either as an isolated defect or in association with other skeletal or non-skeletal abnormalities. An autosomal SHSF locus (SHFM1) was previously mapped to 7q22.1. We report the mapping of a second autosomal SHSF locus to 10q24{yields}25 region. Maximum lod scores of 3.73, 4.33 and 4.33 at a recombination fraction of zero were obtained for the loci D10S198, PAX2 and D10S1239, respectively. An 19 cM critical region could be defined by haplotype analysis and several genes with a potential role in limb morphogenesis are located in this region. Heterogeneity testing indicates the existence of at least one additional autosomal SHSF locus. 36 refs., 3 figs., 3 tabs.
Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.
Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B
2014-01-01
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.
Interplays of μSR, susceptibility, and neutron studies on dilute-alloy spin glasses
International Nuclear Information System (INIS)
Uemura, Y.J.
1983-04-01
Static spin polarization of Fe moments in a spin glass AuFe, determined by zero-field μSR, is compared to an ac-susceptibility measurement below the cusp temperature T/sub g/, and a rather uniform amplitude of the static polarization is pointed out for frozen spins. Completely random orientation of frozen spins is revealed by neutron scattering in a dilute 1% CuMn, and an importance of comparing results of these different methods is demonstrated
Spin Transport in a Unitary Fermi Gas
Thywissen, Joseph
2015-03-01
We study spin transport in a quantum degenerate Fermi gas of 40K near an s-wave interaction resonance. The starting point of our measurements is a transversely spin-polarized gas, where each atom is in a superposition of the lowest two Zeeman eigenstates. In the presence of an external gradient, a spin texture develops across the cloud, which drives diffusive spin currents. Spin transport is described with two coefficients: D0⊥, the transverse spin diffusivity, and γ, the Leggett-Rice parameter. Diffusion is a dissipative effect that increases the entropy of the gas, eventually creating a mixture of spin states. γ parameterizes the rate at which spin current precesses around the local magnetization. Using a spin-echo sequence, we measure these transport parameters for a range of interaction strengths and temperatures. At unitarity, for a normal-state gas initially at one fifth of the Fermi temperature, we find D0⊥ = 2 . 3 (4) ℏ / m and γ = 1 . 08 (9) , where m is the atomic mass. In the limit of zero temperature, γ and D0⊥ are scale-invariant universal parameters of the unitary Fermi gas. The value of D0⊥ reveals strong scattering and is near its proposed quantum limit, such that the inferred value of the transport lifetime τ⊥ is comparable to ℏ /ɛF . This raises the possibility that incoherent transport may play a role. The nonzero value of γ tells us that spin waves in unitary Fermi gas are dispersive, or in other words, that the gas has a spin stiffness in the long-wavelength limit. Time permitting, we will also discuss a time-resolved measurement of the contact, through which we observe the microscopic transformation of the gas from ideal to strongly correlated.
Splitting strings on integrable backgrounds
International Nuclear Information System (INIS)
Vicedo, Benoit
2011-05-01
We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)
A zero-one programming approach to Gulliksen's matched random subtests method
van der Linden, Willem J.; Boekkooi-Timminga, Ellen
1988-01-01
Gulliksen’s matched random subtests method is a graphical method to split a test into parallel test halves. The method has practical relevance because it maximizes coefficient α as a lower bound to the classical test reliability coefficient. In this paper the same problem is formulated as a zero-one
A Zero-One Programming Approach to Gulliksen's Matched Random Subtests Method.
van der Linden, Wim J.; Boekkooi-Timminga, Ellen
1988-01-01
Gulliksen's matched random subtests method is a graphical method to split a test into parallel test halves, allowing maximization of coefficient alpha as a lower bound to the classical test reliability coefficient. This problem is formulated as a zero-one programing problem solvable by algorithms that already exist. (TJH)
Accurate and efficient spin integration for particle accelerators
International Nuclear Information System (INIS)
Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.
2015-01-01
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
Accurate and efficient spin integration for particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Abell, Dan T.; Meiser, Dominic [Tech-X Corporation, Boulder, CO (United States); Ranjbar, Vahid H. [Brookhaven National Laboratory, Upton, NY (United States); Barber, Desmond P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-01-15
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
Spin Tunneling in a Rotating Nanomagnet
O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team
2011-03-01
We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.
Spin physics highlights from STAR
Directory of Open Access Journals (Sweden)
Gibson A.
2015-01-01
Full Text Available As the world’s only polarized proton collider, the Relativistic Heavy Ion Collider (RHIC at Brookhaven plays an important role in understanding the spin structure of the proton. The STAR detector, with its large acceptance for calorimetry and tracking, has been used to study polarized proton collisions for more than a decade with a range of jet, meson, and boson probes. We will discuss jets, neutral pions, and W bosons as probes of the proton’s helicity structure. Here STAR measurements have significant impact on global fits of sea quark polarizations and have provided the first firm evidence of non-zero gluon polarization within the proton. We will discuss W/Z bosons, jets, pions, and pion-jet correlations as probes of the transverse spin structure of the proton, and we will use the example of a proposed dijet measurement with an upgraded STAR detector to peer into the future.
Spin Waves in the FCC Kagome Lattice
Leblanc, Martin; Southern, Byron; Plumer, Martin; Whitehead, John
2014-03-01
The impact of an effective local cubic anisotropy on the spin wave excitations and inelastic neutron scattering intensity peaks of the Heisenberg model on the 3D fcc kagome lattice are examined through a linear spin wave theory. Previous Monte Carlo simulations revealed that the addition of anisotropy to the fcc kagome lattice changes the order of the phase transition from weakly first order to continuous and restricts the T = 0 spin configuration to a number of discrete ground states, removing the continuous degeneracy. It is shown that the addition of anisotropy removes the number of zero energy modes in the excitation spectrum associated with the removed degeneracies. These results are relevant to Ir-Mn alloys which have been widely used by the magnetic storage industry in thin-film form as the antiferromagnetic pinning layer in GMR and TMR spin valves. Supported by NSERC of Canada.
Spin-polarized current generated by magneto-electrical gating
International Nuclear Information System (INIS)
Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee
2012-01-01
We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.
Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator.
Chen, Haoqi; Li, Bin; Yang, Jinlong
2017-11-08
Black phosphorus is a promising candidate for future nanoelectronics with a moderate electronic band gap and a high carrier mobility. Introducing the magnetism into black phosphorus will widely expand its application scope and may present a bright prospect in spintronic nanodevices. Here, we report our first-principles calculations of spin-polarized electronic structure of monolayer black phosphorus (phosphorene) adsorbed on a magnetic europium oxide (EuO) substrate. Effective spin injection into the phosphorene is realized by means of interaction with the nearby EuO(111) surface, i.e., proximity effect, which results in spin-polarized electrons in the 3p orbitals of phosphorene, with the spin polarization at Fermi level beyond 30%, together with an exchange-splitting energy of ∼0.184 eV for conduction-band minimum of the adsorbed phosphorene corresponding to an energy region where only one spin channel is conductive. The energy region of these exchange-splitting and spin-polarized band gaps of the adsorbed phosphorene can be effectively modulated by in-plane strain. Intrinsically high and anisotropic carrier mobilities at the conduction-band minimum of the phosphorene also become spin-polarized mainly due to spin polarization of deformation potentials and are not depressed significantly after the adsorption. These extraordinary properties would endow black phosphorus with great potentials in the future spintronic nanodevices.
Split-Field Magnet facility upgraded
CERN PhotoLab
1977-01-01
The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...
Split supersymmetry in brane models
Indian Academy of Sciences (India)
Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...
VBSCan Split 2017 Workshop Summary
Energy Technology Data Exchange (ETDEWEB)
Anders, Christoph Falk; et al.
2018-01-12
This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
Split supersymmetry in brane models
Indian Academy of Sciences (India)
journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...
Water splitting by cooperative catalysis
Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.
2009-01-01
A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced
Indian Academy of Sciences (India)
Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...
Indian Academy of Sciences (India)
The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.
Dynamics of the collective modes of an inhomogeneous spin ensemble in a cavity
DEFF Research Database (Denmark)
Wesenberg, Janus; Kurucz, Zoltan; Mølmer, Klaus
2011-01-01
We study the excitation dynamics of an inhomogeneously broadened spin ensemble coupled to a single cavity mode. The collective excitations of the spin ensemble can be described in terms of generalized spin waves, and, in the absence of the cavity, the free evolution of the spin ensemble can be de...... without dispersion from negative to positive-valued wavenumbers without populating the zero wavenumber spin wave mode. The results are relevant for multimode collective quantum memories where qubits are encoded in different spin waves....
