WorldWideScience

Sample records for spin spiral structure

  1. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  2. The spinning ball spiral

    Science.gov (United States)

    Dupeux, Guillaume; Le Goff, Anne; Quéré, David; Clanet, Christophe

    2010-09-01

    We discuss the trajectory of a fast revolving solid ball moving in a fluid of comparable density. As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant: at the characteristic distance L where the ball speed is significantly affected by the drag, the bending of the trajectory increases, surprisingly. Later, the rotation speed decreases, which makes the ball follow a second kind of spiral, also described in the paper. Finally, the use of these highly curved trajectories is shown to be relevant to sports.

  3. Theory of spiral structure

    International Nuclear Information System (INIS)

    Lin, C.C.

    1977-01-01

    The density wave theory of galactic spirals has now developed into a form suitable for consideration by experts in Applied Mechanics. On the one hand, comparison of theoretical deductions with observational data has convinced astrophysicists of the validity of the basic physical picture and the calculated results. On the other hand, the dynamical problems of a stellar system, such as those concerning the origin of spiral structure in galaxies, have not been completely solved. This paper reviews the current status of such developments, including a brief summary of comparison with observations. A particularly important mechanism, currently called the mechanism of energy exchange, is described in some detail. The mathematical problems and the physical processes involved are similar to those occurring in certain instability mechanisms in the 'magnetic bottle' designed for plasma containment. Speculations are given on the future developments of the theory and on observational programs. (Auth.)

  4. Theory of magnetic-field-induced polarization flop in spin-spiral multiferroics

    Science.gov (United States)

    Mochizuki, Masahito

    2015-12-01

    The magnetic-field-induced 90∘ flop of ferroelectric polarization P in a spin-spiral multiferroic material TbMnO3 is theoretically studied based on a microscopic spin model. I find that the direction of the P flop or the choice of +Pa or -Pa after the flop is governed by magnetic torques produced by the applied magnetic field H acting on the Mn spins and thus is selected in a deterministic way, in contradistinction to the naively anticipated probabilistic flop. This mechanism resolves a puzzle of the previously reported memory effect in the P direction depending on the history of the magnetic-field sweep, and enables controlled switching of multiferroic domains by externally applied magnetic fields. My Monte-Carlo analysis also uncovers that the magnetic structure in the P ∥a phase under H ∥b is not a previously anticipated simple a b -plane spin cycloid but a conical spin structure.

  5. Topological Signatures in the Electronic Structure of Graphene Spirals

    DEFF Research Database (Denmark)

    Avdoshenko, Stas.M.; Koskinen, Pekka; Sevincli, Haldun

    2013-01-01

    and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian...... constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work....

  6. Topological magnetoelectric memory effect in the spin-spiral multiferroic MnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Dennis; Leo, Naemi; Lottermoser, Thomas; Fiebig, Manfred [HISKP, Universitaet Bonn (Germany); Becker, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2010-07-01

    Within the field of multiferroics, i.e. compounds with coexisting magnetic and electric order, so-called spin-spiral ferroelectrics attract tremendous attention. In these systems magnetic long-range order violates the inversion symmetry and induces a spontaneous electric polarization. Magnetic and electric domains are thus rigidly coupled so that ''giant'' magnetoelectric effects are obtained. However, up to now nearly nothing is know about the topology of the domain state in these systems. We report spatially-resolved measurements of the multiferroic domain topology in MnWO{sub 4}. For the first time, the full three-dimensional domain structure in a spin-spiral system is imaged. Our study reveals that the multiferroic domains in magnetically-induced ferroelectrics unify features that are associated to a magnetic domain state and others that point unambiguously to ferroelectric domains. Hence, a description in terms of ferroelectric or antiferromagnetic domains is incomplete and no longer appropriate. The novel concept of ''multiferroic hybrid domains'' is introduced. Annealing cycles reveal a topological memory effect: Due to phase coexistence at one phase boundary limiting the multiferroic state in MnWO{sub 4}, the entire multiferroic multidomain state can be reconstructed subsequent to quenching it.

  7. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  8. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet.

    Science.gov (United States)

    Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R

    2009-10-09

    Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.

  9. Self-regulated model of galactic spiral structure formation.

    Science.gov (United States)

    Cartin, Daniel; Khanna, Gaurav

    2002-01-01

    The presence of spiral structure in isolated galaxies is a problem that has only been partially explained by theoretical models. Because the rate and pattern of star formation in the disk must depend only on mechanisms internal to the disk, we may think of the spiral galaxy as a self-regulated system far from equilibrium. This paper uses this idea to look at a reaction-diffusion model for the formation of spiral structures in certain types of galaxies. In numerical runs of the model, spiral structure forms and persists over several revolutions of the disk, but eventually dies out.

  10. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland

    2014-10-01

    The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.

  11. Spiral Antenna-Coupled Microbridge Structures for THz Application.

    Science.gov (United States)

    Gou, Jun; Zhang, Tian; Wang, Jun; Jiang, Yadong

    2017-12-01

    Bolometer sensor is a good candidate for THz imaging due to its compact system, low cost, and wideband operation. Based on infrared microbolometer structures, two kinds of antenna-coupled microbridge structures are proposed with different spiral antennas: spiral antenna on support layer and spiral antenna with extended legs. Aiming at applications in detection and imaging, simulations are carried out mainly for optimized absorption at 2.52 THz, which is the radiation frequency of far-infrared CO 2 lasers. The effects of rotation angle, line width, and spacing of the spiral antenna on THz wave absorption of microbridge structures are discussed. Spiral antenna, with extended legs, is a good solution for high absorption rate at low absorption frequency and can be used as electrode lead simultaneously for simplified manufacturing process. A spiral antenna-coupled microbridge structure with an absorption rate of more than 75% at 2.52 THz is achieved by optimizing the structure parameters. This research demonstrates the use of different spiral antennas for enhanced and tunable THz absorption of microbridge structures and provides an effective way to fabricate THz microbolometer detectors with great potential in the application of real-time THz imaging.

  12. Switching of a spin-spiral-induced polarization in multiferroic MnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Tim; Meier, Dennis; Fiebig, Manfred [HISKP, Universitaet Bonn (Germany); Becker-Bohaty, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2010-07-01

    Coexisting ferroic orders become interesting when there is an interaction between them. Especially applying an electric field and thus changing the magnetic order is highly desirable for possible applications. In spite of the declared interest in multiferroics to switch a magnetization by an electric field nothing is known about the dynamics of the actual switching process. The coupling of ferroelectric and magnetic order is intrinsically strong in spin-spiral multiferroics, where ferroelectricity emerges as a consequence of complex magnetic long-range order. Here we observe the manipulation of magnetically-induced ferroelectric domains in MnWO{sub 4} by optical second harmonic generation (SHG). Application of an electric field allows to transform the sample to an electric as well as magnetic single-domain state. Moreover we obtained images of the domain structures during the transition revealing the growth of the domains. When cooled in zero-field, the domains have a bubble-like topology. Interestingly, after recovery from a single domain state the shape changes to a stripe structure and the domain size is significantly increased. Effects of the shape and duration of the electric-field poling pulses are investigated. Furthermore, in contrast to typical ionic ferroelectrics the spontaneous polarization can be switched without fatigue - no defects or pinning effects constrain the movement of domain walls.

  13. Spiral spin state in high-temperature copper-oxide superconductors: evidence from neutron scattering measurements.

    Science.gov (United States)

    Lindgård, Per-Anker

    2005-11-18

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45 degrees around the resonance energy . The intensity has a 2D character even in a single twin crystal. The value of is related to the nesting properties of the Fermi surface. The excitations above are shown to be due to in-plane spin fluctuations, a testable difference from the stripe model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state.

  14. Time resolved reversal of spin-spiral domains by an electric field in multiferroic MnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Philip; Hoffmann, Tim; Fiebig, Manfred [University Bonn, HISKP (Germany); Becker, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet Koeln (Germany)

    2011-07-01

    The interaction of magnetic and ferroelectric order is intrinsically strong in spin-spiral multiferroics. Here the complex magnetic long range order breaks inversion symmetry and induces a spontaneous electric polarization. The interaction allows for switching of the magnetization by means of an applied electric field and is thus of great interest for possible applications. So far there exists little information on the time scale and dynamics of the actual switching process. Here we report time resolved measurements of the reversal of spin-spiral domains in multiferroic MnWO{sub 4} by optical second harmonic generation. Magnetic single-domain states are created by the application of an electric field. By reversing its polarity, a reversal of the magnetic domain state occurs. The time scale of the dynamic switching process is found to be in the ms region. Images of the domain-reversal process are obtained. The dynamic domain pattern differs substantially from that of quasi-statically switched multi domain structures.

  15. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation...

  16. The dynamics of the spiral structure in galaxies

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1979-01-01

    The basic ideas and current problems of the linear and non-linear theory of spiral structure are reviewed. Some recent work on the response density and possible self-consistent solutions of bars with an Inner Lindblad Resonance are described. (Auth.)

  17. 3D-accelerated, stack-of-spirals acquisitions and reconstruction of arterial spin labeling MRI.

    Science.gov (United States)

    Chang, Yulin V; Vidorreta, Marta; Wang, Ze; Detre, John A

    2017-10-01

    The goal of this study was to develop a 3D acceleration and reconstruction method to improve image quality and resolution of background-suppressed arterial spin-labeled perfusion MRI. Accelerated acquisition was implemented in all three k-space dimensions in a stack-of-spirals readout using variable density spirals and partition undersampling. A single 3D self-consistent parallel imaging (SPIRiT) kernel was calibrated and iteratively applied to reconstruct each imaging volume. Whole-brain (including cerebellum) perfusion imaging was obtained at 3-mm isotropic resolution (nominal) using single- and 2-shot acquisitions and at 2-mm isotropic resolution (nominal) using four-shot acquisitions, achieving effective acceleration factors between 5.5 and 6.6. The signal-to-noise (SNR) performance of 3D SPIRiT was evaluated. The temporal SNR (tSNR) of the cerebral blood flow (CBF) maps and the gray/white matter CBF ratios were quantified. The readout of the arterial spin labeling (ASL) sequence was significantly shortened with acceleration. The CBF values were consistent between accelerated and fully sampled ASL. With shorter spiral interleaves and shorter echo trains, the accelerated images demonstrated reduced blurring and signal dropout in regions with high susceptibility gradients, resulting in improved image quality and increased gray/white matter CBF ratios. The shortened readout was accompanied by a corresponding decrease in tSNR. The 3D acceleration and reconstruction allow a rapid whole-brain readout that improved the quality of ASL perfusion imaging. Magn Reson Med 78:1405-1419, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  19. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    Directory of Open Access Journals (Sweden)

    Mehrtash Babadi

    2015-10-01

    Full Text Available We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014PRLTAO0031-900710.1103/PhysRevLett.113.147205].

  20. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  1. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    a detailed knowledge of it can be important for applications of antiferromagnetic nanoparticles for example combined with ferromagnetic nanoparticles in nanocomposite devices. In this thesis the magnetic structure, in particular the orientation of the spins in the antiferromagnetic sublattices......, proposed to explain the unusual magnetic properties of the mineral. In summary the thesis have demonstrated methods for investigation of spin structures in magnetic nanoparticles. In particular, the classical model of the temperature dependence of canted spin structures sucessfully explains many...... experimental observations of anomalous temperature dependence in nanoparticle and bulk systems. Morover, XY Z neutron polarisation analysis have been demonstrated to be an effective way of investigating the magnetic properties of antiferromagnetic nanoparticles, significantly improving the unpolarised neutron...

  2. Spin flexoelectricity and chiral spin structures in magnetic films

    OpenAIRE

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments bas...

  3. RFID Tag Design Using Spiral Resonators and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    M. Veysi

    2017-12-01

    Full Text Available This paper presents a simple generalized approach to design a compact chipless radio frequency identification tag. The proposed chipless tag encodes data into the spectral signature using a set of spiral resonators on both sides of substrate. Transmission amplitude component of the tag is used for data encoding. For miniaturization purpose, defected ground structure is used to reduce the circuit size by half compared to the conventional cascading technique. The proposed chipless tag operates between 4-6 GHz and produces 256 different binary strings through eight encoded bits. Measurement and simulation results verify the authenticity of this design.

  4. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  5. Spin flexoelectricity and chiral spin structures in magnetic films

    Science.gov (United States)

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-06-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models.

  6. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  7. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  8. Measurement and structure of spiral wave response functions

    Science.gov (United States)

    Dierckx, Hans; Verschelde, Henri; Panfilov, Alexander V.

    2017-09-01

    The rotating spiral waves that emerge in diverse natural and man-made systems typically exhibit a particle-like behaviour since their adjoint critical eigenmodes (response functions) are often seen to be localised around the spiral core. We present a simple method to numerically compute response functions for circular-core and meandering spirals by recording their drift response to many elementary perturbations. Although our method is computationally more expensive than solving the adjoint system, our technique is fully parallellisable, does not suffer from memory limitations and can be applied to experiments. For a cardiac tissue model with the linear spiral core, we find that the response functions are localised near the turning points of the trajectory.

  9. Spin flexoelectricity and chiral spin structures in magnetic films

    International Nuclear Information System (INIS)

    Pyatakov, A.P.; Sergeev, A.S.; Mikailzade, F.A.; Zvezdin, A.K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. - Highlights: • Magnetic structure formation in thin films is analogous to flexoelectric phenomena in crystals. • The microscopic mechanism of spin flexoelectricity is the antisymmetric exchange. • Spin cycloid in thin film of metals can be the result of Rashba interaction in 2DEG. • The chirality-dependent Néel-type magnetic domain wall motion is observed in electric field

  10. Spin flexoelectricity and chiral spin structures in magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Pyatakov, A.P., E-mail: pyatakov@physics.msu.ru [M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119991 (Russian Federation); Sergeev, A.S. [M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119991 (Russian Federation); Mikailzade, F.A. [Department of Physics, Gebze Technical University, Gebze, 41400 Kocaeli (Turkey); Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Vavilova St., 38, Moscow 119991 (Russian Federation)

    2015-06-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. - Highlights: • Magnetic structure formation in thin films is analogous to flexoelectric phenomena in crystals. • The microscopic mechanism of spin flexoelectricity is the antisymmetric exchange. • Spin cycloid in thin film of metals can be the result of Rashba interaction in 2DEG. • The chirality-dependent Néel-type magnetic domain wall motion is observed in electric field.

  11. Galaxy Zoo: the large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey

    Science.gov (United States)

    Land, Kate; Slosar, Anže; Lintott, Chris; Andreescu, Dan; Bamford, Steven; Murray, Phil; Nichol, Robert; Raddick, M. Jordan; Schawinski, Kevin; Szalay, Alex; Thomas, Daniel; Vandenberg, Jan

    2008-08-01

    We re-examine the evidence for a violation of large-scale statistical isotropy in the distribution of projected spin vectors of spiral galaxies. We have a sample of ~37000 spiral galaxies from the Sloan Digital Sky Survey, with their line of sight spin direction confidently classified by members of the public through the online project Galaxy Zoo. After establishing and correcting for a certain level of bias in our handedness results we find the winding sense of the galaxies to be consistent with statistical isotropy. In particular, we find no significant dipole signal, and thus no evidence for overall preferred handedness of the Universe. We compare this result to those of other authors and conclude that these may also be affected and explained by a bias effect. This publication has been made possible by the participation of more than 100000 volunteers in the Galaxy Zoo project: http://www.galaxyzoo.org/Volunteers.aspx. E-mail: krl@astro.ox.ac.uk (KL); anze@berkeley.edu (AS)

  12. Experimental Investigation of the Spiral Structure of a Magnetic Capsule Endoscope

    Directory of Open Access Journals (Sweden)

    Wanan Yang

    2016-06-01

    Full Text Available Fitting a wireless capsule endoscope (WCE with a navigation feature can maximize its functional benefits. The rotation of a spiral-type capsule can be converted to translational motion. The study investigated how the spiral structure and rotational speed affected the capsule's translation speed. A hand-held instrument, including two permanent magnets, a stepper motor, a controller and a power supplier, were designed to generate rotational magnetic fields. The surfaces of custom-built permanent magnet rings magnetized radially were mounted in spiral lines with different lead angles and diameters, acting as mock-up capsules. The experimental results demonstrate that the rotational speed of the magnetic field and the spiral have significant effects on the translational speed of a capsule. The spiral line with a larger lead angle and the rotating magnetic field with a higher speed can change the capsule's rotation into a translational motion more efficiently in the intestine.

  13. UNCOVERING THE ORIGINS OF SPIRAL STRUCTURE BY MEASURING RADIAL VARIATION IN PATTERN SPEEDS

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Rand, Richard J.; Merrifield, Michael R.

    2009-01-01

    Current theories of spiral and bar structure predict a variety of pattern speed behaviors, calling for detailed, direct measurement of the radial variation of pattern speeds. Our recently developed Radial Tremaine-Weinberg (TWR) method allows this goal to be achieved for the first time. Here, we present TWR spiral pattern speed estimates for M101, IC 342, NGC 3938, and NGC 3344 in order to investigate whether spiral structure is steady or winding, whether spirals are described by multiple pattern speeds, and the relation between bar and spiral speeds. Where possible, we interpret our pattern speeds estimates according to the resonance radii associated with each (established with the disk angular rotation), and compare these to previous determinations. By analyzing the high-quality H I and CO data cubes available for these galaxies, we show that it is possible to determine directly multiple pattern speeds within these systems, and hence identify the characteristic signatures of the processes that drive the spiral structure. Even this small sample of galaxies reveals a surprisingly complex taxonomy, with the first direct evidence for the presence of resonant coupling of multiple patterns found in some systems, and the measurement of a simple single-pattern speed in others. Overall, this study demonstrates that we are now in a position to uncover more of the apparently complex physics that lies behind spiral structure.

  14. Spiral-Spin-Driven Ferroelectricity in a Multiferroic Delafossite AgFeO2

    Science.gov (United States)

    Terada, Noriki; Khalyavin, Dmitry D.; Manuel, Pascal; Tsujimoto, Yoshihiro; Knight, Kevin; Radaelli, Paolo G.; Suzuki, Hiroyuki S.; Kitazawa, Hideaki

    2012-08-01

    We have performed dielectric measurements and neutron diffraction experiments on the delafossite AgFeO2. A ferroelectric polarization P≃300μC/m2 was observed in a powder sample, below 9 K. The neutron diffraction experiment demonstrated successive magnetostructural phase transitions at TN1=15K and TN2=9K. The magnetic structure for 9K≤T≤15K is a spin-density wave with a temperature dependent incommensurate modulation k=(-1,q,(1)/(2)), q≃0.384. Below 9 K, the magnetic structure turns into elliptical cycloid with the incommensurate propagation vector k=(-(1)/(2),q,(1)/(2)), q≃0.2026 Based on the deduced magnetic point-group symmetry m1' of the low-temperature polar phase, we conclude that the ferroelectric polarization in AgFeO2 is perpendicular to the monoclinic b axis and is driven by the inverse Dzyaloshinskii-Moriya effect with two orthogonal components p1∝rij×(Si×Sj) and p2∝Si×Sj.

  15. Study on the Orion spiral arm structure by the statistical modelling method

    International Nuclear Information System (INIS)

    Basharina, T.S.; Pavlovskaya, E.D.; Filippova, A.A.

    1980-01-01

    A method of investigation of the spiral structure based on the statistical modelling methods is suggested. This method is used for the study of the Orion spiral arm. The maxima of density and the widths of the Orion arm in the direction of the areas considered for the longitude interval 55 deg - 187 deg are defined under the assumption of normal distribution of stars across the arm. The Sun is shown to be at the inner edge of the arm [ru

  16. Erratum: Spiral structure in the accretion disc of the binary IP Pegasi

    Science.gov (United States)

    Steeghs, D.; Harlaftis, E. T.; Horne, Keith

    1998-05-01

    The paper `Spiral structure in the accretion disc of the binary IP Pegasi' was published in Mon. Not. R. Astron. Soc. 290, L28-L32 (1997). Figs 1 and 2 of the paper (grey-scale images) did not reproduce well, and are reprinted here (Fig. 1 overleaf). Colour versions of the images are available on the World Wide Web:http://www-star.st-and.ac.uk/^~ds10/spirals.html

  17. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    driven polarization flop in TbMnO3. The Néel wall-like magnetic structure in spiral multiferroics induces a space-dependent internal magnetic field which exerts a torque on spins to rotate bc-spiral to abspiral. The external magnetic field is argued ...

  18. Galactic masers: Kinematics, spiral structure and the disk dynamic state

    Science.gov (United States)

    Rastorguev, A. S.; Utkin, N. D.; Zabolotskikh, M. V.; Dambis, A. K.; Bajkova, A. T.; Bobylev, V. V.

    2017-04-01

    We applied the currently most comprehensive version of the statistical-parallax technique to derive kinematical parameters of the maser sample with 136 sources. Our kinematic model comprises the overall rotation of the Galactic disk and the spiral density-wave effects. We take into account the variation of radial velocity dispersion with Galactocentric distance. The best description of the velocity field is provided by the model with constant radial and vertical velocity dispersions, $(\\sigma U0, \\sigma W0) \\approx (9.4 \\pm 0.9~, 5.9 \\pm 0.8)~ km/s$. We compute flat Galactic rotation curve over the Galactocentric distance interval from 3 to 15 kpc and find the local circular rotation velocity to be $ V_0 \\approx (235-238)$~ km/s $\\pm 7$~ km/s. We also determine the parameters of the four-armed spiral pattern (pitch angle $i \\approx (-10.4 \\pm 0.3)^\\circ$ and the phase of the Sun $\\chi_0 \\approx (125 \\pm 10) ^\\circ$). The radial and tangential spiral perturbations are about $f_R \\approx (-6.9 \\pm 1.4)$~km/s, $f_\\Theta \\approx (+2.8 \\pm 1.0$) ~km/s. The kinematic data yield a solar Galactocentric distance of $R_0 \\approx (8.24 \\pm 0.12)~kpc$. Based on rotation curve parameters and the asymmetric drift we Infer the exponential disk scale $H_D \\approx (2.7 \\pm 0.2)$ ~kpc under assumption of marginal stability of the intermediate-age disk, and finally we estimate the minimum local surface disk density, $\\Sigma (R_0) > (26 \\pm 3) ~ M_\\odot pc^{-2}$.

  19. The spin structure of the deuteron

    International Nuclear Information System (INIS)

    Frois, B.

    1993-01-01

    The SMC collaboration has measured for the first time the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons. The first moment is smaller than the prediction of the Ellis-Jaffe sum rules. It was found that the fraction of the nucleon spin carried by strange quarks Δs is appreciable and negative. Using earlier measurements of g 1 p , the first moment of the spin-dependent neutron structure function g 1 n is calculated. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. No significant deviations from the prediction of the Bjorken sum-rule has been found. (author) 52 refs., 19 figs., 2 tabs

  20. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    degrees around the resonance energy E-res. The intensity has a 2D character even in a single twin crystal. The value of E-res is related to the nesting properties of the Fermi surface. The excitations above E-res are shown to be due to in-plane spin fluctuations, a testable difference from the stripe...

  1. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Deur, A.

    2008-02-01

    This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon

  2. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  3. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  4. The spin structure of the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Frois, B. [DAPNIA/SPHN, Gif-sur-Yvette (France)

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{sup p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.

  5. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    However, nuclear structure at high spin and excitation energies (∼ 6 MeV) would require a coupling of excited 1p–1h with 208Pb core. The coupling between single- particle orbitals and collective vibrations of core complicates the simple shell model picture. With increasing neutron number, Ra isotopes show an abrupt ...

  6. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Science.gov (United States)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  7. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  8. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.

    Science.gov (United States)

    Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui

    2017-07-12

    Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.

  9. High-spin structure of 104Pd

    Science.gov (United States)

    Sohler, D.; Kuti, I.; Timár, J.; Joshi, P.; Molnár, J.; Paul, E. S.; Starosta, K.; Wadsworth, R.; Algora, A.; Bednarczyk, P.; Curien, D.; Dombrádi, Zs.; Duchene, G.; Fossan, D. B.; Gál, J.; Gizon, A.; Gizon, J.; Jenkins, D. G.; Juhász, K.; Kalinka, G.; Koike, T.; Krasznahorkay, A.; Nyakó, B. M.; Raddon, P. M.; Rainovski, G.; Scheurer, J. N.; Simons, A. J.; Vaman, C.; Wilkinson, A. R.; Zolnai, L.

    2012-04-01

    The high-spin structure of the nucleus 104Pd was studied through the 96Zr(13C,5n) reaction at incident energies of 51 and 58 MeV, using the Euroball IV γ-ray spectrometer in conjunction with the DIAMANT charged-particle array. Several new medium- and high-spin bands were revealed. The already known positive-parity yrast and the negative-parity cascades were extended up to Ex˜13, ˜11, and ˜9 MeV with Iπ=(26+), Iπ=(23-), and (20-), respectively. The deduced band structures were compared with Woods-Saxon total Routhian surface (TRS) calculations. In addition, non-yrast low-lying positive-parity bands were identified, which were assigned to soft γ-vibrational excitations.

  10. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas

    Science.gov (United States)

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-01

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360* n ( n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  11. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas.

    Science.gov (United States)

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-05

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  12. Spin structure of nucleon in QCD: inclusive and exclusive processes

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    2001-01-01

    There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes

  13. High-spin structure in 40K

    Science.gov (United States)

    Söderström, P.-A.; Recchia, F.; Nyberg, J.; Gadea, A.; Lenzi, S. M.; Poves, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Cederwall, B.; Charles, L.; Chavas, J.; Colosimo, S.; Crespi, F. C. L.; Cullen, D. M.; de Angelis, G.; Désesquelles, P.; Dosme, N.; Duchêne, G.; Eberth, J.; Farnea, E.; Filmer, F.; Görgen, A.; Gottardo, A.; Grębosz, J.; Gulmini, M.; Hess, H.; Hughes, T. A.; Jaworski, G.; Jolie, J.; Joshi, P.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Karolak, M.; Kempley, R. S.; Khaplanov, A.; Korten, W.; Ljungvall, J.; Lunardi, S.; Maj, A.; Maron, G.; Męczyński, W.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Nolan, P. J.; Norman, M.; Obertelli, A.; Podolyak, Zs.; Pullia, A.; Quintana, B.; Redon, N.; Regan, P. H.; Reiter, P.; Robinson, A. P.; Şahin, E.; Simpson, J.; Salsac, M. D.; Smith, J. F.; Stézowski, O.; Theisen, Ch.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Wiens, A.

    2012-11-01

    High-spin states of 40K have been populated in the fusion-evaporation reaction 12C(30Si,np)40K and studied by means of γ-ray spectroscopy techniques using one triple-cluster detector of the Advanced Gamma Tracking Array at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro. Several states with excitation energy up to 8 MeV and spin up to 10- have been discovered. These states are discussed in terms of J=3 and T=0 neutron-proton hole pairs. Shell-model calculations in a large model space have shown good agreement with the experimental data for most of the energy levels. The evolution of the structure of this nucleus is here studied as a function of excitation energy and angular momentum.

  14. Spin excitation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V

    2002-01-01

    In terms of s-d-exchange model one studied spin excitations and relaxation in granular structures with metallic ferromagnetic nanoparticles in an insulating amorphous matrix. One studies spins of granule as a d-system; s-system represents a multitude of localized electrons of amorphous matrix. In terms of single-ring approximation on the basis of s-d-exchange interaction for the Green spin function expansion one determined spectrum of spin excitations composed of spin-wave excitations of granules and spin-polarization excitations. One studied spin-polarization relaxation occurring by way of spin-polarization excitations. Spin-polarization relaxation was determined to be efficient one within wide range of frequencies. Evaluations made for structures containing cobalt granules show that one should observe it in the centimeter, the millimeter and the submillimeter ranges of wavelength

  15. Flexibility in the structure of spiral flowers and its underlying mechanisms.

    Science.gov (United States)

    Wang, Peipei; Liao, Hong; Zhang, Wengen; Yu, Xianxian; Zhang, Rui; Shan, Hongyan; Duan, Xiaoshan; Yao, Xu; Kong, Hongzhi

    2015-12-07

    Spiral flowers usually bear a variable number of organs, suggestive of the flexibility in structure. The mechanisms underlying the flexibility, however, remain unclear. Here we show that in Nigella damascena, a species with spiral flowers, different types of floral organs show different ranges of variation in number. We also show that the total number of organs per flower is largely dependent on the initial size of the floral meristem, whereas the respective numbers of different types of floral organs are determined by the functional domains of corresponding genetic programmes. By conducting extensive expression and functional studies, we further elucidate the genetic programmes that specify the identities of different types of floral organs. Notably, the AGL6-lineage member NdAGL6, rather than the AP1-lineage members NdFL1/2, is an A-function gene, whereas petaloidy of sepals is not controlled by AP3- or PI-lineage members. Moreover, owing to the formation of a regulatory network, some floral organ identity genes also regulate the boundaries between different types of floral organs. On the basis of these results, we propose that the floral organ identity determination programme is highly dynamic and shows considerable flexibility. Transitions from spiral to whorled flowers, therefore, may be explained by evolution of the mechanisms that reduce the flexibility.

  16. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  17. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  18. Magnetic structure of the spin valve interface

    International Nuclear Information System (INIS)

    Nicholson, D.M.C.; Butler, W.H.; Zhang, X.; MacLaren, J.M.; Gurney, B.A.; Speriosu, V.S.

    1994-01-01

    Nonferromagnetic atoms present at Ni/Cu and Permalloy/Cu interfaces in sputtered spin valve magnetoresistive layered structures have been shown to cause reduced magnetoresistance. Here we show that a model in which the moments on the Ni atoms in the interfacial region of Ni/Cu are reduced substantially by interdiffusion with Cu is consistent with the experimental results. In contrast, we believe that moments persist at the permalloy/Cu interface, which first principle total energy calculations suggest will be disordered at finite temperatures. These reduced or disordered moments are expected to significantly reduce the GMR

  19. MIT bag model and the spin structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Afsar (Manchester Univ. (UK). Dept. of Theoretical Physics)

    1989-07-01

    The expressions for the total probabilities of the u and d quarks to have spins parallel or antiparallel to the spin of the parent proton are obtained in the MIT bag model. These are then used to study the spin structure of the nucleon. (author).

  20. Temperature dependent spin structures in Hexaferrite crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Y.C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chun, S.H.; Kim, K.H. [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-01

    In this work, the Hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state. - Highlights: • For the first time Ferromagnetic Resonance is used to probe the local magnetic structure of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22.} • The multiphases in the single crystal is identified, which provides important information toward its future application for the magnetoelectric devices.

  1. Katanin spiral and ring structures shed light on power stroke for microtubule severing

    Energy Technology Data Exchange (ETDEWEB)

    Zehr, Elena; Szyk, Agnieszka; Piszczek, Grzegorz; Szczesna, Ewa; Zuo, Xiaobing; Roll-Mecak, Antonina

    2017-08-07

    Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of 3D structures, their mechanism has remained poorly understood. We report the first X-ray structure of the monomeric AAA katanin module and cryo-EM reconstructions of the hexamer in two conformations. These reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to severing enzymes and critical for their function. Our reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes inter-protomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.

  2. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    Gurieva, Tatiana

    2016-05-01

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  3. Structure of spin-dependent scattering amplitude and spin effects at small angles at RHIC energies

    International Nuclear Information System (INIS)

    Akchurin, N.; Goloskokov, S.V.; Selyugin, O.V.

    1997-01-01

    Spin-dependent pomeron effects are analyzed for elastic pp-scattering and calculations for spin-dependent differential cross sections, analyzing power and double-spin correlation parameters are carried out for the energy range of the Relativistic Heavy Ion Collider (RHIC) at BNL. In this energy range, 50 ≤√≤500 GeV, the structure of pomeron-proton coupling can be measured at RHIC with colliding polarized proton beams

  4. Detection of changes in the structure and distribution map of triacylglycerol in fatty liver model by MALDI-SpiralTOF

    Directory of Open Access Journals (Sweden)

    Kahoko Nishikawa

    2014-01-01

    Full Text Available Matrix-assisted laser desorption/ionisation spiral orbit-type time-of-flight mass spectrometry (MALDI-SpiralTOF can analyse lipid profiles and characterise lipid structure. Imaging mass spectrometry (IMS also provides distribution maps of selected m/z values. Here, we investigated triacylglycerol (TG structure and distribution using these technologies to estimate mouse fatty liver. The distribution and intensity of the most intense mass spectrum ion was indicated by IMS at m/z 881.7 (52:2. Analysis using MS/MS showed a structural change between liver TG and dietary TG. These findings suggest that MALDI-SpiralTOF is a powerful tool for clinical screening and estimating fatty liver.

  5. Structure and spin of the nucleon

    Directory of Open Access Journals (Sweden)

    Avakian H.

    2014-03-01

    Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs in semi-inclusive and hard exclusive processes providing access to TMDs and GPDs, respectively. Facilities world-wide involved in studies of the 3D structure of nucleon include HERMES, COMPASS, BELLE, BaBar, Halls A, B, and C at JLab, and PHENIX and STAR at RHIC (BNL. TMD studies in the Drell-Yan process are also becoming an important part of the program of hadron scattering experiments. Studies of TMDs are also among the main driving forces of the JLab 12-GeV upgrade project, several of the forward upgrade proposals of STAR and PHENIX at RHIC, and future facilities, such as the Electron Ion Collider (EIC, FAIR in Germany, and NICA in Russia. In this contribution we present an overview of the latest developments in studies of parton distributions and discuss newly released results, ongoing activities, as well as some future measurements.

  6. Rossby vortices, spiral structures, solitons astrophysics and plasma physics in shallow water experiments

    CERN Document Server

    Nezlin, Mikhail V

    1993-01-01

    This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo­ spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...

  7. A New Dataset of Automatically Extracted Structure of Arms and Bars in Spiral Galaxies

    Science.gov (United States)

    Hayes, Wayne B.; Davis, D.