Yang, Wei-Qing; Zheng, Wen-Chen
2011-09-01
The spin-Hamiltonian parameters (g factors g∥, g⊥ and zero-field splittings b2(0), b4(0), b4(4), b6(0), b6(4)) for 4f7 ion Gd3+ at the tetragonal M4+ site of zircon-structure silicates MSiO4 (M=Zr, Hf, Th) are calculated from a diagonalization (of energy matrix) method. The Hamiltonian concerning this energy matrix contains the free-ion, crystal-field interaction and Zeeman interaction terms and the 56×56 energy matrix is constructed by considering the ground multiplet 8S7/2 and the excited multiplets 6L7/2 (L=P, D, F, G, H, I). The defect structures of Gd3+ centers in the three MSiO4 crystals are yielded from the calculation. The results are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
Split quaternions and semi-Euclidean projective spaces
Energy Technology Data Exchange (ETDEWEB)
Ata, Erhan [Department of Mathematics, Dumlupinar University, 43100 Kutahya (Turkey); Department of Mathematics, Ankara University, 06100 Ankara (Turkey)], E-mail: eata@dumlupinar.edu.tr; Yayli, Yusuf [Department of Mathematics, Dumlupinar University, 43100 Kutahya (Turkey); Department of Mathematics, Ankara University, 06100 Ankara (Turkey)
2009-08-30
In this study, we give one-to-one correspondence between the elements of the unit split three-sphere S(3,2) with the complex hyperbolic special unitary matrices SU(2,1). Thus, we express spherical concepts such as meridians of longitude and parallels of latitude on SU(2,1) by using the method given in Toth [Toth G. Glimpses of algebra and geometry. Springer-Verlag; 1998] for S{sup 3}. The relation among the special orthogonal group SO(R{sup 3}), the quotient group of unit quaternions S{sup 3}/{l_brace}{+-}1{r_brace} and the projective space RP{sup 3} given as SO(R{sup 3}){approx_equal}S{sup 3}/{l_brace}{+-}1{r_brace}=RP{sup 3} is known as the Euclidean projective spaces [Toth G. Glimpses of algebra and geometry. Springer-Verlag; 1998]. This relation was generalized to the semi-Euclidean projective space and then, the expression SO(3,1){approx_equal}S(3,2)/{l_brace}{+-}1{r_brace}=RP{sub 2}{sup 3} was acquired. Thus, it was found that Hopf fibriation map of S(2,1) can be used for Twistors (in not-null state) in quantum mechanics applications. In addition, the octonions and the split-octonions can be obtained from the Cayley-Dickson construction by defining a multiplication on pairs of quaternions or split quaternions. The automorphism group of the octonions is an exceptional Lie group. The split-octonions are used in the description of physical law. For example, the Dirac equation in physics (the equation of motion of a free spin 1/2 particle, like e.g. an electron or a proton) can be represented by a native split-octonion arithmetic.
Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions
Tang, Y.-H.; Chu, F.-C.; Kioussis, Nicholas
2015-06-01
We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds.
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
Neutron spin optics: Fundamentals and verification
Energy Technology Data Exchange (ETDEWEB)
Pleshanov, N.K., E-mail: pleshanov_nk@pnpi.nrcki.ru
2017-05-01
Neutron spin optics (NSO) based on quantum aspects of the neutron interaction with magnetically anisotropic layers signifies transition in polarized neutron optics from 1D (spin selection) to 3D (spin manipulations). It may essentially widen the functionality of neutron optics. Among the advantages of NSO are compactness, zero-field option (guide fields are optional) and multi-functionality (beam spectrum, beam divergence and spin manipulations can be handled at the same time). Prospects in improving and developing neutron mirror spin turners (incl. flippers) are discussed. Two approaches to measurement of the efficiency of mirror flippers are introduced. The efficiency of a multilayer-backed neutron mirror flipper for monochromatic beams was found to be 97.5±0.5%. Such mirror flippers can combine monochromatization of a polarized beam with flipping spins of the monochromatized neutrons. To improve their performance, account of the spin-dependent refraction in the magnetic layer should be taken. For a monochromatic beam, supermirror-backed flippers are shown to be more advantageous, with a gain in intensity up to 4 times.
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2015-10-15
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.
Li, Pengke; Appelbaum, Ian
2018-03-01
The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.
Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells
International Nuclear Information System (INIS)
Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L
2013-01-01
Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pełka, Robert, E-mail: Robert.Pelka@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, E. Radzikowskiego 152, 31-342 Kraków (Poland); Rudowicz, Czesław [Faculty of Chemistry, A. Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland)
2016-09-15
The standardization idea is nowadays tacitly accepted in EMR area, however, its usefulness in magnetism studies has not been fully recognized as yet. This idea arises due to intrinsic features of orthorhombic Hamiltonians of any physical nature, including the crystal (ligand) field (CF/LF) Hamiltonians or the zero-field splitting (ZFS) ones. Standardization limits the ratio of the orthorhombic parameter to the axial one to a fixed range between 0 and a specific value that depends on the notation used. For the ZFS parameters expressed in the conventional spin Hamiltonian (SH) notation the ratio λ=E/D can always be limited to the range (0, ±1/3) by appropriate choice of coordinate system. Implications of standardization of orthorhombic spin Hamiltonians for interpretation of experimental magnetic susceptibility data are considered. Using a numerical example, we show the existence of alternative solutions for ZFS parameters potentially obtainable from fitting experimental magnetic data and discuss their importance. For the first time algebraic applications of the standardization to the expressions for magnetic susceptibility tensor derived earlier for localized spin models with S=1, 3/2, 2, 5/2 and with rhombic anisotropy are explored. The numerical and algebraic results allow us to formulate an 'invariance principle'. These considerations facilitate interpretation of experimental magnetic data and provide an additional check of correctness of analytical magnetic susceptibility expressions.
Petrenko, T. L.; Bryksa, V. P.
2017-08-01
At present the nitrogen-vacancy (NV) complex in diamond is the most promising defect for application in the area of quantum computing. This provides a stimulus for an extensive search of other defects in semiconductors with similar properties. Recently it was shown that the NCVSi defect complex in SiC is perspectively appropriate for this goal as well. In the present work we perform comparative ab initio studies of NV complexes in diamond and 3C-SiC. We focus both on radiospectroscopic characterization of these defects and on the calculation of the equilibrium concentration of complexes in irradiated crystals. In particular a full set of spin-Hamiltonian parameters including g-tensors, hyperfine tensors and the spin-spin part of zero-field splitting constant Dss were calculated for both negative and neutral charge states as well as for excited quartet states of neutral complexes. Comparison of calculated values with the available experimental data and results of other calculations show good agreement, especially in the case when hybrid and meta-hybrid functionals were used. This makes the unambiguous identification of negative NV complexes in both materials possible. Our calculations reveal that the ground states of neutral complexes are a difficult case for both DFT calculations and experimental observations. This is caused by multi-determinantal behavior of wave function for such complexes, which leads to a large amount of spin contamination and to the broken symmetry solution which appeared for single Slater determinant DFT calculations. Based on the calculated minimum of free energy of neutral and negative complexes in SiC and diamond we obtained the equilibrium concentrations of these complexes depending on the vacancy concentration produced by irradiation. We show that in some dose regions both negative and neutral complexes coexist, while in other regions only one charge state prevails. Comparison of the calculated and experimental dose dependencies for
Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure
International Nuclear Information System (INIS)
Peter, A. John; Lee, Chang Woo
2012-01-01
Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration
Spin-resolved photoemission of surface states of W(110)-(1x1)H
International Nuclear Information System (INIS)
Hochstrasser, M.; Tobin, J.G.; Rotenberg, Eli; Kevan, S.D.
2002-01-01
The surface electronic states of W(110)-(1x1)H have been measured using spin- and angle-resolved photoemission. We directly demonstrate that the surface bands are both split and spin-polarized by the spin-orbit interaction in association with the loss of inversion symmetry near a surface. We observe 100 percent spin polarization of the surface states, with the spins aligned in the plane of the surface and oriented in a circular fashion relative to the S-bar symmetry point. In contrast, no measurable polarization of nearby bulk states is observed
Spin-controlled mechanics in nanoelectromechanical systems
Energy Technology Data Exchange (ETDEWEB)
Radić, D., E-mail: dradic@phy.hr
2015-03-01
We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.
Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates
Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar
2017-05-01
We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.
Zero Thermal Noise in Resistors at Zero Temperature
Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran
2016-06-01
The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.
Foucault's Pendulum, Analog for an Electron Spin State
Linck, Rebecca
2012-11-01
The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
Spin and charge thermopower of resonant tunneling diodes
Energy Technology Data Exchange (ETDEWEB)
Nicolau, Javier H.; Sánchez, David [Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), E-07122 Palma de Mallorca (Spain)
2014-03-17
We investigate thermoelectric effects in quantum well systems. Using the scattering approach for coherent conductors, we calculate the thermocurrent and thermopower both in the spin-degenerate case and in the presence of giant Zeeman splitting due to magnetic interactions in the quantum well. We find that the thermoelectric current at linear response is maximal when the well level is aligned with the Fermi energy and is robust against thermal variations. Furthermore, our results show a spin voltage generation in response to the applied thermal bias, giving rise to large spin Seebeck effects tunable with external magnetic fields, quantum well tailoring, and background temperature.
Spin-polarizated transmissivity in an asymmetrical double barrier
International Nuclear Information System (INIS)
Teixeira, J D S; Frota, H O; Bittencourt, A C R
2014-01-01
The spin-polarized electron resonant tunnelling at zero magnetic field through a double barrier heterostructure like InAs/GaSb/InAs/GaSb/InAs has been calculated as a function of the electron energy. A model is proposed to study the combined effects of Dresselhaus and in-plane Rashba spin-orbit interactions on the spin-dependent tunnelling, taking into account the k 3 dependence of the Dresselhaus Hamiltonian. For the directions ϕ=45 ∘ and 135 ∘ the spin mixing produces a 100% efficiency of polarization. Moreover, the effect of the Dresselhaus and Rashba spin-orbit interactions are shown to be quite favorable for the fabrication of spin filters and spintronic devices. (paper)
Stability of split Stirling refrigerators
International Nuclear Information System (INIS)
Waele, A T A M de; Liang, W
2009-01-01
In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.
Quantum Entanglement of a Tunneling Spin with Mechanical Modes of a Torsional Resonator
Directory of Open Access Journals (Sweden)
D. A. Garanin
2011-08-01
Full Text Available We solve the Schrödinger equation for various quantum regimes describing a tunneling macrospin coupled to a torsional oscillator. The energy spectrum and freezing of spin tunneling are studied. Magnetic susceptibility, noise spectrum, and decoherence due to entanglement of spin and mechanical modes are computed. We show that the presence of a tunneling spin can be detected via splitting of the mechanical mode at the resonance. Our results apply to experiments with magnetic molecules coupled to nanoresonators.
Nuclear spin pumping and electron spin susceptibilities
Danon, J.; Nazarov, Y.V.
2011-01-01
In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.
Electron spin resonance photochromic beta-tetrachloro-alpha-ketonaphthalene
Wiersma, D. A.; Nieuwpoort, W. C.
1968-01-01
A triplet ESR spectrum has been observed in a powdered sample of beta 2.3, 4.4-tetra-chloro-alpha-ketonaphthalene after UV irradiation. The spectrum could be reproduced by computer simulation using an anisotropic g-tensor (g(xx) = 2.00950. g(yy) = 2.00280. g(zz) = 2.00232) and zero-field splitting
Li, Yuesheng; Adroja, Devashibhai; Biswas, Pabitra K; Baker, Peter J; Zhang, Qian; Liu, Juanjuan; Tsirlin, Alexander A; Gegenwart, Philipp; Zhang, Qingming
2016-08-26
Muon spin relaxation (μSR) experiments on single crystals of the structurally perfect triangular antiferromagnet YbMgGaO_{4} indicate the absence of both static long-range magnetic order and spin freezing down to 0.048 K in a zero field. Below 0.4 K, the μ^{+} spin relaxation rates, which are proportional to the dynamic correlation function of the Yb^{3+} spins, exhibit temperature-independent plateaus. All these μSR results unequivocally support the formation of a gapless U(1) quantum spin liquid ground state in the triangular antiferromagnet YbMgGaO_{4}.
Voltage-controlled spin selection in a magnetic resonant tunneling diode.
Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W
2003-06-20
We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...
Spin-0± portal induced Dark Matter
Dutta, Sukanta; Goyal, Ashok; Saini, Lalit Kumar
2018-02-01
Standard model (SM) spin-zero singlets are constrained through their di-Bosonic decay channels via an effective coupling induced by a vector-like quark (VLQ) loop at the LHC for √{s}=13 TeV. These spin-zero resonances are then considered as portals for scalar, vector or fermionic dark matter particle interactions with SM gauge bosons. We find that the model is validated with respect to the observations from LHC data and from cosmology, indirect and direct detection experiments for an appreciable range of scalar, vector and fermionic DM masses greater than 300 GeV and VLQ masses ≥ 400 GeV, corresponding to the three choice of portal masses 270 GeV, 500 GeV and 750 GeV respectively.
Net zero building energy conservation
Kadam, Rohit
This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.
Intrinsic normal Zeeman effect for spin plasmons in semiconductor quantum wells
Ullrich, C. A.; D'Amico, I.; Baboux, F.; Perez, F.
2013-09-01
The normal Zeeman effect gives rise to a three-fold splitting of atomic spectral lines in the presence of strong external magnetic fields. In n-doped semiconductor quantum wells, a similar three-fold splitting occurs in the intersubband spin plasmon resonance, as was recently demonstrated experimentally using inelastic light scattering. The plasmon splitting is caused by the interplay of intrinsic spin-orbit crystal magnetic fields and dynamical many-body effects. We show that it can be regarded as an intrinsic normal Zeeman effect in quantum wells. We present a formal framework for calculating the quantum well electronic states and their collective linear response in the presence of Rashba and Dresselhaus spin-orbit coupling, and we show how the intrinsic normal Zeeman effect of the spin plasmons can be controlled by external magnetic fields.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Fries, Pascal H.; Belorizky, Elie
2007-05-01
The relaxation of the electronic spin S of a paramagnetic metal ion with fully quenched orbital angular momentum in its ground state is investigated in an external magnetic field through a systematic study of the time correlation functions governing the evolution of the statistical operator (density matrix). Let ω0 be the Larmor angular frequency of S. When the relaxation is induced by a time-fluctuating perturbing Hamiltonian ℏH1(t ) of time correlation τc, it is demonstrated that after a transient period the standard Redfield approximation is relevant to calculate the evolution of the populations of the spin states if ∥H1∥2τc2/(1+ω02τc2)≪1 and that this transient period becomes shorter than τc at sufficiently high field for a zero-field splitting perturbing Hamiltonian. This property, proven analytically and confirmed by numerical simulation, explains the surprising success of several simple expressions of the longitudinal electronic relaxation rate 1/T1e derived from the Redfield approximation well beyond its expected validity range ∥H1∥τc≪1. It has favorable practical consequences on the interpretation of the paramagnetic relaxation enhancement of nuclei used for structural and dynamic studies.
Destructive quantum interference in spin tunneling problems
von Delft, Jan; Henley, Christopher L.
1992-01-01
In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...
Foucault's pendulum, a classical analog for the electron spin state
Linck, Rebecca A.
Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
Weak antilocalization and spin precession in quantum wells
Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.
1996-02-01
The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.
Symmetry realization of texture zeros
International Nuclear Information System (INIS)
Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.
2004-01-01
We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brocato, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed at Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].
Spin dependent disorder in a junction device with spin orbit couplings
International Nuclear Information System (INIS)
Ganguly, Sudin; Basu, Saurabh
2016-01-01
Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)
Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.
Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M
2018-03-14
A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.
Innovative wedge axe in making split firewood
International Nuclear Information System (INIS)
Mutikainen, A.
1998-01-01
Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)
Kondo peak splitting and Kondo dip in single molecular magnet junctions
Energy Technology Data Exchange (ETDEWEB)
Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2016-01-15
Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.
Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.
Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G
2012-08-31
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.
High resolution study of magnetic ordering at absolute zero.
Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G
2004-05-07
High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.
Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie
2018-02-01
Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.
Decoherence dynamics of a single spin versus spin ensemble
Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.
2008-01-01
We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian
Prarokijjak, Worasak; Soodchomshom, Bumned
2018-04-01
Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.
Parallel BLAST on split databases.
Mathog, David R
2003-09-22
BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from ftp://saf.bio.caltech.edu/
Spin-polarized spin excitation spectroscopy
International Nuclear Information System (INIS)
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2010-01-01
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
Magnons, Spin Current and Spin Seebeck Effect
Maekawa, Sadamichi
2012-02-01
When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).
Spin-dependent shot noise in semiconductor and graphene nanostructures
Dragomirova, Ralitsa L.
Shot noise is the name given to the time-dependent non-equilibrium current (or voltage) fluctuations which persist down to zero temperature and are fundamentally related to the discrete nature of the electron charge. Over the past two decades it has become a major tool for gathering information about microscopic mechanisms of transport and correlations between charges which cannot be extracted from traditional conductance measurements. Recently a handful of theoretical and experimental studies have suggested that shot noise in systems with spin-dependent interactions provides a sensitive probe to differentiate between scattering from magnetic impurities, spin-flip scattering, and continuous spin precession effects on semiclassical or quantum transport of injected spin-polarized currents. This is due to the fact that any spin flip converts spin-↑ subsystem particle into a spin-↓ subsystem particle, where the two subsystems differ when spin degeneracy is lifted. Thus, the nonconservation of the number of particles in each subsystem generates additional source of current fluctuations. Here we generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons. This formalism yields the spin-resolved shot noise power applicable for a generic spintronic device where partially polarized charge current or even pure spin current is injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by arbitrary spin-dependent interactions. The developed formalism [2, 5] is applied in Chapter 5 to diffusive multichannel quantum wires with the Rashba spin-orbit (SO) coupling sandwiched between ferromagnetic source and ferromagnetic or normal drain electrodes. The crucial role played by the SO interactions in all-electrical control of spin in semiconductor nanostructures has ignited recent studies of their signatures on the shot noise. We investigate what is the effect of the Rahsba SO coupling
ACS Photometric Zero Point Verification
Dolphin, Andrew
2003-07-01
The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes in the Johnson filters. The reason for this is that ACS observations of excellent ground-based standard fields, such as the omega Cen field used for WFPC2 calibrations, have not been obtained. Instead, the ACS photometric calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS broadband images of the omega Cen standard field with both the WFC and HRC. This will permit the direct determination of the ACS transformations, and is expected to double the accuracy to which the ACS zero points are known. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager.