    2012-05-01

    We present an algorithm capable of automatically extracting quantitative structure (bars and arms) from images of spiral galaxies. We have run the algorithm on 30,000 galaxies and compared the results to human classifications generously provided pre-publication by the Galaxy Zoo 2 team. In all available measures, our algorithm agrees with the humans about as well as they agree with each other. In addition we provide objective, quantitative measures not available in human classifications. We provide a preliminary analysis of this dataset to see how the properties of arms and bars vary as a function of basic variables such as environment, redshift, absolute magnitude, and color. We also show how structure can vary across wavebands as well as along and across individual arms and bars. Finally, we present preliminary results of a measurement of the total angular momentum present in our observed set of galaxies with an eye towards determining if there is a preferred "handedness" in the universe.

  8. Effects of spin-orbit coupling on the spin structure of deposited transition-metal clusters

    Science.gov (United States)

    Mankovsky, S.; Bornemann, S.; Minár, J.; Polesya, S.; Ebert, H.; Staunton, J. B.; Lichtenstein, A. I.

    2009-07-01

    The influence of the spin-orbit coupling on the magnetic structure of deposited transition-metal nanostructures has been studied by fully relativistic electronic-structure calculations. The interplay of exchange coupling and magnetic anisotropy was monitored by studying the corresponding magnetic torque calculated within ab initio and model approaches. We find that a spin-orbit-induced Dzyaloshinski-Moriya interaction has a profound effect on the spin structure of such complex magnetic systems and that in combination with magnetic anisotropies and isotropic exchange this can result in peculiar magnetic properties.

  9. A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    J. Wang

    2014-04-01

    Full Text Available A novel compact narrow-band bandstop filter is implemented by using the proposed spiral-shaped defected microstrip structure (SDMS in this paper. Compared with other DMSs, the presented SDMS exhibits the advantage of compact size and narrow stopband. Meanwhile, an approximate design rule of the SDMS is achieved and the effects of the dimensions on the resonant frequency and 3 dB fractional bandwidth (FBW are analyzed in detail. Both the simulation and measurement results of the fabricated bandstop filter show that it has a 10 dB stopband from 3.4 GHz to 3.6 GHz with more than 45 dB rejection at the center frequency.

  10. Spin structure of the nucleon and triangle anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1988-01-01

    It is shown that the gluon contribution to the sum rule for spin parton distribution functions which determines the spin of the nucleon is fixed by the axial Adler-Bell-Jackiw anomaly. The new sum rule is consistent with OCD evolution equations and predicts that quarks carry about 70% of the nucleon spin. The gluon contribution results in negative extra term to the Ellis-Jaffe sum rule for the structure function g 1 which accounts for its disagreement with experiment

  11. Logarithmic Spiral

    Indian Academy of Sciences (India)

    anti-clockwise direction and we get a right-handed spiral. (Figure 2). We know that the derivative of eX is also eX. Various properties of logarithmic spiral depend on this property of eX. Properties of Logarithmic Spiral. 1. The most important property of a logarithmic spiral is that r (i.e. the distance from the origin) increases.

  12. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    coupled to semi-empirical hardness theory proved effective in hardness prediction for the metal borides which agree well with the experimental values. These results would help to gain insight into the spin-polarized effect on the structural and bond hardness. Keywords. Iron boride; DFT; spin polarized; critical pressure; ...

  13. The spin structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J.M

    2005-02-15

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)

  14. Dimers on Surface Graphs and Spin Structures. I

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2007-01-01

    Partition functions for dimers on closed oriented surfaces are known to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we obtain the formula for the coefficients in terms of discrete spin structures....

  15. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  16. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    Science.gov (United States)

    Grady, C. A.; Currie, T.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.

  17. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  18. Masses, magnetic moments, QCD and proton spin structure

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1990-10-01

    This talk is dedicated to the memory of Andrei D. Sakharov. In addition to his well-known contributions to society, Sakharov was also a pioneer in spin physics and the application of the basic ideas of QCD to spin structure of hadrons. He took quarks seriously at the time when the particle physicists ridiculed the quark model. Immediately after the quark proposal Sakharov asked: 'Why is M Λ ≠ M Σ ? They contain the same quarks' His answer was 'Spin Physics! A flavor-dependent hyperfine interaction'. (author)

  19. Pure spin current injection in hydrogenated graphene structures

    Science.gov (United States)

    Zapata-Peña, Reinaldo; Mendoza, Bernardo S.; Shkrebtii, Anatoli I.

    2017-11-01

    We present a theoretical study of spin-velocity injection (SVI) of a pure spin current (PSC) induced by linearly polarized light that impinges normally on the surface of two 50% hydrogenated noncentrosymmetric two-dimensional (2D) graphene structures. The first structure, labeled Up and also known as graphone, is hydrogenated only on one side, and the second, labeled Alt, is 25% hydrogenated at both sides. The hydrogenation opens an energy gap on both structures. The PSC formalism has been developed in the length gauge perturbing Hamiltonian, and includes, through the single-particle density matrix, the excited coherent superposition of the spin-split conduction bands inherent to the noncentrosymmetric nature of the structures considered in this work. We analyze two possibilities: in the first, the spin is fixed along a chosen direction, and the resulting SVI is calculated; in the second, we choose the SVI direction along the surface plane, and calculate the resulting spin orientation. This is done by changing the energy ℏ ω and polarization angle α of the incoming light. The results are calculated within a full electronic band structure scheme using the density functional theory (DFT) in the local density approximation (LDA). The maxima of the spin velocities are reached when ℏ ω =0.084 eV and α =35∘ for the Up structure, and ℏ ω =0.720 eV and α =150∘ for the Alt geometry. We find a speed of 668 and 645 km/s for the Up and the Alt structures, respectively, when the spin points perpendicularly to the surface. Also, the response is maximized by fixing the spin-velocity direction along a high-symmetry axis, obtaining a speed of 688 km/s with the spin pointing at 13∘ from the surface normal, for the Up, and 906 km/s and the spin pointing at 60∘ from the surface normal, for the Alt system. These speed values are orders of magnitude larger than those of bulk semiconductors, such as CdSe and GaAs, thus making the hydrogenated graphene structures

  20. Proton spin structure study with PHENIX detector at RHIC

    International Nuclear Information System (INIS)

    Bazilevsky, A.

    2000-01-01

    Acceleration of polarized protons in Relativistic Heavy Ion Collider (RHIC) will provide unique tool to study spin structure of the nucleon, covering the √s region from 50 GeV to 500 GeV with proton polarization of 70%. PHENIX, one of the major detector systems at RHIC, is going to investigate poorly known gluon and flavor identified sea quark polarization in the proton. Overview of the RHENIX spin program is presented and sensitivities of the measurements are discussed

  1. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 6. Effect of spin ... Volume 39 Issue 6 October 2016 pp 1427-1434 ... Spin-polarization calculations show that ferromagnetic state (FM) is stable for FexB structures and carry magnetic moment of 1.12, 1.83 and 2.03 μ B inFeB, Fe 2 B and Fe 3 B, respectively.

  2. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  3. Arm structure in normal spiral galaxies, 1: Multivariate data for 492 galaxies

    Science.gov (United States)

    Magri, Christopher

    1994-01-01

    Multivariate data have been collected as part of an effort to develop a new classification system for spiral galaxies, one which is not necessarily based on subjective morphological properties. A sample of 492 moderately bright northern Sa and Sc spirals was chosen for future statistical analysis. New observations were made at 20 and 21 cm; the latter data are described in detail here. Infrared Astronomy Satellite (IRAS) fluxes were obtained from archival data. Finally, new estimates of arm pattern radomness and of local environmental harshness were compiled for most sample objects.

  4. DISCOVERY OF A TWO-ARMED SPIRAL STRUCTURE IN THE GAPPED DISK AROUND HERBIG Ae STAR HD 100453

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Kevin; Apai, Daniel [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kasper, Markus [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Robberto, Massimo, E-mail: kwagner@as.arizona.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-11-01

    We present Very Large Telescope (VLT)/SPHERE adaptive optics imaging in the Y-, J-, H-, and K-bands of the HD 100453 system and the discovery of a two-armed spiral structure in a disk extending to 0.″37 (∼42 AU) from the star, with highly symmetric arms to the northeast and southwest. Inside of the spiral arms, we resolve a ring of emission from 0.″18 to 0.″25 (∼21–29 AU). By assuming that the ring is intrinsically circular we estimate an inclination of ∼34° from face on. We detect dark crescents on opposite sides (NW and SE) that begin at 0.″18 and continue to radii smaller than our inner working angle of 0.″15, which we interpret as the signature of a gap at ≲21 AU that has likely been cleared by forming planets. We also detect the ∼120 AU companion HD 100453 B, and by comparing our data to 2003 Hubble Space Telescope and VLT/NACO images we estimate an orbital period of ∼850 year. We discuss what implications the discovery of the spiral arms and finer structures of the disk may have on our understanding of the possible planetary system in HD 100453 and how the morphology of this disk compares to other related objects.

  5. Magnetic coupling and spin structure in nanocrystalline iron powders

    International Nuclear Information System (INIS)

    Slawska-Waniewska, A; Grafoute, M; Greneche, J M

    2006-01-01

    Pure single-phase iron nanostructured particles with pseudo-cubic shape crystalline grains and linear dimensions of around 11 nm can be produced by the low energy ball milling of microcrystalline Fe under argon atmosphere. The long range ferromagnetic correlation of exchange coupled crystallites extending across grain boundaries leads to a reduction of the effective anisotropy, as expected from the generalized random anisotropy model. This ferromagnetic network of correlated grains is preserved at low temperatures. No spin-glass freezing process is detected. Slight oxidation of the particles with formation of an FeO phase is achieved with deliberately prolonged milling. This FeO phase leads to non-collinear spin structure at the interfaces that suppresses the intergrain correlations and enhances the role of long range dipolar interactions. The interface spin disorder and the complex state of the intergrain interactions are the sources of the spin-glass-like behaviour found in these Fe-FeO nanocomposites

  6. Model for a collimated spin wave beam generated by a single layer, spin torque nanocontact

    OpenAIRE

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2007-01-01

    A model of spin torque induced magnetization dynamics based upon semi-classical spin diffusion theory for a single layer nanocontact is presented. The model incorporates effects due to the current induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted fie...

  7. Temperature dependence of the magnetization of canted spin structures

    International Nuclear Information System (INIS)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik; Frandsen, Cathrine; Mørup, Steen

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending on the ratio of the exchange coupling constants. This is in agreement with experimental observations. - Highlights: ► The magnetization of a canted spin structure has been calculated. ► In some cases the magnetization shows an anomalous increase at low temperatures. ► In other cases the magnetization shows an anomalous decrease at low temperatures. ► The results are in accordance with many experimental observations.

  8. Spin Echo Attenuation of Restricted Diffusion as a Discord of Spin Phase Structure

    Science.gov (United States)

    Stepišnik, Janez

    1998-04-01

    By using the particle probability density we analyze the spin echo attenuation of particles, diffusing in a bounded region. It provides a means to expand a nonuniform spin phase distribution into a series of waves that characterize the geometry and boundary conditions of confinement. Random motion disrupts the initial phase structure created by applied gradients and consequently discords its structure waves. By assuming the spin phase fluctuation and/or the randomness of spin phase distribution in the subensemble as a Gaussian stochastic process, we derive a new analytical expression for the echo attenuation related to the particle velocity correlation. For a diffusion in porous structure we get the expression featuring the same "diffusive diffraction" patterns as those being found and explained by P. T. Callaghan and A. Coy ("Principles of Nuclear Magnetic Resonance Microscopy," Oxford Univ. Press, Oxford (1991);J. Chem. Phys.101, 4599-4609 (1994)) with the use of propagator theory. With the new approach we cast a new light on the phenomena and derive analitically how the diffusive diffractions appear when the sequence of finite or even modulated gradients are applied. The method takes into account the non-Markovian character of restricted diffusion, and therefore the echo dependence on the diffusion lengths and on the strength of applied gradient differs from the results of authors assuming the Markovian diffusion either by dealing with the diffusion propagators or by the computer simulation of Fick's diffusion.

  9. The opacity of spiral galaxy disks. VIII. Structure of the cold ISM

    NARCIS (Netherlands)

    Holwerda, B. W.; Draine, B.; Gordon, K. D.; Gonzalez, R. A.; Calzetti, D.; Thornley, M.; Buckalew, B.; Allen, Ronald J.; van der Kruit, P. C.

    2007-01-01

    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the

  10. The structure of galactic disks - Studying late-type spiral galaxies using SDSS

    NARCIS (Netherlands)

    Pohlen, M.; Trujillo, I.

    Using imaging data from the SDSS survey, we present the g' and r' radial stellar light distribution of a complete sample of similar to 90 face-on to intermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies. The surface brightness profiles are reliable (1s uncertainty less than 0.2 mag) down

  11. Quark-hadron duality of nucleon spin structure function

    International Nuclear Information System (INIS)

    Dong, Y.B.

    2005-01-01

    Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)

  12. Quasicrystallography on the spiral of Archimedes

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1990-01-01

    The concept of a spiral lattice is discussed. Some examples of known mineral structures, namely clino asbestos, halloysite and cylindrite, are then interpreted in terms of this structural principle. An example of a synthetic sulphide catalyst spiral structure having atomic dimensions is also described. All of these inorganic spiral structures are based on the sprial of Archimedes. The principles for a new type of crystallography, based on the Archimedian spiral, are then presented. 45 refs., 8 figs

  13. The Spin Structure of the Proton in the Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Renee H. [Univ. of Virginia, Charlottesville, VA (United States)

    2002-01-01

    Inclusive double spin asymmetries have been measured for $\\vec{p}$($\\vec{e}$,e') using the CLAS detector and a polarized 15NH3 target at Jefferson Lab in 1998. The virtual photon asymmetry A1, the longitudinal spin structure function, g1 (x, Q2), and the first moment Γ$1\\atop{p}$, have been extracted for a Q2 range of 0.15-2.0 GeV2. These results provide insight into the low Q2 evolution of spin dependent asymmetries and structure functions as well as the transition of Γ$1\\atop{p}$ from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.

  14. Band-notched spiral antenna

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  15. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Liu Peng

    2015-01-01

    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  16. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Abstract. In view of recent experimental progress on production and spectroscopy of neutron-rich isotopes of Dy with mass number A. 166 and 168, we have made theoretical investigations on the structure of high spin states of164 170Dy isotopes in the cranked Hartree–Fock–Bogoliubov (CHFB) theory employing a ...

  17. Spin structure of the nucleon and the constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Afsar

    1989-05-01

    It is shown that the constituent quark model is capable of giving a consistent description of the integrated spin-dependent structure function of the nucleon. This enables us to perceive an intrinsic connection between the current and the constituent pictures of the quark. (author).

  18. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... Nuclear structure at high spin. Figure 1. Schematic of the orientation of HPGe detector in GDA [4]. These signals were fed to custom-made data acquisition system Freedom [10] which was later used for data reduction. We recorded γ-ray fold of nuclear reaction using multiplicity filter made of BGO scin-.

  19. Spin transport in lateral structures with semiconducting channel

    Science.gov (United States)

    Zainuddin, Abu Naser

    Spintronics is an emerging field of electronics with the potential to be used in future integrated circuits. Spintronic devices are already making their mark in storage technologies in recent times and there are proposals for using spintronic effects in logic technologies as well. So far, major improvement in spintronic effects, for example, the `spin-valve' effect, is being achieved in metals or insulators as channel materials. But not much progress is made in semiconductors owing to the difficulty in injecting spins into them, which has only very recently been overcome with the combined efforts of many research groups around the world. The key motivations for semiconductor spintronics are their ease in integration with the existing semiconductor technology along with the gate controllability. At present semiconductor based spintronic devices are mostly lateral and are showing a very poor performance compared to their metal or insulator based vertical counterparts. The objective of this thesis is to analyze these devices based on spin-transport models and simulations. At first a lateral spin-valve device is modeled with the spin-diffusion equation based semiclassical approach. Identifying the important issues regarding the device performance, a compact circuit equivalent model is presented which would help to improve the device design. It is found that the regions outside the current path also have a significant influence on the device performance under certain conditions, which is ordinarily neglected when only charge transport is considered. Next, a modified spin-valve structure is studied where the spin signal is controlled with a gate in between the injecting and detecting contacts. The gate is used to modulate the rashba spin-orbit coupling of the channel which, in turn, modulates the spin-valve signal. The idea of gate controlled spin manipulation was originally proposed by Datta and Das back in 1990 and is called 'Datta-Das' effect. In this thesis, we have

  20. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  1. Level Structure of 103Ag at high spins

    OpenAIRE

    Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.

    2007-01-01

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...

  2. Spin Hamiltonian effective parameters from periodic electronic structure calculations

    International Nuclear Information System (INIS)

    Rivero, P; Moreira, I de Pr; Illas, F

    2008-01-01

    This paper presents and discusses a general procedure to extract spin Hamiltonian effective parameters from periodic calculations. The methodology is illustrated through representative examples of increasing complexity covering systems with three dimensional magnetic order or with a two dimensional magnetic structure. Some more complex systems are discussed where physical intuition based on the crystal structure of the system does not provide a reliable guide but where the present approach can be applied in a straightforward way

  3. Evidence for azimuthal variations of the oxygen-abundance gradient tracing the spiral structure of the galaxy HCG 91c

    Science.gov (United States)

    Vogt, F. P. A.; Pérez, E.; Dopita, M. A.; Verdes-Montenegro, L.; Borthakur, S.

    2017-05-01

    Context. The distribution of elements in galaxies forms an important diagnostic tool to characterize these systems' formation and evolution. This tool is, however, complex to use in practice, as galaxies are subject to a range of simultaneous physical processes active from pc to kpc scales. This renders observations of the full optical extent of galaxies down to sub-kpc scales essential. Aims: Using the WiFeS integral field spectrograph, we previously detected abrupt and localized variations in the gas-phase oxygen abundance of the spiral galaxy HCG 91c. Here, we follow-up on these observations to map HCG 91c's disk out to 2 Re at a resolution of 600 pc, and characterize the non-radial variations of the gas-phase oxygen abundance in the system. Methods: We obtained deep MUSE observations of the target under 0.6 arcsec seeing conditions. We perform both a spaxel-based and aperture-based analysis of the data to map the spatial variations of 12 +log (O/H) across the disk of the galaxy. Results: We confirm the presence of rapid variations of the oxygen abundance across the entire extent of the galaxy previously detected with WiFeS, for all azimuths and radii. The variations can be separated in two categories: a) localized and associated with individual H II regions; and b) extended over kpc scales, and occurring at the boundaries of the spiral structures in the galaxy. Conclusions: Our MUSE observations suggest that the enrichment of the interstellar medium in HGC 91c has proceeded preferentially along spiral structures, and less efficiently across them. Our dataset highlights the importance of distinguishing individual star-forming regions down to scales of a few 100 pc when using integral field spectrographs to spatially resolve the distribution of oxygen abundances in a given system, and accurately characterize azimuthal variations and intrinsic scatter. The movie associated to Fig. 8 is available at http://www.aanda.org

  4. Large-scale Bubble Structure of the Intersteller Medium (ISM) and Properties of the Local Spiral Arm (LSA)

    Science.gov (United States)

    Bochkarev, N. G.

    1984-01-01

    Bubbles which are very common structure units in the Galaxy and galaxies were examined. Collection of radio, optical, infrared and X-ray observations of the Cyg superbubble (CSB) region of the sky show that the CSB is not a single bubble object. Between 50 to 75 percent of its X-ray emission is ascribed to discrete sources. The other 25 to 50% X-ray emission, probably originates from bubbles around 8 OB associations of the region. All bubbles located within the spiral structure of Galaxy, M31 and M33 have diameter 300 pc. The large distance of stellar association from the galactic plane (GP) combined with picture of the gas distribution within the LSA shows that a Reyleigh-Taylor instability in the LSA can develop and give use to the formation of compact stellar clusters, such as the Cyg OB2 association. Development stages of the Reyleigh-Taylor instability, some peculiarities of the dust distribution and departures of the local structure from the galactic grand design suggest the absence of a spiral shockwave in the LSA.

  5. Overall performance optimization of a spiral pipe type heater by fluid- structure interaction modeling and partitioning screening method

    Directory of Open Access Journals (Sweden)

    Lei Guo

    2018-03-01

    Full Text Available A spiral pipe type heater is applied to the natural gas transportation system to inhibit gas hydrate, but fracture failure often happens at the joint of a coil pipe and a gathering pipe. To understand the mechanical behavior of the spiral pipe heater, a mechanical model of the coil pipe acted by the gas fluid is constructed, and the mechanical characteristics of the fracture point are obtained by numerical calculation. Then, the relation between angle parameters and the axial force, shear force, bending moment as well as stress of the structure is gotten. Comparison calculations of heat exchange before and after structural adjustment are done to get the optimized structure parameters of better mechanical properties and high heating rate. From this study, it is found that although the mechanical properties are improved, when increasing an angle parameter, the heat transfer performance is decreased. A coordination method is used for resolving the contradiction between heat transfer performance and mechanical properties to get an overall performance optimization. The provided partitioning screening method can improve the heating efficiency and mechanical properties of the heater obviously and conveniently.

  6. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2017-10-01

    Full Text Available Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS. In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw, the spiral pitch (hb and the spiral diameter (hs, were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  7. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    Science.gov (United States)

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  8. Towards Unifying Structures in Higher Spin Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Anders K.H. Bengtsson

    2008-02-01

    Full Text Available This article is expository in nature, outlining some of the many still incompletely understood features of higher spin field theory. We are mainly considering higher spin gauge fields in their own right as free-standing theoretical constructs and not circumstances where they occur as part of another system. Considering the problem of introducing interactions among higher spin gauge fields, there has historically been two broad avenues of approach. One approach entails gauging a non-Abelian global symmetry algebra, in the process making it local. The other approach entails deforming an already local but Abelian gauge algebra, in the process making it non-Abelian. In cases where both avenues have been explored, such as for spin 1 and 2 gauge fields, the results agree (barring conceptual and technical issues with Yang-Mills theory and Einstein gravity. In the case of an infinite tower of higher spin gauge fields, the first approach has been thoroughly developed and explored by M. Vasiliev, whereas the second approach, after having lain dormant for a long time, has received new attention by several authors lately. In the present paper we briefly review some aspects of the history of higher spin gauge fields as a backdrop to an attempt at comparing the gauging vs. deforming approaches. A common unifying structure of strongly homotopy Lie algebras underlying both approaches will be discussed. The modern deformation approach, using BRST-BV methods, will be described as far as it is developed at the present time. The first steps of a formulation in the categorical language of operads will be outlined. A few aspects of the subject that seems not to have been thoroughly investigated are pointed out.

  9. Spiraling in Urban Streams: A Novel Approach to Link Geomorphic Structure with Ecosystem Function

    Science.gov (United States)

    Bean, R. A.; Lafrenz, M. D.

    2011-12-01

    The goal of this study is to quantify the relationship between channel complexity and nutrient spiraling along several reaches of an urbanized watershed in Portland, Oregon. Much research points to the effect urbanization has on watershed hydrology and nutrient loading at the watershed scale for various sized catchments. However the flux of nutrients over short reaches within a stream channel has been less studied because of the effort and costs associated with fieldwork and subsequent laboratory analysis of both surface and hyporheic water samples. In this study we explore a novel approach at capturing connectivity though nutrient spiraling along several short reaches (less than 100-meter) within the highly urbanized Fanno Creek watershed (4400 hectares). We measure channel complexity-sinuosity, bed material texture, organic matter-and use these measurements to determine spatial autocorrelation of 50 reaches in Fanno Creek, a small, urban watershed in Portland, Oregon. Using ion-selective electrodes, the fluxes of nitrate and ammonia are measured within each reach, which when combined with channel geometry and velocity measurements allow us to transform the values of nitrate and ammonia fluxes into spiraling metrics. Along each sampled reach, we collected three surface water samples to characterize nutrient amounts at the upstream, midstream, and downstream position of the reach. Two additional water samples were taken from the left and right bank hyporheic zones at a depth just below the armor layer of the channel bed using mini-piezometers and a hand-pumped vacuum device, which we constructed for this purpose. Adjacent to the hyporheic samples soil cores were collected and analyzed for organic matter composition, bulk density, and texture. We hypothesize that spiral metrics will respond significantly to the measured channel complexity values and will be a more robust predictor of nutrient flux than land cover characteristics in the area draining to each reach

  10. Dimers on surface graphs and spin structures. II

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2009-01-01

    In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the di......In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function...... model as a quantum field theory on surface graphs....

  11. High-spin structure of yrast-band in Kr

    Indian Academy of Sciences (India)

    pp. 185–189. High-spin structure of yrast-band in. 78. Kr. P K JOSHI, R PALIT, H C JAIN, S NAGARAJ and J A SHEIKH. Tata Institute of Fundamental Research, Mumbai 400 005, India. Abstract. Lifetime of levels up to 22. ·. , have been measured in Kr and an oblate shape is assigned to the ground state using the CSM and ...

  12. Topological spin-singlet superconductors with underlying sublattice structure

    Science.gov (United States)

    Dutreix, C.

    2017-07-01

    Majorana boundary quasiparticles may naturally emerge in a spin-singlet superconductor with Rashba spin-orbit interactions when a Zeeman magnetic field breaks time-reversal symmetry. Their existence and robustness against adiabatic changes is deeply related, via a bulk-edge correspondence, to topological properties of the band structure. The present paper shows that the spin-orbit may be responsible for topological transitions when the superconducting system has an underlying sublattice structure, as it appears in a dimerized Peierls chain, graphene, and phosphorene. These systems, which belong to the Bogoliubov-de Gennes class D, are found to have an extra symmetry that plays the role of the parity. It enables the characterization of the topology of the particle-hole symmetric band structure in terms of band inversions. The topological phase diagrams this leads to are then obtained analytically and exactly. They reveal that, because of the underlying sublattice structure, the existence of topological superconducting phases requires a minimum doping fixed by the strength of the Rashba spin orbit. Majorana boundary quasiparticles are finally predicted to emerge when the Fermi level lies in the vicinity of the bottom (top) of the conduction (valence) band in semiconductors such as the dimerized Peierls chain and phosphorene. In a two-dimensional topological superconductor based on (stretched) graphene, which is semimetallic, Majorana quasiparticles cannot emerge at zero and low doping, that is, when the Fermi level is close to the Dirac points. Nevertheless, they are likely to appear in the vicinity of the van Hove singularities.

  13. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  14. Fractional vortex lattice structures in spin-triplet superconductors

    International Nuclear Information System (INIS)

    Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A

    2009-01-01

    Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .

  15. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  16. Measuring spin-dependent structure functions at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Universitaet Frankfurt (Germany)

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  17. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact

    Science.gov (United States)

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2008-04-01

    A model of spin-torque-induced magnetization dynamics based on semiclassical spin diffusion theory for a single-layer nanocontact is presented. The model incorporates effects due to the current-induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin-wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted field and the orientation of an applied field. These fields act as a spin-wave “corral” around the nanocontact that controls the propagation of spin waves in certain directions.

  18. Precision measurement of the neutron spin dependent structure functions

    International Nuclear Information System (INIS)

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g 1 n (x, Q 2 ) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3 He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 ≤ x ≤ 0.7 with an average Q 2 of 5 GeV 2 . The author reports the integral of the spin dependent structure function in the measured range to be ∫ 0.014 0.7 dx g 1 n (x, 5 GeV 2 ) = -0.036 ± 0.004(stat.) ± 0.005(syst.). The author observes relatively large values of g 1 n at low x that call into question the reliability of data extrapolation to x → 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g 1 p and g 1 n paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q 2 = 5 GeV 2 , determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule

  19. Precision measurement of the neutron spin dependent structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.

  20. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    Science.gov (United States)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  1. Archimedean Voronoi spiral tilings

    Science.gov (United States)

    Yamagishi, Yoshikazu; Sushida, Takamichi

    2018-01-01

    We study the transition of the number of spirals (called parastichy in the theory of phyllotaxis) within a Voronoi tiling for Archimedean spiral lattices. The transition of local parastichy numbers within a tiling is regarded as a transition at the base site point in a continuous family of tilings. This gives a natural description of the quasiperiodic structure of the grain boundaries. It is proved that the number of tiles in the grain boundaries are denominators of rational approximations of the argument (called the divergence angle) of the generator. The local parastichy numbers are non-decreasing functions of the plastochron parameter. The bifurcation diagram of local parastichy numbers has a Farey tree structure. We also prove Richards’ formula of spiral phyllotaxis in the case of Archimedean Voronoi spiral tilings, and show that, if the divergence angle is a quadratic irrational number, then the shapes of tiles in the grain boundaries are close to rectangles. If the divergence angle is linearly equivalent to the golden section, then the shape of tiles in the grain boundaries is close to square.

  2. Structure and Sound Absorption Properties of Spiral Vane Electrospun PVA/PEO Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2018-02-01

    Full Text Available Noise pollution has become one of the four major pollution issues in the world and has drawn much attention recently. Controlling the sound source and using sound-absorbing materials reasonably is considered an effective way to reduce noise. Due to the high porosity and specific surface area, nanofibers membrane is widely used in the field of the sound absorption. Polyvinyl alcohol (PVA and Polyethylene oxide (PEO are both water-soluble polymers with good film-forming properties that can be mixed in any proportion. In this paper, nanofiber membranes were prepared by spiral vane electrospinning with different contents of PVA and PEO. The nanofibers membranes were characterized by Fourier Transform-Infrared (FT-IR, X-ray diffraction (XRD, 3D-M, and scanning electron microscopy (SEM. The sound absorption property of nanofibers membranes and the compositions (nanofiber membranes and needle punched non-woven fabric were tested with an impedance tube. The results demonstrate that the addition of PEO changed the morphological characteristics and construct of PVA, sound absorption properties had undergone great changes.

  3. Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems

    Directory of Open Access Journals (Sweden)

    Vikram S. Vijayaraghavan

    2017-05-01

    Full Text Available Collective organization in matter plays a significant role in its expressed physical properties. Typically, it is detected via an order parameter, appropriately defined for each given system’s observed emergent patterns. Recent developments in information theory, however, suggest quantifying collective organization in a system- and phenomenon-agnostic way: decomposing the system’s thermodynamic entropy density into a localized entropy, that is solely contained in the dynamics at a single location, and a bound entropy, that is stored in space as domains, clusters, excitations, or other emergent structures. As a concrete demonstration, we compute this decomposition and related quantities explicitly for the nearest-neighbor Ising model on the 1D chain, on the Bethe lattice with coordination number k = 3 , and on the 2D square lattice, illustrating its generality and the functional insights it gives near and away from phase transitions. In particular, we consider the roles that different spin motifs play (in cluster bulk, cluster edges, and the like and how these affect the dependencies between spins.

  4. Efficient spin transfer phenomena in Fe/MgO/GaAs structure.

    Science.gov (United States)

    Park, Y J; Hickey, M C; Van Veenhuizen, M J; Chang, J; Heiman, D; Perry, C H; Moodera, J S

    2011-03-23

    The efficiency of spin polarized charge transfer was investigated in an Fe/MgO tunnel barrier/GaAs based structure using spin dependent photocurrent measurements, whereby a spin imbalance in carrier population was generated in the GaAs by circularly polarized light. The dominance of tunneling transport processes over Schottky emission gave rise to a high spin transfer efficiency of 35% under the photovoltaic mode of device operation. A spin dependent tunneling conductance associated with spin polarized electron transport was identified by the observation of phase changes. This transport prevails over the unpolarized electron and hole conduction over the bias range which corresponds to flat band conditions.

  5. The spiral

    DEFF Research Database (Denmark)

    Bibace, Roger; Kharlamov, Nikita

    2013-01-01

    ’s work with Bernard Kaplan on symbol formation is a primer on this idea. This paper examines the idea of spirality and develops the notion of dynamic coexistence that can clarify the issue of directionality of development; that is, what is the general trajectory or ground plan that development assumes....... Directionality is discussed in terms of the organism-in-environment unfolding over time as the unit of developmental analysis. Thinking on this issue has proceeded from the nature–nurture debates, to recognition of the interaction of external and internal processes, to transactions between the organism...

  6. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet

  7. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  8. A sum rule for the spin-dependent structure function b1(x) for spin-one hadrons

    International Nuclear Information System (INIS)

    Close, F.E.

    1990-05-01

    We show that the spin-dependent structure function of spin-one hadrons, b 1 (x), is related to the electric quadrupole moment of the target and obtain ∫ dx b 1 (x) = lim t→0 - 5/3 t/4M 2 F q (t) = 0 for isoscalar targets if the sea of quarks and antiquarks is unpolarised. We show how this sum rule is modified in the presence of a polarised sea. (author)

  9. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  10. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  11. Quasi spin pairing and the structure of the Lipkin model

    International Nuclear Information System (INIS)

    Cambiaggio, M.C.; Plastino, A.

    1978-01-01

    By introducing the concepts of quasi-spin pairing and quasi-spin seniority, the Lipkin model is extended to a variable number of particles. The properties of quasi-spin pairing are seen to be quite similar to those of ordinary pairing. The quasi-spin seniority allows one to obtain a simple classification of excited multiplets. A 'pairing plus monopole' model is studied in connection with the Hartree-Fock theory. (orig.) [de

  12. Global symplectic structure-preserving integrators for spinning compact binaries

    Science.gov (United States)

    Zhong, Shuang-Ying; Wu, Xin; Liu, San-Qiu; Deng, Xin-Fa

    2010-12-01

    This paper deals mainly with the application of the second-order symplectic implicit midpoint rule and its symmetric compositions to a post-Newtonian Hamiltonian formulation with canonical spin variables in relativistic compact binaries. The midpoint rule, as a basic algorithm, is directly used to integrate the completely canonical Hamiltonian system. On the other hand, there are symmetric composite methods based on a splitting of the Hamiltonian into two parts: the Newtonian part associated with a Kepler motion, and a perturbation part involving the orbital post-Newtonian and spin contributions, where the Kepler flow has an analytic solution and the perturbation can be calculated by the midpoint rule. An example is the second-order mixed leapfrog symplectic integrator with one stage integration of the perturbation flow and two semistage computations of the Kepler flow at every integration step. Also, higher-order composite methods such as the Forest-Ruth fourth-order symplectic integrator and its optimized algorithm are applicable. Various numerical tests including simulations of chaotic orbits show that the mixed leapfrog integrator is always superior to the midpoint rule in energy accuracy, while both of them are almost equivalent in computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides good precision and needs no expensive additional computational time. As a result, it is worth performing a more detailed and careful examination of the dynamical structure of chaos and order in the parameter windows and phase space of the binary system.