Stepping Back from Zero Tolerance
Browne-Dianis, Judith
2011-01-01
Schools' use of zero tolerance policies has been increasing since the 1980s as part of a societal movement to crack down on drug abuse and violence among youth. But far from making schools safer, this harsh, inflexible approach to discipline has been eroding the culture of schools and creating devastating consequences for children, writes…
Pearce, Ruth
2016-04-01
A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol-1 for CO2 (northern hemisphere) and < 2 nmolmol-1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol-1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol-1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically assigned
Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3
International Nuclear Information System (INIS)
Lukac, M.; Otto, F.W.; Hahn, E.L.
1989-01-01
We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs
Two-photon spin generation and detection
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)
2009-02-21
A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.
Two-photon spin generation and detection
International Nuclear Information System (INIS)
Miah, M Idrish
2009-01-01
A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.
Mass of a spin vortex in a Bose-Einstein condensate.
Turner, Ari M
2009-08-21
In contrast with charge vortices, spin vortices in a two-dimensional ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The Magnus force, which prevents the inertial motion of the charge vortices, cancels for spin vortices, because they are composed of two oppositely rotating vortices. The inertial mass of spin vortices varies inversely with the strength of spin-dependent interactions and directly with the width of the condensate layer, and can be measured as a part of experiments on how spin vortices orbit one another. For Rb87 in a 1 microm thick trap, mv approximately 10(-21) kg.
Islam, SK Firoz; Saha, Arijit
2017-09-01
Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.
Computational approach to the study of thermal spin crossover phenomena
International Nuclear Information System (INIS)
Rudavskyi, Andrii; Broer, Ria; Sousa, Carmen; Graaf, Coen de; Havenith, Remco W. A.
2014-01-01
The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T 1/2 , is estimated for different compounds
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the
Mean-field theory of spin-glasses with finite coordination number
Kanter, I.; Sompolinsky, H.
1987-01-01
The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.
Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3(M = Cr, Mn, Fe).
Okugawa, Takuya; Ohno, Kaoru; Noda, Yusuke; Nakamura, Shinichiro
2018-02-21
We investigate the spin-dependent electronic states of antiferromagnetic (AFM) lanthanum chromite (LaCrO 3 ), lanthanum manganite (LaMnO 3 ), and lanthanum ferrite (LaFeO 3 ) using spin-polarized first-principles density functional theory with Hubbard U correction. The band structures are calculated for 15 types of their different AFM structures. It is verified for these structures that there is a very simple rule to identify which wave number [Formula: see text] exhibits spin splitting or degeneracy in the band structure. This rule uses the symmetry operations that map the up-spin atoms onto the down-spin atoms. The resulting spin splitting is very small for the most stable spin configuration of the most stable experimental structure. We discuss a plausible benefit of this characteristic, i.e. the direction-independence of the spin current, in electrode applications.
Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures
International Nuclear Information System (INIS)
Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin
2007-01-01
Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer
Energy Technology Data Exchange (ETDEWEB)
Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)
2015-08-15
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1978-01-01
A prescription is given for point-splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current which can be differentiated straightforwardly, and that it involves a natural way of averaging (four dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g. to spin -3/2 Rarita-Schwinger fermions. (author)
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Giant thermal spin-torque-assisted magnetic tunnel junction switching.
Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P; Yang, See-Hun; Parkin, Stuart S P
2015-05-26
Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe.
Spin currents of charged Dirac particles in rotating coordinates
Dayi, Ö. F.; Yunt, E.
2018-03-01
The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.
Room-temperature electron spin amplifier based on Ga(In)NAs alloys.
Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M
2013-02-06
The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonuniform currents and spins of relativistic electron vortices in a magnetic field
van Kruining, Koen; Hayrapetyan, Armen G.; Götte, Jörg B.
2017-01-01
We present a relativistic description of electron vortex beams in a homogeneous magnetic field. Including spin from the beginning reveals that spin-polarized electron vortex beams have a complicated azimuthal current structure, containing small rings of counterrotating current between rings of stronger corotating current. Contrary to many other problems in relativistic quantum mechanics, there exists a set of vortex beams with exactly zero spin-orbit mixing in the highly relativistic and nonp...
Additive operator-difference schemes splitting schemes
Vabishchevich, Petr N
2013-01-01
Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy
Iterative Splitting Methods for Differential Equations
Geiser, Juergen
2011-01-01
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
Lin, Hsin
2014-03-01
While spin-orbit coupling plays a critical role in generating topologically insulating phases, it also provides a novel route for realizing spin-split states in nonmagnetic materials without the need for exchange coupling. Two-dimensional thin films with significant spin-orbit coupling strength enable potential applications for spintronics devices because the spin-splitting energy can be controlled by an external field (gating). Moreover, spin-orbit coupling can induce nontrivial topological phases, i.e. quantum spin Hall phases, which could harbor back-scattering-free spin-polarized current at the edge. Recently, we have shown via first-principles calculations that field-gated silicene possesses two gapped Dirac cones exhibiting nearly 100% spin-polarization, situated at the corners of the Brillouin zone. Band gaps as well as the band topology can be tuned with an external electric field perpendicular to the plane, which breaks the inversion symmetry of the system due to the presence of buckling in the honeycomb structure. Using this fact, we propose a design for a silicene-based spin-filter that would enable the spin-polarization of an output current to be switched electrically, without the need to switch external magnetic fields. Our quantum transport calculations indicate that the proposed designs will be highly efficient (nearly 100% spin polarization) and robust against weak disorder and edge imperfections. We also propose a Y-shaped spin/valley separator that produces spin-polarized current at two output terminals with opposite spins. Ge, Sn, and Pb counterparts of silicene are shown to have similar properties, but their larger spin-orbit coupling results in larger energy differences between the spin-split states making these materials better suited for room temperature applications. Other spin-orbit thin films will be discussed. Our investigations demonstrate that spin-orbit thin films present great potential for manipulating spin/valley degrees of freedom
Terminal nerve: cranial nerve zero
Jorge Eduardo Duque Parra; Carlos Alberto Duque Parra
2006-01-01
It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH). In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a co...
Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts
Energy Technology Data Exchange (ETDEWEB)
Ueno, K. [Building Science Corporation, Somerville, MA (United States); Bergey, D. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States)
2013-09-01
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.
Two-dimensional spin diffusion in multiterminal lateral spin valves
Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.
2008-01-01
The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.
International Nuclear Information System (INIS)
Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2010-01-01
The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.
Emittance compensation in split photoinjectors
Directory of Open Access Journals (Sweden)
Klaus Floettmann
2017-01-01
Full Text Available The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.
Cohen, Timothy; Craig, Nathaniel; Knapen, Simon
2016-03-01
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Minimal Doubling and Point Splitting
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
2010-06-14
Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Spin-polarized deuterium : stabilization in magnetic traps
Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.
1987-01-01
We report on a calculation of the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero temperature limit. We find that a gas of low field seeking deuterium atoms trapped in a
Cauchy's problem for field equations with arbitrary spin
International Nuclear Information System (INIS)
Wuensch, V.
1983-01-01
We discuss Cauchy's problem and Huygens' principle for relativistic higher spin and non-zero mass equations, which are internally consistent in an arbitrary curved space-time. A representation theorem for the solution and conditions for the validity of Huygens' principle are given. The space-times on which these field equations satisfy Huygens' principle are determined explicitly [fr
Continuous quantum phase transitions in the one-dimensional spin ...
Indian Academy of Sciences (India)
We have investigated the one-dimensional spin-1/2 axial next-nearest-neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a transverse field ...
Spin delocalization phase transition in a correlated electrons model
International Nuclear Information System (INIS)
Huerta, L.
1990-11-01
In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs
Continuous quantum phase transitions in the one-dimensional spin ...
Indian Academy of Sciences (India)
Abstract. We have investigated the one-dimensional spin-1/2 axial next-nearest- neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a ...
SivaRamaiah, G; LakshmanaRao, J
2012-12-01
Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.
Spin crossover studies in cationic complexes of iron by using Moessbauer spectroscopy
International Nuclear Information System (INIS)
Vadera, S.R.; Kumar, N.