  13. A Determination of the Neutron Spin Structure Function

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Emlyn W

    2003-08-18

    The authors report the results of the experiment E142 which measured the spin dependent structure function of the neutron, g{sub 1}{sup n}(x, Q{sup 2}). The experiment was carried out at the Stanford Linear Accelerator Center by measuring an asymmetry in the deep inelastic scattering of polarized electrons from a polarized {sup 3}He target, at electron energies from 19 to 26 GeV. The structure function was determined over the kinematic range 0.03 < BJorken x < 0.6 and 1.0 < Q{sup 2} < 5.5 (GeV/c){sup 2}. An evaluation of the integral {integral}{sub 0}{sup 1} g{sub 1}{sup n}(x,Q{sup 2})dx at fixed Q{sup 2} = 2 (GeV/c){sup 2} yields the final result {Lambda}{sub 1}{sup n} = -0.032 {+-} 0.006 (stat.) {+-} 0.009 (syst.). This result, when combined with the integral of the proton spin structure function measured in other experiments, confirms the fundamental Bjorken sum rule with O({alpha}{sub s}{sup 3}) corrections to within one standard deviation. This is a major success for perturbative Quantum Chromodynamics. Some ancillary results include the findings that the Ellis-Jaffe sum rule for the neutron is violated at the 2 {sigma} level, and that the total contribution of the quarks to the helicity of the nucleon is 0.36 {+-} 0.10. The strange sea polarization is estimated to be small and negative, {Delta}s = -0.07 {+-} 0.04.

  14. Multiferroic Magnetic Spirals Induced by Random Magnetic Exchanges

    Science.gov (United States)

    Scaramucci, Andrea; Shinaoka, Hiroshi; Mostovoy, Maxim V.; Müller, Markus; Mudry, Christopher; Troyer, Matthias; Spaldin, Nicola A.

    2018-01-01

    Multiferroism can originate from the breaking of inversion symmetry caused by magnetic-spiral order. The usual mechanism for stabilizing a magnetic spiral is competition between magnetic exchange interactions differing by their range and sign, such as nearest-neighbor and next-nearest-neighbor interactions. In insulating compounds, it is unusual for these interactions to be both comparable in magnitude and of a strength that can induce magnetic ordering at room temperature. Therefore, the onset temperatures for multiferroism through this mechanism are typically low. By considering a realistic model for multiferroic YBaCuFeO5 , we propose an alternative mechanism for magnetic-spiral order, and hence for multiferroism, that occurs at much higher temperatures. We show, using Monte Carlo simulations and electronic structure calculations based on density functional theory, that the Heisenberg model on a geometrically nonfrustrated lattice with only nearest-neighbor interactions can have a spiral phase up to high temperature when frustrating bonds are introduced randomly along a single crystallographic direction as caused, e.g., by a particular type of chemical disorder. This long-range correlated pattern of frustration avoids ferroelectrically inactive spin-glass order. Finally, we provide an intuitive explanation for this mechanism and discuss its generalization to other materials.

  15. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  16. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B)(exp 1): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    Science.gov (United States)

    Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.; hide

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,

  17. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  18. Electric Control of Spin Helicity in a Magnetic Ferroelectric

    International Nuclear Information System (INIS)

    Yamasaki, Y.; Goto, T.; Sagayama, H.; Matsuura, M.; Hirota, K.; Arima, T.; Tokura, Y.

    2007-01-01

    Magnetic ferroelectrics or multiferroics, which are currently extensively explored, may provide a good arena to realize a novel magnetoelectric function. Here we demonstrate the genuine electric control of the spiral magnetic structure in one such magnetic ferroelectric, TbMnO 3 . A spin-polarized neutron scattering experiment clearly shows that the spin helicity, clockwise or counterclockwise, is controlled by the direction of spontaneous polarization and hence by the polarity of the small electric field applied on cooling

  19. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  20. Understanding the proton's spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Myhrer, Fred [Univ. of South Carolina, Columbia, SC (United States); Thomas, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    We discuss the tremendous progress that has been towards an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest twenty years ago with the discovery of the proton "spin crisis" by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks.

  1. A phenomenological theory for polarization flop in spiral multiferroic ...

    Indian Academy of Sciences (India)

    a space-dependent internal magnetic field which exerts a torque on spins to rotate bc-spiral to ab- spiral. The external ... Fv; 75.85.+t. Electric control of magnetization and magnetic control of polarization have been long ... divergence of magnetization, an internal field is induced which has important physical. Figure 1. ab ...

  2. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  3. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  4. Spin structure at the partonic level. Pt. 2

    International Nuclear Information System (INIS)

    Leader, E.

    1983-01-01

    Knowledge of the spin and momentum distribution of partons inside a polarised nucleon, as deduced from lepton scattering, is combined with lowest order QCD to calculate spin dependent parameters in large psub(T) hadronic reactions. Clear predictions emerge in some cases and are in conflict with present experimental results. There is a real challenge to improve both theory and experiment. (orig.)

  5. Investigations on the local structure and the spin-Hamiltonian ...

    Indian Academy of Sciences (India)

    In the calculations, the contributions to the spin-Hamiltonian parameters from ligand orbital and spin-orbit coupling are included on the basis of the cluster approach ... Manuscript received: 23 October 2014; Manuscript revised: 23 November 2015; Accepted: 16 December 2015; Final version published online: 13 July 2016 ...

  6. The spin structure of magnetic nanoparticles and in magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Disch, Sabrina

    2011-09-26

    The present thesis provides an extensive and original contribution to the investigation of magnetic nanoparticles regarding synthesis and structural characterization using advanced scattering methods in all length scales between the atomic and mesoscopic size range. Particular emphasis is on determination of the magnetic structure of single nanoparticles as well as preparation and characterization of higher dimensional assemblies thereof. The unique physical properties arising from the finite size of magnetic nanoparticles are pronounced for very small particle sizes. With the aim of preparing magnetic nanoparticles suitable for investigation of such properties, a micellar synthesis route for very small cobalt nanoparticles is explored. Cobalt nanoparticles with diameters of less than 3 nm are prepared and characterized, and routes for variation of the particle size are developed. The needs and limitations of primary characterization and handling of such small and oxidation-sensitive nanoparticles are highlighted and discussed in detail. Comprehensive structural and magnetic characterization is performed on iron oxide nanoparticles of {proportional_to} 10 nm in diameter. Particle size and narrow size distribution are determined with high precision. Investigation of the long range and local atomic structure reveals a particle size dependent magnetite - maghemite structure type with lattice distortions induced at the particle surface. The spatial magnetization distribution within these nanoparticles is determined to be constant in the particle core with a decrease towards the particle surface, thus indicating a magnetic dead layer or spin canting close to the surface. Magnetically induced arrangements of such nanoparticles into higher dimensional assemblies are investigated in solution and by deposition of long range ordered mesocrystals. Both cases reveal a strong dependence of the found structures on the nanoparticle shape (spheres, cubes, and heavily truncated

  7. Spin-related transport phenomena in HgTe-based quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Markus

    2007-12-15

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  8. Tunable superconducting critical temperature in ballistic hybrid structures with strong spin-orbit coupling

    Science.gov (United States)

    Simensen, Haakon T.; Linder, Jacob

    2018-02-01

    We present a theoretical description and numerical simulations of the superconducting transition in hybrid structures including strong spin-orbit interactions. The spin-orbit coupling is taken to be of Rashba type for concreteness, and we allow for an arbitrary magnitude of the spin-orbit strength as well as an arbitrary thickness of the spin-orbit coupled layer. This allows us to make contact with the experimentally relevant case of enhanced interfacial spin-orbit coupling via atomically thin heavy metal layers. We consider both interfacial spin-orbit coupling induced by inversion asymmetry in an S/F junction, as well as in-plane spin-orbit coupling in the ferromagnetic region of an S/F/S and an S/F structure. Both the pair amplitudes, local density of states, and critical temperature show dependency on the Rashba strength and, importantly, the orientation of the exchange field. In general, spin-orbit coupling increases the critical temperature of a proximity system where a magnetic field is present, and enhances the superconducting gap in the density of states. We perform a theoretical derivation which explains these results by the appearance of long-ranged singlet correlations. Our results suggest that Tc in ballistic spin-orbit coupled superconducting structures may be tuned by using only a single ferromagnetic layer.

  9. Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst.

    Science.gov (United States)

    Krewald, Vera; Retegan, Marius; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2016-01-19

    In transition-metal complexes, the geometric structure is intimately connected with the spin state arising from magnetic coupling between the paramagnetic ions. The tetramanganese-calcium cofactor that catalyzes biological water oxidation in photosystem II cycles through five catalytic intermediates, each of which adopts a specific geometric and electronic structure and is thus characterized by a specific spin state. Here, we review spin-structure correlations in Nature's water-splitting catalyst. The catalytic cycle of the Mn4O5Ca cofactor can be described in terms of spin-dependent reactivity. The lower "inactive" S states of the catalyst, S0 and S1, are characterized by low-spin ground states, SGS = 1/2 and SGS = 0. This is connected to the "open cubane" topology of the inorganic core in these states. The S2 state exhibits structural and spin heterogeneity in the form of two interconvertible isomers and is identified as the spin-switching point of the catalytic cycle. The first S2 state form is an open cubane structure with a low-spin SGS = 1/2 ground state, whereas the other represents the first appearance of a closed cubane topology in the catalytic cycle that is associated with a higher-spin ground state of SGS = 5/2. It is only this higher-spin form of the S2 state that progresses to the "activated" S3 state of the catalyst. The structure of this final metastable catalytic state was resolved in a recent report, showing that all manganese ions are six-coordinate. The magnetic coupling is dominantly ferromagnetic, leading to a high-spin ground state of SGS = 3. The ability of the Mn4O5Ca cofactor to adopt two distinct structural and spin-state forms in the S2 state is critical for water binding in the S3 state, allowing spin-state crossing from the inactive, low-spin configuration of the catalyst to the activated, high-spin configuration. Here we describe how an understanding of the magnetic properties of the catalyst in all S states has allowed conclusions on

  10. Topological Electronic Structures and Spintronics Applications for Silicene and Other Spin-Orbit Thin Films

    Science.gov (United States)

    Lin, Hsin

    2014-03-01

    While spin-orbit coupling plays a critical role in generating topologically insulating phases, it also provides a novel route for realizing spin-split states in nonmagnetic materials without the need for exchange coupling. Two-dimensional thin films with significant spin-orbit coupling strength enable potential applications for spintronics devices because the spin-splitting energy can be controlled by an external field (gating). Moreover, spin-orbit coupling can induce nontrivial topological phases, i.e. quantum spin Hall phases, which could harbor back-scattering-free spin-polarized current at the edge. Recently, we have shown via first-principles calculations that field-gated silicene possesses two gapped Dirac cones exhibiting nearly 100% spin-polarization, situated at the corners of the Brillouin zone. Band gaps as well as the band topology can be tuned with an external electric field perpendicular to the plane, which breaks the inversion symmetry of the system due to the presence of buckling in the honeycomb structure. Using this fact, we propose a design for a silicene-based spin-filter that would enable the spin-polarization of an output current to be switched electrically, without the need to switch external magnetic fields. Our quantum transport calculations indicate that the proposed designs will be highly efficient (nearly 100% spin polarization) and robust against weak disorder and edge imperfections. We also propose a Y-shaped spin/valley separator that produces spin-polarized current at two output terminals with opposite spins. Ge, Sn, and Pb counterparts of silicene are shown to have similar properties, but their larger spin-orbit coupling results in larger energy differences between the spin-split states making these materials better suited for room temperature applications. Other spin-orbit thin films will be discussed. Our investigations demonstrate that spin-orbit thin films present great potential for manipulating spin/valley degrees of freedom

  11. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...... with earlier susceptibility measurements. Using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. It is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest...

  12. Imaging the real space structure of the spin fluctuations in an iron-based superconductor.

    Science.gov (United States)

    Chi, Shun; Aluru, Ramakrishna; Grothe, Stephanie; Kreisel, A; Singh, Udai Raj; Andersen, Brian M; Hardy, W N; Liang, Ruixing; Bonn, D A; Burke, S A; Wahl, Peter

    2017-06-29

    Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure.

  13. Imaging the real space structure of the spin fluctuations in an iron-based superconductor

    Science.gov (United States)

    Chi, Shun; Aluru, Ramakrishna; Grothe, Stephanie; Kreisel, A.; Singh, Udai Raj; Andersen, Brian M.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Burke, S. A.; Wahl, Peter

    2017-06-01

    Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure.

  14. The determination of the in situ structure by nuclear spin contrast variation

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-01-01

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome

  15. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  16. QS Spiral: Visualizing Periodic Quantified Self Data

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Cuttone, Andrea; Jørgensen, Sune Lehmann

    2013-01-01

    In this paper we propose an interactive visualization technique QS Spiral that aims to capture the periodic properties of quantified self data and let the user explore those recurring patterns. The approach is based on time-series data visualized as a spiral structure. The interactivity includes ...

  17. Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures

    Science.gov (United States)

    Cho, Soonha; Baek, Seung-heon Chris; Lee, Kyeong-Dong; Jo, Younghun; Park, Byong-Guk

    2015-01-01

    The phenomena based on spin-orbit interaction in heavy metal/ferromagnet/oxide structures have been investigated extensively due to their applicability to the manipulation of the magnetization direction via the in-plane current. This implies the existence of an inverse effect, in which the conductivity in such structures should depend on the magnetization orientation. In this work, we report a systematic study of the magnetoresistance (MR) of W/CoFeB/MgO structures and its correlation with the current-induced torque to the magnetization. We observe that the MR is independent of the angle between the magnetization and current direction but is determined by the relative magnetization orientation with respect to the spin direction accumulated by the spin Hall effect, for which the symmetry is identical to that of so-called the spin Hall magnetoresistance. The MR of ~1% in W/CoFeB/MgO samples is considerably larger than those in other structures of Ta/CoFeB/MgO or Pt/Co/AlOx, which indicates a larger spin Hall angle of W. Moreover, the similar W thickness dependence of the MR and the current-induced magnetization switching efficiency demonstrates that MR in a non-magnet/ferromagnet structure can be utilized to understand other closely correlated spin-orbit coupling effects such as the inverse spin Hall effect or the spin-orbit spin transfer torques. PMID:26423608

  18. The Spiral of Euroscepticism

    DEFF Research Database (Denmark)

    Galpin, Charlotte; Trenz, Hans-Jörg

    2017-01-01

    Media scholars have increasingly examined the effects of a negativity bias that applies to political news. In the ‘spiral of cynicism’, journalist preferences for negative news correspond to public demands for sensational news. We argue that this spiral of cynicism in EU news results in a ‘spiral...

  19. Spin structure measurements from E143 at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, L.M. [Stanford Univ., CA (United States)

    1997-01-01

    Measurements have been made of the proton and deuteron spin structure functions, g{sub 1}{sup p} at beam energies of 29.1, 16.2, and 9.7 GeV, and g{sub 2}{sup p} and g{sub 2}{sup d} at a beam energy of 29.1 GeV. The integrals {Gamma}{sub p} = {integral}{sub 0}{sup 1} g{sub 1}{sup p} (x, Q{sup 2})dx and {Gamma}{sub d} = {integral}{sub 0}{sup 1} g{sub 1}{sup d}(x, Q{sup 2})dx have been evaluated at fixed Q{sup 2} = 3 (GeV/c){sup 2} using the 29.1 GeV data to yield {Gamma}{sub p} = 0.127 {+-} 0.004(stat.) {+-} 0.010(syst.) and {Gamma}{sub d} = 0.041 {+-} 0.003 {+-} 0.004. The Q{sup 2} dependence of the ratio g{sub 1}/F{sub 1} has been studied and is found to be small for Q{sup 2} > 1 (GeV/c){sup 2}. Within experimental precision, the g{sub 2} data are well-described by the twist-2 contribution, g{sub 2}{sup ww}. Twist-3 matrix elements have been extracted and are compared to theoretical predictions. The asymmetry A{sub 2} has also been measured and is found to be significantly smaller than the positivity limit {radical}R for both targets A{sub 2}{sup p} is found to be positive and inconsistent with zero.

  20. Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)

    International Nuclear Information System (INIS)

    Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.

    1995-01-01

    Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties

  1. The build up of the correlation between halo spin and the large-scale structure

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  2. A next-to-leading order QCD analysis of the spin structure function $g_1$

    CERN Document Server

    Adeva, B; Arik, E; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1998-01-01

    We present a next-to-leading order QCD analysis of the presently available data on the spin structure function $g_1$ including the final data from the Spin Muon Collaboration (SMC). We present resu lts for the first moments of the proton, deuteron and neutron structure functions, and determine singlet and non-singlet parton distributions in two factorization schemes. We also test the Bjor ken sum rule and find agreement with the theoretical prediction at the level of 10\\%.

  3. RosettaEPR: rotamer library for spin label structure and dynamics.

    Directory of Open Access Journals (Sweden)

    Nathan S Alexander

    Full Text Available An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta's ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2 is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.

  4. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  5. The effect of temperature and the spin excess parameter on neutron stars structure

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Hassan, M.Y.M.; Ragab, H.S.

    1990-10-01

    A previous equation of state, deduced for thermal neutron matter with spin excess neutrons, is used to explore the effect of temperature and spin excess parameter on neutron star structure. The spin excess parameter is found to have a significant decreasing effect on the maximum mass of neutron stars, while it has an increasing effect on the central density of stable neutron stars. The behaviour of neutron star radius, for stars with central density less than three times normal nuclear matter density, depends on the spin excess parameter in a significant way. For stars having larger central density the spin excess parameter has a little decreasing effect on the star radius. The temperature is found to have a little increasing effect on both the star mass and its radius. The equation of state used is very stiff, but the resulting maximum masses lie within the range of neutron stars masses deduced from X-ray binaries. (author). 19 refs, 6 figs

  6. Structural and magnetic anomalies among the spin-chain ...

    Indian Academy of Sciences (India)

    Unknown

    sensitively depends on such crystallographic distortions. All the compositions exhibit spin-glass anomalies with an unusually large frequency dependence of the peak temperature in ac susceptibility in a temperature range below 50 K, interestingly obeying Vogel–Fulcher relationship even for the stoichiometric compounds.

  7. Spin Structure Change in Co-Substituted BiFeO3

    Science.gov (United States)

    Yamamoto, Hajime; Kihara, Takumi; Oka, Kengo; Tokunaga, Masashi; Mibu, Ko; Azuma, Masaki

    2016-06-01

    The spin structure in BiFe1-xCoxO3 (x = 0.05,0.10,0.15,0.20) was investigated as a function of Co substitution, temperature, and magnetic field. It was found that the cycloidal spin structure of BiFeO3 changed to a collinear one with spin canting and composition-independent spontaneous magnetization of ˜0.25 μB/f.u. for the Co substituted samples on heating. The collinear phase was stabilized under magnetic fields. The spin structure change was clarified also by the temperature dependence of 57Fe Mössbauer spectra, and the results indicated the first order nature of this transition.

  8. Atomic structure governed diversity of exchange-driven spin helices in Fe nanoislands: Experiment and theory

    Science.gov (United States)

    Fischer, Jeison A.; Sandratskii, Leonid M.; Phark, Soo-hyon; Sander, Dirk; Parkin, Stuart

    2017-10-01

    We combine spin-polarized scanning tunneling microscopy (SP-STM) and first-principles calculations to demonstrate the control of the wavelength of helical spin textures in Fe nanoislands by varying their atomic structure. We make use of the complexity of submonolayer growth of Fe on Cu(111) to prepare nanoislands characterized by different thickness and in-plane atomic structure. SP-STM results reveal that the magnetic states of different nanoislands are spin helices. The wavelength of the spin helices varies strongly. Calculations performed for Fe films with different thickness and in-plane atomic structure explain the strong variation of the wavelength by a subtle balance in the competition between ferromagnetic and antiferromagnetic exchange interactions. We identify the crucial role of the effectively enhanced weak antiferromagnetic exchange interactions between distant atoms.

  9. Templated growth of PFO-DBT nanorod bundles by spin coating: effect of spin coating rate on the morphological, structural, and optical properties

    OpenAIRE

    Fakir, Muhamad Saipul; Supangat, Azzuliani; Sulaiman, Khaulah

    2014-01-01

    In this study, the spin coating of template-assisted method is used to synthesize poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) nanorod bundles. The morphological, structural, and optical properties of PFO-DBT nanorod bundles are enhanced by varying the spin coating rate (100, 500, and 1,000 rpm) of the common spin coater. The denser morphological distributions of PFO-DBT nanorod bundles are favorably yielded at the low spin coating rate of 100 rp...

  10. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  11. M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures

    International Nuclear Information System (INIS)

    Tsimpis, Dimitrios

    2006-01-01

    The requirement of N = 1 supersymmetry for M-theory backgrounds of the form of a warped product M x w X, where X is an eight-manifold and M is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ on X. ξ lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y: = X x S 1 , where S 1 is a circle of constant radius, implying the reduction of the structure group of Y to Spin(7). In general, however, there is no reduction of the structure group of X itself. This situation can be described in the language of generalized Spin(7) structures, defined in terms of certain spinors of Spin(TY+T*Y). We express the condition for N = 1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in X in terms of a 'preferred' Spin(7) structure, we show that the requirement of N = 1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27 of Spin(7), in terms of the warp factor and a one-form L on X (not necessarily nowhere-vanishing) constructed as a ξ bilinear; in addition, L is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7) holonomy

  12. High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Jensen, Jens; Jensen, Thomas Bagger Stibius

    2011-01-01

    The magnetically ordered phases and spin dynamics of magnetoelectric LiNiPO4 have been studied in fields up to 17.3 T along the c axis. Using neutron diffraction, we show that a previously proposed linearly polarized incommensurate (IC) structure exists only for temperatures just below the Neel......, the spiral structure is found to lock in to a period of five crystallographic unit cells along the b axis. Based on the neutron-diffraction data, combined with detailed magnetization measurements along all three crystallographic axes, we establish the magnetic phase diagrams for fields up to 17.3 T along c...... and for fields up to 16 T along a and b. The spin excitations in the high-field IC spiral phase have been studied in detail by inelastic neutron scattering. A mean-field analysis shows that the spin Hamiltonian derived previously from the low-temperature spin waves at zero field predicts the transition between...

  13. Investigations on the local structure and the spin-Hamiltonian ...

    Indian Academy of Sciences (India)

    MS received 23 October 2014; revised 23 November 2015; accepted 16 December 2015; published online 13 July 2016. Abstract. The spin-Hamiltonian parameters (g factors g , g⊥ and hyperfine ..... Here, t2 ≈ 3 and t4 ≈ 5 are the power-law expo- nents [10–13]. ¯A2(R) and ¯A4(R) are the intrinsic parameters, with the ...

  14. Ferromagnetic domain structures and spin configurations measured in doped manganite

    DEFF Research Database (Denmark)

    He, J.Q.; Volkov, V.V.; Beleggia, Marco

    2010-01-01

    We report on measurements of the spin configuration across ferromagnetic domains in La0.325Pr0.3Ca0.375MnO3 films obtained by means of low-temperature Lorentz electron microscopy with in situ magnetizing capabilities. Due to the particular crystal symmetry of the material, we observe two sets of ...... and the crystal symmetry might affect the magnetoresistivity under an applied magnetic field in a strongly correlated electron system....

  15. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  16. Arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Sinha, Anjana; Roychoudhury, Rajkumar; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India)

    2013-11-15

    A nonlinear analysis is carried out for the arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasmas. A quantum magnetohydrodynamic model is used to describe the magnetosonic quantum plasma with the Bohm potential and the pressure like spin force for electrons. Analytical calculations are used to simplify the basic equations, which are then studied numerically. It is shown that the magnetic diffusivity is responsible for dissipation, which causes the shock-like structures rather than the soliton structures. Additionally, wave speed, Zeeman energy, and Bohm potential are found to have significant impact on the shock wave structures.

  17. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  18. The MONSTER solves nuclear structure problems at low and high spins

    International Nuclear Information System (INIS)

    Hammaren, E.; Schmid, K.W.; Gruemmer, F.

    1984-01-01

    A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region

  19. Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.; Bahmad, L.

    2015-01-01

    The magnetic behaviors of a mixed spins (2-1) hexagonal Ising nanowire with core–shell structure are investigated by using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperatures of core–shell are studied for different values of crystal field and exchange interactions. The thermal and magnetic hysteresis cycles are given for different values of the crystal field. - Highlights: • Critical temperature increase when exchange interaction increasing in core-shell. • Hysteresis loop areas decrease at above transition temperature. • Magnetic coercive field decrease when crystal field increasing. • Magnetic coercive field increase when exchange interaction increasing

  20. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  1. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  2. An overview of recent nucleon spin structure measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.

  3. Numerical integration of gravitational field for general three-dimensional objects and its application to gravitational study of grand design spiral arm structure

    Science.gov (United States)

    Fukushima, Toshio

    2016-12-01

    We present a method to integrate the gravitational field for general three-dimensional objects. By adopting the spherical polar coordinates centred at the evaluation point as the integration variables, we numerically compute the volume integral representation of the gravitational potential and of the acceleration vector. The variable transformation completely removes the algebraic singularities of the original integrals. The comparison with exact solutions reveals around 15 digits accuracy of the new method. Meanwhile, the six digit accuracy of the integrated gravitational field is realized by around 106 evaluations of the integrand per evaluation point, which costs at most a few seconds at a PC with Intel Core i7-4600U CPU running at 2.10 GHz clock. By using the new method, we show the gravitational field of a grand design spiral arm structure as an example. The computed gravitational field shows not only spiral shaped details but also a global feature composed of a thick oblate spheroid and a thin disc. The developed method is directly applicable to the electromagnetic field computation by means of Coulomb's law, the Biot-Savart law, and their retarded extensions. Sample FORTRAN 90 programs and test results are electronically available.

  4. The Spin Structure of the Proton at Low Q2: A Measurement of the Structure Function g2p

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chao [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-31

    The spin structure of the nucleon has remained as one of the key points of interest in hadronic physics, which has attracted many efforts from both experimentalists and theorists. Quantum Chromodynamics (QCD) is the fundamental theory that describes the strong interaction. It has been verified in the asymptotically free region. However, the non-perturbative confinement of quarks within the nucleon is still not well understood within QCD. In the non-perturbative regime, low-energy effective field theories such as chiral perturbation theory (XPT) provide predictions for the spin structure functions. The neutron spin structure functions, gp1 and gp2 , and the proton spin structure function, gp1, have been measured over a wide kinematic range and compared with the theoretical predictions. However, the proton spin structure function, gp2, remains largely unmeasured. The E08-027 collaboration successfully performed the first measurement of the inclusive electron-proton scattering in the kinematic range 0.02 < Q2 < 0.2 GeV2. The experiment took place in experimental Hall A at Jefferson Lab in 2012. A longitudinally polarized electron beam with incident energies between 1.1 GeV and 3.3 GeV was scattered from a longitudinally or transversely polarized NH3 target. Asymmetries and polarized cross-section differences were measured in the resonance region to extract the proton spin structure functions g2. The results allow us to obtain the generalized spin polarizabilities γ0 and δLT and test the Burkhardtt-Cottingham (BC) sum rule. Chiral perturbation theory is expected to work in this kinematic range and this measurement of δLT will give a benchmark test to XPT calculations. This thesis will discuss preliminary results from the E08-027 data analysis.

  5. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    Science.gov (United States)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface

  6. Shell structure at high spin and the influence on nuclear shapes

    International Nuclear Information System (INIS)

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  7. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  8. Templated growth of PFO-DBT nanorod bundles by spin coating: effect of spin coating rate on the morphological, structural, and optical properties.

    Science.gov (United States)

    Fakir, Muhamad Saipul; Supangat, Azzuliani; Sulaiman, Khaulah

    2014-01-01

    In this study, the spin coating of template-assisted method is used to synthesize poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) nanorod bundles. The morphological, structural, and optical properties of PFO-DBT nanorod bundles are enhanced by varying the spin coating rate (100, 500, and 1,000 rpm) of the common spin coater. The denser morphological distributions of PFO-DBT nanorod bundles are favorably yielded at the low spin coating rate of 100 rpm, while at high spin coating rate, it is shown otherwise. The auspicious morphologies of highly dense PFO-DBT nanorod bundles are supported by the augmented absorption and photoluminescence.

  9. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  10. Dispersion characteristics of spin-electromagnetic waves in planar multiferroic structures

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Andrey A.; Ustinov, Alexey B. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland); Vitko, Vitaliy V.; Semenov, Alexander A.; Mironenko, Igor G. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Belyavskiy, Pavel Yu.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); International Laboratory “MultiferrLab,” ITMO University, St. Petersburg 197101 (Russian Federation); Stashkevich, Andrey A. [International Laboratory “MultiferrLab,” ITMO University, St. Petersburg 197101 (Russian Federation); LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse (France); Lähderanta, E. [Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland)

    2015-11-14

    A method of approximate boundary conditions is used to derive dispersion relations for spin-electromagnetic waves (SEWs) propagating in thin ferrite films and in multiferroic layered structures. A high accuracy of this method is proven. It was shown that the spin-electromagnetic wave propagating in the structure composed of a thin ferrite film, a thin ferroelectric film, and a slot transmission line is formed as a result of hybridization of the surface spin wave in the ferrite film and the electromagnetic wave in the slot-line. The structure demonstrates dual electric and magnetic field tunability of the SEW spectrum. The electric field tunability is provided by the thin ferroelectric film. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the slot-line gap width. The theory is confirmed by experimental data.

  11. On Density Waves in Spiral Galaxies

    Science.gov (United States)

    Grosbol, P.; Patsis, P. A.

    The spiral structure of five ordinary spiral galaxies was studied using deep BVIK' surface photometry maps obtained at the 2.2m ESO/MPI telescope. The detailed shape of the arms was analyzed in terms of the spiral density wave theory. Grand design spirals were found on the K' maps in all five galaxies although at least two would be classified as flocculent on the blue images. In several of the galaxies, bulges with weak oval distortion (~10%) were observed. Dust spirals also continue, in some cases, inside the ILR where the stellar arms terminate. This emphasizes the strong bias of morphological classifications of spiral galaxies based on blue image due to dust and young stars. The 2--armed spirals were systematically found to be wound tighter on I than on K' maps suggesting the existence of a density wave. Locations of the ILR and the 4/1 resonance were estimated based on the arm morphology and the amplitude ratio between the m = 2,4 Fourier components. The wavenumber of the stellar 2--armed pattern is increasing towards the ILR which could suggest that the density wave is associated to the long waved branch of the dispersion relation. A possible scenario is discussed.

  12. High-spin states and level structure in 84Rb

    International Nuclear Information System (INIS)

    Shen Shuifa; Han Guangbing; Wen Shuxian; Gu Jianzhong; Wu Xiaoguang; Zhu Lihua; He Chuangye; Li Guangsheng; Yu Beibei; Pan Feng; Zhu Jianyu; Draayer, J. P.; Wen Tingdun; Yan, Yupeng

    2010-01-01

    High-spin states in 84 Rb have been studied by using the 70 Zn( 18 O,p3n) 84 Rb reaction at beam energy of 75 MeV. The γ-γ coincidence, excitation function, and ratios for directional correlation of oriented states were determined. A new level scheme was established in which the positive- and negative-parity bands have been extended up to 17 + and 17 - with an excitation energy of about 7 MeV. The signature splitting and signature inversion of the positive-parity yrast band were observed. To understand the microscopic origin of the signature inversion in the yrast positive-parity bands of doubly odd Rb nuclei, as an example, we performed calculations using the projected shell model to describe the energy spectra in 84 Rb. It can be seen that the main features are reproduced in the calculations. This analysis shows that the signature splitting, especially its inversion, can be reproduced by varying only the γ deformation with increasing spin. To research the deformation of 84 Rb carefully, we calculate the total Routhian surfaces of positive-parity yrast states by the cranking shell model formalism. In addition, the results of theoretical calculations about the negative-parity yrast band in 84 Rb with configuration π(p 3/2 ,f 5/2 ) x νg 9/2 are compared with experimental data, and a band diagram calculated for this band is also shown to extract physics from the numerical results.

  13. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF 4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19 F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  14. The magnetic structure on the ground state of the equilateral triangular spin tube

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kazuki, E-mail: k703861@eagle.sophia.ac.jp; Goto, Takayuki [Sophia University, Physics Division (Japan); Manaka, Hirotaka [Kagoshima University, Graduate School of Science and Engineering (Japan); Miura, Yoko [Suzuka National College of Technology (Japan)

    2016-12-15

    The ground state of the frustrated equilateral triangular spin tube CsCrF{sub 4} is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by {sup 19}F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  15. Structural study of the re-entrant spin-glass behaviour of Fe-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rodriguez, D. [Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai NSW 2234 (Australia)]. E-mail: dmr@ansto.gov.au; Plazaola, F. [Elektrika eta Elektronika Saila, UPV-EHU, 644 P.K., 48080 Bilbao (Spain); Garitaonandia, J.S. [Fisika Aplikatua II Saila, UPV-EHU, 644 P.K., 48080 Bilbao (Spain); Cuello, G.J. [Institute Laue Langevin, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble (France)

    2007-09-15

    Neutron powder diffraction measurements were performed on Fe{sub 70}Al{sub 30} alloy in order to determine the relationship between the magnetic behaviour and the structural changes observed in this alloy. Results show that the re-entrant spin-glass behaviour is linked with D03 structure. There is a strong correlation between the lattice parameter and the diffraction peak intensity and all the magnetic changes reported in literature can be explained in terms of this relationship. Finally, magnetovolume effects similar to invar effect are reported in the spin-glass phase.