1990-01-01
The spin transition in two new cationic complexes of iron, i.e. iron bipyridine formate, [Fe(bipy) 3 ](HCOO) 2 .5(HCOOH) and iron bipyridine tetrafluoro borate, [Fe(bipy) 3 ](BF 4 ) 2 .2H 2 O were studied by Moessbauer spectroscopy. From quadrupole splitting values, it was established that at different temperatures both complexes show the coexistence of both high spin state and low spin state at 300 K, while complete transformation to low spin state occurs at 77 K. Both compounds were prepared by electrochemical technique. (author) 12 refs.; 1 fig.; 1 tab
Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection
International Nuclear Information System (INIS)
Luo Hailu; Zhou Xinxing; Shu Weixing; Wen Shuangchun; Fan Dianyuan
2011-01-01
We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting the incident angle.
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Homoepitaxial graphene tunnel barriers for spin transport
Directory of Open Access Journals (Sweden)
Adam L. Friedman
2016-05-01
Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.
Three-dimensional fractional-spin gravity
Energy Technology Data Exchange (ETDEWEB)
Boulanger, Nicolas [Service de Mécanique et Gravitation, Université de Mons - UMONS,Mons, Belgique (Belgium); Sundell, Per [Departamento de Ciencias Físicas, Universidad Nacional Andrés Bello - UNAB,Santiago (Chile); Valenzuela, Mauricio [Service de Mécanique et Gravitation, Université de Mons - UMONS,Mons, Belgique (Belgium); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile - UACH,Valdivia (Chile)
2014-02-12
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal non-abelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ,ℓ±1) or gl(ℓ|ℓ±1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS “Ulysse” Incentive Grant for Mobility in Scientific Research.
Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.
2017-09-01
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.
SplitDist—Calculating Split-Distances for Sets of Trees
DEFF Research Database (Denmark)
Mailund, T
2004-01-01
We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....
Gökçek, N.
2018-01-01
The effect of Rashba spin-orbit interaction on the electronic spectrum of gapped graphene with a hydrogenic impurity in the presence of topological defects is analyzed analytically. Degenerate perturbation theory is used to investigate the dependence of electronic spectrum of gapped graphene on the strengths of impurity and Rashba spin-orbit coupling. The results show that, as the strength of Rashba spin-orbit coupling increases, pseudo-Zeeman splitting of energy levels induced by topological defects is enhanced. Therefore, it is possible to tune this pseudo-Zeeman splitting through the strength of Rashba spin-orbit coupling and of the strength of hydrogenic impurity.
Nonlocality of zero-bias anomalies in the topologically trivial phase of Majorana wires
Stanescu, Tudor D.; Tewari, Sumanta
2014-06-01
We show that the topologically trivial zero bias peak (ZBP) emerging in semiconductor Majorana wires due to soft confinement exhibits correlated splitting oscillations as a function of the applied Zeeman field, similar to the correlated splitting of the Majorana ZBP. Also, we find that the presence of a strong impurity can effectively cut the wire in two and destroy the correlated splitting in both the trivial and the Majorana regimes. We identify a strong nonlocal effect that operates only in the topologically trivial regime and demonstrate that the dependence of the ZBP on the confining gate potential at the opposite end in Majorana wires with two normal metal end contacts represents a powerful tool for discriminating between topologically trivial and nontrivial ZBPs.
International Nuclear Information System (INIS)
Anon.
1980-01-01
From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible
Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.
2003-01-01
A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin
Jahromi, Saeed S.; Langari, Abdollah
2017-04-01
We use the topological entanglement entropy (TEE) as an efficient tool to fully characterize the Abelian phase of a {{{Z}}2}× {{{Z}}2} spin liquid emerging as the ground state of topological color code (TCC), which is a class of stabilizer states on the honeycomb lattice. We provide the fusion rules of the quasiparticle (QP) excitations of the model by introducing single- or two-body operators on physical spins for each fusion process which justify the corresponding fusion outcome. Besides this, we extract the TEE from Renyi entanglement entropy (EE) of the TCC, analytically and numerically by finite size exact diagonalization on the disk shape regions with contractible boundaries. We obtain that the EE has a local contribution, which scales linearly with the boundary length in addition to a topological term, i.e. the TEE, arising from the condensation of closed strings in the ground state. We further investigate the ground state dependence of the TEE on regions with non-contractible boundaries, i.e. by cutting the torus to half cylinders, from which we further identify multiple independent minimum entropy states (MES) of the TCC and then extract the U and S modular matrices of the system, which contain the self and mutual statistics of the anyonic QPs and fully characterize the topological phase of the TCC. Eventually, we show that, in spite of the lack of a local order parameter, TEE and other physical quantities obtained from the ground state wave function such as the entanglement spectrum (ES) and ground state fidelity are sensitive probes to study the robustness of a topological phase. We find that the topological order in the presence of a magnetic field persists until the vicinity of the transition point, where the TEE and fidelity drops to zero and the ES splits severely, signaling breakdown of the topological phase of the TCC.
International Nuclear Information System (INIS)
Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui
2010-01-01
We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.
Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.
2018-01-01
The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-10-31
thermally driven. Chapters 5 and 6 carry throughout tight-binding studies on the topological charge-spin transport in two-dimensional lattices with ferromagnetic skyrmions and 3Q magnetic structure. We use the Landauer-Buttiker formalism and evaluate the robustness of the topological signals. For the 3Q state, a spin-polarized quantum anomalous Hall state with chiral edge modes, unaffected by deformation and disorder, is reachable in zero net magnetization. We finish with concluding remarks and perspectives.
Model for electron spin resonance in STM noise
Caso, Alvaro; Horovitz, Baruch; Arrachea, Liliana
2014-02-01
We propose a model to account for the observed ESR-like signal at the Larmor frequency in the current noise scanning tunnel microscope (STM) experiments identifying spin centers on various substrates. The theoretical understanding of this phenomenon, which allows for single spin detection on surfaces at room temperature, is not settled for the experimentally relevant case that the tip and substrate are not spin polarized. Our model is based on a direct tip-substrate tunneling in parallel with a current flowing via the spin states. We find a sharp signal at the Larmor frequency even at high temperatures, in good agreement with experimental data. We also evaluate the noise in presence of an ac field near resonance and predict splitting of the signal into a Mollow triplet.
Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation
International Nuclear Information System (INIS)
Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.
1990-03-01
The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)
On zero sum subsequences of restricted size
Indian Academy of Sciences (India)
. Jhunsi, Allahabad 211 019, ... Zero sum problems; Kemnitz' conjecture; sequence sums. 1. Introduction and notations ... The cornerstone of almost all recent combinatorial research on zero-sum problems is a theorem of Erdös, Ginzburg and.
Thermal Entanglement in XXZ Heisenberg Model for Coupled Spin-Half and Spin-One Triangular Cell
Najarbashi, Ghader; Balazadeh, Leila; Tavana, Ali
2018-01-01
In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As.
Souma, S; Chen, L; Oszwałdowski, R; Sato, T; Matsukura, F; Dietl, T; Ohno, H; Takahashi, T
2016-06-06
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-06-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.
Split Questionnaire Design for Massive Surveys
Adiguzel, F.; Wedel, M.
2008-01-01
Companies are conducting more and longer surveys than ever before. Massive questionnaires are pervasive in marketing practice. As an alternative to the heuristic methods that are currently used to split questionnaires, this study develops a methodology to design the split questionnaire in a way that
Cheating More when the Spoils Are Split
Wiltermuth, Scott S.
2011-01-01
Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…
Split Scheduling with Uniform Setup Times
Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.
2015-01-01
We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or
Split scheduling with uniform setup times.
F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen
2015-01-01
htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a
On split Lie triple systems II
Indian Academy of Sciences (India)
Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Keywords.
An enhancement of spin polarization by multiphoton pumping in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2011-08-15
Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.
An enhancement of spin polarization by multiphoton pumping in semiconductors
International Nuclear Information System (INIS)
Miah, M. Idrish
2011-01-01
Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.
Particulate photocatalysts for overall water splitting
Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari
2017-10-01
The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.
Possible spin frustration in Nd2Ti2O7 probed by muon spin relaxation.
Guo, Hanjie; Xing, Hui; Tong, Jun; Tao, Qian; Watanabe, Isao; Xu, Zhu-an
2014-10-29
Muon spin relaxation on Nd2Ti2O7 (NTO) and NdLaTi2O7 (NLTO) compounds are presented. The time spectra for both compounds are as expected for the paramagnetic state at high temperatures, but deviate from the exponential function below around 100 K. Firstly, the muon spin relaxation rate increases with decreasing temperature and then levels off below around 10 K, which is reminiscent of the frustrated systems. An enhancement of the relaxation rate by a longitudinal field in the paramagnetic state is observed for NTO and eliminated by a magnetic dilution for the NLTO sample. This suggests that the spectral density is modified by a magnetic dilution and thus indicates that the spins behave cooperatively rather than individually. The zero-field measurement at 0.3 K indicates that the magnetic ground state for NTO is ferromagnetic.
Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers
International Nuclear Information System (INIS)
Rostami, Habib; Moghaddam, Ali G; Asgari, Reza
2016-01-01
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)
Zero insertion for isi free ofdm reception
DEFF Research Database (Denmark)
2014-01-01
An apparatus (UEA) may generate a zero-tail signal to be transmitted in an LTE/LTE-A cell, by introducing time domain samples with zero power or very low power in specific positions of a time symbol tail. The apparatus (UEA) may transmit the generated zero-tail signal to a base station (eNB), suc...
Directory of Open Access Journals (Sweden)
R.S. Khakimov
2014-02-01
Full Text Available Historical studies are based on the assumption that there is a reference-starting point of the space-time – the Zero point of coordinate system. Due to the bifurcation in the Zero Point, the course of social processes changes sharply and the probabilistic causality replaces the deterministic one. For this reason, changes occur in the structure of social relations and statehood form as well as in the course of the ethnic processes. In such a way emerges a new discourse of the national behavior. With regard to the history of the Tatars and Tatarstan, such bifurcation points occurred in the periods of the formation: 1 of the Turkic Khaganate, which began to exist from the 6th century onward and became a qualitatively new State system that reformatted old elements in the new matrix introducing a new discourse of behavior; 2 of the Volga-Kama Bulgaria, where the rivers (Kama, Volga, Vyatka became the most important trade routes determining the singularity of this State. Here the nomadic culture was connected with the settled one and Islam became the official religion in 922; 3 and of the Golden Hordе, a powerful State with a remarkable system of communication, migration of huge human resources for thousands of kilometers, and extensive trade, that caused severe “mutations” in the ethnic terms and a huge mixing of ethnic groups. Given the dwelling space of Tatar population and its evolution within Russia, it can be argued that the Zero point of Tatar history, which conveyed the cultural invariants until today, begins in the Golden Horde. Neither in the Turkic khaganate nor in the Bulgar State, but namely in the Golden Horde. Despite the radical changes, the Russian Empire failed to transform the Tatars in the Russians. Therefore, contemporary Tatars preserved the Golden Horde tradition as a cultural invariant.
Zero Energy Schools: The Challenges
Energy Technology Data Exchange (ETDEWEB)
Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-29
School buildings have a lot of potential to achieve zero energy (ZE) in new construction as well as in retrofits. There are many examples of schools operating at ZE, and many technical resources available to guide school districts and their design and construction teams through the process. When school districts embark on the path to ZE, however, they often confront challenges related to processes and a perception that ZE buildings require 'new,' unconventional, and expensive technologies, materials, or equipment. Here are some of the challenges school districts and their design and construction teams commonly encounter, and the solutions they use to overcome them.
Understanding Net Zero Energy Buildings
DEFF Research Database (Denmark)
Salom, Jaume; Widén, Joakim; Candanedo, José
2011-01-01
Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...
Spin physics in semiconductors
2017-01-01
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
Mesonic states in quantum spin ice
Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji
We study magnetic monopoles in quantum spin ice, whose dynamics is induced by a transverse field term. We find that the bipartiteness of the state graph of the model and the local spin ice rule constraints result in the presence of an approximately flat band at the classical energy of the nearest neighbor monopole pair. The degeneracy of the so-called mesonic states making up the flat band splits at the same order as the spin ice ground state manifold. We show that the mesonic states result in a crisp neutron scattering signature of magnetic monopoles in the system, and that the momentum dependence of the structure factor may allow for the detection of quantum fluctuations in a spin ice system near the classical limit. This work was supported by the Helmholtz Virtual Institute New States of Matter and their Excitations, NSF Grant No. DMR-1311781; Alexander von Humboldt Foundation; DFG via SFB 1143; and LabEX ENS-ICFP: ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*.
Spin-dependent electron-phonon coupling in the valence band of single-layer WS2
DEFF Research Database (Denmark)
Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin
2017-01-01
The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....
Energy Technology Data Exchange (ETDEWEB)
Strečka, Jozef, E-mail: jozef.strecka@upjs.sk [Department of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 040 01 Košice (Slovakia); Alécio, Raphael Cavalcante; Lyra, Marcelo L. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceio-AL (Brazil); Rojas, Onofre [Departamento de Física, Universidade Federal de Lavras, 37200-000 Lavras-MG (Brazil)
2016-07-01
The spin-1/2 Ising–Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles. - Highlights: • Spin-1/2 Ising–Heisenberg three-leg tube is exactly solved in a zero magnetic field. • Thermal entanglement is only present in a frustrated part of the parameter space. • Spin frustration and thermal entanglement show antagonistic reentrance. • Specific heat may display a sharp narrow peak due to massive thermal excitations.
Spin-polarized photoemission from SiGe heterostructures
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2013-12-04
We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.
Noisy Spins and the Richardson-Gaudin Model
Rowlands, Daniel A.; Lamacraft, Austen
2018-03-01
We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.
Chern-Simons induced spin factors in noncovariant gauges
International Nuclear Information System (INIS)
Tanaka, I.
1993-01-01
We study Chern-Simons induced spin factors in noncovariant metric-independent gauges, such as the axial gauge and the Coulomb gauge. These spin factors are defined without loop splitting. We find that they are equal to integers and have particular geometrical meanings. In the axial gauge, this integer is the writhe number of a link diagram defined by the projection of a loop to the time direction. In the Coulomb gauge, it is suggested that this integer is also the writhe number of a link diagram, defined by the projection of a loop to a spatial plane
Maximal zero sequences for Fock spaces
Zhu, Kehe
2011-01-01
A sequence $Z$ in the complex plane $\\C$ is called a zero sequence for the Fock space $F^p_\\alpha$ if there exists a function $f\\in F^p_\\alpha$, not identically zero, such that $Z$ is the zero set of $f$, counting multiplicities. We show that there exist zero sequences $Z$ for $F^p_\\alpha$ with the following properties: (1) For any $a\\in\\C$ the sequence $Z\\cup\\{a\\}$ is no longer a zero sequence for $F^p_\\alpha$; (2) the space $I_Z$ consisting of all functions in $F^p_\\alpha$ that vanish on $Z...
Topological edge state with zero Hall conductivity in quasi-one dimensional system
Directory of Open Access Journals (Sweden)
Xiao-Shan Ye
2016-09-01
Full Text Available We explore the structure of the energy spectra of quasi-one dimensional (Q1D system subjected to spin-density-wave SDW states. The structure of the energy spectra opens energy gaps with Zeeman field. Theses gaps result in plateaus for the Quantum Hall conductivity which is associated with edge states. Different from the SSH Hofstadter model, here we show that there are a doublet of edge states contribution to zero Hall conductivity. These edge states are allowed for magnetic control of spin currents. The topological effects predicted here could be tested directly in organic conductors system.
Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B
2015-06-15
Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.
Nonlocal Andreev reflection and spin current in a three-terminal Aharonov–Bohm interferometer
International Nuclear Information System (INIS)
Ju, Peng; Hua-Ling, Yu; Zhi-Guo, Wang
2009-01-01
This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov–Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Directory of Open Access Journals (Sweden)
G. C. Fouokeng
2014-01-01
Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.
Zero-truncated negative binomial - Erlang distribution
Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana
2017-11-01
The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.
Zero expression of arguments in Old Danish
DEFF Research Database (Denmark)
Heltoft, Lars
2014-01-01
Old Scandinavian (represented here by Old Danish) allowed zero arguments (null-arguments) in any nominal (argument) position, that is: for NPs as subjects, objects and in PPs. In generative grammar, zero arguments are held to be variants of pronouns, but in this article, I shall claim that zero...... arguments in Scanic are semantically different from pronouns, and therefore pronouns and zero arguments are not variants. At one level, zero arguments and pronouns are similar with respect to function, namely to supply means for establishing co-reference in text; however, they are not semantically...... equivalent. By reducing these two categories to one single underlying category, such as pro, one would miss this point. On the contrary, zero arguments are arguably full-bodied signs with their own content, thus corresponding to Melčuk’s Zero Sign Introduction Principle....
Structure tailored properties and functionalities of zero-dimensional nanostructures
Tang, Yun
The field of nanoscience and nanotechnology has achieved significant progress over last thirty years. Complex nanostructures with tunable properties for novel applications have been successfully fabricated and characterized. In this thesis, I will focus on our recent efforts on precise controlled synthesis of zero-dimensional nanostructures as well as fundamental understanding of the physical behavior of assynthesized nanostructures. Particularly, three topics are presented: (1) Nanoscale crystallinity engineering: we have achieved nanoscale crystallinity control of noble metal nanoparticles with 100% yield by molecular engineering. We have used silver nanoparticles as example to demonstrate synthetic strategy and importance of such control in nanoscale chemical transformation, fundamental electron and phonon couplings and surface plasmon resonance based biological sensors. Such nanoscale crystallinity engineering provides a new pathway for design of complex nanostructures, tailoring nanoscale electronic and mechanical properties as well as controlling classical and quantum coupling interactions; (2) Precise control of core shell nanostructures: we have developed a new universal strategy denoted as intermediated phase assisted phase exchange and reaction (iPAPER) to achieve layer-by-layer control of shell components in core shell structures. Tunable plasmonic, optical and magnetic properties of core shell structures enabled by our iPAPER strategy are further demonstrated. These characterizations are promising for understanding and manipulating nanoscale phenomena as well as assembling nanoscale devices with desirable functionality; and (3) Fundamental spin and structure manipulation of semiconductor quantum dots by hydrostatic pressure. Pressure provides a unique means of modifying materials properties. By measuring dependence of spin dynamics on pressure, we revealed that the spin states of semiconductor quantum dots are very robust. We further provided the first
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
International Nuclear Information System (INIS)
Vecsey, G.
1992-08-01
The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs
Tanaka, Koji; Isobe, Hiroshi; Yamanaka, Shusuke; Yamaguchi, Kizashi
2012-01-01
The nature of chemical bonds of ruthenium(Ru)–quinine(Q) complexes, mononuclear [Ru(trpy)(3,5-t-Bu2Q)(OH2)](ClO4)2 (trpy = 2,2′:6′,2′′-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear [Ru2(btpyan)(3,6-di-Bu2Q)2(OH2)]2+ (btpyan = 1,8-bis(2,2′:6′,2′′-terpyrid-4′-yl)anthracene, 3,6-t-Bu2Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)–Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems. PMID:22761310
Current-induced torques and interfacial spin-orbit coupling
Haney, Paul M.
2013-12-19
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.
International Nuclear Information System (INIS)
Nikolić, Branislav K; Dragomirova, Ralitsa L
2009-01-01
We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by the intrinsic Rashba spin–orbit (SO) coupling and/or extrinsic SO scattering off impurities in two-dimensional electron gas (2DEG) based devices. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering electrode, we show how decoherence and dephasing in the course of spin precession can lead to the substantial enhancement of the Fano factor (noise-to-current ratio) of spin-polarized charge currents. These processes are suppressed by decreasing the width of the diffusive Rashba wire, so that purely electrical measurement of the shot noise in a ferromagnet|SO-coupled-diffusive-wire|paramagnet setup can quantify the degree of quantum coherence of transported spin through a remarkable one-to-one correspondence between the purity of the spin state and the Fano factor. In four-terminal SO-coupled nanostructures, injection of unpolarized charge current through the longitudinal leads is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. The analysis of the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively, reveals a unique experimental tool to differentiate between the intrinsic Rashba and extrinsic SO mechanisms underlying the spin Hall effect in 2DEG devices. When the intrinsic mechanisms responsible for spin precession start to dominate the spin Hall effect, they also enhance the shot noise of transverse spin and charge transport in multiterminal geometries. Finally, we discuss the shot noise of transverse spin and zero charge
2-Photon tandem device for water splitting
DEFF Research Database (Denmark)
Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard
2014-01-01
Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... absorption, this is the more difficult side to optimize. Nevertheless, by using TiO2 as a transparent cathode protection layer in conjunction with known H-2 evolution catalysts, protection is clearly feasible for a large bandgap photocathode. This suggests that there may be promising strategies...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....
Communication: Tunnelling splitting in the phosphine molecule
Energy Technology Data Exchange (ETDEWEB)
Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2016-09-07
Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.
Splitting Functions at High Transverse Momentum
Moutafis, Rhea Penelope; CERN. Geneva. TH Department
2017-01-01
Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.
Single perturbative splitting diagrams in double parton scattering
Gaunt, Jonathan R.
2013-01-01
We present a detailed study of a specific class of graph that can potentially contribute to the proton-proton double parton scattering (DPS) cross section. These are the `2v1' or `single perturbative splitting' graphs, in which two `nonperturbatively generated' ladders interact with two ladders that have been generated via a perturbative 1 → 2 branching process. Using a detailed calculation, we confirm the result written down originally by Ryskin and Snigirev — namely, that the 2v1 graphs in which the two nonperturbatively generated ladders do not interact with one another do contribute to the leading order proton-proton DPS cross section, albeit with a different geometrical prefactor to the one that applies to the `2v2'/`zero perturbative splitting' graphs. We then show that 2v1 graphs in which the `nonperturbatively generated' ladders exchange partons with one another also contribute to the leading order proton-proton DPS cross section, provided that this `crosstalk' occurs at a lower scale than the 1 → 2 branching on the other side of the graph. Due to the preference in the 2v1 graphs for the x value at which the branching occurs, and crosstalk ceases, to be very much larger than the x values at the hard scale, the effect of crosstalk interactions is likely to be a decrease in the 2v1 cross section except at exceedingly small x values (≲ 10-6). At moderate x values ≃ 10-3 -10-2, the x value at the splitting is in the region ≃ 10-1 where PDFs do not change much with scale, and the effect of crosstalk interactions is likely to be small. We give an explicit formula for the contribution from the 2v1 graphs to the DPS cross section, and combine this with a suggestion that we made in a previous publication, that the `double perturbative splitting'/`1v1' graphs should be completely removed from the DPS cross section, to obtain a formula for the DPS cross section. It is pointed out that there are two potentially concerning features in this equation, that
Neutron resonance spin echo with longitudinal DC fields
Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang
2016-12-01
We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.
Terminal nerve: cranial nerve zero
Directory of Open Access Journals (Sweden)
Jorge Eduardo Duque Parra
2006-12-01
Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.
Tribology Experiment in Zero Gravity
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
Tropical Zero Energy Office Building
DEFF Research Database (Denmark)
Reimann, Gregers Peter; Kristensen, Poul Erik
2006-01-01
lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during......The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... by daylight, supplemented by electric lighting during very dark and overcast periods. Extensive active energy efficiency measures are implemented in the building in order to reduce the need for electricity to an absolute minimum, without compromising the request for comfortable temperatures and adequate...
Spin-orbit torque in two-dimensional antiferromagnetic topological insulators
Ghosh, Sumit
2017-01-24
We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
Evidence for spin to charge conversion in GeTe(111
Directory of Open Access Journals (Sweden)
C. Rinaldi
2016-03-01
Full Text Available GeTe has been predicted to be the father compound of a new class of multifunctional materials, ferroelectric Rashba semiconductors, displaying a coupling between spin-dependent k-splitting and ferroelectricity. In this paper, we report on epitaxial Fe/GeTe(111 heterostructures grown by molecular beam epitaxy. Spin-pumping experiments have been performed in a radio-frequency cavity by pumping a spin current from the Fe layer into GeTe at the Fe ferromagnetic resonance and detecting the transverse charge current originated in the slab due to spin-to-charge conversion. Preliminary experiments indicate that a clear spin to charge conversion exists, thus unveiling the potential of GeTe for spin-orbitronics.
Wolf, M. S.; Badea, R.; Berezovsky, J.
2016-01-01
The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550
Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures
Ortiz Pauyac, Christian
2013-06-26
In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.
Fluid dynamics of giant resonances on high spin states
International Nuclear Information System (INIS)
Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.
1983-01-01
We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)
A black potential for spin less particles
Energy Technology Data Exchange (ETDEWEB)
Ghatak, Ananya, E-mail: gananya04@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Hasan, Mohammad, E-mail: mohammadhasan786@gmail.com [ISRO Satellite Centre (ISAC), Bangalore 560017 (India); Mandal, Bhabani Prasad, E-mail: bhabani@bhu.ac.in [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)
2015-07-03
We consider the most general non-Hermitian Hulthen potential to study the scattering of spin-less relativistic particles. The conditions for CC, SS and CPA are obtained analytically for this potential. We show that almost total absorption occurs for entire range of incidence energy for certain parameter ranges of the potential and hence term this as ‘black potential’. Time reversed of the same potential shows perfect emission for the entire range of particle energy. We also present the classical analog of this potential in terms of waveguide cross section. - Highlights: • Relativistic scattering properties of a spin zero particle due to most general non-Hermitian Hulthen potential are discussed. • Analytical conditions for CC, CPA and SS are obtained. • Broadband CPA is obtained for entire range of incidence energy. • Non-Hermitian Hulthen potential is parametrized in such a way to show broadband CPA and/or CC. • Waveguide analog of such potential is presented.
Calorimetric investigation of an yttrium-dysprosium spin glass
International Nuclear Information System (INIS)
Wenger, L.E.