  16. Structural study of the re-entrant spin-glass behaviour of Fe-Al alloys

    Science.gov (United States)

    Martín Rodríguez, D.; Plazaola, F.; Garitaonandia, J. S.; Cuello, G. J.

    2007-09-01

    Neutron powder diffraction measurements were performed on Fe 70Al 30 alloy in order to determine the relationship between the magnetic behaviour and the structural changes observed in this alloy. Results show that the re-entrant spin-glass behaviour is linked with D03 structure. There is a strong correlation between the lattice parameter and the diffraction peak intensity and all the magnetic changes reported in literature can be explained in terms of this relationship. Finally, magnetovolume effects similar to invar effect are reported in the spin-glass phase.

  17. Interface-induced spin Hall magnetoresistance enhancement in Pt-based tri-layer structure.

    Science.gov (United States)

    Huang, Shun-Yu; Li, Hong-Lin; Chong, Cheong-Wei; Chang, Yu-Ying; Lee, Min-Kai; Huang, Jung-Chun-Andrew

    2018-01-08

    In this study, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0648 and 1.31 nm, respectively, can be fitted by changing the Pt thickness in the longitudinal SMR function. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y 3 Fe 5 O 12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.

  18. Cylindrical spirals in human skeletal muscle.

    Science.gov (United States)

    Carpenter, S; Karpati, G; Robitaille, Y; Melmed, C

    1979-01-01

    Muscle biopsies from two patients revealed that numerous type 2 fibers contained large abnormal areas filled with cylindrical spirals. The cytochemical profile of these cylindrical spirals was sufficiently characteristic that they could be distinguished from tubular aggregates. Their electron microscopic appearance was unmistakable. Their origin and significance are uncertain. The diverse nature of the patients' conditions (cramps and malignancy, and an unusual form of spinocerebellar degeneration) indicate that these abnormal structures are not disease specific.

  19. Low temperature polarized target for spin structure studies of nucleons at COMPASS

    CERN Document Server

    Pesek, Michael

    In presented thesis we describe concept of Deep Inelastic Scattering of leptons on nucleons in context of nucleon spin structure studies. Both polarized and unpolarized cases are discussed and concept of Transverse Momentum Dependent Parton Distribution Functions (TMD PDF) is introduced. The possibility of TMDs measurement using Semi-inclusive DIS (SIDIS) is described along with related results from COMPASS experiment. The future Drell-Yan programme at COMPASS is briefly mentioned and its importance is presented on the universality test i.e. change of sign of T-odd TMDs when measured in Drell-Yan and SIDIS. The importance of Polarized Target (PT) for spin structure studies is highlighted and principles of Dynamic Nuclear Polarization (DNP) are given using both Solid effect and spin temperature concept. COMPASS experiment is described in many details with accent given to PT. Finally the thermal equilibrium (TE) calibration procedure is described and carried out for 2010 and 2011 physics runs at COMPASS. The av...

  20. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  1. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  2. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  3. Spiral finned crucible pot

    Science.gov (United States)

    Soemowidagdo, Arianto Leman; Tiwan, Widarto, Ardian, Aan

    2018-02-01

    Innovation on a crucible furnace to increase its efficiency in aluminum melting has been done. The innovation was a spiral finned crucible pot. The inclination of the spiral finned was vary of 5, 10, 15, and 20 degrees. The spiral finned effects was determined from the performance test result. A crucible pot without fin was also tested as a control. The crucible pot was examined at the same process condition. The crucible pot with the inclined fin of 10 degrees gives an optimum performance. It gives effective heating rate so that more efficient in LPG consumption. Therefore it saves energy in the aluminum melting process.

  4. Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering

    International Nuclear Information System (INIS)

    Wislicki, W.

    1998-01-01

    We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world

  5. Spin structure of the 3He from the dd → 3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    1995-01-01

    The polarization observables in the reaction dd → 3 Hen are considered. Their high sensitivity to the 3 He wave function at short distances is shown. Using of both polarized target and beam allows to extend sufficiently the number of possible experiments and to separate 3 He structure from the reaction mechanisms using different relative orientations of initial deuteron spins. 27 refs., 5 figs

  6. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    Following a fully self-consistent cranked Hartree-Fock-Bogoliubov (CHFB) approach with a pairing+quadrupole+hexadecapole model interaction Hamiltonian the structure of the yrast states of 76,78Kr nuclei is studied up to angular momentum = 24. Evolution of the shape with spin, and rotation alignment of proton as well ...

  7. Structure in cohesive powder studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, Stefan; de Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  8. Structure in cohesive powders studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, S.; De Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  9. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    CHFB) approach with a pairing+quadrupole+hexadecapole model interaction Hamiltonian the structure of the yrast states of 76,78Kr nuclei is studied up to angular momentum J = 24. Evolution of the shape with spin, and rotation alignment of ...

  10. Spin-orbit and electron correlation effects on the structure of EF3 (E = I, At, and element 117).

    Science.gov (United States)

    Kim, Hyoseok; Choi, Yoon Jeong; Lee, Yoon Sup

    2008-12-18

    Structures and vibrational frequencies of group 17 fluorides EF3 (E = I, At, and element 117) are calculated at the density functional theory (DFT) level of theory using relativistic effective core potentials (RECPs) with and without spin-orbit terms in order to investigate the effects of spin-orbit interactions and electron correlations on the structures and vibrational frequencies of EF3. Various tests imply that spin-orbit and electron correlation effects estimated presently from Hartree-Fock (HF) and DFT calculations with RECPs with and without spin-orbit terms are quite reasonable. Spin-orbit and electron correlation effects generally increase bond lengths and/or angles in both C2v and D3h structures. For IF3, the C2v structure is a global minimum, and the D3h structure is a second-order saddle point in both HF and DFT calculations with and without spin-orbit interactions. Spin-orbit effects for IF3 are negligible in comparison to electron correlation effects. The D3h global minimum is the only minimum structure for (117)F3 in all RECP calculations, and the C2v structure is neither a local minimum nor a saddle point. In the case of AtF3, the C2v structure is found to be a local minimum in all RECP calculations without spin-orbit terms, and the D3h structure becomes a local minimum at the DFT level of theory with and without spin-orbit interactions. In the HF calculation with spin-orbit terms, the D3h structure of AtF3 is a second-order saddle point. AtF3 is a borderline case between the valence-shell-electron-pair-repulsion (VSEPR) structure of IF3 and the non-VSEPR structure of (117)F3. Relativistic effects, including scalar relativistic and spin-orbit effects, and electron correlation effects together or separately stabilize the D3h structures more than the C2v structures. As a result, one may suggest that the VSEPR predictions agree very well with the structures optimized by the nonrelativistic HF level of theory even for heavy-atom molecules but not so

  11. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  12. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    Science.gov (United States)

    2016-08-24

    AIP ADVANCES 6, 056304 (2016) Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl Renu Choudhary,1,2 Parashu Kharel,3 Shah R... semiconductor CoFeCrAl into a half- metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of...INTRODUCTION Spin-gapless semiconductors (SGS) have recently attracted much attention as nanoelectronic materials with high carrier mobility and good

  13. Structure of high-spin isomers in trans-lead nuclei

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1990-01-01

    The structure of core-excited high-spin isomers in the N ≤ 126 isotopes of At, Rn and Fr is reviewed. New results for high-spin states in 211 Rn and 212 Rn, approaching the limit of the available angular momentum from the valence particles, are presented. The recurring experimental feature is decay by very enhanced E3 transitions. These, and other properties are explained in a natural way by inclusion of particle-octupole vibration coupling, in a semi-empirical shell model. The deformed independent particle model is not successful in explaining these features. 40 refs., 4 tabs., 11 figs

  14. Measurement of the spin structure of the neutron using polarised deep inelastic scattering

    Science.gov (United States)

    Kaiser, Ralf Bernd

    The measurement of the spin structure function g1p of the proton and its integral Γ1p by the EMC experiment at C scERN in 1988 indicated that only 12% ± 17% of the proton spin is carried by quarks. This unexpected result-the so called 'spin crisis'-lead to a series of new experimental proposals. One of these, the H scERMES experiment, uses the polarised positron beam of the H scERA accelerator together with a polarised internal gas target of hydrogen, deuterium or 3He for the study of the spin structure of the nucleon. The scattered positrons and other products of the reaction are detected in a forward spectrometer with large acceptance. This thesis focuses on three topics, after a review of the relevant theory and an overview of the H scERMES experiment: The H scERMES transition radiation detector (TRD), which is used to distinguish high energy positrons from hadrons, the H scERMES particle identification (PID) system and the measurement of the spin structure function g1n of the neutron. The H scERMES TRD is the main Canadian contribution to the apparatus of the experiment. The H scERMES PID system allows the identification of positrons from deep inelastic scattering with an efficiency of 99% and a hadron contamination of less than 0.5%. The first physics result from the 1995 H scERMES data is the measurement of the spin structure function g1n(x) of the neutron. The value of the resulting integral Γ1n=∫01g1n(x)/ dx confirms previous measurements at SLAC and violates the Ellis-Jaffe sum rule by about one sigma. The contribution of the quarks to the spin of the neutron can be calculated in the framework of the quark parton model to be 37 ± 16%, indicating that less than half of the spin of the neutron is carried by quarks.

  15. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  16. Measurement of the Spin Structure of the Deuteron in the DIS Region

    CERN Document Server

    Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rojdestvenski, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, L.; Schmitt, H.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Thers, D.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Walcher, T.; Webb, R.; Weise, E.; Weitzel, Q.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2005-01-01

    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.

  17. Helicity in proton–proton elastic scattering and the spin structure of the pomeron

    Directory of Open Access Journals (Sweden)

    Carlo Ewerz

    2016-12-01

    Full Text Available We discuss different models for the spin structure of the nonperturbative pomeron: scalar, vector, and rank-2 symmetric tensor. The ratio of single-helicity-flip to helicity-conserving amplitudes in polarised high-energy proton–proton elastic scattering, known as the complex r5 parameter, is calculated for these models. We compare our results to experimental data from the STAR experiment. We show that the spin-0 (scalar pomeron model is clearly excluded by the data, while the vector pomeron is inconsistent with the rules of quantum field theory. The tensor pomeron is found to be perfectly consistent with the STAR data.

  18. Spiral 2 Week

    International Nuclear Information System (INIS)

    2007-01-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations

  19. Spiral 2 Week

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations.

  20. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  1. Exploring Nucleon Spin Structure Through Neutrino Neutral-Current Interactions in MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, Katherine [New Mexico State U.

    2017-02-02

    The net contribution of the strange quark spins to the proton spin, $\\Delta s$, can be determined from neutral current elastic neutrino-proton interactions at low momentum transfer combined with data from electron-proton scattering. The probability of neutrino-proton interactions depends in part on the axial form factor, which represents the spin structure of the proton and can be separated into its quark flavor contributions. Low momentum transfer neutrino neutral current interactions can be measured in MicroBooNE, a high-resolution liquid argon time projection chamber (LArTPC) in its first year of running in the Booster Neutrino Beamline at Fermilab. The signal for these interactions in MicroBooNE is a single short proton track. We present our work on the automated reconstruction and classification of proton tracks in LArTPCs, an important step in the determination of neutrino- nucleon cross sections and the measurement of $\\Delta s$.

  2. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  3. Recent COMPASS results on the nucleon longitudinal spin structure and QCD fits

    Directory of Open Access Journals (Sweden)

    Andrieux Vincent

    2014-01-01

    Full Text Available The latest measurements of the proton longitudinal spin structure function, ɡ1p, in the deep inelastic (DIS regime are presented. They improve the statistical accuracy of the existing data and extend the kinematic domain to a lower value of x and higher values of Q2. A global NLO QCD fit of all ɡ1 world data on the proton, deuteron and neutron has been achieved. The results give a quantification of the quark spin contribution to the nucleon spin, 0.26 < ΔΣ < 0.34 at 3 (GeV/c2 in M̅S̅ scheme. The errors are dominated by the uncertainty on the shape of the functional forms assumed in the fit. A new verification of the fundamental Bjorken sum rule is obtained at a 9% level, using only COMPASS ɡ1 proton and deuteron measurements. Preliminary results of a reevaluation of the gluon polarization Δɡ/ɡ are presented. The analysis is based on double spin asymmetry of high-pT hadron production cross-sections in the DIS regime. A positive value of 〈Δɡ/ɡ〉 = 0.113 ± 0.038 ± 0.035 is obtained at leading order at x ~ 0.1. In parallel, the double spin asymmetry in the photoproduction regime is also studied. Finally, preliminary results on quark fragmentation functions into pions extracted from a LO fit of pion multiplicities in semi-inclusive DIS are presented.

  4. Insights on the Structural Details of Endonuclease EcoRI-DNA Complexes by Electron Spin Resonance

    Science.gov (United States)

    Sarver, Jessica

    2009-03-01

    Pulsed electron spin resonance (ESR) was used to probe the binding specificity of EcoRI, a restriction endonuclease. Using site-directed spin labeling, a nitroxide side chain was incorporated into the protein, enabling the use of ESR to study structural details of EcoRI. Distance measurements were performed on EcoRI mutants when bound to varying sequences of DNA using the Double Electron-Electron Resonance experiment. These distances demonstrated that the average structure in the arm regions of EcoRI, thought to play a major role in binding specificity, is the same when the protein binds to different sequences of DNA. Also, it was determined that the arms exhibit higher flexibility when bound to sequences other than the specific sequence due to the larger distance distributions acquired from these spin labeled complexes. Molecular dynamics (MD) simulations were performed on the spin-label-modified specific EcoRI-DNA crystal structure to model the average nitroxide orientation. The distance distributions from MD were found to be narrower than experiment, indicating the need for a more rigorous sampling of the nitroxide conformers in silico.

  5. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  6. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  7. Chiralities of spiral waves and their transitions

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  8. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... A multidetector gamma array (GDA), for studying nuclear structure was built with ancillary devices namely gamma multiplicity filter and charged particle detector array. This facility was designed for in-beam gamma spectroscopy measurements in fusion evaporation reactions at Inter-University Accelerator ...

  9. Structural and magnetic anomalies among the spin-chain ...

    Indian Academy of Sciences (India)

    Unknown

    the compound, Ca3CoIrO6, exhibits magnetic frustration effects around 30–50 K in the ac and dc M data, but without getting influenced by the application of magnetic fields as high as even 40 kOe, however without showing PDA structural features.14 A common feature between these two compounds is that the ac magnetic ...

  10. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    Science.gov (United States)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  11. Noncontrast peripheral MRA with spiral echo train imaging.

    Science.gov (United States)

    Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H

    2015-03-01

    To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.

  12. A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Y.F.; Melnitchouk, W.

    2009-01-01

    High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.

  13. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena

    2016-03-01

    We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α -helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.

  14. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  15. Six Decades of Spiral Density Wave Theory

    Science.gov (United States)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  16. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  17. The E142 SLAC experiment: measurement of the neutron gn1(x) spin structure function

    International Nuclear Information System (INIS)

    Roblin, Y.

    1995-01-01

    This thesis describes the E142 experiment which has been carried out at the Stanford Linear Accelerator (SLAC), USA, from October to December 1992. This experiment of polarized inelastic scattering of a 22.6 GeV electron beam on a polarized helium 3 target has allowed the first measurement of the neutron g n 1 (x) spin structure function. The knowledge of this structure function gives informations on the nucleon spin structure. On the other hand, the g n 1 (x) structure function integral value on the 0 2 mean value of 2 GeV 2 after some extrapolations. This value is at about two standard deviations away from the theoretical predictions of the Ellis-Jaffe rule. Thanks to the existing experimental results for the proton (E143 experiment), the Bjorken sum rule has been precisely tested and is perfectly compatible with the theoretical value. The results have allowed to estimate the nucleon spin fraction carried by the quarks. (J.S.). 86 refs., 58 figs., 13 tabs

  18. Spin-mapping of coal structures with ESE and ENDOR

    Energy Technology Data Exchange (ETDEWEB)

    Belford, R.L.; Clarkson, R.B.

    1990-12-01

    To ENDOR and ESE we have added another advanced EPR technique. VHF-EPR, as a tool with which to observe coal molecular structure, especially organic sulfur. We have constructed a unique VHF EPR instrument operating at the W-band (96 Ghz), one of only two such instruments in the world, and the only one studying coal. We are employing this instrument, as well as collaborating with scientists at Cornell University, who have a 250 GHz spectrometer, to develop a clearer understanding of the relationships between the VHF EPR spectra we observe from Illinois coal and the organic sulfur species present in it. Efforts in this quarter focussed on three area: recruitment of personnel (especially a new postdoctoral fellow) to join the coal research team work on improving the W-band spectrometer, and studies of vitrinite, sporinite, and fusinite macerals at G-band (250 GHz). All three areas have shown good progress. This report will discuss in detail the main features of the W-band instrument, stressing its unique engineering features as well as comparing it to the few other instruments in the world operating in the VHF frequency range (90--250 GHz). Preliminary analysis of the 250 GHz data on macerals obtained by density gradient centrifugation from an Illinois {number sign}6 coal gives the first indication that at the very highest frequencies, there may be a separation of the heteroatom VHF EPR signals into a sulfur and on oxygen-containing component. 15 refs., 9 figs., 1 tab.

  19. Cochlea and other spiral forms in nature and art.

    Science.gov (United States)

    Marinković, Slobodan; Stanković, Predrag; Štrbac, Mile; Tomić, Irina; Ćetković, Mila

    2012-01-01

    The original appearance of the cochlea and the specific shape of a spiral are interesting for both the scientists and artists. Yet, a correlation between the cochlea and the spiral forms in nature and art has been very rarely mentioned. The aim of this study was to investigate the possible correlation between the cochlea and the other spiral objects in nature, as well as the artistic presentation of the spiral forms. We explored data related to many natural objects and examined 13,625 artworks created by 2049 artists. We also dissected 2 human cochleas and prepared histologic slices of a rat cochlea. The cochlea is a spiral, cone-shaped osseous structure that resembles certain other spiral forms in nature. It was noticed that parts of some plants are arranged in a spiral manner, often according to Fibonacci numbers. Certain animals, their parts, or their products also represent various types of spirals. Many of them, including the cochlea, belong to the logarithmic type. Nature created spiral forms in the living world to pack a larger number of structures in a limited space and also to improve their function. Because the cochlea and other spiral forms have a certain aesthetic value, many artists presented them in their works of art. There is a mathematical and geometric correlation between the cochlea and natural spiral objects, and the same functional reason for their formation. The artists' imagery added a new aspect to those domains. Obviously, the creativity of nature and Homo sapiens has no limits--like the infinite distal part of the spiral. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Spin structures on algebraic curves and their applications in string theories

    International Nuclear Information System (INIS)

    Ferrari, F.

    1990-01-01

    The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)

  1. Structure of stable binary neutron star merger remnants: Role of initial spin

    Science.gov (United States)

    Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B.

    2017-08-01

    We present general relativistic numerical simulations of binary neutron star (BNS) mergers with different initial spin configurations. We focus on models with stars of mass 1.4 M⊙ each, which employ the equation of state (EOS) by Shen, Horowitz, and Teige, and which result in stable NSs as merger remnants. For comparison, we consider two irrotational equal mass (M =1.35 M⊙) and unequal mass (M =1.29 , 1.42 M⊙ ) BNS models using the APR4 EOS, which result in a supramassive merger remnant. We present visualizations of the fluid flow and temperature distribution and find a strong impact of the spin on vortex structure and nonaxisymmetric deformation. We compute the radial mass distribution and the rotation profile in the equatorial plane using recently developed measures independent of spatial gauge, revealing slowly rotating cores that can be well approximated by the cores of spherical stars. We also study the influence of the spin on the inspiral phase and the gravitational wave (GW) signal. Using a newly developed analysis method, we further show that gravitational waveforms from BNS mergers can exhibit one or more phase jumps after merger, which occur together with minima of the strain amplitude. We provide a natural explanation in terms of the remnant's quadrupole moment, and show that cancellation effects due to phase jumps can have a strong impact on the GW power spectrum. Finally, we discuss the impact of the spin on the amount of ejected matter.

  2. su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame

    International Nuclear Information System (INIS)

    Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin

    2008-01-01

    The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics

  3. .sup.57./sup.Fe NMR and spin structure of manganese ferrite

    Czech Academy of Sciences Publication Activity Database

    Štěpánková, H.; Sedlák, B.; Chlan, V.; Novák, Pavel; Šimša, Zdeněk

    2008-01-01

    Roč. 77, č. 9 (2008), 092416/1-092419/4 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0541; GA ČR GA202/06/0051 Institutional research plan: CEZ:AV0Z10100521 Keywords : NMR * manganese ferrite * spin structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  4. Spin asymmetry Ad1 and the spin-dependent structure function gd1 of the deuteron at low values of x and Q2

    Czech Academy of Sciences Publication Activity Database

    Alexakhin, V.; Alexandrov, Y.; Alexeev, G.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.; Bytchkov, V.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.; Costa, S.; Crespo, M.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Denisov, O.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.; Dolgopolov, A.; Donskov, S.; Dorofeev, V.; Doshita, N.; Duic, V.; Dünnweber, W.; Ehlers, J.; Eversheim, P.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.; Grajek, O.; Grasso, A.; Grube, B.; Grünemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.; Ilgner, C.; Ioukaev, A.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Khomutov, N.; Kisselev, Y.; Klein, F.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konoplyannikov, A.; Konorov, I.; Konstantinov, V.; Korentchenko, A.; Korzenev, A.; Kotzinian, A.; Koutchinski, N.; Kowalik, K.; Kravchuk, N.; Krivokhizhin, G.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.; Lamanna, M.; Le Goff, J.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Manuilov, I.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.; Medved, K.; Meyer, W.; Mielech, A.; Mikhailov, Y.; Moinester, M.; Nähle, O.; Nassalski, J.; Neliba, S.; Neyret, D.; Nikolaenko, V.; Nozdrin, A.; Obraztsov, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.; Peshekhonov, D.; Peshekhonov, V.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.; Popov, A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.; Rondio, E.; Sadovski, A.; Saller, E.; Samoylenko, V.; Sandacz, A.; Sans, M.; Sapozhnikov, M.; Savin, I.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.; Shishkin, A.; Siebert, H.; Sinha, L.; Sissakian, A.; Skachkova, A.; Slunecka, M.; Smirnov, G.; Sozzi, F.; Sugonyaev, V.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.; Tassarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.; Toeda, T.; Tretyak, V.; Trousov, S.; Varanda, M.; Virius, M.; Vlassov, N.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    Roč. 647, 5-6 (2007), s. 330-340 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : inelastic muon scattering * spin * structure function Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.189, year: 2007

  5. Quarkyonic Chiral Spirals

    International Nuclear Information System (INIS)

    Toru, Kojo; Hidaka, Y.; Pisarski, R.; McLerran, L.

    2010-01-01

    We argue the properties of confining dense quark matter, 'quarkyonic' matter, from the viewpoint of both bulk properties and excitation modes. After a brief review of confining aspects, the chiral breaking/restoration will be discussed. We argue that the strong infrared correlations induce the chiral spiral, i.e., the spatial modulation of the chiral condensate which breaks the chiral symmetry locally but restore it globally. The effective dimensional reduction takes place, allowing us to analyzing the system as 2D model in which several exact results can be explicitly derived. We also discuss the excitation spectra, both mesonic and baryonic ones, on the chiral spiral. (author)

  6. High-spin states in 136La and possible structure change in the N =79 region

    Science.gov (United States)

    Nishibata, H.; Leguillon, R.; Odahara, A.; Shimoda, T.; Petrache, C. M.; Ito, Y.; Takatsu, J.; Tajiri, K.; Hamatani, N.; Yokoyama, R.; Ideguchi, E.; Watanabe, H.; Wakabayashi, Y.; Yoshinaga, K.; Suzuki, T.; Nishimura, S.; Beaumel, D.; Lehaut, G.; Guinet, D.; Desesquelles, P.; Curien, D.; Higashiyama, K.; Yoshinaga, N.

    2015-05-01

    High-spin states in the odd-odd nucleus 136La, which is located close to the β -stability line, have been investigated in the radioactive-beam-induced fusion-evaporation reaction 124Sn(17N,5 n ). The use of the radioactive beam enabled a highly sensitive and successful search for a new isomer [14+,T1 /2=187 (27 ) ns] in 136La. In the A =130 -140 mass region, no such long-lived isomer has been observed at high spin in odd-odd nuclei. The 136La level scheme was revised, incorporating the 14+ isomer and six new levels. The results were compared with pair-truncated shell model (PTSM) calculations which successfully explain the level structure of the π h11 /2⊗ν h11/2 -1 bands in 132La and 134La. The isomerism of the 14+ state was investigated also by a collective model, the cranked Nilsson-Strutinsky (CNS) model, which explains various high-spin structures in the medium-heavy mass region. It is suggested that a new type of collective structure is induced in the PTSM model by the increase of the number of π g7 /2 pairs, and/or in the CNS model by the configuration change associated with the shape change in 136La.

  7. Spin asymmetry $A^d_1$ and the spin-dependent structure function $g^d_1$ of the deuteron at low values of $x$ and $Q^2$

    CERN Document Server

    Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; He, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sans, M.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.-W.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    We present a precise measurement of the deuteron longitudinal spin asymmetry $A_1^d$ and of the deuteron spin-dependent structure function $g_1^d$ at $Q^2 < $ 1~(GeV/$c$)$^2$ and $4\\cdot$10$^{-5} < x < $~2.5$\\cdot$10$^{-2}$ based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured $A_1^d$ and $g_1^d$ are found to be consistent with zero in the whole range of $x$.

  8. On galaxy spiral arms' nature as revealed by rotation frequencies

    NARCIS (Netherlands)

    Roca-Fabrega, Santi; Valenzuela, Octavio; Figueras, Francesca; Romero-Gomez, Merce; Velazquez, Hector; Antoja Castelltort, Teresa; Pichardo, Barbara

    2013-01-01

    High-resolution N-body simulations using different codes and initial condition techniques reveal two different behaviours for the rotation frequency of transient spiral arms like structures. Whereas unbarred discs present spiral arms nearly corotating with disc particles, strong barred models

  9. Bimodule structure in the periodic gℓ(1|1) spin chain

    International Nuclear Information System (INIS)

    Gainutdinov, A.M.; Read, N.; Saleur, H.

    2013-01-01

    This paper is the second in a series devoted to the study of periodic super-spin chains. In our first paper (Gainutdinov et al., 2013 [3]), we have studied the symmetry algebra of the periodic gℓ(1|1) spin chain. In technical terms, this spin chain is built out of the alternating product of the gℓ(1|1) fundamental representation and its dual. The local energy densities — the nearest neighbour Heisenberg-like couplings — provide a representation of the Jones–Temperley–Lieb (JTL) algebra JTL N . The symmetry algebra is then the centralizer of JTL N , and turns out to be smaller than for the open chain, since it is now only a subalgebra of U q sℓ(2) at q=i — dubbed U q odd sℓ(2) in Gainutdinov et al. (2013) [3]. A crucial step in our associative algebraic approach to bulk logarithmic conformal field theory (LCFT) is then the analysis of the spin chain as a bimodule over U q odd sℓ(2) and JTL N . While our ultimate goal is to use this bimodule to deduce properties of the LCFT in the continuum limit, its derivation is sufficiently involved to be the sole subject of this paper. We describe representation theory of the centralizer and then use it to find a decomposition of the periodic gℓ(1|1) spin chain over JTL N for any even N and ultimately a corresponding bimodule structure. Applications of our results to the analysis of the bulk LCFT will then be discussed in the third part of this series

  10. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  11. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  12. Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3(M  =  Cr, Mn, Fe).

    Science.gov (United States)

    Okugawa, Takuya; Ohno, Kaoru; Noda, Yusuke; Nakamura, Shinichiro

    2018-02-21

    We investigate the spin-dependent electronic states of antiferromagnetic (AFM) lanthanum chromite (LaCrO 3 ), lanthanum manganite (LaMnO 3 ), and lanthanum ferrite (LaFeO 3 ) using spin-polarized first-principles density functional theory with Hubbard U correction. The band structures are calculated for 15 types of their different AFM structures. It is verified for these structures that there is a very simple rule to identify which wave number [Formula: see text] exhibits spin splitting or degeneracy in the band structure. This rule uses the symmetry operations that map the up-spin atoms onto the down-spin atoms. The resulting spin splitting is very small for the most stable spin configuration of the most stable experimental structure. We discuss a plausible benefit of this characteristic, i.e. the direction-independence of the spin current, in electrode applications.

  13. The deep Algerian margin structure revisited by the Algerian-French SPIRAL research program, stage 2 : Wide-ange seismic experiment

    Science.gov (United States)

    Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral

    2010-05-01

    During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.

  14. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  15. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0......,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged...... ferromagnetically (forming zigzag paths) along one of the axes and antiferromagnetically along the other. The temperature dependence of the sublattice magnetization is consistent with the expectations of the three-dimensional (3D) Ising model. A similar behavior is observed for the internal static fields...

  16. Tracking Target and Spiral Waves

    DEFF Research Database (Denmark)

    Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads

    2002-01-01

    A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined by the...

  17. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  18. Spiraling into Transformative Learning

    Science.gov (United States)

    Cranton, Patricia

    2010-01-01

    This article explores how technical and vocational learning may spiral into transformative learning. Transformative learning theory is reviewed and the learning tasks of critical theory are used to integrate various approaches to transformative learning. With this as a foundation, the article explores how transformative learning can be fostered in…

  19. Corrections to nucleon spin structure asymmetries measured on nuclear polarized targets

    International Nuclear Information System (INIS)

    Rondon, O.A.

    1999-01-01

    The nucleon spin structure functions have been extracted from measurements of asymmetries in deep inelastic scattering of polarized leptons on polarized nuclei. The polarized nuclei present in practical targets: H, 2 H, 3 He, 14 N, 15 N, 6 Li, and 7 Li, are, with the exception of hydrogen, systems of bound nucleons, some of which can attain significant degrees of alignment. All the aligned nucleons contribute to the asymmetries. The contributions of each nuclear species to the asymmetry have to be carefully determined, before a reliable value for the net nucleon asymmetry is obtained. For this purpose, the spin component of the nuclear angular momentum for every nuclear state and the probability of each state have to be known with sufficient accuracy. In this paper I discuss the basic corrections used to estimate the contributions of the different nuclei, with emphasis on the A=6 and 7 Li isotopes present in the Li 2 H polarized target used during SLAC Experiment 155 to study the deuteron spin structure. copyright 1999 The American Physical Society

  20. Study of the nucleon spin structure functions: the E154 experiment at SLAC

    International Nuclear Information System (INIS)

    Sabatie, Franck

    1998-01-01

    In experiment E154 at SLAC, the spin dependent structure function g 1 n was measured by scattering longitudinally polarized 50 GeV electrons off a longitudinally polarized helium 3 target. We report the integral over the measured x range to be ∫ 0.014 0.7 g 1 n (x,5 GeV 2 )dx = -0.0348 ± 0.0033 ± 0.0043 ± 0.0014. We observe relatively large values of g 1 n at low x, calling into question the reliability of the data extrapolation down to x equal 0. Such a divergent behavior seems to disagree with the prediction of the Regge theory but can be quantitatively explained by perturbative QCD. Moreover, we have performed a NLO perturbative QCD analysis of the world data on g 1 , paying careful attention to both the theoretical hypothesis and the calculation of errors. Using a parametrization of the polarized parton distribution at a low scale, we can access the fraction of spin carried by quarks: ΔΣ = 29 ± 6 pc in the MS-bar scheme, and ΔΣ = 37 ± 7 pc in the AB scheme. The gluon contribution to the nucleon spin is not well enough constrained by the current data, but seems to lie between 0 and 2. This study allows us to extract the first moment of the g 1 structure function and we find agreement with the Bjorken sum rule expectations. (author) [fr

  1. Noncollinear Spin Structure in Fe--Ni Invar Alloy Probed by Magnetic EXAFS at High Pressure

    Science.gov (United States)

    Matsumoto, Ken; Maruyama, Hiroshi; Ishimatsu, Naoki; Kawamura, Naomi; Mizumaki, Masaichiro; Irifune, Tetsuo; Sumiya, Hitoshi

    2011-02-01

    To examine theoretical models of the Invar effect, X-ray magnetic circular dichroism and magnetic extended X-ray absorption fine structure (MEXAFS) measurements are performed under high pressures at the Fe and Ni K-edges in 35.4 at. % Ni--Fe alloy. An oscillatory MEXAFS signal is observed up to 6 GPa. Its amplitude significantly decreases with increasing pressure. The magnetic component of the radial distribution function, obtained by taking the Fourier transform, shows a different reduction in the ferromagnetic correlations of Fe and Ni absorbing atoms. The present results are favorable to the noncollinear spin structure picture rather than the Fe 2γ-state model.

  2. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  3. The Deuteron Spin-dependent Structure Function $g^{d}_1$ and its First Moment

    CERN Document Server

    Alexakhin, V.Yu.; Alexeev, G.D.; Alexeev, M.; Amoroso, A.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; M. Finger jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu. V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Zvyagin, A.

    2007-01-01

    We present a measurement of the deuteron spin-dependent structure function g^d_1 based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for \\Gamma^d_1, the first moment of g^d_1(x), and for the matrix element of the singlet axial current, a_0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function \\Delta_G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3(GeV/c)^2 the first moment of \\Delta G is found to be of the order of 0:2 - 0:3 in absolute value.

  4. Neutron diffraction and ultrasonic studies of spin-slip structures in holmium

    Energy Technology Data Exchange (ETDEWEB)

    Venter, Andrew M. [Atomic Energy Corporation of S A (Ltd), P O Box 582, Pretoria (South Africa); Du Plessis, Paul de V [Physics Department, University of the Witwatersrand, Private Bag 3, PO Wits 2050, Johannesburg (South Africa)

    1997-06-16

    Spin-slip behaviour in high-purity holmium single crystals is characterized by neutron diffraction and ultrasonic velocity and attenuation measurements as a function of temperature and of magnetic field applied along b, c, and a axes. Neutron diffraction measurements of intensity and turn angle give information on wave vector lock-in effects for various spin-slip structures in applied fields. These findings are supplemented with ultrasonic studies of the elastic constants C{sub 33} and C{sub 44} and corresponding attenuation coefficients {alpha}{sub 33} and {alpha}{sub 44}. Various phase diagrams are presented and results compared with experiments by other groups and with some theoretical predictions. (author)

  5. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K.; Hatsukawa, Y. [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  6. Existence of incommensurate spiral magnetic structure in Y.sub.2./sub.Fe.sub.17./sub. under high pressure

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Prokhnenko, Olexandr; Ritter, C.; Goncharenko, I.; Kamarád, Jiří

    272-276, - (2004), e1589-e1590 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739; GA AV ČR IAA1010315; GA MŠk ME 495 Institutional research plan: CEZ:AV0Z1010914 Keywords : intermetallic compounds * Y 2 Fe 17 * pressure effect * magnetic structure * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  7. Aharonov-Casher and spin Hall effects in mesoscopic ring structures with strong spin-orbit interaction

    Czech Academy of Sciences Publication Activity Database

    Borunda, M.F.; Liu, X.; Kovalev, A.A.; Liu, X.-J.; Jungwirth, Tomáš; Sinova, J.

    2008-01-01

    Roč. 78, č. 24 (2008), 245315/1-245315/9 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : Aharonov-Casher effect * spin Hall effect * spin-orbit interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  8. Graphite target for the spiral project

    Energy Technology Data Exchange (ETDEWEB)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bertrand, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Loiselet, M. [Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)] [and others

    1996-12-31

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author). 5 refs.

  9. Photometry and mass modeling of spiral galaxies

    International Nuclear Information System (INIS)

    Kent, S.

    1987-01-01

    Recent estimates of the relative contributions of dark and luminous matter to the mass of spiral galaxies are reviewed. In these studies, the galactic mass distribution is modeled on the basis of photometric and kinematic observational data. The accuracy of current photometry is discussed; the three-dimensional structure of spiral galaxies and the techniques used in bulge-disk decomposition are examined; and mass models incorporating rotation curves are presented. The disk mass/luminosity ratios in the red band (corrected for internal extinction) are found to range from 1.6 to 3.2, with no particular radius at which dark matter dominates. 20 references

  10. Spiral 2 the scientific objectives

    International Nuclear Information System (INIS)

    2006-06-01

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10 14 fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10 6 to 10 11 particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC 2 target with 3,4 He, 6,7 Li or 12 C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  11. Spiral 2 the scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The French ministry of research took the decision to build Spiral-2 in May 2005. Its construction costs are estimated to 130 million euros while its operating costs will near 8.5 million euros per year. The construction works will last 5 years. The Spiral-2 facility is based on a high power, superconducting driver Linac, which will deliver a high intensity, 40 MeV deuteron beam as well as a variety of heavy-ion beams with mass over charge ratio equal to 3 and energy up to 14.5 MeV/nucleon. Using a carbon converter, fast neutrons from the breakup of the 5 mA of deuterons impinging on a uranium carbide target will induce a rate of up to 10{sup 14} fissions/s. The radioactive ion beam intensities in the mass range from A = 60 to 140 will be of the order of 10{sup 6} to 10{sup 11} particles/s surpassing by one or two orders-of-magnitude any existing facility in the world. A direct irradiation of the UC{sub 2} target with {sup 3,4}He, {sup 6,7}Li or {sup 12}C may also be used. Different production targets will be used to produce high-intensity beams of light radioactive species with the Isol technique. The extracted radioactive ion beam will be accelerated to energies up to 20 MeV/nucleons by the existing Cime cyclotron. One of the most important features of the future Ganil accelerator complex will be the capability of delivering up to 5 stable or radioactive beams simultaneously in the energy range from the keV to several tens of MeV/nucleons. The document details also the future contribution of Spiral-2 concerning the structure of exotic nuclei, the thermodynamical aspects of nuclear matter, nucleosynthesis, the fundamental basic interactions, and the use of neutrons. (A.C.)

  12. Measurement of the Proton and Deuteron Spin Structure Functions G1 and G2

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Al

    2003-04-02

    The SLAC experiment E155 was a deep-inelastic scattering experiment that scattered polarized electrons off polarized proton and deuteron targets in the effort to measure precisely the proton and deuteron spin structure functions. The nucleon structure functions g{sub 1} and g{sub 2} are important quantities that help test our present models of nucleon structure. Such information can help quantify the constituent contributions to the nucleon spin. The structure functions g{sub 1}{sup p} and G{sub 1}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.9 and 1 {le} Q{sup 2} {le} 40 GeV{sup 2} by scattering 48.4 GeV longitudinally polarized electrons off longitudinally polarized protons and deuterons. In addition, the structure functions g{sub 2}{sup p} and g{sub 2}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.7 and 1 {le} Q{sup 2} {le} 17 GeV{sup 2} by scattering 38.8 GeV longitudinally polarized electrons off transversely polarized protons and deuterons. The measurements of g{sub 1} confirm the Bjorken sum rule and find the net quark polarization to be {Delta}{Sigma} = 0.23 {+-} 0.04 {+-} 0.6 while g{sub 2} is found to be consistent with the g{sub 2}{sup WW} model.

  13. Planar Task Space Control of a Biarticular Manipulator Driven by Spiral Motors

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki bin Hj Shukor

    2012-10-01

    Full Text Available This paper elaborates upon a musculoskeletal-inspired robot manipulator using a prototype of the spiral motor developed in our laboratory. The spiral motors represent the antagonistic muscles due to the high forward/backward drivability without any gears or mechanisms. Modelling of the biarticular structure with spiral motor dynamics was presented and simulations were carried out to compare two control methods, Inverse Kinematics (IK and direct-Cartesian control, between monoarticular only structures and biarticular structures using the spiral motor. The results show the feasibility of the control, especially in maintaining air gaps within the spiral motor.

  14. The Spiral Curriculum. Research into Practice

    Science.gov (United States)

    Johnston, Howard

    2012-01-01

    The Spiral Curriculum is predicated on cognitive theory advanced by Jerome Bruner (1960), who wrote, "We begin with the hypothesis that any subject can be taught in some intellectually honest form to any child at any stage of development." In other words, even the most complex material, if properly structured and presented, can be understood by…

  15. Measurement of the spin-dependent structure-functions of the proton and the deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent structure functions $g _{1}(x)$ of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  16. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state......The recently theoretically described nuclear spin-induced circular dichroism (NSCD) is a promising method for the optical detection of nuclear magnetization. NSCD involves both optical excitations of the molecule and hyperfine interactions and, thus, it offers a means to realize a spectroscopy...... with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates...

  17. [Application of electrostatic spinning technology in nano-structured polymer scaffold].

    Science.gov (United States)

    Chen, Denglong; Li, Min; Fang, Qian

    2007-04-01

    To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.

  18. Spiral 2 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop.

  19. Structure and properties of quarternary and tetragonal Heusler compounds for spintronics and spin transver torque applications

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Vajiheh Alijani

    2012-03-07

    This work is divided into two parts: part 1 is focused on the prediction of half-metallicity in quaternary Heusler compounds and their potential for spintronic applications and part 2 on the structural properties of Mn{sub 2}-based Heusler alloys and tuning the magnetism of them from soft to hard-magnetic for spin-transfer torque applications. In part 1, three different series of quaternary Heusler compounds are investigated, XX'MnGa (X=Cu, Ni and X'=Fe,Co), CoFeMnZ (Z=Al,Ga,Si,Ge), and Co{sub 2-x}Rh{sub x}MnZ (Z=Ga,Sn,Sb). All of these quaternary compounds except CuCoMnGa are predicted to be half-metallic ferromagnets by ab-initio electronic structure calculations. In the XX'MnGa class of compounds, NiFeMnGa has a low Curie temperature for technological applications but NiCoMnGa with a high spin polarization, magnetic moment, and Curie temperature is an interesting new material for spintronics applications. All CoFeMnZ compounds exhibit a cubic Heusler structur and their magnetic moments are in fair agreement with the Slater-Pauling rule indicating the halfmetallicity and high spin polarization required for spintronics applications. Their high Curie temperatures make them suitable for utilization at room temperature and above. The structural investigation revealed that the crystal structure of all Co{sub 2-x}Rh{sub x}MnZ compounds aside from CoRhMnSn exhibit different types of anti-site disorder. The magnetic moments of the disordered compounds deviate from the Slater-Pauling rule indicating that 100% spin polarization are not realized in CoRhMnGa, CoRhMnSb, and Co{sub 0.5}Rh{sub 1.5}MnSb. Exchange of one Co in Co{sub 2}MnSn by Rh results in the stable, well-ordered compound CoRhMnSn. This exchange of one of the magnetic Co atoms by a non-magnetic Rh atom keeps the magnetic properties and half-metallicity intact. In part 2, two series of Mn{sub 2}-based Heusler alloys are investigated, Mn{sub 3-x}Co{sub x}Ga and Mn{sub 2-x}Rh{sub 1+x}Sn. It has been

  20. Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange.

    Science.gov (United States)

    Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G

    2015-08-12

    The spin-1/2 chain with isotropic Heisenberg exchange J1, J2  >  0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between  -1.2  quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.

  1. The deuteron spin-dependent structure function and its first moment

    Czech Academy of Sciences Publication Activity Database

    Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Alexeev, M.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A. M.; Donskov, S.V.; Dorofeev, V. A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V. F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.-W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    Roč. 647, č. 1 (2007), s. 8-17 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : Deep inelastic scattering * Spin * Structure function * QCD analysis * A1 * g1 Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.189, year: 2007 http://www.sciencedirect.com/science/article/B6TVN-4MYVG5P-1/2/387d70e7f30fb736514de259c62118d9

  2. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  3. Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’

    International Nuclear Information System (INIS)

    De Gier, Jan

    2012-01-01

    We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)

  4. Deep inelastic scattering structure functions of holographic spin-1 hadrons with N f ≥ 1

    Science.gov (United States)

    Koile, Ezequiel; Macaluso, Sebastian; Schvellinger, Martin

    2014-01-01

    Two-point current correlation functions of the large N limit of supersymmetric and non-supersymmetric Yang-Mills theories at strong coupling are investigated in terms of their string theory dual models with quenched flavors. We consider non-Abelian global symmetry currents, which allow one to investigate vector mesons with N f > 1. From the correlation functions we construct the deep inelastic scattering hadronic tensor of spin-one mesons, obtaining the corresponding eight structure functions for polarized vector mesons. We obtain several relations among the structure functions. Relations among some of theirmoments are also derived. Aspects of the sub-leading contributions in the 1 /N and N f /N expansions are discussed. At leading order we find a universal behavior of the hadronic structure functions.

  5. Intrinsic properties of high-spin band structures in triaxial nuclei

    Science.gov (United States)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  6. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  7. Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

    Science.gov (United States)

    Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan

    2017-08-01

    We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.

  8. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  9. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  10. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  11. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    International Nuclear Information System (INIS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-01-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that

  12. Structure and spin density of ferric low-spin heme complexes determined with high-resolution ESEEM experiments at 35 GHz.

    Science.gov (United States)

    García-Rubio, Inés; Mitrikas, George

    2010-08-01

    The wide use of the heme group by nature is a consequence of its unusual "electronic flexibility." Major changes in the electronic structure of this molecule can result from small perturbations in its environment. To understand the way the electronic distribution is dictated by the structure of the heme site, it is extremely important to have methods to reliably determine both of them. In this work we propose a way to obtain this information in ferric low-spin heme centers via the determination of g, A, and Q tensors of the coordinated nitrogens using electron spin echo envelope modulation experiments at Q-band microwave frequencies. The results for two bisimidazole heme model complexes, namely, PPIX(Im)(2) and CPIII(Im)(2), where PPIX is protoporphyrin IX, CPIII is coproporphyrin III, and Im is imidazole, selectively labeled with (15)N on the heme or imidazole nitrogens are presented. The planes of the axial ligands were found to be parallel and oriented approximately along one of the N-Fe-N directions of the slightly ruffled porphyrin ring (approximately 10 degrees ). The spin density was determined to reside in an iron d orbital perpendicular to the heme plane and oriented along the other porphyrin N-Fe-N direction, perpendicular to the axial imidazoles. The benefit of the method presented here lies in the use of Q-band microwave frequencies, which improves the orientation selection, results in no/fewer combination lines in the spectra, and allows separation of the contributions of hyperfine and quadrupole interactions due to the fulfillment of the exact cancellation condition at g ( Z ) and the possibility of performing hyperfine decoupling experiments at the g ( X ) observer position. These experimental advantages make the interpretation of the spectra straightforward, which results in precise and reliable determination of the structure and spin distribution.

  13. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  14. Magnetic transport property of NiFe/WSe2/NiFe spin valve structure

    International Nuclear Information System (INIS)

    Zhao, Kangkang; Xing, Yanhui; Han, Jun; Feng, Jiafeng; Shi, Wenhua; Zhang, Baoshun; Zeng, Zhongming

    2017-01-01

    Highlight: • Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. • In this article, we introduce exfoliated few-layer tungsten diselenide (WSe 2 ) as spacer in a Py/WSe 2 /Py vertical spin valve. • In this junction, the WSe 2 spacer exhibits metallic behavior. • We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. • A general phenomenological analysis of the negative MR property is discussed. • Our result is anticipated to be beneficial for future spintronic applications. - Abstract: Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe 2 ) as spacer in a Py/WSe 2 /Py vertical spin valve. In this junction, the WSe 2 spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  15. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E. [Stanford Univ., CA (United States)

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results of the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.

  16. Magnetic transport property of NiFe/WSe{sub 2}/NiFe spin valve structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kangkang [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Xing, Yanhui, E-mail: xingyanhui@bjut.edu.cn [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Han, Jun [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Feng, Jiafeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190 (China); Shi, Wenhua; Zhang, Baoshun [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zeng, Zhongming, E-mail: zmzeng2012@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2017-06-15

    Highlight: • Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. • In this article, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. • In this junction, the WSe{sub 2} spacer exhibits metallic behavior. • We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. • A general phenomenological analysis of the negative MR property is discussed. • Our result is anticipated to be beneficial for future spintronic applications. - Abstract: Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. In this junction, the WSe{sub 2} spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  17. Longitudinal double spin asymmetry $A_1^p$ and spin-dependent structure function $g_1^p$ of the proton at low $x$ and low $Q^2$ from COMPASS

    CERN Document Server

    Nunes, A S

    2014-01-01

    The COMPASS experiment at CERN has collected a large sample of events of inelastic scattering of longitudinally polarised muons off longitudinally polarised protons in the non-perturbative region (four-momentum transfer squared $Q^2<1$~(GeV$^2$/$c^2$), with a Bjorken scaling variable in the range $4\\times 10^{-5}spin asymmetry $A_1^p$ and of the spin-dependent structure function $g_1^p$ of the proton in the region of low $x$ and low $Q^2$. The preliminary results of the analysis of these data yield non zero and positive asymmetries and of the structure function $g_1^p$. This is the first time that spin effects are observed at such low $x$.

  18. Three phase spiral liver Scanning

    International Nuclear Information System (INIS)

    Kanyanja, T.A.

    2006-01-01

    The ability to perform rapid back-to-back spiral acquisitions is an important recent technical advantage of spiral CT. this allows imaging of the upper abdomen (liver) during peak arterial enhancement (arterial phase) and during peak hepatic parenchymal enhancement (portal venous phase). Breatheld spiral CT has completely replaced dynamic incremental CT for evaluation of the liver. in selected patients with hyper vascular metastasis (hepatoma, neuroendocrine tumors, renal cell carcinoma, etc.) a biphasic examination is performed with one spiral acquisition obtained during the hepatic arterial phase and a second acquisition during the portal venous phase

  19. Spin Resonance in the New-Structure-Type Iron-Based Superconductor CaKFe4As4

    Science.gov (United States)

    Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira

    2017-09-01

    The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe4As4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Qres = 1.17(1) Å-1, corresponding to the (π ,π ) nesting wave vector in tetragonal notation, evolves below Tc. The characteristic energy of the spin resonance Eres = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe4As4 is the s± symmetry.

  20. Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application

    Directory of Open Access Journals (Sweden)

    Fakhri Makram A.

    2017-01-01

    Full Text Available This work is dedicated to investigation of temperature effects in Lithium Niobate (LiNbO3 nanostructures. The LiNbO3 nanostructures were deposited on glass substrate by spin-coating technique. LiNbO3 was set down at 3000 rpm for 30 sec and annealed from 100 to 600 °C. The structures were characterized and analyzed by scanning electron microscopy (SEM and ultra-violet visible (UV-vis spectrophotometer. The measured results have showed that by increasing annealing temperatures, the structures start to be more crystallized and be more homogenized until the optimum arrangement was achieved. Once this was accomplished, it's applicable for optical waveguides development. Eventually, it starts to be less crystallization and non-homogeneous. Energy gap was recorded to be at average value of 3.9 eV.

  1. Measurement of the Proton and Deuteron Spin Structure Function g1 in the Resonance Region

    International Nuclear Information System (INIS)

    Abe, K.; Akagi, T.; Perry Anthony; Antonov, R.; Arnold, R.G.; Todd Averett; Band, H.R.; Bauer, J.M.; Borel, H.; Peter Bosted; Vincent Breton; Button-Shafer, J.; Jian-Ping Chen; T.E. Chupp; J. Clendenin; C. Comptour; K.P. Coulter; G. Court; Donald Crabb; M. Daoudi; Donal Day; F.S. Dietrich; James Dunne; H. Dutz; R. Erbacher; J. Fellbaum; Andrew Feltham; Helene Fonvieille; Emil Frlez; D. Garvey; R. Gearhart; Javier Gomez; P. Grenier; Keith Griffioen; S. Hoeibraten; Emlyn Hughes; Charles Hyde-Wright; J.R. Johnson; D. Kawall; Andreas Klein; Sebastian Kuhn; M. Kuriki; Richard Lindgren; T.J. Liu; R.M. Lombard-Nelsen; Jacques Marroncle; Tomoyuki Maruyama; X.K. Maruyama; James Mccarthy; Werner Meyer; Zein-Eddine Meziani; Ralph Minehart; Joseph Mitchell; J. Morgenstern; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; C. Prescott; R. Prepost; P. Raines; Brian Raue; D. Reyna; A. Rijllart; Yves Roblin; L. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Ingo Sick; Lee Smith; Tim Smith; M. Spengos; F. Staley; P. Steiner; S. St. Lorant; L.M. Stuart; F. Suekane; Z.M. Szalata; Huabin Tang; Y. Terrien; Tracy Usher; Dieter Walz; Frank Wesselmann; J.L. White; K. Witte; C. Young; Brad Youngman; Haruo Yuta; G. Zapalac; Benedikt Zihlmann; Zimmermann, D.

    1997-01-01

    We have measured the proton and deuteron spin structure functions g 1 p and g 1 d in the region of the nucleon resonances for W 2 2 and Q 2 ≅ 0.5 and Q 2 ≅ 1.2 GeV 2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15 NH 3 and 15 ND 3 targets. We observe significant structure in g 1 p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W 2 , to extract Γ(Q 2 ) (triple b ond) ∫ 0 1 g 1 (x,Q 2 ) dx. This is the first information on the low-Q 2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q 2 = 0

  2. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  3. Density functional approximation for spin dependent quantum transport in magnetic nano structures

    International Nuclear Information System (INIS)

    Nyunt, Khine

    2009-01-01

    In quasi-classical theoretical framework, the transport of electrons and holes in semiconductor devices is treated with the Boltzmann transport equation or quantum-mechanical energy band theory - viz., the effective mass approximation and the random phase approximation. On the other hand, in the mesoscopic, nano electronic devices, for three- and lower- dimensional structures with nanometer scaling, the wave properties, spin, charge and the interactions between spin and charge of electrons are fully utilized, such as in artificial mini-Brillouin zones, quantum size effects, Coulomb blockade of single-electron tunneling and spin-polarized giant magnetoresistance tunneling. The complexity associated with the classical quantum-mechanical formalism in the study of transport in magnetic nano structures can be avoided by applying the so-called, Hohenberg-Kohns density functional theory. In particular, the N-electron problem is formulated as N one-electron equations where each electron interacts with all other electrons via an effective exchange-correlation potential. These interactions are augmented using the electron charge density. Plane wave sets and total energy pseudo-potential methods can be used self-consistently, to solve the Kohn-Sham one-electron equations. Because of the limitations of quasi-classical theory, it is more appropriate to treat the magneto-transport problem in nano structures by using quantum many-body theory. The starting point of the quantum transport theory is to take an external field as a perturbation for the many-particle system in equilibrium. This leads to a linear response and gives corresponding transport coefficients. One useful application of the Greens function techniques in quantum magneto-transport is to convert a homogeneous differential equation into an integral equation, viz., as in the time-dependent Schrodinger equation. We have applied to scattering of nano structural defects (impurities) in the electron gas (metal) as many

  4. A measurement of the proton’s spin structure function g2 at low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Pengjia [Univ. of Science and Technology of China, Hefei (China)

    2015-10-21

    JLab E08-027, a measurement of g2p and the longitudinal-transverse (LT) spin polarizability, successfully collected data from March to May, 2012. Nucleon spin structure study has been an active research area, which has attracted a very large effort from both experimentalists and theorists. The spin structure study for the last 2 decades has provided us with many exciting and often surprising results. Recently, new precision results in the low-to-intermediate momentum transfer Q2 region from JLab have provided extensive information on the nucleon structure in the confinement region and the transition region between asymptotic free to confinement. In particular, the extensive comparisons of experimental results with Chiral Perturbation Theory (the effective theory of QCD at low energy) calculations show general good agreements, but strong disagreement in the case of the neutron LT spin polarizability. This experiment completed the measurements of gp2 and the LT spin polarizability on the proton in the low-to-intermediate Q2 region. The experiment used a polarized proton (NH3) target for the first time in Hall A. Scattered electrons were detected by a pair of Hall A high resolution spectrometer (HRS) with a pair of septum magnets. To avoid too much depolarization of the target, beam current was limited to 50-100 nA during the experiment. Since the existing beam current monitors (BCMs), beam position monitors (BPMs) and calibration methods did not work at such a low current range, new BPM and BCM receivers were designed and used for current condition. A pair of super-harps and a tungsten calorimeter were installed to calibrate the BPMs and BCMs. To compensate for the effect of the 2.5/5T transverse magnet field, two chicane dipole magnets were installed. A pair of slow rasters were installed for the first time in Hall A, combining with a pair of fast raster. The standard Hall A DAQ system and the improved high resolution DAQ system were used to record the detector

  5. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  6. Electronic Structures of Magnetic Iron and Cobalt Thin Films on TUNGSTEN(001): a Spin-Polarized Inverse Photoemission Study

    Science.gov (United States)

    Cai, Qing

    Electronic structure is a central question in metallic magnetism as well as in magnetic materials research. The electronic properties in a two-dimensional system such as thin films of a few atomic layers is an important issue in surface science. The epitaxial thin film preparation and morphology are of special technological interests. In this thesis, these questions are addressed. Spin-polarized inverse photoemission spectroscopy is used to study the unoccupied electron band states in magnetic thin film magnets of Fe and Co epitaxially grown on W(001) surface. The clean W(001) surface was studied by angle -resolved inverse photoemission spectroscopy and the bulk band dispersion was determined. Ultrathin Fe overlayers on W(001) show a square lateral crystal structure similar to the bcc-Fe(001) surface. The electronic structure develops into a structure that is close to that of bulk Fe at about four atomic layers. In the normal-incidence spin polarized inverse photoemission spectra, direct transitions to the majority and minority final states near the H^'_ {25} point are identified in good agreement with the theoretical calculations. One Fe monolayer, or multilayers less than four, showed behavior corresponding to a gradually reduced Curie temperature. When the film thickness is reduced, the spin-resolved spectral behavior show that the majority spin signal peak moves from near the Fermi energy to about 1.3 eV while the minority peak stays at about the same position near 1.3 eV. The results are used to examine the spatial correlation of the spin fluctuations in the system in comparison with a theoretical spectral calculation, and favors the disordered-local-moment picture in the contemporary theory of itinerant magnetism. The Co overlayer shows an overlayer structure that consists of equivalent, mutually rotated domains of distorted hexagonal lateral structure. For one atomic layer of Co in that structure, which has a nominal lateral atomic density twice that of the

  7. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  8. Comments on H. Arp 'The persistent problem of spiral galaxies'

    International Nuclear Information System (INIS)

    Alfven, H.

    1987-04-01

    In his paper 'The persistent problem of Spiral Galaxies' H. Arp criticises the standard theory of spiral galaxies and demonstrates that introduction of plasma theory is necessary in order to understand the structure of spiral galaxies. In the present paper arguments are given in support of Arp's theory and suggestions are made how Arp's ideas should be developed. An important result of Arp's new approach is that there is no convincing argument for the belief that there is a 'missing mass'. This is important from a cosmological point of view. (author)

  9. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  10. SPIRAL2 at GANIL: Status and Perspectives

    Science.gov (United States)

    Gales, S.

    2008-05-01

    To pursue the investigation of a new territory of nuclei with extreme N/Z called ``terra incognita'' several projects, all aiming at the increase by several orders of magnitude of the RIB intensities are now under discussions worldwide. In Europe, two major new projects have been approved recently FAIRatGSI using the so-called ``in-flight'' method and SPIRAL2atGANIL, based on the ISOL method. Both projects were selected in the European Strategic Roadmap For research Infrastructures (ESFRI). The main goal of SPIRAL2 is clearly to extend our knowledge of the limit of existence and the structure of nuclei deeply in the medium and heavy mass region (A = 60 to 140) which is to day an almost unexplored continent. SPIRAL 2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities for exotic species in the mass range from A = 60 to A = 140, of the order of 106 to 1010 pps will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100 μA to 1 mA), heavier ions up to Ar at 14 MeV/n producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must to study the impact of nuclear fission and fusion on materials. The intensities of these unstable species are excellent opportunities for new tracers and diagnostics either for solid state, material or for radiobiological science and medicine. The ``Go'' decision has been taken in May 2005. The investments and personnel costs amount to 190 M€, for the construction period 2006-2012. Construction of the SPIRAL2 facility is shared by ten French laboratories and a network of international partners. Under the 7FP program of European Union

  11. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind

    2016-01-01

    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  12. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  13. Microbeads detection using Planar Hall effect in spin-valve structure

    International Nuclear Information System (INIS)

    Thanh, N.T.; Kim, K.W.; Kim, C.O.; Shin, K.H.; Kim, C.G.

    2007-01-01

    The Planar Hall effect in a spin-valve structure of Ta/NiFe/CoFe/Cu/CoFe/IrMn/Ta has been applied as a biosensor being capable of detecting Dynabeads ( R) M-280. The patterns with a size of 50x100μm 2 were prepared by lithography methods, and the biosensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor signal has produced high sensitivity results; especially, the real-time profiles revealed stable and significant signals at external applied magnetic field of around 7.0Oe with the resolution of 0.04 beads per μm 2 . With these results, it could be feasible to detect some commercial Dynabeads ( R) M-280 which can be used for recognition force and biomolecular interaction measurements

  14. Measurement of the spin-dependent structure function g$_{1}$(x) of the proton

    CERN Document Server

    Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Bradamante, F.; Bressan, A.; Brull, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Clocchiatti, M.; Corcoran, M.D.; Crabb, D.; Cranshaw, J.; Crawford, M.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kaiser, R.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kukhtin, V.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Lau, K.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lopez-Ponte, S.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Parks, D.P.; Penzo, A.; Perez, G.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Shumeiko, N.; Smirnov, G.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Teichert, K.M.; Tessarotto, F.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zhao, J.; the SMC

    1994-01-01

    Abstract : We have measured the spin-dependent structure function g_1^p of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003

  15. Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bauer, J.M.

    1996-09-01

    Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x Bj > 0.03 and 1 2 2 . From these data, the spin-dependent structure functions g 1 were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g 1 d over x from x = 0 to x = 1 is Γ 1 d = 0.046 ± 0.003 (stat)±0.004 (syst) at Q 2 = 3 GeV 2 and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 ± 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g 1 d was determined to be Γ 1 p = 0.127 ± 0.003(stat)±0.008(syst). By Combining the deuteron data with the proton data, the integral Γ 1 n was extracted as -0.027 ± 0.008 (stat)±0.010 (syst). The integral Γ 1 p - Γ 1 n is 0.154±0.010(stat) ±0.016 (syst) according to the E143 analysis. This result agrees with the important Bjorken sum rule of 0.171 ± 0.009 at Q 2 = 3 GeV 2 within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g 1 at these energies are presented

  16. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries

    OpenAIRE

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.

    2016-01-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural a...

  17. Star distribution in the Orion spiral arm

    International Nuclear Information System (INIS)

    Basharina, T.S.; Pavlovskaya, E.D.; Filippova, A.A.

    1985-01-01

    The structure of the Orion spiral arm is studied by numerical experiments, assuming that in each direction considered the star distribution along the line of sight is a combination of two Gaussian laws. The corresponding parameters are evaluated for four Milky Way fields; the bimodal laws now fit the observations by the chi 2 criterion. In the Orion arm the line-of-sight star densities follow asymmetric curves, steeper at the outer edge of the arm

  18. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  19. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  20. A Precision Measurement of the Spin Structure of the Proton at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robin D

    1999-09-22

    E143 at SLAC Endstation A performed deep-inelastic scattering measurements of polarized electrons from polarized protons and deuterons within cryogenic {sup 15}NH{sub 3} and {sup 15}ND{sub 3}, respectively. Data were taken at incident energies of 29.1, 16.2 and 9.7 GeV, and covered the kinematical range x > 0:03 and 0:3 < Q{sup 2} < 12 (GeV/c){sup 2}. The scattered electrons were detected by two spectrometers at angles of 4.5{sup o} and 7.0{sup o}. From these data, the spin-dependent structure functions g{sub 1}{sup p}(x; Q{sup 2}) and g{sub 1}{sup d}(x; Q{sup 2}) were determined. This dissertation describes the experiment, with emphasis on the results on the proton spin structure. The integral of g{sub 1} over the range 0 < x < 1 was found to be {Gamma}{sub 1}{sup p} = 0.130 {+-} 0.003 {+-} 0.008 for the proton and {Gamma}{sub 1}{sup d} = 0.044 {+-} 0.003 {+-} 0.004 for the deuteron. Both values are in agreement with world data, and violate the Ellis-Jaffe sum rule by more than 3 standard deviations. The neutron structure function was obtained by combining proton and deuteron results, giving {Gamma}{sub 1}{sup n} = [0.035 {+-} 0.007 {+-} 0.010]. From this the integral {Gamma}{sub 1}{sup p}-{Gamma}{sub 1}{sup n} followed, yielding 0.165 {+-} 0.009 {+-} 0.016 at Q{sup 2} = 3 (GeV/c){sup 2}, in agreement with the Bjorken sum rule to within one standard deviation. The Q{sup 2}-dependence of the ratio g{sub 1}/F{sub 1} was determined to be small for Q{sup 2} > 1 (GeV/c){sup 2}, validating the assumption of no Q{sup 2}-dependence used in obtaining the integrals. A small rise with increasing Q{sup 2} was seen in the ratio for Q{sup 2} < 1 (GeV/c){sup 2}, however. The total quark contribution to the spin was found to be {Delta}q = 0.28 {+-} 0.09 for the proton, and {Delta}q = 0.32 {+-} 0.05 for the deuteron. Furthermore, a large negative spin contribution from the strange sea quarks was measured for both nucleons, giving {Delta}s = 0.10 {+-} 0.03 and {Delta}s = -0

  1. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  2. Hurricane Spiral Bands.

    Science.gov (United States)

    Guinn, Thomas A.; Schubert, Wayne H.

    1993-10-01

    The spiral bands that occur in tropical cyclones can be conveniently divided into two classes-outer bands and inner bands. Evidence is presented here that the outer bands form as the result of nonlinear effects during the breakdown of the intertropical convergence zone (ITCZ) through barotropic instability. In this process a zonal strip of high potential vorticity (the ITCZ shear zone or monsoon trough) begins to distort in a varicose fashion, with the potential vorticity (PV) becoming pooled in local regions that are connected by filaments of high PV. As the pooled regions become more axisymmetric, the filaments become thinner and begin to wrap around the PV centers.It is argued that inner bands form in a different manner. As a tropical cyclone intensifies due to latent heat release, the PV field becomes nearly circular with the highest values of PV in the cyclone center. The radial gradient of PV provides a state on which PV waves (the generalization of Rossby waves) can propagate. The nonlinear breaking of PV waves then leads to an irreversible distortion of the PV contours and a downgradient flux of PV. The continuation of this proem tends to erode the high PV core of the tropical cyclone, to produce a surrounding surf zone, and hence to spread the PV horizontally. In a similar fashion, inner bands can also form by the merger of a vortex with a patch of relatively high PV air. As the merger proem occurs the patch of PV is quickly elongated and wrapped around the vortex. The resulting vortex is generally larger in horizontal extent and exhibits a spiral band of PV.When the formation of outer and inner bands is interpreted in the context of a normal-mode spectral model, they emerge as slow manifold phenomena; that is, they have both rotational and (balanced or slaved) gravitational mode aspects. In this sense, regarding them as simply gravity waves leads to an incomplete dynamical picture.

  3. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    International Nuclear Information System (INIS)

    Ouarab, N.; Haroun, A.; Baadji, N.

    2016-01-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ B . The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ B . • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  4. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ouarab, N., E-mail: ouarab_nourdine@yahoo.fr [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Semiconductor Technology Research Center for Energetic-(CRTSE), 02, Bd Frantz Fanon Algiers, BP N° 140 (Algeria); Haroun, A. [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Baadji, N. [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2016-12-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ{sub B}. The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ{sub B}. • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  5. Annealing effect on spin density of broken bonds and on the structure of amorphous germanium

    International Nuclear Information System (INIS)

    Bukhan'ko, F.N.; Okunev, V.D.; Samojlenko, Z.A.

    1989-01-01

    Dependence of volumetric spin density of broken bonds in a-Ge films, produced by cathode sputtering in argon, on the annealing temperature is investigated by ESR method. The film structure is controlled by the X-ray method. Two ESR lines with g=2.019 and g=2.003, their intensities changing non-monotonously with annealing temperature are observed. The line with g=2.019 is typical of only amorphous germanium state, and the line with g=2.003 is preserved after film crystallization. Under comparison of results with structural data a conclusion is made that the observed lines in ESR spectra are linked with broken bonds in peripheral regions of two types of clusters. The line with g=2.003 is conditioned by broken bonds in the peripheral cluster regions with standard cubic atom packing and the line with g=2.019 is linked with clusters of hexagonal type which is not typical of crystalline germanium standard structure

  6. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    NARCIS (Netherlands)

    Iashina, E.G.; Bouwman, W.G.; Duif, C.P.; Filatov, M.V.; Grigoriev, S. V.

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei

  7. Final COMPASS results on the deuteron spin-dependent structure function g(1)(d) and the Bjorken sum rule

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlák, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, A.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jarý, V.; Joosten, R.; Jörg, P.; Kabuss, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W. D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D.; Rybnikov, A.; Rychter, A.; Salač, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolík, J.; Srnka, Aleš; Steffen, D.; Stolarski, M.; Subrt, O.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Ter Wolbeek, J.; Zaremba, K.; Závada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-01-01

    Roč. 769, JUNE (2017), s. 34-41 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : COMPASS * deep inelastic scattering * spin * structure function * parton helicity distributions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 4.807, year: 2016

  8. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  9. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  10. Cassini discovers a kinematic spiral ring around Saturn.

    Science.gov (United States)

    Charnoz, S; Porco, C C; Déau, E; Brahic, A; Spitale, J N; Bacques, G; Baillie, K

    2005-11-25

    Since the time of the Voyager flybys of Saturn in 1980-1981, Saturn's eccentric F ring has been known to be accompanied on either side by faint strands of material. New Cassini observations show that these strands, initially interpreted as concentric ring segments, are in fact connected and form a single one-arm trailing spiral winding at least three times around Saturn. The spiral rotates around Saturn with the orbital motion of its constituent particles. This structure is likely the result of differential orbital motion stretching an initial cloud of particles scattered from the dense core of the F ring. Different scenarios of formation, implying ringlet-satellite interactions, are explored. A recently discovered moon candidate, S/2004 S6, is on an orbit that crosses the F-ring core at the intersection of the spiral with the ring, which suggests a dynamical connection between S/2004 S6 and the spiral.

  11. Structural Asymmetry-Facilitated Tunability of Spin Distribution in the (10, 0) Carbon Nanotube Induced by Charging

    Science.gov (United States)

    Wang, Jia; Gao, Yang; Zhang, Zhiyuan; Xu, Dexuan; Wang, Zhigang; Zhang, Rui-Qin

    2017-07-01

    Constructing the asymmetric electronic structure of low-dimensional carbon nanomaterials is significant for application of molecular devices, such as magnetic switches. In this work, we use density functional theory to investigate the asymmetric spin distribution in a typical (10, 0) carbon nanotube by capping one end with a fullerene hemisphere and saturating the dangling bonds with hydrogen atoms at the other end. Calculated results indicate that this geometry obviously modified the distribution of spin density along the tube axis, and the electrons present were antiferromagnetically coupled at both ends. Specifically, the change in magnetic order at the end of the cap can be changed with either the increase or decrease of the charge. In addition, the analysis of electron density difference shows that charge induces gain or loss of electrons not only at the open end, but also at the cap end. These findings provide a strategy for controlling spin distribution for nanoscale functional molecular devices through a simple charge adjustment.

  12. Tailoring electronic structure of α-AlH3 to enhance spin polarization: Insights from density functional calculations

    Science.gov (United States)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Sun, Lili; Zhao, Hui; Wu, Ping

    2017-09-01

    The effects of 3d transition metals doping on the structural, electronic, and magnetic properties of aluminum hydride were investigated based on spin-polarized first-principles calculations. The studies indicated that V, Cr, Mn, and Fe doping could produce polarization of high-spin state, while Co and Ni doping would induce polarization of low-spin state. It was found that the magnetic ground state depended on the distance between two substitutions and the long-range ferromagnetic coupling was achieved upon doping V, Mn, and Fe. The present work indicated that the introduced 3d-block dopants could tailor aluminum hydride into either a potential half-metallic or n-type magnetic semiconductor by tuning the valence electrons of the impurities. The main findings of this work pointed out the possibilities of the applications of hydrides in future hydride electronics and spintronics.

  13. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  14. A Precision Measurement of the Spin Structure Function G(2)(P)

    Energy Technology Data Exchange (ETDEWEB)

    Benmouna, N

    2004-01-05

    The spin structure function g{sub 2}(x,Q{sup 2}) and the virtual photon asymmetry A{sub 2}(x,Q{sup 2}) were measured for the proton using deep inelastic scattering. The experiment was conducted at the Stanford Linear Accelerator Center (SLAC), where longitudinally polarized electrons at 29.1 and 32.3 GeV were scattered from a transversely polarized NH{sub 3} target. Large data sets were accumulated using three independent spectrometers covering a kinematic range 0.02 {le} x {le} 0.8 and 1 {le} Q{sup 2} {le} 20 (GeV/c){sup 2}. This new data is the first data precise enough to distinguish between current models for the proton. The structure function g{sub 2}{sup p} was found to be reasonably consistent with the twist-2 Wandzura-Wilczek calculation. The Q{sup 2} dependence of g{sub 2} approximately follows the Q{sup 2} dependence of g{sub 2}{sup WW}, although the data are not precise enough to rule out no Q{sup 2} dependence. The absolute value for A{sub 2}{sup p} was found to be significantly smaller than the Soffer limit over the measured range. The virtual photon asymmetry A{sub 2} was also found to be inconsistent with zero over much of the measured range.

  15. Structure and spin dynamics of multiferroic BiFeO3

    Science.gov (United States)

    Park, Je-Geun; Le, Manh Duc; Jeong, Jaehong; Lee, Sanghyun

    2014-10-01

    Multiferroic materials have attracted much interest due to the unusual coexistence of ferroelectric and (anti-)ferromagnetic ground states in a single compound. They offer an exciting platform for new physics and potentially novel devices. BiFeO3 is one of the most celebrated multiferroic materials and has highly desirable properties. It is the only known room-temperature multiferroic with TC ≈ 1100 K and TN ≈ 650 K, and exhibits one of the largest spontaneous electric polarisations, P ≈ 80 µC cm-2. At the same time, it has a magnetic cycloid structure with an extremely long period of 620 Å, which arises from competition between the usual symmetric exchange interaction and the antisymmetric Dzyaloshinskii-Moriya (DM) interaction. There is also an intriguing interplay between the DM interaction and single ion anisotropy K. In this review, we have attempted to paint a complete picture of bulk BiFeO3 by summarising the structural and dynamic properties of both the spin and lattice parts and their magneto-electric coupling.

  16. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    Science.gov (United States)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  17. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  18. A new local thickening reverse spiral origami thin-wall construction for improving of energy absorption

    Science.gov (United States)

    Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.

    2018-02-01

    As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.

  19. Measuring with the spiral reader

    CERN Multimedia

    1974-01-01

    The spiral reader shown here was at the time, together with the Shivamatic scanning system, the basic equipment used for measuring bubble chamber pictures. Anne Anton sits at the table. (See Photo Archive 7408343.)

  20. Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures

    International Nuclear Information System (INIS)

    Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer

  1. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  2. Spiral inlets for steam turbines

    Science.gov (United States)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  3. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Kryshtal, R.G.; Medved, A.V., E-mail: avm@ms.ire.rssi.ru

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined.

  4. Piezotronic Effect on Rashba Spin-Orbit Coupling in a ZnO/P3HT Nanowire Array Structure.

    Science.gov (United States)

    Zhu, Laipan; Zhang, Yan; Lin, Pei; Wang, Ying; Yang, Leijing; Chen, Libo; Wang, Longfei; Chen, Baodong; Wang, Zhong Lin

    2018-02-27

    A key concept in the emerging field of spintronics is the voltage-gate control of spin precession via the effective magnetic field generated by the Rashba spin-orbit coupling (SOC). Traditional external gate voltage usually needs a power supply, which can easily bring about background noise or lead to a short circuit in measurement, especially for nanoscale spintronic devices. Here, we present a study on the circular photogalvanic effect (CPGE) in a ZnO/P3HT nanowire array structure with the device excited under oblique incidence. We demonstrate that a strong Rashba SOC is induced by the structure inversion asymmetry of the ZnO/P3HT heterointerface. We show that the Rashba SOC can be effectively tuned by inner-crystal piezo-potential created inside the ZnO nanowires instead of an externally applied voltage. The piezo-potential can not only ensure the stability of future spin-devices under a static pressure or strain but also work without the need of extra energy; hence this room-temperature generation and piezotronic effect control of spin photocurrent demonstrate a potential application in large-scale flexible spintronics in piezoelectric nanowire systems.

  5. The Spin Structure Function $g_1^{\\rm p}$ of the Proton and a Test of the Bjorken Sum Rule

    CERN Document Server

    Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2016-02-10

    New results for the double spin asymmetry $A_1^{\\rm p}$ and the proton longitudinal spin structure function $g_1^{\\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\\rm p}(x)$ by about a factor of two in the region $x\\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\\Delta \\Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\\rm p}$. The uncertainty of $\\Delta \\Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\\rm...

  6. The spin structure function g1p of the proton and a test of the Bjorken sum rule

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2016-02-01

    Full Text Available New results for the double spin asymmetry A1p and the proton longitudinal spin structure function g1p are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g1p(x by about a factor of two in the region x≲0.02. A next-to-leading order QCD fit to the g1 world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, ΔΣ, ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of g1p. The uncertainty of ΔΣ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function g1NS(x,Q2 yields as ratio of the axial and vector coupling constants |gA/gV|=1.22±0.05 (stat.±0.10 (syst., which validates the sum rule to an accuracy of about 9%.

  7. Small- and large-x nucleon spin structure from a global QCD analysis of polarized parton distribution functions

    Directory of Open Access Journals (Sweden)

    E.R. Nocera

    2015-03-01

    Full Text Available I investigate the behavior of spin-dependent parton distribution functions in the regions of small and large momentum fractions x. I present a systematic comparison between predictions for relevant observables obtained with various models of nucleon spin structure and a recent global analysis of spin-dependent distributions, NNPDFpol1.1. Together with its unpolarized counterpart, NNPDF2.3, they form a mutually consistent set of parton distributions. Because they include most of the available experimental information, and are determined with a minimally biased methodology, these are especially suited for such a study. I show how NNPDFpol1.1 can discriminate between different theoretical models, even though NNPDF uncertainties remain large near the endpoints x→0 and x→1, due to the lack of experimental information. I discuss how our knowledge of nucleon spin structure may be improved at small x by future measurements at an Electron–Ion Collider, and at large x by recent measurements at Jefferson Lab, also in view of its 12 GeV upgrade.

  8. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    International Nuclear Information System (INIS)

    Grabowski, M.P.; Mathieu, P.

    1995-01-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, for two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form. 62 refs., 4 figs

  9. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    Science.gov (United States)

    Redon, N.; Prévost, A.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rossé, B.; Stézowski, O.; Nolan, P. J.; Andreoiu, C.; Boston, A. J.; Descovich, M.; Evans, A. O.; Gros, S.; Norman, J.; Page, R. D.; Paul, E. S.; Rainovski, G.; Sampson, J.; de France, G.; Casandjian, J. M.; Theisen, Ch.; Scheurer, J. N.; Nyakó, B. M.; Gál, J.; Kalinka, G.; Molnár, J.; Dombrádi, Zs.; Timár, J.; Zolnai, L.; Juhász, K.; Astier, A.; Deloncle, I.; Porquet, M. G.; Wadsworth, R.; Raddon, P.; Lee, Y.; Wilkinson, A.; Joshi, P.; Simpson, J.; Appelbe, D.; Joss, D.; Lemmon, R.; Smith, J.; Cullen, D.; Brondi, A.; La Rana, G.; Moro, R.; Vardacci, E.; Girod, M.

    2004-02-01

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  10. Calculation of Structural Behavior of Indirect NMR Spin-Spin Couplings in the Backbone of Nucleic Acids

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vokáčová, Zuzana; Šponer, Jiří; Špačková, Naďa; Schneider, Bohdan

    2006-01-01

    Roč. 110, č. 45 (2006), s. 22894-22902 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA203/05/0388; GA MŠk(CZ) LC512 Grant - others:NSF(US) DBI 0110076 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507 Keywords : nucleic acids * RNA * DNA * molecular structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  11. Magnetic properties and spin structure of MnO single crystal and powder

    Science.gov (United States)

    Sun, X.; Feng, E.; Su, Y.; Nemkovski, K.; Petracic, O.; Brückel, T.

    2017-06-01

    Zero field cooled (ZFC)/Field Cooled (FC) magnetization curves of a bulk MnO single crystal show a peculiar peak at low temperatures (~ 40 K) similar to the low temperature peak observed in MnO nanoparticles. In order to investigate the origin of this peak, the spin structure of a MnO single crystal has been studied and compared with a single phase powder sample using magnetometry and polarized neutron scattering. Both magnetometry and polarized neutron diffraction results confirm the antiferromagnetic (AF) phase transition at the Néel temperature TN of 118 K, in both powder and single crystal form. However, the low temperature peak in the ZFC/FC magnetization curves is not observed in single phase MnO powder. To better understand the observed behavior, ac susceptibility measurements have been employed. We conclude that the clear peak in the magnetic signal from the single crystal originates from a small amount of ferrimagnetic (FiM) Mn2O3 or Mn3O4 impurities, which is grown at the interfaces between MnO crystal twins.

  12. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  13. Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering

    CERN Document Server

    Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kroger, W.; Kurek, K.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Penzo, A.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Tlaczala, W.; Trentalange, S.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1997-01-01

    We have measured the spin-dependent structure function $g_1^{\\rm p}$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1\\gevtwo < Q^2 < 60\\gevtwo$. A next-to-leading order QCD analysis is used to evolve the measured $\\gpone(x,Q^2)$ to a fixed $Q^2_0$. The first moment of $\\gpone$ at $Q^2_0 = 10\\gevtwo$ is $\\gammap = 0.136\\pm 0.013 \\,(\\mbox{stat.}) \\pm 0.009\\,(\\mbox{syst.})\\pm 0.005\\ (\\mbox{evol.})$. This result is below the prediction of the Ellis--Jaffe sum rule by more than two standard deviations. The singlet axial charge $\\dsigt$ is found to be $0.28 \\pm 0.16$. In the Adler--Bardeen factorization scheme, $\\Delta g \\simeq 2$ is required to bring $\\Delta \\Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

  14. Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Energy Technology Data Exchange (ETDEWEB)

    Perry Anthony; R.G. Arnold; Todd Averett; H.R. Band; M.C. Berisso; H. Borel; Peter Bosted; Stephen Bueltmann; M. Buenerd; T. Chupp; Steve Churchwell; G.R. Court; Donald Crabb; Donal Day; Piotr Decowski; P. DePietro; Robin D. Erbacher; R. Erickson; Andrew Feltham; Helene Fonvieille; Emil Frlez; R. Gearhart; V. Ghazikhanian; Javier Gomez; Keith Griffioen; C. Harris; M.A. Houlden; E.W. Hughes; Charles Hyde-Wright; G. Igo; Sebastien Incerti; John Jensen; J.K. Johnson; Paul King; Yu.G. Kolomensky; Sebastian Kuhn; Richard Lindgren; R.M. Lombard-Nelsen; Jacques Marroncle; James Mccarthy; Paul McKee; W. Meyer; Gregory Mitchell; Joseph Mitchell; Michael Olson; S. Penttila; Gerald Peterson; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; R. Prepost; C. Prescott; Liming Qin; Brian Raue; D. Reyna; L.S. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Franck Sabatie; Ingo Sick; T. Smith; L. Sorrell; F. Staley; S. St. Lorant; L.M. Stuart; Z. Szalata; Y. Terrien; William Tobias; Luminita Todor; T. Toole; S. Trentalange; Dieter Walz; Robert Welsh; Frank Wesselmann; T.R. Wright; C.C. Young; Markus Zeier; Hong Guo Zhu; Benedikt Zihlmann

    1999-07-15

    We have measured the spin structure functions g{sub 2}{sup p} and g{sub 2}{sup d} and the virtual photon asymmetries A{sub 2}{sup p} and A{sub 2}{sup d} over the kinematic range 0.02 < x < 0.8 and 1.0 < Q{sup 2} {le} 30(GeV/c){sup 2} by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH{sub 3} and {sup 6}LiD targets.The absolute value of A{sub 2} is significantly smaller than the {radical}R positivity limit over the measured range, while g{sub 2} is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d{sub 2}{sup p}, d{sub 2}{sup d} and d{sub 2}{sup n}. The Burkhardt-Cottingham sum rule integral (g{sub 2}(x)dx) is reported for the range 0.02 {le} x {le} 0.8.

  15. Carrier and Spin Dynamics in Narrow Gap Parabolic Quantum Well Structures

    Science.gov (United States)

    Bhowmick, M.; Merritt, T.; Khodaparast, G. A.; Mishima, T. D.; Santos, M. B.; Saha, D.; Sanders, G. D.; Stanton, C. J.

    2011-03-01

    Heterostructures with parabolic confinement potentials are important systems to study for many reasons. In a perfect Parabolic Quantum Well (PQW), the subbands are equally spaced and electron-electron interactions are virtually non-existent, allowing coupling of long-wavelength radiation only to the center-of-mass coordinate of the electron system. Narrow band PQW systems are well suited for THz devices because by careful design, one can tune the transition frequency, temperature stability, and narrow-band emission. In our studies, the parabolic confinement was created by an effective parabolic Al compositional gradient inside each well. We studied carrier/spin dynamics in an InSb/AlxIn1 - x Sb multiple- PQW structure using several time resolved differential transmission schemes in the mid-infrared. Our results demonstrate the unique and complex dynamics in InSb heterostructures that can be important for electronic and optoelectronic devices. Supported by: NSF-DMR-0507866, DMR-0520550, DMR-0706313, and NSF-Career Award DMR-0846834.

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    DEFF Research Database (Denmark)

    Eltschka, M.; Klaui, M.; Rudiger, U

    2008-01-01

    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe3O4 rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using t....... The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states. (c) 2008 American Institute of Physics....

  18. The g$p\\atop{2}$ Experiment: A Measurement of the Proton's Spin Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Ryan B. [Univ. of New Hampshire, Durham, NH (United States)

    2017-09-01

    The E08-027 (g$p\\atop{2}$) experiment measured the spin structure functions of the proton at Jefferson Laboratory in Newport News, Va. Longitudinally polarized electrons were scattered from a transversely and longitudinally polarized solid ammonia target in Hall A, with the polarized NH$_3$ acting as an effective proton target. Focusing on small scattering angle events at the electron energies available at Jefferson Lab, the experiment covered a kinematic phase space of 0.02 GeV$^2$ $< Q^2 <$ 0.20 GeV$^2$ in the proton's resonance region. The spin structure functions, $g_{1}^p(x,Q^2)$ and $g_{2}^p(x,Q^2)$ , are extracted from an inclusive polarized cross section measurement of the electron-proton interaction. Integrated moments of $g_1(x,Q^2)$ are calculated and compared to theoretical predictions made by Chiral Perturbation Theory. The $g_1(x,Q^2)$ results are in agreement with previous measurements, but include a significant increase in statistical precision. The spin structure function contributions to the hyperfine energy levels in the hydrogen atom are also investigated. The $g_2(x,Q^2)$ measured contribution to the hyperfine splitting is the first ever experimental determination of this quantity. The results of this thesis suggest a disagreement of over 100% with previously published model results.

  19. Sliding-slab three-dimensional TSE imaging with a spiral-In/Out readout.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Dinghui; Robison, Ryan K; Zwart, Nicholas R; Schär, Michael; Karis, John P; Pipe, James G

    2016-02-01

    T2 -weighted imaging is of great diagnostic value in neuroimaging. Three-dimensional (3D) Cartesian turbo spin echo (TSE) scans provide high signal-to-noise ratio (SNR) and contiguous slice coverage. The purpose of this preliminary work is to implement a novel 3D spiral TSE technique with image quality comparable to 2D/3D Cartesian TSE. The proposed technique uses multislab 3D TSE imaging. To mitigate the slice boundary artifacts, a sliding-slab method is extended to spiral imaging. A spiral-in/out readout is adopted to minimize the artifacts that may be present with the conventional spiral-out readout. Phase errors induced by B0 eddy currents are measured and compensated to allow for the combination of the spiral-in and spiral-out images. A nonuniform slice encoding scheme is used to reduce the truncation artifacts while preserving the SNR performance. Preliminary results show that each of the individual measures contributes to the overall performance, and the image quality of the results obtained with the proposed technique is, in general, comparable to that of 2D or 3D Cartesian TSE. 3D sliding-slab TSE with a spiral-in/out readout provides good-quality T2 -weighted images, and, therefore, may become a promising alternative to Cartesian TSE. © 2015 Wiley Periodicals, Inc.

  20. Spiral Inflector For Compact Cyclotron

    CERN Document Server

    Karamysheva, G A

    2004-01-01

    Compact cyclotron for explosives detection by nuclear resonance absorption of γ-rays in nitrogen is under development [1] Cyclotron will be equipped with the external ion source. The injection system consists of a double-drift beam bunching system, a spiral inflector, beam diagnostics, focusing and adjustment elements [2]. The spiral inflector for ion bending from axial to median plane is used. Computer model of spiral inflector for the Customs cyclotron is developed. 3D electrostatic field calculations of the designed inflector are performed. Calculated electric field map and magnetic field map of the cyclotron [3] are used for beam dynamic simulations. Numeric simulations are carried out for 500 particles using code for calculation of particle dynamics by integration of differential equations in Cartesian coordinate system written in MATLAB. Direct Coulomb particle-to-particle method is used to take into account space-charge effects.

  1. Probing Proton Spin Structure: A Measurement of g2 at Four-momentum Transfer of 2 to 6 GeV2

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, James [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2011-12-01

    The Spin Asymmetries of the Nucleon Experiment investigated the spin structure of the proton via inclusive electron scattering at the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA. A double-polarization measurement of polarized asymmetries was performed using the University of Virginia solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were scattered to be viewed by a novel, non-magnetic array of detectors observing a four-momentum transfer range of 2 to 6 GeV2. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function g2, which we have measured as a function of x and W in four Q2 bins.

  2. Observation of high-spin oblate band structures in Pm141

    Science.gov (United States)

    Gu, L.; Zhu, S. J.; Wang, J. G.; Yeoh, E. Y.; Xiao, Z. G.; Zhang, S. Q.; Meng, J.; Zhang, M.; Liu, Y.; Ding, H. B.; Xu, Q.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Li, G. S.; Wang, L. L.; Zheng, Y.; Zhang, B.

    2011-06-01

    The high-spin states of Pm141 have been investigated through the reaction Te126(F19,4n) at a beam energy of 90 MeV. A previous level scheme has been updated with spins up to 49/2ℏ. Six collective bands at high spins are newly observed. Based on the systematic comparison, one band is proposed as a decoupled band; two bands with strong ΔI=1 M1 transitions inside the bands are suggested as the oblate bands with γ ~-60°; three other bands with large signature splitting have been proposed with the oblate-triaxial deformation with γ~ -90°. The triaxial n-particle-n-hole particle rotor model calculations for one of the oblate bands in Pm141 are in good agreement with the experimental data. The other characteristics for these bands have been discussed.

  3. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  4. Strain-based design procedures for spiral-welded steel tubes in combined walls

    NARCIS (Netherlands)

    Gresnigt, A.M.; van Es, S.H.J.; Vasilikis, D; Karamanos, SA; Dubina, D.; Ungureanu, V.

    2016-01-01

    To investigate the structural behaviour of large-diameter spiral-welded steel tubes under bending, a full scale experimental program has been performed, consisting of thirteen 42-inch diameter, spiral-welded steel tubes with D/t ratios ranging between 65 and 120. Additionally, numerical studies have

  5. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  6. Nucleon partonic spin structure to be explored by the unpolarized Drell-Yan program of COMPASS experiment at CERN

    CERN Document Server

    Chang, Wen-Chen

    2016-01-01

    The observation of the violation of Lam-Tung relation in the $\\pi N$ Drell-Yan process triggered many theoretical speculations. The TMD Boer-Mulders functions characterizing the correlation of transverse momentum and transverse spin for partons in unpolarized hadrons could nicely account for the violation. The COMPASS experiment at CERN will measure the angular distributions of dimuons from the unpolarized Drell-Yan process over a wide kinematic region and study the beam particle dependence. Significant statistics is expected from a successful run in 2015 which will bring further understanding of the origin of the violation of Lam-Tung relation and of the partonic transverse spin structure of the nucleon.

  7. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    Science.gov (United States)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  8. GANIL-SPIRAL1-SPIRAL2: Highlights and Perspectives

    Science.gov (United States)

    Gales, S.

    2010-06-01

    GANIL presently offers unique opportunities in nuclear physics and many other fields that arise from not only the provision of low-energy stable beams, fragmentation beams and re-accelerated radioactive species, but also from the availability of a wide range of state-of-the-art spectrometers and instrumentation. A few examples of recent highlights are presented. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL 2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100*A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. Under the 7FP program of European Union called*Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4 M€ to build up an international consortium around this new venture. The status of the construction of SPIRAL2 accelerator and associated physics instruments in collaboration with EU and International partners will be presented.

  9. Spin-dependent tunneling conductance in 2D structures in zero magnetic field

    International Nuclear Information System (INIS)

    Rozhansky, I.V.; Averkiev, N.S.

    2009-01-01

    The influence of the spin-orbit interaction on the tunneling between two-dimensional electron layers is considered. A general expression for the tunneling current is obtained with the Rashba and Dresselhaus effects and also elastic scattering of charge carriers on impurities taken into account. It is shown that the particular form of the tunneling conductance as a function of the voltage between layers is extremely sensitive to the relationship between the Rashba and Dresselhaus parameters. This makes it possible to determine the parameters of the spin-orbit interaction and the quantum scattering time directly from measurements of the tunneling conductance in the absence of magnetic field

  10. Atom and Amine Adsorption on Flat and Stepped Gold Surfaces & Structure, Stability and Spin Ordering in Manganese Sulfide Clusters

    Science.gov (United States)

    Lewoczko, April D.

    In part I, we investigate gold catalysis in the chemistry of organonitrogen compounds. We examine the adsorption of oxygen, nitrogen and sulfur atoms on the gold (111), (100) and (211) surfaces using density functional theory (DFT). Sulfur atoms bind most strongly, followed by oxygen and nitrogen atoms with stronger adsorption for greater coordination to the surface. We see a trend of stronger adsorption to undercoordinated gold, but find it is non-universal with the adsorption strength trend: (111) > (211) > (100). We consider the diffusion of oxygen, nitrogen and sulfur adatoms and find facile long-range diffusion of oxygen atoms on the (100) surface. Lastly, we compare the adsorption of methylamine on gold to that of a selection of alkylamines, methanol and methanethiol. In each case, the ontop site is preferred with stronger adsorption at low coordinated gold. At oxygen atom coverages of 0.125 -- 0.25 ML on Au (111), we find cooperative adsorption of methylamine and oxygen atoms. Energetic costs for adsorbate tilt from the surface normal and rotation about the gold-nitrogen bond are calculated. While methylamine rotation is barrierless on the (111) and (211) surfaces, it has a low energetic barrier for the 0.125 ML and 0.25 ML O atom pre-covered Au (111) surfaces. In part II, we interpret the experimental mass spectrum of small gas phase manganese sulfide clusters using DFT and elucidate the role of ionicity and spin ordering in sizes with special stability, i.e. magic clusters. We first consider nine low lying minima (MnS)6 structures and reveal antiferromagnetic (AFM) spin ordering with a ˜0.1 eV/pair AFM energy benefit and a ˜0.1 A shrinkage of average Mn-Mn distances over clusters with ferromagnetic (FM) spin ordering. We calculate energetic barriers for interconversion between the two lowest lying (MnS)6 isomers and predict an elevated cluster melting temperature due to increased configurational entropy in a pre-melted state. Second, we demonstrate the

  11. Structures and stabilities of group 17 fluorides EF3 (E = I, At, and element 117) with spin-orbit coupling.

    Science.gov (United States)

    Yang, Dong-Dong; Wang, Fan

    2012-12-05

    In this work, a recently developed CCSD(T) approach with spin-orbit coupling (SOC) as well as density functional theory (DFT) using various exchange-correlation (XC) functionals are employed to investigate structures and stabilities of group 17 fluorides EF(3) (E = I, At, and element 117). These molecules are predicted to have bent T-shaped C(2v) structures according to the second-order Jahn-Teller (SOJT) effects or the valance shell electron pair repulsion (VSEPR) theory. For IF(3) and (117)F(3), our results are consistent with previous SOC-DFT calculations. However, different XC functionals provide different results for AtF(3) and our SOC-CCSD(T) calculations show that both the C(2v) and D(3h) structures are minima on the potential energy surface and the C(2v) structure is the global minimum for AtF(3). The performance of XC functionals on structures and stabilities of IF(3) and AtF(3) is found to depend on the fraction of the Hartree-Fock exchange (HFX) included in the XC functionals and the M06-2X functional with 54% of HFX providing results that agree best with CCSD(T) results. In addition, although both the C(2v) and D(3h) structures are minima for AtF(3), the energy barrier between them is only 8 kJ mol(-1) for the C(2v) structure and 0.05 kJ mol(-1) for the D(3h) structure. This indicates that the D(3h) structure could not possibly be observed experimentally and AtF(3) can convert easily between the three C(2v) structures. The SOJT term is shown to be reduced by electron correlation for IF(3) and AtF(3). On the other hand, although SOC decreases the energy difference between the C(2v) and D(3h) structures and reduces the deviation of the C(2v) structure from the D(3h) structure, it decreases the frequency of the bond bending mode, which may indicate that SOC actually increases the SOJT term. This could be related to mixing of spin-singlet E' states to low-energy spin-triplet states due to SOC.

  12. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Ulrich E-mail: baum@idr.med.uni-erlangen.de; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-03-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  13. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  14. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  15. Inspired Spirals. Teaching Art with Art.

    Science.gov (United States)

    Hubbard, Guy

    2001-01-01

    Discusses spirals in nature, man-made objects, and art. Focuses on art that incorporates the spiral, including works by M. C. Escher and Frank Lloyd Wright, an African headdress, and a burial urn. Describes activities to help students make spirals of their own, such as constructing a coil clay pot. (CMK)

  16. The Spiral Pattern During Development*

    African Journals Online (AJOL)

    1971-08-07

    Aug 7, 1971 ... which are destined to become the limb areas bud out laterally. Fig. 8. The early cells, which are destined to develop into the upper and the lower limbs, after lateral budding has occurred. Fig. 11 demonstrates the human embryo of about 5 mm. CR length and age of about 32 days. The spiral pattern is.

  17. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  18. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  19. Fiber structure formation in melt spinning of bio-based aliphatic co-polyesters

    Science.gov (United States)

    Qin, Qing; Takarada, Wataru; Kikutani, Takeshi

    2015-05-01

    High-speed melt spinning of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) with the 3-hydroxyhexanoate composition of 5.4 mol% was carried out. Melting temperature of this polymer is 141.5°C. It has been reported that PHBH fibers of good appearance can be prepared through the melt spinning process only when extrusion temperature is lower than the melting temperature of pure PHB (176 °C). The high-speed melt spinning experiment in this study revealed that the crystallization of PHBH proceeded at high take-up velocities even when the extrusion temperature was higher than the melting temperature of PHB. This result is considered to be due to the enhancement of crystallization through the application of high tensile stress to the molten polymer in the spinning line. As-spun fibers showed sufficiently high mechanical properties. On the other hand, crystalline orientation of α-form crystal increased with an increase in the take-up velocity and the existence of a small amount of β-form crystals was detected at high take-up velocities. This is another indication for the occurrence of crystallization under high tensile stress.

  20. On wave dark matter in spiral and barred galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, Luis A.; Matos, Tonatiuh [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México. (Mexico); Bray, Hubert L., E-mail: lmedina@fis.cinvestav.mx, E-mail: bray@math.duke.edu, E-mail: tmatos@fis.cinvestav.mx [Mathematics Department, Duke University, Box 90320, Durham, NC 27708 (United States)

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.

  1. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  2. Virtual bronchoscopy based on spiral CT images

    Science.gov (United States)

    Englmeier, Karl-Hans; Haubner, Michael; Krapichler, Christian; Schuhmann, Dietrich; Seemann, Mark; Fuerst, H.; Reiser, Maximilian

    1998-06-01

    Purpose: To improve the diagnosis of pathologic modified airways, a visualization system has been developed and tested based on the techniques of digital image analysis, synthesis of spiral CT and the visualization by methods of virtual reality. Materials and Methods: 20 patients with pathologic modifications of the airways (tumors, obstructions) were examined with Spiral-CT. The three-dimensional shape of the airways and the lung tissue is defined by a semiautomatic volume growing method and a following geometric surface reconstruction. This is the basis of a multidimensional display system which visualizes volumes, surfaces and computation results simultaneously. To enable the intuitive and immersive inspection of the airways a virtual reality system, consisting of two graphic engines, a head mounted display system, data gloves and specialized software was integrated. Results: In 20 cases the extension of the pathologic modification of the airways could be visualized with the virtual bronchoscopy. The user interacts with and manipulates the 3D model of the airways in an intuitive and immersive way. In contrast to previously proposed virtual bronchoscopy systems the described method permits truly interactive navigation and detailed exploration of anatomic structures. The system enables a user oriented and fast inspection of the volumetric image data. Conclusion: To support radiological diagnosis with additional information in an easy to use and fast way a virtual bronchoscopy system was developed. It enables the immersive and intuitive interaction with 3D Spiral CTs by truly 3D navigation within the airway system. The complex anatomy of the central tracheobronchial system could be clearly visualized. Peripheral bronchi are displayed up to 5th degree.

  3. SpArcFiRe: morphological selection effects due to reduced visibility of tightly winding arms in distant spiral galaxies

    Science.gov (United States)

    Peng, Tianrui Rae; Edward English, John; Silva, Pedro; Davis, Darren R.; Hayes, Wayne B.

    2018-03-01

    The Galaxy Zoo project has provided a plethora of valuable morphological data on a large number of galaxies from various surveys, and their team have identified and/or corrected for many biases. Here we study a new bias related to spiral arm pitch angles, which first requires selecting a sample of spiral galaxies that show observable structure. One obvious way is to select galaxies using a threshold in spirality, which we define as the fraction of Galaxy Zoo humans who have reported seeing spiral structure. Using such a threshold, we use the automated tool SpArcFiRe (SPiral ARC FInder and REporter) to measure spiral arm pitch angles. We observe that the mean pitch angle of spiral arms increases linearly with redshift for 0.05 learning algorithm trained on Galaxy Zoo data to provide a spirality for each artificially degraded image. We find that SpARcFiRe's ability to accurately measure pitch angles decreases as the image degrades, but that spirality decreases more quickly in galaxies with tightly wound arms, leading to the selection effect. This new bias means one must be careful in selecting a sample on which to measure spiral structure. Finally, we also include a sensitivity analysis of SpArcFiRe's internal parameters.

  4. Spiral waves in the Belousov-Zhabotinskii reaction

    Science.gov (United States)

    Keener, James P.; Tyson, John J.

    1986-09-01

    The beautiful spiral waves of oxidation in the Belousov-Zhabotinskii reaction are the source of many interesting and important questions about periods structures in excitable media. It has long been known that these spirals are similar to involutes of circles, at least some distance from the center, but until now, no way has been known to determine the correct wavelength and frequency. In this paper, we show that the parameters of a spiral wave can be viwed s eigenvalues of a problem with unique solution. The critical ingredients of the theory are the effects of curvature on the propagation of wavefronts in two-dimensional media, and the dispersion of plane waves Our analytical results are shown to be in good agreement with experimental data for the Belousov-Zhabotinskii reagent.

  5. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  6. Auditory Mechanics of the Tectorial Membrane and the Cochlear Spiral

    Science.gov (United States)

    Gavara, Núria; Manoussaki, Daphne; Chadwick, Richard S.

    2012-01-01

    Purpose of review This review is timely and relevant since new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by mechanical properties of the tectorial membrane and the spiral shape. Recent findings Main tectorial membrane themes covered are i) composition and morphology, ii) nanoscale mechanical interactions with the outer hair cell bundle, iii) macroscale longitudinal coupling, iv) fluid interaction with inner hair cell bundles, v) macroscale dynamics and waves. Main cochlear spiral themes are macroscale low-frequency energy focusing and microscale organ of Corti shear gain. Implications Findings from new experimental and theoretical models reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low frequency hearing. Suggestions are made for future research directions. PMID:21785353

  7. Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves

    International Nuclear Information System (INIS)

    Lari, L; Sizeland, J; Gilks, D; Uddin, G M; Nedelkoski, Z; Hasnip, P J; Lazarov, V K; Yoshida, K; Galindo, P L; Sato, J; Oogane, M; Ando, Y; Hirohata, A

    2014-01-01

    We show that the magnetoresistance of Co 2 Fe x Mn 1−x Si-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co 2 Fe x Mn 1−x Si/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350 °C and 500 °C creates partial B2/L2 1 and fully L2 1 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co 2 Fe x Mn 1−x Si interface is more ordered compared to the Co 2 Fe x Mn 1−x Si/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible. (fast track communication)

  8. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  9. A combined optical, SEM and STM study of growth spirals

    Indian Academy of Sciences (India)

    Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. In confirmation of the known structural data, the STM pictures ...

  10. Structure, magnetization, and NMR studies of the spin-glass compound (LixV1-x)3BO5 ( x≈0.40 and 0.33)

    Science.gov (United States)

    Zong, X.; Niazi, A.; Borsa, F.; Ma, X.; Johnston, D. C.

    2007-08-01

    Structural and magnetic properties of (LixV1-x)3BO5 powders (x=0.33) and single crystals (x=0.40) were studied by x-ray diffraction, magnetization, and NMR measurements. Both powder and single crystal x-ray diffraction data are consistent with the previously reported structure of the system. Magnetization measurements show an overall antiferromagnetic interaction among vanadium spins and reveal a transition into a spin glass state at a sample and magnetic field dependent temperature below ˜10K . The high temperature (T>20K) susceptibility is analyzed using a linear spin trimer model suggested in the literature but such a model is found to be insufficient to explain the data. Li7 and B11 NMR studies indicate an inhomogeneous dynamics close to the zero-field spin-glass transition temperature. The distribution of electronic spin relaxation times is derived using a recently proposed method and the broad temperature-dependent distribution obtained gives a consistent description of the NMR results. The temperature dependence of the distribution indicates a strong slowing down of the local moment spin dynamics as the system cools toward the zero-field spin-glass transition temperature even in the presence of a strong applied magnetic field up to 4.7T .

  11. The role of mesoscopic structuring on the intermixing of spin-polarised conduction channels in thin-film ferromagnets for spintronics

    Science.gov (United States)

    Alcer, D.; Atkinson, D.

    2017-09-01

    The separation of spin-up and spin-down conduction channels is fundamental to electronic transport in ferromagnets and essential for spintronic functionality. The spin states available for conduction are defined by the ferromagnetic material, but additional physical factors can affect scattering and modify the spin-dependence of conduction. Here the effect of mesoscopic structuring, arising during the growth of ferromagnetic thin films, on the electronic transport was investigated. Resistivity and anisotropic magnetoresistance were measured in a series of Ni80Fe20 thin films as a function of nominal film thickness from 3 {nm} up to 20 {nm}. The observed thickness dependence of the resisivity and magnetic anisotropy of resistivity are interpreted using a model that accounts for the macroscopic structuring from the growth of the films and incorporates a structural dependence of the spin-flip scattering. The model shows good agreement for both the thickness dependence of the resistivity and the reduction of the anisotropic magnetoresistivity. The latter indicating that increasing mixing of the conducting spin channels occurs in ultra-thin films, mainly a consequence of macroscopic structuring of the films.

  12. Data structure techniques for the graphical special unitary group approach to arbitrary spin representations

    International Nuclear Information System (INIS)

    Kent, R.D.; Schlesinger, M.

    1987-01-01

    For the purpose of computing matrix elements of quantum mechanical operators in complex N-particle systems it is necessary that as much of each irreducible representation be stored in high-speed memory as possible in order to achieve the highest possible rate of computations. A graph theoretic approach to the representation of N-particle systems involving arbitrary single-particle spin is presented. The method involves a generalization of a technique employed by Shavitt in developing the graphical group approach (GUGA) to electronic spin-orbitals. The methods implemented in GENDRT and DRTDIM overcome many deficiencies inherent in other approaches, particularly with respect to utilization of memory resources, computational efficiency in the recognition and evaluation of non-zero matrix elements of certain group theoretic operators and complete labelling of all the basis states of the permutation symmetry (S N ) adapted irreducible representations of SU(n) groups. (orig.)

  13. Observation of Octupole Structures in Radon and Radium Isotopes and Their Contrasting Behavior at High Spin

    International Nuclear Information System (INIS)

    Cocks, J.; Butler, P.; Cann, K.; Greenlees, P.; Jones, G.; Asztalos, S.; Clark, R.; Deleplanque, M.; Diamond, R.; Fallon, P.; Lee, I.; Macchiavelli, A.; MacLeod, R.; Stephens, F.; Bhattacharyya, P.; Zhang, C.; Broda, R.; Fornal, B.; Jones, P.; Julin, R.; Lauritsen, T.; Smith, J.

    1997-01-01

    Multinucleon transfer reactions have been used, for the first time, to populate high-spin bands of alternating parity states in 218,220,222 Rn and 222,224,226 Ra. The behavior of the angular momentum alignment with rotational frequency for the Rn isotopes is very different when compared with Ra and Th isotopes with N∼134, indicating a transition from octupole vibrational to stable octupole deformation. Throughout the measured spin range the values of |D 0 /Q 0 | remain constant for 222 Ra and 226 Ra and have a very small value for 224 Ra, suggesting that the charge and mass distributions are not affected appreciably by rotations. copyright 1997 The American Physical Society

  14. Sodium layer chiral distribution and spin structure of Na$_2$Ni$_2$TeO$_6$ with a honeycomb network

    OpenAIRE

    Karna, Sunil K.; Zhao, Y.; Sankar, R.; Avdeev, M.; Tseng, P. C.; Wang, C. W.; Shu, G. J.; Matan, K.; Guo, G. Y.; Chou, F. C.

    2017-01-01

    The nature of Na ion distribution, diffusion path, and the spin structure of $P2$-type Na$_2$Ni$_2$TeO$_6$ with a Ni honeycomb network has been explored. The nuclear density distribution of Na ions reveals a 2D chiral pattern within Na layers without breaking the original 3D crystal symmetry, which has been achieved uniquely via an inverse Fourier transform (iFT)-assisted neutron diffraction technique. The Na diffusion pathway described by the calculated iso-surface of Na ion bond valence sum...

  15. Correlated spin glass generated by structural disorder in the amorphous Dy6Fe74B20 alloy

    Science.gov (United States)

    Tejada, J.; Martinez, B.; Labarta, A.; Chudnovsky, E. M.

    1991-10-01

    Magnetic properties of the amorphous Dy-Fe-B alloy are studied in terms of the correlated-spin-glass approach of Chudnovsky et al.$-- Features predicted by the theory are clearly observed in the experiment. It is shown that the magnetization law may be presented in the form where it is determined by the dimensionless correlation function of structural disorder, C(y), only. The analysis of the magnetization curve allows one to distinguish between different models of disorder in amorphous solids. Experimental data on Dy-Fe-B are in favor of C=exp(-1/2y2).

  16. Correlated spin glass generated by structural disorder in the amorphous Dy6Fe74B20 alloy

    International Nuclear Information System (INIS)

    Tejada, J.; Martinez, B.; Labarta, A.; Chudnovsky, E.M.

    1991-01-01

    Magnetic properties of the amorphous Dy-Fe-B alloy are studied in terms of the correlated-spin-glass approach of Chudnovsky et al.$---- Features predicted by the theory are clearly observed in the experiment. It is shown that the magnetization law may be presented in the form where it is determined by the dimensionless correlation function of structural disorder, C(y), only. The analysis of the magnetization curve allows one to distinguish between different models of disorder in amorphous solids. Experimental data on Dy-Fe-B are in favor of C=exp(-1/2y 2 )

  17. Structural anomalies, spin transitions and charge disproportionation in LnCoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Henry, P.; André, G.

    2008-01-01

    Roč. 103, č. 7 (2008), 07B703/1-07B703/3 ISSN 0021-8979 R&D Projects: GA ČR GA202/06/0051 Institutional research plan: CEZ:AV0Z10100521 Keywords : LnCoO 3 * neutron diffraction * thermal expansion * spin-state transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.201, year: 2008

  18. Room-Temperature Spin-Mediated Coupling in Hybrid Magnetic, Organic, and Oxide Structures and Devices

    Science.gov (United States)

    2015-12-07

    17013 Tianyu Liu, G. Vignale. Flexoelectric phase shifter for spin waves, Journal of Applied Physics, (04 2012): 0. doi: 10.1063/1.4703925 F. J...in magnetic materials , Nature Materials , (04 2012): 0. doi: 10.1038/nmat3311 F. Macia, P. Warnicke, D. Bedau, M.-Y. Im, P. Fischer, D.A. Arena...microspectroscopy, Journal of Magnetism and Magnetic Materials , (03 2012): 3629. doi: Nicholas J. Harmon, Michael E. Flatté. Theory of Organic

  19. Structure, magnetic ordering, and spin filtering efficiency of NiFe{sub 2}O{sub 4}(111) ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, S.; Moussy, J.-B., E-mail: jean-baptiste.moussy@cea.fr [CEA, IRAMIS, SPCSI, F-91191 Gif-sur-Yvette (France); Wei, P. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Gatel, C. [CEMES-CNRS, F-31055 Toulouse (France); Cezar, J. C. [ESRF, F-38043 Grenoble (France); Arrio, M. A.; Sainctavit, Ph. [IMPMC, F-75015 Paris (France); Moodera, J. S. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-05

    NiFe{sub 2}O{sub 4}(111) ultrathin films (3–5 nm) have been grown by oxygen-assisted molecular beam epitaxy and integrated as effective spin-filter barriers. Structural and magnetic characterizations have been performed in order to investigate the presence of defects that could limit the spin filtering efficiency. These analyses have revealed the full strain relaxation of the layers with a cationic order in agreement with the inverse spinel structure but also the presence of antiphase boundaries. A spin-polarization up to +25% has been directly measured by the Meservey-Tedrow technique in Pt(111)/NiFe{sub 2}O{sub 4}(111)/γ-Al{sub 2}O{sub 3}(111)/Al tunnel junctions. The unexpected positive sign and relatively small value of the spin-polarization are discussed, in comparison with predictions and previous indirect tunnelling magnetoresistance measurements.

  20. Ultra-precision turning of complex spiral optical delay line

    Science.gov (United States)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  1. Measurement of the spin-dependent structure-functions of the proton and the deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent stucture functions g$ _{1} $(x) of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  2. Longitudinal double-spin asymmetry $A_1^{\\rm p}$ and spin dependent structure function $g_1^{\\rm p}$ of the proton at small values of $x$ and $Q^2$

    CERN Document Server

    Aghasyan, M.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtsev, V.E.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr.,M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2017-01-01

    We present a precise measurement of the proton longitudinal double-spin asymmetry $A_1^{\\rm p}$ and the proton spin-dependent structure function $g_1^{\\rm p}$ at photon virtualities $0.006~({\\rm GeV}/c)^2< Q^2< 1~ ({\\rm GeV}/c)^2$ in the Bjorken $x$ range of $4 \\times 10^{-5} < x < 4 \\times 10^{-2}$. The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of $160~{\\rm GeV}$ and $200~ {\\rm GeV}$. The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of $x$, the measured values of $A_1^{\\rm p}$ and $g_1^{\\rm p}$ are found to be positive. It is for the first time that spin effects are found at such low values of $x$.

  3. The connection between hydrodynamic stability of gas flow in spin coating and coated film uniformity

    Science.gov (United States)

    Öztekin, Alparslan; Bornside, David E.; Brown, Robert A.; Seidel, Philip K.

    1995-03-01

    The thickness uniformity of a spin-cast film is governed by the air flow through the spin coater, particularly the boundary layer flow above the surface of the spinning wafer, which controls solvent evaporation from the dry film. Laser Doppler velocimetry (LDV) and hot wire anemometry (HWA) are used to map the flow field throughout an industrial spin coater and to study flow instabilities in the boundary layer for various combinations of wafer spin speed and exhaust flow rate. The flow field measured by LDV compares well with a numerical simulation of laminar, axisymmetric, and steady air flow throughout the coating bowl. However, Ekman spiral flow instabilities of both type I (positive spiral angle) and type II (negative spiral angle) were found by HWA in the boundary layer near the surface of the spinning wafer. The type-II spirals form at Reynolds number in the range 2000-2500 and the type-I spirals form at Reynolds number in the range 80 000-85 000. It is the type-II spirals that are responsible for disrupting the air flow in the boundary layer flow and that cause nonuniform drying of spin-cast films.

  4. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  5. Dynamics of spiral waves in excitable media subjected to external periodic forcing

    Science.gov (United States)

    Schrader, A.; Braune, M.; Engel, H.

    1995-07-01

    We provide a survey of the behavior of meandering spiral waves in excitable media under periodic modulation of excitability. Model calculations were performed in a modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction. The spiral's dynamic is followed by its tip motion. We find mode locking if the path curvature period is a rational multiple of the modulation period and resonance response of the spiral's rotation period. A general ordering structure in terms of the Farey tree is observed. The complex motion of the spiral's tip is found to be composed of harmonics of the modulation period. For large forcing amplitudes we observe an overlap of entrainment bands resulting in bi- stable behavior and in the breakup of the spiral at the end of the major entrainment band.

  6. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  7. The scientific objectives of the SPIRAL 2 Project

    International Nuclear Information System (INIS)

    Ackermann, D.; Adoui, L.; Angelis, G. de

    2006-06-01

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  8. The scientific objectives of the SPIRAL 2 Project

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, D.; Adoui, L.; Angelis, G. de [GANIL, Grand Accelerateur National d' Ions Lourds, BP 55027, 14076 Caen cedex 5 (France)] (and others)

    2006-06-15

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  9. Analytic expression of the temperature increment in a spin transfer torque nanopillar structure

    International Nuclear Information System (INIS)

    You, Chun-Yeol; Ha, Seung-Seok; Lee, Hyun-Woo

    2009-01-01

    The temperature increment due to the Joule heating in a nanopillar spin transfer torque system is investigated. We obtain a time-dependent analytic solution of the heat conduction equation in nanopillar geometry by using the Green's function method after some simplifications of the problem. While Holm's equation is applicable only to steady states in metallic systems, our solution describes the time dependence and is also applicable to a nanopillar-shaped magnetic tunneling junction with an insulator barrier layer. The validity of the analytic solution is confirmed by numerical finite element method simulations and by the comparison with Holm's equation.

  10. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  11. Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs

    Science.gov (United States)

    Krajnc, Andraž; Bueken, Bart; De Vos, Dirk; Mali, Gregor

    2017-06-01

    Nuclear magnetic resonance spectroscopy combined with modeling represents a powerful tool for the structural analysis of heterogeneous materials. In this contribution we describe an upgraded method, particularly suited for the structural analysis of mixed-linker metal-organic framework materials, which is based on the measurement and modeling of proton spin diffusion among constituents. We tested the method on a UiO-66-type metal-organic material, in which the organic building units were 1,4-benzenedicarboxylate and trans-1,4-cyclohexanedicarboxylate anions distributed within the framework in an unknown manner. We showed that resolution of the signals of different building units could be significantly enhanced by the carbon-detected version of the proton spin-diffusion measurement. Because this kind of measurement is much more time consuming than the proton-detected measurement and because one has to carry out several two-dimensional measurements to extract spin-diffusion curves, we inspected the possibility of reducing the number of such measurements. This could be done by limiting the analysis to short mixing times, for which, as shown in this contribution, linear approximation is valid. When working in the linear regime, only a few experimental points are needed to determine the slope of spin-diffusion curves. Usage of short spin-diffusion mixing times significantly shortened the total measurement time and also markedly simplified the modeling of spin-diffusion curves.

  12. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    International Nuclear Information System (INIS)

    Iashina, E G; Grigoriev, S V; Bouwman, W G; Duif, C P; Filatov, M V

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrometer length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G ( z ) = exp(− z / ξ ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μ m). The exponential decay of G ( z ) corresponds to the logarithmic pair correlation function γ ( r ) = ln( ξ / r ). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10 −2 μ m to 10 μ m. (paper)

  13. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    Science.gov (United States)

    Iashina, E. G.; Bouwman, W. G.; Duif, C. P.; Filatov, M. V.; Grigoriev, S. V.

    2017-06-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G(z) = exp(-z/ξ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μm). The exponential decay of G(z) corresponds to the logarithmic pair correlation function γ(r) = ln(ξ/r). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10-2 μm to 10 μm.

  14. Formation of CCP-NOL in CPP-GMR spin valve structure for the enhancement of magnetoresistance

    International Nuclear Information System (INIS)

    Kang, Y.M.; Isogami, S.; Tsunoda, M.; Takahashi, M.; Yoo, S.I.

    2007-01-01

    For the MR enhancement in current perpendicular to plane-giant magetoresistance spin valve (CPP-GMR SV), a current-confined path-nano-oxide layer (CCP-NOL)-AlO x was formed on the Cu spacer of half SV structure. In order to form effective current-confining paths, an ultra-thin AlO x layer was deposited on a Cu spacer layer by O 2 reactive sputtering of Al with infra-red (IR) heat treatment on the substrate, and that enable to form an island-structured insulating AlO x layer having holes between AlO x islands. By controlling PO 2 and substrate temperature in the NOL deposition, AlO x layer formation without an oxidizing bottom layer could be achieved

  15. Platinum/yttrium iron garnet inverted structures for spin current transport

    Energy Technology Data Exchange (ETDEWEB)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi; Xu, Yadong; Shi, Jing [Department of Physics and Astronomy and SHINES Energy Frontier Research Center, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697 (United States); Bozhilov, Krassimir N. [Central Facility for Advanced Microscopy and Microanalysis, University of California, Riverside, California 92521 (United States)

    2016-06-13

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along 〈001〉 and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe at 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.

  16. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  17. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  18. Structured-illumination reflectance imaging coupled with spiral phase transform for bruise detection and three-dimensional geometry reconstruction of apples

    Science.gov (United States)

    Structured-illumination reflectance imaging (SIRI) is a new, promising imaging technique with enhanced, versatile capabilities for quality evaluation of food products. SIRI enables simultaneous acquisition of higher-contrast/resolution and better depth-controlled intensity and phase images for detec...

  19. Electronic structures and spectroscopic properties of CdI: MRCI+Q study including spin-orbit coupling

    Science.gov (United States)

    Li, Rui; Zhang, Hua; Liu, Xiaohua; Zhao, Shutao; Liu, Yadong; Yan, Bing

    2018-01-01

    Cadmium iodide (CdI), which is a candidate for laser material in chemical lasing, has attracted considerable scientific interest. While the complete picture for electronic structure of CdI is still unclear, particularly for the interactions of excited states. In this paper, high-level configuration interaction method is applied to compute the low-lying electronic states of the lowest two dissociation limits (Cd(1S) + I(2P) and Cd(3P) + I(2P)). To ensure the accuracy, the Davidson correction, core-valence electronic correlations and spin-orbit coupling effects are also taken into account. The potential energy curves of the 14 Λ-S states and 30 Ω states obtained from those Λ-S states are calculated. On the basis of the computed potential energy curves, the spectroscopic constants of bound and quasibound states are determined, most of which have not been reported in existing studies. The calculated values of spin-orbit coupling matrix elements demonstrate that the B2Σ+1/2 state imposes a strong perturbation on ν‧> 0 vibrational level of C2Π1/2, which can explain the weak spectral intensity of C2Π1/2-X2Σ+1/2 observed in previous experiment. The transition dipole moments as well as the lifetimes are evaluated to predict the transition properties of B2Σ+1/2, C2Π1/2 and 22Π3/2 states.

  20. Moments of the spin structure functions g1p and g1d for 0.0522

    International Nuclear Information System (INIS)

    Prok, Y.; Bosted, P.; Burkert, V.D.; Deur, A.; Dharmawardane, K.V.; Dodge, G.E.; Griffioen, K.A.; Kuhn, S.E.; Minehart, R.; Adams, G.; Amaryan, M.J.; Anghinolfi, M.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J.P.; Baltzell, N.A.; Barrow, S.

    2009-01-01

    The spin structure functions g 1 for the proton and the deuteron have been measured over a wide kinematic range in x and Q 2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH 3 and ND 3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 2 2 and W 1 for the proton and deuteron are presented - both have a negative slope at low Q 2 , as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first extraction of the generalized forward spin polarizability of the proton γ 0 p is also reported. This quantity shows strong Q 2 dependence at low Q 2 . Our analysis of the Q 2 evolution of the first moment of g 1 shows agreement in leading order with Heavy Baryon Chiral Perturbation Theory. However, a significant discrepancy is observed between the γ 0 p data and Chiral Perturbation calculations for γ 0 p , even at the lowest Q 2

  1. Study of the origin of magnetic couples induced by spin-orbit coupling in Co/Pt-based asymmetrical structures

    International Nuclear Information System (INIS)

    Drouard, Marc

    2014-01-01

    In order to reduce power consumption in next generations' electronic devices, one potential solution is to implement non-volatility in memory cells. In this goal, the magnetization switching of a ferromagnetic material has been used in a memory concept: the MRAM. The latest development of this technology, called SOT-RAM, is based on new phenomena called SOTs (Spin-Orbit Torques) in order to control magnetization direction. Contrary to precedent generations (STT-MRAM), it should achieve a higher operating speed and an endurance adapted for cache and main memories applications. SOTs is a generic term referring to all the effects, linked to the spin-orbit interaction, and that enable magnetization reversal. They are yet not perfectly understood. The main objective of this Ph.D. was then to study these SOTs through a quasi-static experimental measurement setup based on anomalous and planar Hall effects. Its implementation and the associated analysis method, as well as the required theoretical considerations for data interpretation are detailed in this manuscript. It has been highlighted that magnetization switching in perpendicularly magnetization cobalt-platinum Systems cannot be explained by the simple models considered thus far in the literature. As a matter of fact it has been evidenced that at least two effects have to be considered in order to explain observed phenomena. In addition, they present different susceptibility both to a modification of the crystal structure and to a temperature change. (author) [fr

  2. The Spin-dependent Structure Function of the Proton $g_{1}^p$ and a Test of the Bjorken Sum Rule

    CERN Document Server

    Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chaberny, D.; Cotic, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schluter, T.; Schopferer, S.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    The inclusive double-spin asymmetry, $A_{1}^{p}$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x < 0.7 and improve the statistical precision of g_{1}^{p}(x) by a factor of two in the region x < 0.02. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants g_A/g_V = 1.28+-0.07(stat)+-0.10(syst).

  3. Gauge invariant sub-structures of tree-level double-emission exact QCD spin amplitudes

    CERN Document Server

    Van Hameren, A

    2009-01-01

    In this note we discuss possible separations of exact, massive, tree-level spin amplitudes into gauge invariant parts. We concentrate our attention on processes involving two quarks entering a color- neutral current and, thanks to the QCD interactions, two extra external gluons. We will search for forms compatible with parton shower languages, without applying approximations or restrictions on phase space regions. Special emphasis will be put on the isolation of parts necessary for the construction of evolution kernels for individual splittings and to some degree for the running coupling constant as well. Our aim is to better understand the environment necessary to optimally match hard matrix elements with partons shower algorithms. To avoid complications and ambiguities related to regularization schemes, we ignore, at this point, virtual corrections. Our representation is quite universal: any color-neutral current can be used, in particular our approach is not restricted to vector currents only.

  4. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  5. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  6. EM-wave absorption properties of hollow spiral iron particles

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Zhang, Deyuan

    2015-01-01

    Hollow iron spiral particles were fabricated successfully by thermal decomposition method, and they were heat-treated at different temperatures in N 2 atmosphere. The electromagnetic wave absorption properties of hollow iron spiral particles were investigated ranging between 1 GHz and 18 GHz. The results indicated that the phase structures of the particles changed from amorphous to nanocrystal with the treating temperature rising, also causing the significant change in electromagnetic parameters and the reflection loss. The reflection loss could reach −33 dB at 16.2 GHz, indicating that the hollow iron spiral particles had the potential to be used in prepare the a high property EM-wave absorber. - Highlights: • Hollow iron spiral particles were fabricated by thermal decomposition method. • The particles changed from amorphous to nanocrystals with heat-treatment. • Particles’ EM-parameters have a great change after high temperature heat-treatment. • RL results show the particles have potential to be high property EM-wave absorber

  7. Temperature- and pressure-dependent structural study of {Fe(pmd)2[Ag(CN)2]2}n spin-crossover compound by neutron Laue diffraction.

    Science.gov (United States)

    Rodríguez-Velamazán, José Alberto; Cañadillas-Delgado, Laura; Castro, Miguel; McIntyre, Garry J; Real, José Antonio

    2014-06-01

    The effect of pressure (up to 0.17 GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ↔ low-spin transition, centred at ca 180 K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140 K GPa(-1). The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure-temperature (P-T) range studied. The main structural consequence of the high-spin to low-spin transition is the contraction of the distorted octahedral [FeN6] chromophores, being more marked in the axial positions (occupied by the pmd units), than in the equatorial positions (occupied by four [Ag(CN)2](-) bridging ligands).

  8. Proximity Band Structure and Spin Textures on Both Sides of Topological-Insulator/Ferromagnetic-Metal Interface and Their Charge Transport Probes.

    Science.gov (United States)

    Marmolejo-Tejada, Juan Manuel; Dolui, Kapildeb; Lazić, Predrag; Chang, Po-Hao; Smidstrup, Søren; Stradi, Daniele; Stokbro, Kurt; Nikolić, Branislav K

    2017-09-13

    The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi 2 Se 3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi 2 Se 3 in contact with Co near the Fermi level E F 0 , where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below E F 0 for both Bi 2 Se 3 /Co and Bi 2 Se 3 /Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of E F 0 . Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi 2 Se 3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi 2 Se 3 . We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi 2 Se 3 /Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at E F 0 .

  9. The Spin Structure of 3He and the Neutron at Low Q2: A Measurement of the Generalized GDH Integrand

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, Vincent [College of William and Mary, Williamsburg, VA (United States)

    2007-08-01

    Since the 1980's, the study of nucleon (proton or neutron) spin structure has been an active field both experimentally and theoretically. One of the primary goals of this work is to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction. In the high energy region of asymptotically free quarks, QCD has been verified. However, verifiable predictions in the low energy region are harder to obtain due to the complex interactions between the nucleon's constituents: quarks and gluons. In the non-pertubative regime, low-energy effective field theories such as chiral perturbation theory provide predictions for the spin structure functions in the form of sum rules. Spin-dependent sum rules such as the Gerasimov-Drell-Hearn (GDH) sum rule are important tools available to study nucleon spin structure. Originally derived for real photon absorption, the Gerasimov-Drell-Hearn (GDH) sum rule was first extended for virtual photon absorption in 1989. The extension of the sum rule provides a unique relation, valid at any momentum transfer ($Q^{2}$), that can be used to study the nucleon spin structure and make comparisons between theoretical predictions and experimental data. Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to examine the spin structure of the neutron and $^{3}$He. The Jefferson Lab longitudinally-polarized electron beam with incident energies between 1.1 and 4.4 GeV was scattered from a longitudinally or transversely polarized $^{3}$He gas target in the Hall A end station. Asymmetries and polarized cross-section differences were measured in the quasielastic and resonance regions to extract the spin structure functions $g_{1}(x,Q^{2})$ and $g_{2}(x,Q^{2})$ at low momentum transfers (0.02 $< Q^{2} <$ 0.3 GeV$^{2}$). The goal of the experiment was to perform a precise measurement of the $Q^{2}$ dependence of the extended GDH integral and of the moments of

  10. Testing the Link Between Terrestrial Climate Change and Galactic Spiral Arm Transit

    Science.gov (United States)

    Overholt, Andrew C.; Melott, Adrian L.; Pohl, Martin

    2009-11-01

    We re-examine past suggestions of a close link between terrestrial climate change and the Sun's transit of spiral arms in its path through the Milky Way galaxy. These links produced concrete fits, deriving the unknown spiral pattern speed from terrestrial climate correlations. We test these fits against new data on spiral structure based on CO data that do not make simplifying assumptions about symmetry and circular rotation. If we compare the times of these transits with changes in the climate of Earth, the claimed correlations not only disappear, but we also find that they cannot be resurrected for any reasonable pattern speed.

  11. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  12. Surface dependent structural phase transition in SrTiO 3 observed with spin relaxation of 8Li

    Science.gov (United States)

    Smadella, M.; Salman, Z.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; MacFarlane, W. A.; Mansour, A. I.; Morris, G. D.; Parolin, T. J.; Pearson, M.; Saadaoui, H.; Song, Q.; Wang, D.

    2009-04-01

    We investigate the 105 K structural phase transition in SrTiO 3 using depth controlled measurements of the spin relaxation of 8Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the 8Li ( I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some 8Li implantation sites, resulting in an observable loss of 8Li polarization. This loss of polarization begins at a temperature T*=150 K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T* is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO 3 sample.

  13. The Spin Structure of the Neutron and 3HE:. AN Overview of the Jlab Experiments in Hall a

    Science.gov (United States)

    Meziani, Z.-E.

    2001-02-01

    I shall discuss three experiments which form part of a comprehensive physics program aimed at the study of the spin structure of the neutron using a polarized 3He target and a polarized beam at JLab in Hall A. Results from the first experiment performed to evaluate the Gerasimov-Drell-Hearn (GDH) extended sum rule are presented and future approved measurements are discussed. The main goal of these experiments is to bridge our understanding of the strong interaction in the large Q2 regime where quarks and gluons are the relevant degrees of freedom to the low Q2 regime where constituent quarks and mesons seem to be more adequate for a description of the nucleon properties.

  14. Surface dependent structural phase transition in SrTiO{sub 3} observed with spin relaxation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smadella, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Pearson, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Song, Q.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We investigate the 105 K structural phase transition in SrTiO{sub 3} using depth controlled measurements of the spin relaxation of {sup 8}Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the {sup 8}Li (I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some {sup 8}Li implantation sites, resulting in an observable loss of {sup 8}Li polarization. This loss of polarization begins at a temperature T{sup *}=150K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T{sup *} is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO{sub 3} sample.

  15. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd3

    Science.gov (United States)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.

    2017-01-01

    Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions. PMID:28211520

  16. Structural and photo-physical properties of spin-coated poly (3-hexylthiophene) thin films

    CSIR Research Space (South Africa)

    Motaung, DE

    2009-07-01

    Full Text Available Regioregular poly(3-hexylthiophenes) (P3HTs) and its blends were studied regarding their structural and photo-physical properties using fullerene as an electron acceptor material. Photo-physical and structural characteristics of the polymer blends...

  17. The DESIR Facility at SPIRAL2

    Indian Academy of Sciences (India)

    Beams from the low-energy branch of the separator spectrometer S3 and from SPIRAL1 will allow complementary studies of refrac- tory elements produced by means of fusion reactions as well as of light and intense exotic beams, respectively. Keywords. SPIRAL2; low-energy facility; nuclear physics; weak interaction; astro-.

  18. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  19. A catalog of spin orientation of southern galaxies

    International Nuclear Information System (INIS)

    Iye, Masandri; Sugai, Hajime

    1991-01-01

    A catalog is presented for studying the distribution of spin angular momentum of disk galaxies. This catalog compiles the spiral winding sense, which can be used for identifying the sign of the line-of-sight component of the spin angular momentum, of 8287 spiral galaxies selected from the ESO/Uppsala Survey of the ESO (B) Atlas. The definition of the sample, description of the procedures in compiling the catalog, and the basic statistics of the sample are presented. The astrophysical significances of possible analyses based on the present catalog are emphasized in the context of various theories of galaxy formation. 20 refs

  20. Internal structure transition of spin-on glass by electron beam irradiation

    International Nuclear Information System (INIS)

    Araki, Makoto; Taniguchi, Jun; Sawada, Nobuo; Utsumi, Takayuki; Miyamoto, Iwao

    2007-01-01

    The effects of electron beam (EB) irradiation on spin-on glass (SOG) were investigated using thermal desorption spectroscopy. We were able to employ heat treatment as a 'development process', since we discovered that heat treatment breaks different bonds in SOG depending on whether it is applied before or after EB irradiation of SOG. In the case, when heat treatment was applied before EB irradiation of SOG, it was possible to break the Si-C bond at about 500 deg. C. In the case, when heat treatment was applied after EB irradiation of SOG, on the other hand, the -SiC bond could be broken at a lower temperature of about 400 deg. C. Using this difference between the two bond-breaking temperatures, it was possible to develop SOG using thermal desorption development (TDD). Moreover, the bond-breaking mechanisms revealed that the organic components in SOG play an important role in TDD. Hence, in order to determine the influence of organic components on TDD, the development characteristics of SOG samples with 10% and 15% organic contents were investigated

  1. Studies of the spin-Hamiltonian parameters and defect structures for Gd3+ ions in zircon-structure silicates MSiO4 (M=Zr, Hf, Th).

    Science.gov (United States)

    Yang, Wei-Qing; Zheng, Wen-Chen

    2011-09-01

    The spin-Hamiltonian parameters (g factors g∥, g⊥ and zero-field splittings b2(0), b4(0), b4(4), b6(0), b6(4)) for 4f7 ion Gd3+ at the tetragonal M4+ site of zircon-structure silicates MSiO4 (M=Zr, Hf, Th) are calculated from a diagonalization (of energy matrix) method. The Hamiltonian concerning this energy matrix contains the free-ion, crystal-field interaction and Zeeman interaction terms and the 56×56 energy matrix is constructed by considering the ground multiplet 8S7/2 and the excited multiplets 6L7/2 (L=P, D, F, G, H, I). The defect structures of Gd3+ centers in the three MSiO4 crystals are yielded from the calculation. The results are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Geometrical contributions to the exchange constants: Free electrons with spin-orbit interaction

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2017-05-01

    Using thermal quantum field theory, we derive an expression for the exchange constant that resembles Fukuyama's formula for orbital magnetic susceptibility (OMS). Guided by this formal analogy between the exchange constant and OMS, we identify a contribution to the exchange constant that arises from the geometrical properties of the band structure in mixed phase space. We compute the exchange constants for free electrons and show that the geometrical contribution is generally important. Our formalism allows us to study the exchange constants in the presence of spin-orbit interaction. Thereby, we find sizable differences between the exchange constants of helical and cycloidal spin spirals. Furthermore, we discuss how to calculate the exchange constants based on a gauge-field approach in the case of the Rashba model with an additional exchange splitting, and we show that the exchange constants obtained from this gauge-field approach are in perfect agreement with those obtained from the quantum field theoretical method.

  3. A Self-Complementary 1.2 to 40 GHz Spiral Antenna with Impedance Matching

    Directory of Open Access Journals (Sweden)

    M. Mazanek

    2006-09-01

    Full Text Available This paper describes a design of the Self- Complementary Spiral Antenna (SCSA which consists of a spiral antenna and a wideband impedance transformer. The spiral antenna and the transformer are designed separately due to computing demands. New knowledge about current distribution on the spiral antenna and influence of higher numbers of wavelength in circumference is presented. The novel transition between feeding and radiating antenna structure are optimized in the frequency range 1.2 to 40 GHz. The meaning of the transition in the paper includes the impedance as well as the geometry transforming of the structure. The antenna is suitable for wideband illuminating of a parabolic reflector due to relatively constant phase center and radiation pattern with frequency.

  4. DEVELOPMENT OF THE ENERGY EFFICIENT THERMOELECTRIC HEAT PUMP OF SPIRAL TYPE

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2016-01-01

    Full Text Available Abstract. The necessity to intensify the process of heat transfer in the heat pump is justified. The possibility of heat pumps using for liquid cooling in the engine pipe is shown. The new heat pump design of spiral type with LED ring semiconductor structures, powered by magnetic induction is proposed. The efficiency of LED ring semiconductor structures that operate at low temperatures due to the difference in the levels of energy charges in p- and n-regions isrevealed.The mathematical model for the electrical and thermal parameters calculating of energy-efficient thermoelectric heat pump of the spiral type is developed. The diagram of coolant temperature dependence at the outlet of energy-efficient thermoelectric heat pump of spiral type on the supply current is built. The efficiency of spiral type thermoelectric heat pump application for cooling of the internal combustion engine is proven. 

  5. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  6. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  7. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  8. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  9. New isomers and medium-spin structure of the 95Y nucleus

    International Nuclear Information System (INIS)

    Urban, W.; Sieja, K.; Simpson, G. S.; Faust, H.; Rzaca-Urban, T.; Zlomaniec, A.; Lukasiewicz, M.; Smith, A. G.; Durell, J. L.; Smith, J. F.; Varley, B. J.; Nowacki, F.; Ahmad, I.

    2009-01-01

    Excited states in 95 Y, populated following the spontaneous fission of 248 Cm and 252 Cf and following fission of 235 U induced by thermal neutrons, were studied by means of γ spectroscopy using the EUROGAM2 and GAMMASPHERE multidetector Ge arrays and the LOHENGRIN fission-fragment separator, respectively. We have found a new (17/2 - ) isomer in 95 Y at 3142.2 keV with a half-life of T 1/2 =14.9(5) ns. Another isomer was identified in 95 Y at 5022.1 keV and it was assigned a spin-parity (27/2 - ). For this isomer a half-life of T 1/2 =65(4) ns was determined and four decay branches were found, including an E3 decay. A new E3 decay branch was also found for the known, 1087.5-keV isomer in 95 Y, for which we measured a half-life of 51.2(9) μs. The B(E3) and B(E1) transition rates, of 2.0 and 3.8x10 -7 W.u., respectively, observed in 95 Y are significantly lower than in the neighboring 96 Zr core, suggesting that octupole correlations in this region are mainly due to the coupling of proton Δj=3 orbitals. Shell-model calculations indicate that the (27/2 - ) isomer in 95 Y corresponds to the πg 9/2 ν(g 7/2 h 11/2 ) maximally aligned configuration and that all three isomers in 95 Y decay, primarily, by M2 transitions between proton g 9/2 and f 5/2 orbitals.

  10. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert

    2017-01-01

    is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...

  11. Cylindrical spirals of myofilamentous origin associated with exertional cramps and rhabdomyolysis.

    Science.gov (United States)

    Wolfe, G I; Burns, D K; Krampitz, D; Barohn, R J

    1997-12-01

    We describe the presence of cylindrical spirals on muscle biopsy from a 31-year-old man who developed rhabodomyolysis following a long run. He had a prior history of exertional cramps and myoglobinuria. His maternal grandfather had similar symptoms. Transmission electron micrographs demonstrated continuity between the lamellae of the cylindrical spirals and native myofilaments. Whether these unusual structures confer a derangement in myofilament function is uncertain.

  12. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  13. Analisa Kekuatan Spiral Bevel Gear Dengan Variasi Sudut Spiral Menggunakan Metode Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Deta Rachmat Andika

    2017-01-01

    Full Text Available Seiring perkembangan zaman,  teknologi roda gigi dituntut untuk mampu mentransmisikan daya yang besar dengan efisiensi yang besar pula. Pada jenis intersecting shaft gear, tipe roda gigi payung spiral (spiral bevel gear  merupakan perkembangan dari roda gigi payung bergigi lurus (straight bevel gear. Kelebihan dari spiral bevel gear antara  lain adalah kemampuan transmisi daya dan efisiensi yang lebih besar pada geometri yang sama serta tidak terlalu berisik. Akan tetapi spiral bevel gear juga mempunyai kelemahan jika dibandingkan dengan straight bevel gear. Selain proses manufaktur yang lebih rumit, profil lengkung gigi spiral ini membuat distribusi tegangan yang terjadi menjadi lebih rumit untuk dimodelkan dengan persamaan matematika. Salah satu pendekatan yang dapat dilakukan adalah dengan menggunakan metode elemen hingga. Penelitian diawali dengan membuat model dari straight bevel gear dan juga spiral bevel gear yang sudut spiralnya divariasikan 20, 35, dan 45 derajat. Model dibuat dengan dimensi yang sama baik diameter maupun jumlah gigi gear. Langkah selanjutnya yaitu perhitungan analitis pada straight bevel gear dimana hasilnya akan dibandingkan dengan hasil simulasi statis. Setelah eror yang terjadi dibawah 15% maka dilakukan simulasi dinamis pada semua model yang telah dibuat yaitu straight bevel dan juga spira bevel gear. Hasil yang didapatkan dari penelitian ini adalah secara keseluruhan spiral bevel gear lebih kuat daripada straight bevel gear pada dimensi dan beban yang sama jika dilihat dari lebih kecilnya tegangan bending dan tegangan kontak maksimum yang terjadi. Tegangan terbesar terjadi pada jenis straight bevel gear baik pada tegangan bending maupun tegangan kontak sedangkan spiral bevel gear dengan variasi sudut Seiring spiral 35 mempunyai nilai tegangan terkecil. Prosntase selisih tegangan bending maksimum yang terjadi antara straight bevel gear dan spiral bevel gear dengan variasi sudut spiral 35 derajat  sebesar 44

  14. Spin dynamics and structural phase transitions in quasi-2D R sub 2 CuO sub 4 (R=Pr, Sm and Eu) antiferromagnetics

    CERN Document Server

    Golovenchits, E I

    2001-01-01

    One studied spin dynamics and dynamics of lattice in R sub 2 CuO sub 4 (R = Pr, Sm, and Eu) crystals within 20-250 GHz frequency range and within 50350 K temperature interval. One detected abrupt variation of absorption coefficient within wide range of frequencies above 120 GHz at 20, 80 and 150 K temperatures in R sub 2 CuO sub 4 (R = Pr, Sm, and Eu), respectively. Absorption jumpings result from structural phase transitions. Wide ranges of spin-wave excitations were observed in all examined crystals in high-temperature phase. Close to temperatures of phase transitions within wide range of frequencies including frequencies corresponding to ranges of spin-wave excitations one observed lines of a absorption caused by lattice dynamics

  15. Spiral arms in thermally stratified protoplanetary discs

    Science.gov (United States)

    Juhász, Attila; Rosotti, Giovanni P.

    2018-02-01

    Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the submillimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar companions, in all but one cases such companions have not yet been detected and there is even ambiguity on whether the planet should be located inside or outside the spirals. Here, we use 3D hydrodynamic simulations to study the morphology of spiral density waves launched by embedded planets taking into account the vertical temperature gradient, a natural consequence of stellar irradiation. Our simulations show that the pitch angle of the spirals in thermally stratified discs is the lowest in the disc mid-plane and increases towards the disc surface. We combine the hydrodynamic simulations with 3D radiative transfer calculations to predict that the pitch angle of planetary spirals observed in the near-infrared is higher than in the submillimetre. We also find that in both cases the spirals converge towards the planet. This provides a new powerful observational method to determine if the perturbing planet is inside or outside the spirals, as well as map the thermal stratification of the disc.

  16. KINEMATIC ANALYSIS OF NUCLEAR SPIRALS: FEEDING THE BLACK HOLE IN NGC 1097

    International Nuclear Information System (INIS)

    Van de Ven, Glenn; Fathi, Kambiz

    2010-01-01

    We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear star-forming ring of NGC 1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms is well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with an inferred pitch angle of 52 0 ± 4 0 . This interpretation predicts a two-arm spiral distortion in the surface brightness, as hinted by the dust structures in central images of NGC 1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionized gas. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission-line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 M sun yr -1 at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10 -3 of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity can not only provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a constraint on the mass inflow rate as a function of radius.

  17. Spin-orbit coupling effect on structural and magnetic properties of ConRh13-n (n = 0-13) clusters

    Science.gov (United States)

    Bai, Xi; Lv, Jin; Zhang, Fu-Qiang; Jia, Jian-Feng; Wu, Hai-Shun

    2018-04-01

    The effect of spin-orbit interaction on the structures and magnetism of ConRh13-n (n = 0-13) clusters have been systematically investigated by using the spin-orbit coupling (SOC) implementation of the density functional theory (DFT). The results calculated without SOC (NSOC) show that Rh13 prefers the double simple-cubic configuration, and icosahedron is the favorable structure for n = 1-9, while n ≥ 10, clusters favor the hexagonal bilayer structure. The inclusion of SOC in calculation does not change the geometries of clusters. Compared with that in NSOC calculation, although the binding energy per atom in clusters with same composition decreases in SOC calculation, the relative stability of clusters with different compositions does not change. An interesting result is that the spin moments of clusters for n = 1-9 are almost constant (21 μB). Spin-orbit interaction recovers orbital moment and its anisotropy by removing crystal-field effect in calculation. The destruction of bonding symmetry and relaxation of bonding account for high anisotropies of orbital moments in Co11Rh2 and CoRh12 clusters. With atomic composition (Co/Rh) around 4/9-5/8 and 9/4, the Co-Rh clusters exhibit high magnetic anisotropy energies.

  18. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  19. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  20. Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model

    International Nuclear Information System (INIS)

    Tamagaki, R.; Tatsumi, T.

    1984-01-01

    In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter

  1. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2

    Science.gov (United States)

    Jin, Z.; Xia, Z.-C.; Wei, M.; Yang, J.-H.; Chen, B.; Huang, S.; Shang, C.; Wu, H.; Zhang, X.-X.; Huang, J.-W.; Ouyang, Z.-W.

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration.

  2. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  3. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  4. Gate voltage and structure parameter modulated spin splitting in AlGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhang, R.; Zhang, Z.; Liu, B.; Fu, Deyi; Zhao, C.Z.; Xie, Z.L.; Xiu, X.Q.; Zheng, Y.D. [Nanjing National Lab of Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2011-01-15

    In this paper, considerable magnitude of spin splitting for the conduction subband at the Fermi energy is obtained in AlGaN quantum wells (QWs) grown along the c-axis. We have analyzed how the magnitude of spin splitting of the first electron subband in AlGaN QWs with different sheet carrier concentration changes as a function of applied gate voltage, well width, and Al content in the barrier. It is also found that the contribution to spin splitting from Dresselhaus term is much larger than that from Rashba term, the contribution of Dresselhaus term to the total spin splitting depends greatly on the carrier concentrations, the change of well width has little effect on total spin splitting, and the magnitude of spin splitting can be greatly modulated by Al content in the barrier, gate voltage, and sheet carrier concentration. The internal polarized electric field is crucial for considerable spin splitting in III-nitride QWs. Moreover, the magnitude of total spin splitting calculated here is comparable with other theoretical and experimental values observed in III-nitride heterostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong

    2004-01-01

    In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior

  6. Measurement of the spin structure of the deuteron in the DIS region

    Czech Academy of Sciences Publication Activity Database

    Ageev, E.; Alexakhin, V.; Alexandrov, Y.; Alexeev, G.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.; Bytchkov, V.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.; Costa, S.; Crespo, M.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Denisov, O.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.; Dolgopolov, A.; Donskov, S.; Dorofeev, V.; Doshita, N.; Duic, V.; Dünnweber, W.; Ehlers, J.; Eversheim, P.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.; Grajek, O.; Grasso, A.; Grube, B.; Grünemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.; Ilgner, C.; Ioukaev, A.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Khomutov, N.; Kisselev, Y.; Klein, F.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konoplyannikov, A.; Konorov, I.; Konstantinov, V.; Korentchenko, A.; Korzenev, A.; Kotzinian, A.; Koutchinski, N.; Kowalik, K.; Kravchuk, N.; Krivokhizhin, G.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.; Lamanna, M.; Le Goff, J.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Manuilov, I.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.; Medved, K.; Meyer, W.; Mielech, A.; Mikhailov, Y.; Moinester, M.; Nähle, O.; Nassalski, J.; Neliba, S.; Neyret, D.; Nikolaenko, V.; Nozdrin, A.; Obraztsov, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.; Peshekhonov, D.; Peshekhonov, V.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.; Popov, A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.; Rondio, E.; Sadovski, A.; Saller, E.; Samoylenko, V.; Sandacz, A.; Sans, M.; Sapozhnikov, M.; Savin, I.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.; Shishkin, A.; Siebert, H.; Sinha, L.; Sissakian, A.; Skachkova, A.; Slunecka, M.; Smirnov, G.; Sozzi, F.; Sugonyaev, V.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.; Tassarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.; Toeda, T.; Tretyak, V.; Trousov, S.; Varanda, M.; Virius, M.; Vlassov, N.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2005-01-01

    Roč. 612, 3-4 (2005), s. 154-164 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) ME 492 Keywords : deep inelastic scattering * structure functions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.301, year: 2005

  7. Spin structure and magnetic frustration in multiferroic RMn2O5 (R=Tb,Ho,Dy)

    NARCIS (Netherlands)

    Blake, G.R.; Chapon, L.C.; Radaelli, P.G.; Park, S.; Hur, N.; Cheong, S-W.; Rodríguez-Carvajal, J.

    2005-01-01

    We have studied the crystal and magnetic structures of the magnetoelectric materials RMn2O5 (R=Tb,Ho,Dy) using neutron diffraction as a function of temperature. All three materials display incommensurate antiferromagnetic ordering below 40 K, becoming commensurate on further cooling. For R=Tb,Ho, a

  8. Structural and optical properties of SnO{sub 2} nano films by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Bengü Özuğur, E-mail: bozugur@khas.edu.tr [Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Fatih, Istanbul, 34083 (Turkey); Arıer, Ümit Özlem Akkaya [Department of Physics, Faculty of Science and Letters, Mimar Sinan Fine Arts University, Beşiktaş, Istanbul 34349 (Turkey)

    2015-09-30

    Highlights: • SnO{sub 2} nano films were deposited on glass substrates by spin-coating method. • The structural and optical properties of SnO{sub 2} nano films were characterized. • The properties of SnO{sub 2} nano films were controlled by changing the SnCl{sub 2}:water ratio. • The activation energy and the band gap energy values of the films were determined. - Abstract: In this work, tin oxide (SnO{sub 2}) nano films were deposited on glass substrates with different water content using the sol–gel spin-coating method. SnO{sub 2} is a wide band gap semiconductor and it belongs to the class of transparent conductive oxides (TCO). The influence of the water content and the heat treatment temperature on the structural and optical properties of the thin films is characterized by X-ray diffractometer (XRD), scanning electron microscope, atomic force microscope, ultraviolet–visible spectrophotometer, and spectrophotometer. Crystallite size of nano SnO{sub 2} films was controlled by SnCl{sub 2}:water ratios. The most significant characteristic of nano materials is the increase in surface area as particle size decreases. XRD studies showed that the formation of tetragonal rutil phase was initiated at an annealing temperature close to 450 °C. The activation energy of nano SnO{sub 2} films for particle growth was calculated. The film has an activation energy of 42.8 kJ/mol, and the optical band gap of 3.02-3.35 eV is proportional to the SnCl{sub 2}:water ratio. The quantum size effect of nano particles was confirmed by the band gap energy shift, using ultraviolet–visible spectroscopy (UV–vis). SnO{sub 2} films have been considered as one of the most promising functional materials due to their wide direct band-gap, and excellent electrical and optical properties. Those properties of SnO{sub 2} films allow them to be used in electronic and optoelectronic devices like gas sensors, solar cells and lithium batteries etc.

  9. Structural and photo-physical properties of spin-coated poly(3-hexylthiophene) thin films

    International Nuclear Information System (INIS)

    Motaung, David E.; Malgas, Gerald F.; Arendse, Christopher J.; Mavundla, Sipho E.; Knoesen, D.

    2009-01-01

    Regioregular poly(3-hexylthiophenes) (P3HTs) and its blends were studied regarding their structural and photo-physical properties using fullerene as an electron acceptor material. Photo-physical and structural characteristics of the polymer blends were studied using UV-vis spectroscopy, photoluminescence (PL), Fourier transform infrared absorption (FTIR) spectroscopy and Raman spectroscopy analysis. Films based on the polymer blends with C 60 showed photo-induced absorption characteristic for charged excitations. The absorption spectra of the rr-P3HT exhibit a shift to higher energies (blue shift) of the π-π* inter-band transition upon mixing with C 60 . A distinctive photoluminescence quenching effect is observed indicating photo-induced electron transfer. The complete reduction of PL of P3HT after mixing with C 60 in a 1:1 weight ratio indicates an effective charge transfer from P3HT to C 60 .

  10. The Spin Structure Function of the Proton from SLAC Experiment E155

    Energy Technology Data Exchange (ETDEWEB)

    McKee, P

    2004-02-17

    Experiment E155 at the Stanford Linear Accelerator Center (SLAC) measured the longitudinal and transverse deep inelastic structure functions of the proton and deuteron using a polarized, 48.3 GeV electron beam and solid polarized targets of ammonia ({sup 15}NH{sub 3}) for proton measurements and lithium deuteride ({sup 6}Li{sup 2}H) for deuteron measurements. Three electromagnetic spectrometers at angles of 2.75{sup o}, 5.5{sup o}, and 10.5{sup o} measured the scattered electrons. This work presents an analysis of the longitudinal structure function of the proton, g{sub 1}{sup p}(x, Q{sup 2}). Included is a re-analysis of the proton target polarization data that for the first time corrects a problem encountered which altered those measurements.

  11. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  12. Shadows and spirals in the protoplanetary disk HD 100453

    Science.gov (United States)

    Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.

    2017-01-01

    Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and

  13. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  14. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  15. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  16. Wavelet Scattering on the Pitch Spiral

    OpenAIRE

    Lostanlen, Vincent; Mallat, Stéphane

    2016-01-01

    We present a new representation of harmonic sounds that linearizes the dynamics of pitch and spectral envelope, while remaining stable to deformations in the time-frequency plane. It is an instance of the scattering transform, a generic operator which cascades wavelet convolutions and modulus nonlinearities. It is derived from the pitch spiral, in that convolutions are successively performed in time, log-frequency, and octave index. We give a closed-form approximation of spiral scattering coe...

  17. Rotational high spin structures in doubly-odd in {sup 184}Au

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, F.; Roussiere, B.; Sauvage, J.; Bourgeois, C.; Korichi, A. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Hojman, D.; Kreiner, A.J.; Davidson, J.; Davidson, M.; Debray, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Fisica; Knipper, A. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Marguier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    Excited states in the doubly-odd {sup 184}Au nucleus have been studied by in-beam {gamma}-ray spectroscopy. This nucleus was produced through the fusion-evaporation reactions {sup 165}Ho({sup 24}Mg, 5n), {sup 170}Yb({sup 19}F, 5n) and {sup 161}Dy({sup 27}Al, 4n). Different rotational band structures have been observed and interpreted as specific couplings of proton and neutron single-particle excitations present in neighboring odd Au and Pt nuclei. (author). 34 refs.; Submitted to Physical Review, C (US).

  18. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-02

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  19. Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

    Directory of Open Access Journals (Sweden)

    Abdel-Sattar Gadallah

    2013-01-01

    Full Text Available We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.

  20. The spin-dependent structure function $g_{1}(x)$ of the deuteron from polarized deep-inelastic muon scattering

    CERN Document Server

    Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1997-01-01

    We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.

  1. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  2. Precision Determination of the Neutron Spin Structure Function {ital g}{sup {ital n}}{sub {ital 1}}

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.G.; Bosted, P.E.; Fellbaum, J.N.; Reyna, D.; Rock, S.E.; Sorrell, L.; Szalata, Z.M.; Toole, T. [American University, Washington, D.C. 20016 (United States); Shapiro, G. [University of California, Berkeley, California 94720 (United States); Breton, V.; Fonvieille, H.; Incerti, S. [LPC IN2P3/CNRS, Univ. Blaise Pascal, F-63170 Aubiere Cedex (France); Meyer, W. [University of Bonn, Nussallee 12, D-5300 Bonn (Germany); Averett, T.; Hughes, E.W. [California Institute of Technology, Pasadena, California 91125 (United States); Borel, H.; Lombard-Nelsen, R.; Marroncle, J.; Sabatie, F.; Staley, F.; Terrien, Y. [DAPNIA, Saclay, 91191 Gif-sur-Yvette Cedex (France); Anderson, B.D.; Khayat, M.; Manley, D.M.; Olson, M.; Petratos, G.G.; Watson, J.W.; Zhang, W. [Kent State University, Kent, Ohio 44242 (United States); Ghazikhanian, V.; Igo, G. [University of California, Los Angeles, California 90024-1547 (United States); Berisso, C.M.; Churchwell, S.; Hicks, R.S.; Kolomensky, Y.G.; Peterson, G.A.; Shaw, J. [University of Massachusetts, Amherst, Massachusetts 01003 (United States); Chupp, T.E.; Coulter, K.P.; Smith, T.B.; Welsh, R.C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Miller, D. [Northwestern University, Evanston, Illinois 60201 (United States); Kuhn, S.E.; Raue, B.; Wesselmann, F. [Old Dominion University, Norfolk, Virginia 23529 (United States); Raines, P. [University of Pennsylvania, Philadelphia, Pennsylvania 19104-6317 (United States); Bogorad, P.; Cates, G.D.; Kumar, K.; Romalis, M.V. [Princeton University, Princeton, New Jersey 08544 (United States); Marvin, T. [Southern Oregon State College, Ashland, Oregon 97520 (United States); Decowski, P. [Smith College, Northampton, Massachusetts 01063 (United States); Akagi, T.; Anthony, P.L.; Buenerd, M.J.; Daoudi, M.; Erickson, R.; and others

    1997-07-01

    We report on a precision measurement of the neutron spin structure function g{sup n}{sub 1} using deep inelastic scattering of polarized electrons by polarized {sup 3}He . For the kinematic range 0.014{lt}x{lt}0.7 and 1{lt}Q{sup 2}{lt}17(GeV /c){sup 2} , we obtain {integral}{sub 0.014}{sup 0.7}g{sup n}{sub 1}(x)dx={minus}0.036{plus_minus}0.004(stat){plus_minus}0.005(syst) at an average Q{sup 2}=5(GeV/c){sup 2}. We find relatively large negative values for g{sup n}{sub 1} at low x . The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral {integral}{sub 0}{sup 1}g{sup n}{sub 1}(x)dx, needed for testing the quark-parton model and QCD sum rules. {copyright} {ital 1997} {ital The American Physical Society}

  3. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  4. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun

    2014-08-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  5. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.

    2013-01-01

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L) J , as a function of (g – i) versus (i – J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  6. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Eric E. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Gonzalez-Lopezlira, Rosa A., E-mail: ericmartinez@inaoep.mx, E-mail: martinez@astro.unam.mx, E-mail: r.gonzalez@crya.unam.mx [Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089 (Mexico)

    2013-03-10

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  7. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  8. Spins, Parity, Excitation Energies, and Octupole Structure of an Excited Superdeformed Band in 194Hg and Implications for Identical Bands

    Science.gov (United States)

    Hackman, G.; Khoo, T. L.; Carpenter, M. P.; Lauritsen, T.; Lopez-Martens, A.; Calderin, I. J.; Janssens, R. V.; Ackermann, D.; Ahmad, I.; Agarwala, S.; Blumenthal, D. J.; Fischer, S. M.; Nisius, D.; Reiter, P.; Young, J.; Amro, H.; Moore, E. F.; Hannachi, F.; Korichi, A.; Lee, I. Y.; Macchiavelli, A. O.; Døssing, T.; Nakatsukasa, T.

    1997-11-01

    An excited superdeformed band in 194Hg, observed to decay directly to both normal-deformed and superdeformed yrast states, is proposed to be a Kπ = 2- octupole vibrational band, based on its excitation energies, spins, and likely parity. The transition energies are identical to those of the yrast superdeformed band in 192Hg, but originate from levels with different spins and parities. The evolution of transition energies with spin suggests that cancellations between pairing and particle alignment are partly responsible for the identical transition energies.

  9. Spiral arm amplitude variations and pattern speeds in the grand design galaxies M51, M81, and M100

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Seiden, P.E.; Elmegreen, D.M.

    1989-01-01

    In the modal theory of galactic spiral structure, the amplitude of a prominent two-arm spiral pattern should oscillate slightly with galactocentric distance because of an interference between the outward and inward propagating waves. In the stellar dynamical theory, the spiral arm amplitudes should oscillate because of differential crowding near and between wave-orbit resonances. Two and three cycles of such oscillations have been found in computer-enhanced images at B and I passbands of the grand design galaxies M81 and M100, respectively, and what is probably one cycle of such an amplitude variation in M51. These three galaxies are the most symmetric and global of the two-arm spirals in the near-IR survey of Elmegreen (1981), so the occurrence of such spiral amplitude oscillations could be common among galaxies of this type. The positions of the features discussed are used to suggest possible arm pattern speeds. 23 refs

  10. Analytical Models of Spirals in Stellar Winds to Interpret ALMA Data

    NARCIS (Netherlands)

    Homan, W.; Decin, L.; de Koter, A.; van Marle, A.J.; Lombaert, R.; Vlemmings, W.H.T.

    2015-01-01

    Observations of stellar winds have shown that these outflows are non-homogeneous and might harbor structural complexities on macro- and microscales. Here, we focus on spiral structures with the aim to expand our understanding of the manifestation of such structures in the (one- and

  11. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  12. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  13. Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius

    2007-01-01

    LiNiPO4 is a magneto-electric material, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied at low temperatures. Such systems have received growing interest in recent years, but the nature of the magneticelectric couplings is yet to be fully...... understand. Hopefully, studying LiNiPO4 will shed further light on the subject, especially since the crystal structure of LiNiPO4 is rather simple compared to most relevant multiferroic materials. Although the study of the magnetic-electric couplings is of main interest to the many scientists guiding me...... through the last three years, it is not the primary subject of this thesis. The objective of the phD project has been to provide groundwork that may be beneficiary to future studies of LiNiPO4. More specifically, we have mapped out the magnetic HT phase diagram with magnetic fields below 14.7 T applied...

  14. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions

    Science.gov (United States)

    Azadbakht, F. Teimoury; Boroun, G. R.

    2018-02-01

    We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.

  15. The structure and spin dynamics of lanthanide-bearing silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, A.J.G.; Loong, C.K.; Wagner, J.

    1993-10-01

    Structures of 3Na{sub 2}O{center_dot}R{sub 2}O{sub 3}{center_dot}6SiO{sub 2} (R = Nd, Yb and Lu) glasses were studied by time-of-flight neutron diffraction. Average Si-O and O-O nearest-neighbor coordination is found to be similar to SiO{sub 4} tetrahedral units in vitreous SiO{sub 2} and other silicate glasses. The RE ions coordinate with no more than 7 nearest-neighbor oxygen atoms. The dynamic and static response of these glasses and their isochemical crystalline analogs have been investigated by inelastic neutron scattering and magnetic susceptibility measurements. The magnetic excitation spectra were analyzed by a ligand-field model using a method of descending symmetry. Correlation between short-range atomic order in a network glass and magnetic interactions of the RE ions with the local environment is discussed.

  16. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  17. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    Science.gov (United States)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  18. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  19. Three-dimensional spirals of atomic layered MoS2.

    Science.gov (United States)

    Zhang, Liming; Liu, Kaihui; Wong, Andrew Barnabas; Kim, Jonghwan; Hong, Xiaoping; Liu, Chong; Cao, Ting; Louie, Steven G; Wang, Feng; Yang, Peidong

    2014-11-12

    Atomically thin two-dimensional (2D) layered materials, including graphene, boron nitride, and transition metal dichalcogenides (TMDs), can exhibit novel phenomena distinct from their bulk counterparts and hold great promise for novel electronic and optoelectronic applications. Controlled growth of such 2D materials with different thickness, composition, and symmetry are of central importance to realize their potential. In particular, the ability to control the symmetry of TMD layers is highly desirable because breaking the inversion symmetry can lead to intriguing valley physics, nonlinear optical properties, and piezoelectric responses. Here we report the first chemical vapor deposition (CVD) growth of spirals of layered MoS2 with atomically thin helical periodicity, which exhibits a chiral structure and breaks the three-dimensional (3D) inversion symmetry explicitly. The spirals composed of tens of connected MoS2 layers with decreasing areas: each basal plane has a triangular shape and shrinks gradually to the summit when spiraling up. All the layers in the spiral assume an AA lattice stacking, which is in contrast to the centrosymmetric AB stacking in natural MoS2 crystals. We show that the noncentrosymmetric MoS2 spiral leads to a strong bulk second-order optical nonlinearity. In addition, we found that the growth of spirals involves a dislocation mechanism, which can be generally applicable to other 2D TMD materials.

  20. Planetary-like spirals caused by moving shadows in transition discs

    Science.gov (United States)

    Montesinos, Matías; Cuello, Nicolás

    2018-03-01

    Shadows and spirals seem to be common features of transition discs. Among the spiral-triggering mechanisms proposed, only one establishes a causal link between shadows and spirals so far. In fact, provided the presence of shadows in the disc, the combined effect of temperature gradient and differential disc rotation creates strong azimuthal pressure gradients. After several thousand years, grand-design spirals develop in the gas phase. Previous works have only considered static shadows caused by an inclined inner disc. However, in some cases, the inner regions of circumbinary discs can break and precess. Thus, it is more realistic to consider moving shadow patterns in the disc. In this configuration, the intersection between the inner and the outer discs defines the line of nodes at which the shadows are cast. Here, we consider moving shadows and study the resulting circumbinary disc structure. We find that only static and prograde shadows trigger spirals, in contrast to retrograde ones. Interestingly, if a region of the disc corotates with the shadow, a planet-like signature develops at the co-rotation position. The resulting spirals resemble those caused by a planet embedded in the disc, with similar pitch angles.