1978-01-01
In an effort to compare the spin glass characteristics of yttrium--rare earth alloys with those of the noble-metal spin glasses, the susceptibility and heat capacity of Y/sub 0.98/Dy/sub 0.02/ have been measured in the temperature range 2.5--40 K. The low-field ac susceptibility measurement shows the characteristic cusp-like peak at 7.64 K. The magnetic specific heat of the same sample shows a peak at 7.0 K and may be qualitatively described as a semi-cusp. The magnetic entropy change from absolute zero to 7 K is approximately 0.52 of cR ln(2J+1). These results are qualitatively different than previous calorimetric results on the archetypal spin glasses, AuFe and CuMn, where rounded maxima are observed at temperatures above the spin glass transition temperatures
Inverse spin valve effect in multilayer graphene device
International Nuclear Information System (INIS)
Goto, H; Tanaka, S; Tomori, H; Ootuka, Y; Kanda, A; Tsukagoshi, K
2010-01-01
We report the gate-voltage dependence of the spin transport in multilayer graphene (MLG) studied experimentally by the local measurement. The sample consists of a Ni/MLG/Ni junction, where the thickness of the MLG is 9 nm and the spacing of two Ni electrodes is 300 nm. At zero gate voltage, we observed the normal spin valve effect, in which the resistance for the antiparallel alignment of magnetization in ferromagnetic electrodes is larger than that for the parallel alignment. By applying a large gate voltage, on the other hand, the spin valve effect is reversed: the resistance for the antiparallel alignment becomes smaller than that for the parallel alignment. The result is qualitatively interpreted as a quantum interference effect, indicating that the mean free path and the spin relaxation length of the MLG are longer than the electrode spacing (300 nm).
Y Yousefi; H Fakhari; K Muminov; M R Benam
2018-01-01
Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...
Environmental Effects on Quantum Reversal of Mesoscopic Spins
Giraud, R.; Chiorescu, I.; Wernsdorfer, W.; Barbara, B.; Jansen, A. G. M.; Caneschi, A.; Mueller, A.; Tkachuk, A. M.
2002-10-01
We describe what we learnt these last years on quantum reversal of large magnetic moments, using mainly conventional SQUID or micro-SQUID magnetometry. Beside the case of ferromagnetic nanoparticles with 103 - 105 atoms (e.g. Co, Ni, Fe, Ferrites), most fruitful systems appeared to be ensembles of magnetic molecules. These molecules, generally arranged in single crystals, carry relatively small magnetic moments (S = 10 in Mn12-ac and Fe8). They are sufficiently apart from each other not to be coupled by exchange interactions. The ground multiplet is split over an energy barrier of tens of kelvin (≈ 67 K for Mn12) by a strong local crystal field, leading to an Ising-type ground-state. Only weak inter-molecular dipolar interactions are present, as well as intra-molecular interactions, such as hyperfine interactions. Quantum properties of molecule spins are crucially dependent on their magnetic environment of electronic and nuclear spins (the spin bath). Energy fluctuations of the spin bath of about 0.1 K are important, especially at very low temperatures. In particular, they are much larger than the ground-state tunnel splitting of large-spin molecules in low applied fields, of about 10-8 K or even less (such a low value is due to the presence of large energy barriers). Theoretical predictions are experimentally checked for tunneling effects in the presence of non-equilibrated or equilibrated spin-energy distribution. It is also shown that the phonon-bath plays no role in low field, except when the temperature approaches the cross-over temperature to the thermal activation regime. In fact, spin-phonon transitions can play a role only if the tunnel splitting is not too small in comparison with kBT. This is the case both for large-spin molecules in a large magnetic field (e.g. Mn12-ac in a few tesla) and for low-spin molecules, as shown with the study of the molecule V15 (Hilbert space dimension as large as 215 and spin 1/2). We also give our latest results on the
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Spin caloritronics in graphene
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)
2015-06-14
Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.
Spin caloritronics in graphene
Frota, H. O.; Ghosh, Angsula
2014-08-01
Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.
Splitting Strip Detector Clusters in Dense Environments
Nachman, Benjamin Philip; The ATLAS collaboration
2018-01-01
Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.
Structural basis of photosynthetic water-splitting
International Nuclear Information System (INIS)
Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn 4 CaO 5 -cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed
Irrational beliefs, attitudes about competition, and splitting.
Watson, P J; Morris, R J; Miller, L
2001-03-01
Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.
Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7
Hoch, M. J. R.; Kuhns, P. L.; Yuan, S.; Besara, T.; Whalen, J. B.; Siegrist, T.; Reyes, A. P.; Brooks, J. S.; Zheng, H.; Mitchell, J. F.
2013-02-01
The spin structure and spin dynamics in the extended kagome frustrated antiferromagnet YBaCo4O7 have been investigated using zero field and low applied field 59Co NMR. The YBaCo4O7 lattice is made up of bipyramid Co-ion units that form alternating planes of edge-sharing spin triangles and corner-sharing kagome spin triangles in an unusual exchange topology. Our low-temperature spin configuration results, based on hyperfine field orientations, are consistent with those from neutron scattering for the triangle spins which order antiferromagnetically below 106 K. For the kagome spins at low temperatures the static hyperfine fields are found to be oriented orthogonal to those of the triangle spins in a spin-flop configuration that is in disagreement with the neutron findings. Nuclear relaxation rate measurements made as a function of temperature show that inhomogeneous dynamic spin disorder occurs in kagome planes well below the Néel point.
Unitarity of scattering and edge spin accumulation in a ballistic and quasiballistic regimes
Khaetskii, Alexander; Sukhorukov, Eugene
2011-03-01
We consider a 2D ballistic structure with spin-orbit-related splitting of the electron spectrum. We calculated the edge spin density which appears in the presence of a charge current through the structure. Combined effect of the boundary scattering and spin precession leads to oscillations of the edge polarization. The problem is solved with the use of the method of scattering states. We clarified the important role of the unitarity of scattering for the problem of edge spin accumulation. For Rashba Hamiltonian, which is linear in momentum, and in the case of a straight boundary it leads to exact cancellation of long-wave oscillations of the spin density with a period order of spin precession length. However, this appears to be rather exceptional case. In general, the smooth spin oscillations recover, as it happens, e.g., for the wiggly boundary. For qubic Hamiltonian (2D holes) the unitarity scattering conditions are different, as a result, even in the case of a straight boundary the cancellation of the smooth oscillations in spin density does not occur. Similar problem is considered for the case when the sample size is large compared to the mean free path which in its turn is much larger than the spin precession length. For example, for the cubic Hamiltonian the ``edge'' contribution to the spin density can be larger than the ``bulk'' one which appears as a result of the spin flux from the bulk. This demands the reinterpretation of the experimental results.
Spin Start Line Effects on the J2X Gas Generator Chamber Acoustics
Kenny, R. Jeremy
2011-01-01
The J2X Gas Generator engine design has a spin start line connected near to the turbine inlet vanes. This line provides helium during engine startup to begin turbomachinery operation. The spin start line also acts as an acoustic side branch which alters the chamber's acoustic modes. The side branch effectively creates 'split modes' in the chamber longitudinal modes, in particular below the first longitudinal mode and within the frequency range associated with the injection-coupled response of the Gas Generator. Interaction between the spin start-modified chamber acoustics and the injection-driven response can create a higher system response than without the spin start attached to the chamber. This work reviews the acoustic effects of the spin start line as seen throughout the workhorse gas generator test program. A simple impedance model of the spin start line is reviewed. Tests were run with no initial spin start gas existing in the line, as well as being initially filled with nitrogen gas. Tests were also run with varying spin start line lengths from 0" to 40". Acoustic impedance changes due to different spin start gas constituents and line lengths are shown. Collected thermocouple and static pressure data in the spin start line was used to help estimate the fluid properties along the line length. The side branch impedance model was coupled to a chamber impedance model to show the effects on the overall chamber response. Predictions of the spin start acoustic behavior for helium operation are shown and compared against available data.
Directory of Open Access Journals (Sweden)
Giorgio Papini
2017-12-01
Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil
2012-01-01
Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012
Torczynski, John R.
2000-01-01
A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.
Mort Rainey's Split Personality in Secret Window
Sandjaya, Cynthya; Limanta, Liem Satya
2013-01-01
Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...
A split SUSY model from SUSY GUT
Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)
2015-01-01
We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...
Split School of High Energy Physics 2015
2015-01-01
Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.
Are Ducted Mini-Splits Worth It?
Energy Technology Data Exchange (ETDEWEB)
Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory
2018-02-01
Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
Energy Technology Data Exchange (ETDEWEB)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)
2017-01-15
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.
International Nuclear Information System (INIS)
Anon.
1995-01-01
energies of 1.2, 2.5 et 3.6 GeV, underline that spin effects decrease with energy and tend to zero in agreement with the prediction of a nonpertubative quantum chromodynamics (QCD) model, where the strong fluctuations of vacuum gluon fields (instantons) provide the main contribution. The rapid vanishing of neutron-proton difference, observed for the first time, suggests that the prediction is valid for both isospin 0 and 1 states. It will be interesting to take measurements using a transversely polarized beam and target, where different behaviour is expected. With the polarizing solenoid shipped to Mainz for another experiment, the JINR setup needs a new solenoid and superconducting coils for transverse target polarization. Construction has begun in Dubna and Kharkov, respectively. Additional INTAS financial support will be requested
International Nuclear Information System (INIS)
Hakioglu, T
2009-01-01
Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.
International Nuclear Information System (INIS)
Murakami, Shuichi
2009-01-01
We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic