WorldWideScience

Sample records for spin rotation relaxation

  1. Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation

    International Nuclear Information System (INIS)

    Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A

    2006-01-01

    The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering

  2. Microscopic magnetic nature of layered cobalt dioxides investigated by muon-spin rotation and relaxation

    International Nuclear Information System (INIS)

    Sugiyama, Jun; Ikedo, Yutaka; Mukai, Kazuhiko; Nozaki, Hiroshi; Russo, Peter L.; Ansaldo, Eduardo J.; Brewer, Jess H.; Andreica, Daniel; Amato, Alex

    2009-01-01

    In order to elucidate the nature of layered cobalt dioxides A x CoO 2 , we have investigated their microscopic magnetism by means of positive muon-spin rotation and relaxation (μ + SR) spectroscopy, in particular for A=Li, Na, and K. The dome-shaped magnetic phase diagram for Na x CoO 2 with x≥0.75 suggests the competition between the spin concentration and geometrical frustration on the two-dimensional triangular lattice of the CoO 2 plane. The additional experiment on Li x CoO 2 and K x CoO 2 indicates both a weakly coupled regime for the d electrons in the CoO 2 plane and an ignorable weak effect of the inter-plane interaction on their magnetic order at low T.

  3. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  4. Biologically aggressive regions within glioblastoma identified by spin-lock contrast T1 relaxation in the rotating frame (T1ρ MRI

    Directory of Open Access Journals (Sweden)

    Ramon Francisco Barajas, Jr., MD

    2017-12-01

    Full Text Available Spin-lattice relaxation in the rotating frame magnetic resonance imaging allows for the quantitative assessment of spin-lock contrast within tissues. We describe the utility of spin-lattice relaxation in the rotating frame metrics in characterizing glioblastoma biological heterogeneity. A 84-year-old man presented to our institution with a right frontal temporal mass. Prior tissue sampling from a peripheral nonenhancing lesion was nondiagnostic. Stereotactic image-guided tissue sampling of the nonenhancing T2-fluid-attenuated inversion recovery hyperintense region involving the anterior cingulate gyrus with elevated spin-lattice relaxation in the rotating frame metrics provided a pathologic diagnosis of glioblastoma. This case illustrates the utility of spin-lattice relaxation in the rotating frame magnetic resonance imaging in identifying biologically aggressive regions within glioblastoma.

  5. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    Science.gov (United States)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  6. A low-background piston-cylinder type hybrid high pressure cell for muon-spin rotation/relaxation experiments

    OpenAIRE

    Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.

    2017-01-01

    A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERLYCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (muSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the material into the ...

  7. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  8. Muon spin relaxation and rotation studies of the filled skutterudite alloys praseodymium osmium ruthenium antimonide and praseodymium lanthanum osmium antimonide

    Science.gov (United States)

    Shu, Lei

    Some filled skutterudite compounds have recently been found to exhibit very interesting properties. The first Pr-based heavy-fermion superconductor, PrOs4Sb12, is an intriguing material due to the unusual properties of both its normal and superconducting states. Comprehensive muon spin rotation and relaxation studies and magnetic susceptibility measurements, described in this dissertation, have been performed to investigate the microscopic properties of PrOs4Sb12 and its Ru and La doped alloys. The temperature dependence of penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) is weaker than those measured by radiofrequency measurements. A scenario based on two-band superconductivity in PrOs4Sb 12, is proposed to resolve this difference. TF-muSR experiments also suggest the suppression of superfluid density with Ru doping, probably due to impurity scattering. In addition, magnetic susceptibility data as well as analysis of the muSR data in PrOs4Sb12 reveal a nearly linear relation of mu+ Knight shift vs. magnetic susceptibility. This suggests that the muon charge does not affect the crystalline electric field splitting of Pr3+ near neighbors. Additional evidence comes from the fact that the superconducting transition temperature Tc measured from muSR is consistent with the bulk superconducting values. Zero-field muon spin relaxation (ZF-muSR) experiments have been carried out in the Pr(Os1-xRux) 4Sb12 and Pr1-yLayOs 4Sb12 alloy systems to investigate the time-reversal symmetry (TRS) breaking found in an earlier ZF-muSR study of the end compound PrOs 4Sb12. The results from measurements at KEK, Japan, suggest that Ru doping is considerably more efficient than La doping in suppressing TRS breaking superconducting in PrOs4Sb12. However, we think that the spontaneous local field that indicates TRS breaking detected by ZF-muSR may depend on sample quality if those fields are from inhomogeneity in the

  9. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  10. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    Science.gov (United States)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  11. A low-background piston-cylinder-type hybrid high pressure cell for muon-spin rotation/relaxation experiments

    Science.gov (United States)

    Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.

    2017-10-01

    A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERYLCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (μSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the materials into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and a softer inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperature, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background μSR signal.

  12. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  13. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  14. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    ments have shown that in some cases the nuclear spin systems may be held in special configurations called .... these methods have been commercialized, and used for clinical trials, in which hyperpolarized NMR is used to .... symmetric under exchange, meaning that exchanging the two nuclei leaves the state unchanged.

  15. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  16. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  17. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  18. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  19. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  20. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  1. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  2. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  4. Spin relaxation in nanowires by hyperfine coupling

    International Nuclear Information System (INIS)

    Echeverria-Arrondo, C.; Sherman, E.Ya.

    2012-01-01

    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  6. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  7. Methyl group rotation and nuclear relaxation at low temperatures

    International Nuclear Information System (INIS)

    Zweers, A.E.

    1976-01-01

    This thesis deals with the proton spin-lattice relaxation of some methyl group compounds at liquid helium temperatures. In these molecular crystals, an energy difference between the ground and first rotational state of the methyl group occurs, the so-called tunnelling splitting, which is of the order of a few degrees Kelvin. This means that the high temperature approximation is inappropriate for the description of the occupation densities of the two lowest rotational levels. A description of the properties of the methyl group in connection with relaxation

  8. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  9. Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides. A Moessbauer spectroscopy and muon spin rotation/relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko

    2017-03-01

    In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy

  10. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  11. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  12. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  13. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  14. Spin Relaxation and Manipulation in Spin-orbit Qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  15. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  16. Muon spin rotation in superconductors

    International Nuclear Information System (INIS)

    Gladisch, M.; Orth, H.; Putlitz, G. zu; Wahl, W.; Wigand, M.; Herlach, D.; Seeger, A.; Metz, H.; Teichler, H.

    1979-01-01

    By means of the muon spin rotation technique (μ + SR), the temperature dependence of the magnetic field inside the normal-conducting domains of high-purity tantalum crystals in the intermediate state has been measured in the temperature range 2.36 K + SR. Possible applications of these findings to the study of long-range diffusion of positive muons at low temperatures are indicated. (Auth.)

  17. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  18. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  19. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  20. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  1. Spin manipulation and relaxation in spin-orbit qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  2. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  3. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  4. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  5. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  6. Rotational Invariance of the 2d Spin - Spin Correlation Function

    Science.gov (United States)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  7. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  8. Cross-relaxation in multiple pulse NQR spin-locking

    Energy Technology Data Exchange (ETDEWEB)

    Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)

    2008-01-15

    The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

  9. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  10. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    Science.gov (United States)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  11. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...

  12. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.

    Science.gov (United States)

    Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A

    2012-01-06

    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.

  13. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    Science.gov (United States)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  14. Muon spin relaxation measurements of spin-correlation decay in spin-glass AgMn

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E.; Gupta, L.C. (California Univ., Riverside (USA))

    1984-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin glass temperature in AgMn is found to obey an algebraic form given by (H)sup(..gamma..-1), with ..gamma.. = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as tsup(-..gamma..), in agreement with mean field theories of spin-glass dynamics which yield ..gamma..

  15. Muon spin relaxation measurements of spin-correlation decay in spin-glass AgMn

    International Nuclear Information System (INIS)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.

    1984-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin glass temperature in AgMn is found to obey an algebraic form given by (H)sup(γ-1), with γ = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as tsup(-γ), in agreement with mean field theories of spin-glass dynamics which yield γ < approx. 0.5. Near the glass temperature the agreement between the data and theory is not as good. (Auth.)

  16. T violating neutron spin rotation asymmetry

    International Nuclear Information System (INIS)

    Masuda, Yasushiro.

    1993-01-01

    A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement

  17. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  18. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  19. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers

  20. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, Dmitry; Hollberg, Leo; Kimball, Derek F.; Kitching, J.; Pustelny, Szymon; Yashchuk, Valeriy V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers

  1. Wiggler as spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.; Conte, M.

    1993-01-01

    The spin of a polarized particle in a circular accelerator can be rotated with an arrangement of dipoles with field mutually perpendicular and perpendicular to the orbit. To achieve spin rotation, a given field integral value is required. The device must be designed in a way that the particle orbit is distorted as little as possible. It is shown that wigglers with many periods are suitable to achieve spin rotation with minimum orbit distortions. Wigglers are also more compact than more established structures and will use less electric power. Additional advantages include their use for non distructive beam diagnostics. Results are given for the Relativistic Heavy Ion Collider (RHIC) in the polarized proton mode

  2. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  3. Relaxation of nuclear spin on holes in semiconductors

    International Nuclear Information System (INIS)

    Gr'ncharova, E.I.; Perel', V.I.

    1977-01-01

    The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction

  4. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  5. Angular momentum of phonons and its application to single-spin relaxation

    Science.gov (United States)

    Nakane, Jotaro J.; Kohno, Hiroshi

    2018-05-01

    We reexamine the relaxation process of a single spin embedded in an elastic medium, a problem studied recently by Garanin and Chudnovsky (GC) [Phys. Rev. B 92, 024421 (2015), 10.1103/PhysRevB.92.024421] from the viewpoint of angular-momentum transfer. Using Noether's theorem, we identify two distinct angular momenta of the medium, one Newtonian discussed by GC and the other field-theoretical, both of which consist of an orbital part and a spin part. For both angular momenta, we found that the orbital part is as essential as the spin part in the relaxation process. In particular, the angular-momentum transfer from the (real) spin to the Newtonian orbital part may be considered as an incipient rotation that leads to the Einstein-de Haas effect.

  6. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  7. Donor-driven spin relaxation in multivalley semiconductors.

    Science.gov (United States)

    Song, Yang; Chalaev, Oleg; Dery, Hanan

    2014-10-17

    The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices.

  8. Dynamic and structural characterisation of micellar solutions of surfactants by spin relaxation and translational diffusion

    International Nuclear Information System (INIS)

    Mahieu, Nathalie

    1992-01-01

    The work reported in this research thesis aimed at characterizing micellar phases formed by some surfactants (sodium carboxylates) in aqueous solution. After some recalls on nuclear magnetic resonance dealing with spin relaxation (longitudinal relaxation, transverse relaxation, relaxation in the rotating coordinate system, and crossed relaxation), and comments on the dipolar mechanism responsible of relaxation phenomena, the author presents the methods used for relaxation parameter measurement and the data processing software issued from experiments. He presents experiments which allowed the self-diffusion coefficient to be measured, reports data processing, and addresses problems of special diffusion and of coherence transfers during diffusion measurements. Results of proton relaxation measurements are then presented and discussed. They are used to determine the micellar state of the studied carboxylates. The case of the oleate is also addressed. Measurements of carbon-13 relaxation times are reported, and exploited in terms of structural parameters by using the Relaxator software. An original method of the hetero-nuclear Overhauser method is presented, and used to assess the average distance between water molecules and micelle surface [fr

  9. Muon spin-rotation study on magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Brabers, V.A.M.; Denison, A.B.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Schillaci, M.E.

    1982-01-01

    Muon spin-rotation (μSR) results on synthetic single crystals of magnetite (Fe 3 O 4 ) support the idea of muon bond formation in oxides. The anomaly in the temperature dependence of the μSR signal observed in Fe 3 O 4 may be attributed to the existence of molecular polarons in the Verwey transition-temperature region

  10. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  11. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception

    Energy Technology Data Exchange (ETDEWEB)

    Worster, Susannah; Kattnig, Daniel R.; Hore, P. J., E-mail: peter.hore@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2016-07-21

    Long-lived spin coherence and rotationally ordered radical pairs have previously been identified as key requirements for the radical pair mechanism of the avian magnetic compass sense. Both criteria are hard to meet in a biological environment, where thermal motion of the radicals creates dynamic disorder and drives efficient spin relaxation. This has long been cited as a major stumbling block of the radical pair hypothesis. Here we combine Redfield relaxation theory with analytical solutions to a rotational diffusion equation to assess the impact of restricted rotational motion of the radicals on the operation of the compass. The effects of such motions are first investigated generally in small, model systems and are then critically examined in the magnetically sensitive flavin-tryptophan radical pair that is formed photochemically in the proposed magnetoreceptor protein, cryptochrome. We conclude that relaxation is slowest when rotational motion of the radicals within the protein is fast and highly constrained; that in a regime of slow relaxation, the motional averaging of hyperfine interactions has the potential to improve the sensitivity of the compass; and that consideration of motional effects can significantly alter the design criteria for an optimal compass. In addition, we demonstrate that motion of the flavin radical is likely to be compatible with its role as a component of a functioning radical-pair compass, whereas the motion of the tryptophan radical is less ideal, unless it is particularly fast.

  12. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  13. Observation of the anisotropic spin-glass transition and transverse spin ordering in pseudo-brookite through muon spin relaxation

    NARCIS (Netherlands)

    Boekema, C.; Brabers, V.A.M.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.

    1986-01-01

    Zero-field longitudinal muon-spin-relaxation (µSR) experiments have been performed on single crystals of pseudo-brookite (Fe2-xTil+x O 5; x=0.25), an anisotropic spin-glass system. The spinglass temperature (Tg) is determined to be 44.0±0.5K. Above Tg, a distinct exponential muon-spin-relaxation

  14. Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System

    Science.gov (United States)

    Hicks, J.; Holabird, K.

    2005-03-01

    Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).

  15. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  16. Spin Tunneling in a Rotating Nanomagnet

    Science.gov (United States)

    O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team

    2011-03-01

    We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.

  17. Nuclear spin relaxation by translational diffusion in solids

    International Nuclear Information System (INIS)

    Barton, W.A.; Sholl, C.A.

    1978-01-01

    The theory of nuclear spin relaxation by translational diffusion in solids developed in previous papers is applied to two-spin systems and third-nearest-neighbour jump models in FCC crystals. The two-spin systems describe the dipole-dipole interactions between stationary host spins and spins migrating amongst either the tetrahedral or the octahedral interstitial sites. The tetrahedral sites in a FCC crystal form a SC lattice and two models, the symmetric and asymmetric jump models, are considered for third-nearest-neighbour jumps on this lattice. Numerical results for the correlation function relevant for single crystals and polycrystals are presented over the entire temperature range. It is found that the simpler, but unphysical, symmetric jump model is a good approximation to the more complicated asymmetric jump model. (author)

  18. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  19. Thermally induced magnetic relaxation in square artificial spin ice

    Science.gov (United States)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  20. The eigenmode perspective of NMR spin relaxation in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il; Meirovitch, Eva, E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2013-12-14

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D{sub 1}, the local (probe-related) diffusion tensor, D{sub 2}, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the {sup 15}N−{sup 1}H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D{sub 2} ≫ D{sub 1}), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the

  1. Muon spin relaxation by electronic excitations moving in one dimension

    International Nuclear Information System (INIS)

    Jestaedt, Th.; Sivia, D.S.; Cox, S.F.J.

    1997-01-01

    The manner in which an electronic spin, executing a linear random walk, e.g. along a polymer chain, depolarizes a muon (or proton) probe spin, is investigated by computer simulation. The essential features of the model are the assumptions of a contact hyperfine interaction with limited range and of loss of coherence between successive encounters. The low dimensionality of the motion is reflected in the shape of the relaxation functions generated, which depart significantly from simple exponentials. Fits to various functional forms are examined for different combinations of hop rate and chain length, hyperfine constant and applied magnetic field

  2. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  3. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  4. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    Science.gov (United States)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  5. Muon spin relaxation in ferromagnetic PdMn

    International Nuclear Information System (INIS)

    Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.

    1983-01-01

    Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets

  6. Muon spin relaxation in ferromagnetic PdMn

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, S.A.; Gist, G.A. (Rice Univ., Houston, TX (USA)); Heffner, R.H.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Mydosh, J.A.; Nieuwenhuys, G.J. (Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.)

    1984-01-01

    Positive-muon (..mu../sup +/) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at.% Mn (Tsub(c) = 5.8 K). In the paramagnetic state the inhomogeneous ..mu../sup +/ linewidth is proportional to the bulk magnetization. Below Tsub(c) the ..mu../sup +/ linewidth and the width of the ..mu../sup +/ local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets.

  7. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    International Nuclear Information System (INIS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-01-01

    The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived

  8. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    Science.gov (United States)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15relaxation of the homogeneous magnetization. For T⩽15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  9. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  10. Muon spin-relaxation measurements of spin-correlation decay in spin-glass AgMn

    International Nuclear Information System (INIS)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.

    1983-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin-glass temperature in AgMn is found to obey an algebraic form given by (H)/sup nu-1/, with nu = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as t - /sup nu/, in agreement with mean field theories of spin-glass dynamics which yield nu less than or equal to 0.5. Near the glass temperature the agreement between the data and theory is not as good

  11. Suppression of Dyakonov-Perel Spin Relaxation in High-Mobility n-GaAs

    Science.gov (United States)

    Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Poletaev, N. K.; Zakharchenya, B. P.; Stinaff, E. A.; Gammon, D.; Bracker, A. S.; Ware, M. E.

    2004-11-01

    We report a large and unexpected suppression of the free electron spin-relaxation in lightly doped n-GaAs bulk crystals. The spin-relaxation rate shows a weak mobility dependence and saturates at a level 30 times less than that predicted by the Dyakonov-Perel theory. The dynamics of the spin-orbit field differs substantially from the usual scheme: although all the experimental data can be self-consistently interpreted as a precessional spin-relaxation induced by a random spin-orbit field, the correlation time of this random field, surprisingly, is much shorter than, and is independent of, the momentum relaxation time determined from transport measurements.

  12. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  13. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    International Nuclear Information System (INIS)

    Goya, G.F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M.R.

    2007-01-01

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ ' '(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3 O 4 nanoparticles, whereas a second Fe 3 O 4 -based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles

  14. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  15. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  16. Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.

    1983-01-01

    Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50

  17. Muon spin relaxation studies of heavy fermion superconductors

    International Nuclear Information System (INIS)

    Heffner, R.H.

    1993-01-01

    This talk will focus recent developments in our understanding of heavy fermion (HF) superconductors and the role that positive muon spin relaxation (μSR) studies have played in helping to elucidate their properties. As illustrations two systems will be discussed: (1) UPd 2 Al 3 , one of the most recently discovered HF superconductors, which also displays coexisting magnetic order and (2) UBe 3 doped with small quantities Of Th substituted for U, which displays an interplay between its superconducting and magnetic ground states, leading to multiple superconducting states

  18. Spin-lattice relaxation in phosphorescent triplet state molecules

    International Nuclear Information System (INIS)

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  19. Evidence for power-law spin-correlation decay from muon spin relaxation in AgMn spin-glass

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.; Gupta, L.C.; Cooke, D.W.; Heffner, R.H.; Leon, M.; Schillaci, M.E.

    1983-01-01

    Muon spin relaxation measurements have been carried out below the ''glass'' temperature T/sub g/ in AgMn spin-glasses. The muon spin-lattice relaxation rate varies with field H as H/sup -0.46plus-or-minus0.05/ for 0.30< or =T/T/sub g/< or =0.66. This suggests that impurity-spin correlations decay with time as t/sup -nu/, νapprox. =0.54 +- 0.05, in contrast to the more usual exponential decay. The present data therefore agree quantitatively with the prediction νapprox. =(1/2) of mean-field dynamic theories

  20. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h -BN heterostructures

    Science.gov (United States)

    Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter

    2018-02-01

    Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.

  1. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    Science.gov (United States)

    2017-11-09

    Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early

  2. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data

    International Nuclear Information System (INIS)

    Dosset, Patrice; Hus, Jean-Christophe; Blackledge, Martin; Marion, Dominique

    2000-01-01

    A novel program has been developed for the interpretation of 15 N relaxation rates in terms of macromolecular anisotropic rotational diffusion. The program is based on a highly efficient simulated annealing/minimization algorithm, designed specifically to search the parametric space described by the isotropic, axially symmetric and fully anisotropic rotational diffusion tensor models. The high efficiency of this algorithm allows extensive noise-based Monte Carlo error analysis. Relevant statistical tests are systematically applied to provide confidence limits for the proposed tensorial models. The program is illustrated here using the example of the cytochrome c' from Rhodobacter capsulatus, a four-helix bundle heme protein, for which data at three different field strengths were independently analysed and compared

  3. Monte Carlo simulation of nuclear spin relaxation in disordered system

    International Nuclear Information System (INIS)

    Luo, X.; Sholl, C.A.

    2002-01-01

    Full text: Nuclear spin relaxation is a very useful technique for obtaining information about diffusion in solids. The present work is motivated by relaxation experiments on H diffusing in disordered systems such as metallic glasses or quasicrystalline materials. A theory of the spectral density functions of the magnetic dipolar interactions between diffusing spins is required in order to relate the experimental data to diffusional parameters. In simple ordered systems, the spectral density functions are well understood and a simple BPP (exponential correlation function) model is often used to interpret the data. Diffusion in disordered systems involves a distribution of activation energies and the simple extension of the BPP model that has been used traditionally is of doubtful validity. A more rigorously based BPP model has been developed, and this model has recently been applied to H diffusion in a metal quasicrystal. The improved BPP model still, however, involves approximations and the accuracy of the parameters deduced from it is not clear. The present work involves a Monte Carlo simulation of diffusion in disordered systems and the calculation of the spectral density functions and relaxation rates. The simulations use two algorithms (discrete time and continuous time) for the time-development of the system, and correctly incorporate the Fermi-Dirac distribution for equilibrium occupation of sites, as required by the principle of detailed balance and only single site occupancy of sites. The results are compared with the BPP models for some site- and barrier-energy distributions arising from the structural disorder of the system. The improved BPP model is found to give reasonable values for the diffusion and disorder parameters. Quantitative estimates of the errors involved are determined

  4. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    International Nuclear Information System (INIS)

    Kominis, I. K.

    2008-01-01

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks

  5. Spin Diffusion and Spin Lattice Relaxation of Dipolar Order in Solids Containing Paramagnetic Impurities

    International Nuclear Information System (INIS)

    Furman, G.B.; Panich, A.M.; Goren, S.D.

    1998-01-01

    The phenomena of spin diffusion and spin lattice relaxation of nuclear dipolar order in solids containing paramagnetic impurities (PI) is considered. We show that at the beginning of the relaxation process the diffusion vanishing regime realizes with non-exponential time dependence, R(t) ∼ exp [- (t/T 1d ) α ], where T 1d ∼ C p -1/α , C p is PI's concentration. For a homogeneous distribution of Pis and nuclear spins, α=Q/6, where Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into q-dimensional subsystems, each containing one PI, yield- ing α= (Q + q) /6. This result coincides with experimental data for CaF 2 doped with 0.8 - 10 -3 ωt % of Mn 2+ , where the non-exponential decay of the dipolar signal with α= 0.83 has been observed [3]. Fitting the experimental data yields a good agreement with T 1d = 66 ms . For another independent check of the obtained results we use dependence of the relaxation time on impurities concentration. In accordance that 1/α=1.2 , we have T 1d ∼ C p -1 '. 2 . Exactly this dependence on impurity concentration of the relaxation time has been found in the experiment. Then the relaxation regime starts as a non-exponential time dependent, proceed asymptotically to an to an exponential function of time, to so called diffusion limited relaxation regime with relaxation time T 1d D is inversely depends on impurities concentration. This kind of relaxation behavior of the dipolar order takes place in the experiment [2]. Using experimental results [2] from this two regime we can estimate the diffusion coefficient of the nuclear dipolar order in CaF 2 , which gives for typical values of impurity concentration C p ∼ 10 18 cm 3 the diffusion coefficient of dipolar order in the interval D ∼ 10 -11 -i- 10 -12 cm 2 /sec which is coincide to the case of Zeeman energy spin diffusion

  6. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.

    Science.gov (United States)

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme). Copyright © 2010 Elsevier Inc. All rights reserved.

  7. The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation

    NARCIS (Netherlands)

    Brabers, V.A.M.; Boekema, C.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.

    1987-01-01

    Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a

  8. Spins of superdeformed rotational bands in Tl isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  9. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  10. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  11. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    Science.gov (United States)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  12. Suppression of Electron Spin Relaxation in Mn-Doped GaAs

    Science.gov (United States)

    Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2008-08-01

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  13. Muon spin rotation studies of niobium for superconducting rf applications

    Directory of Open Access Journals (Sweden)

    A. Grassellino

    2013-06-01

    Full Text Available In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (μSR technique. We employ for the first time the μSR technique to study samples that are cut out from large and small grain 1.5 GHz radio frequency (rf single cell niobium cavities. The rf test of these cavities was accompanied by full temperature mapping to characterize the rf losses in each of the samples. Results of the μSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field rf losses and field dependence of the sample magnetic volume fraction measured via μSR. The μSR line width observed in zero-field-μSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. A lower and an upper bound for the upper critical field H_{c2} of these cutouts is found.

  14. Effects of pair correlation functions on intermolecular nuclear relaxation by translational and rotational diffusion in liquids

    International Nuclear Information System (INIS)

    Fries, P.

    1978-01-01

    In order to study the intermolecular relaxation due to magnetic dipolar interactions, we calculate the spectral densities resulting from random translational and rotational motions of spherical molecules carrying off-centre spins. The relative translational motion is treated in the frame-work of a general diffusion equation (the Smoluchowski equation) which takes into account the existence of effective forces between the molecules. This model implies a pair correlation function. i.e. a non unifom relative distribution of the molecules. The analytical calculations are carried out by taking correctly into account the hard sphere boundary conditions for the molecules. Explicit numerical calculations of the spectral densities are performed using finite difference methods and the pair correlation function of Verlet and Weiss obtained by computer experiments. The resulting calculations allow one to interpret the relaxation exhibited by benzene and some of its monohalogen derivatives which has been measured by Jonas et al. at various pressures. The effects of pair correlation and eccentricity contribute to a noticeable enhancement of the spectral densities, especially as the frequency increases. The translational correlation times calculated from the Stokes formula and those deduced from intermolecular relaxation studies are compared. It is shown that in order to distinguish which of the dynamical models is appropriate, measurements must be made as a function of frequency [fr

  15. Spin relaxation in quantum dots due to electron exchange with leads.

    Science.gov (United States)

    Vorontsov, A B; Vavilov, M G

    2008-11-28

    We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. A single expression fits the entire current profile and describes the structure of both the conduction peaks and the suppressed ("valley") region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.

  16. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  17. Spin-Relaxation Anisotropy in a GaAs Quantum Dot

    NARCIS (Netherlands)

    Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit

  18. Electron spin relaxation in a transition-metal dichalcogenide quantum dot

    Science.gov (United States)

    Pearce, Alexander J.; Burkard, Guido

    2017-06-01

    We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.

  19. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  20. Spin Relaxation in GaAs: Importance of Electron-Electron Interactions

    Directory of Open Access Journals (Sweden)

    Gionni Marchetti

    2014-04-01

    Full Text Available We study spin relaxation in n-type bulk GaAs, due to the Dyakonov–Perel mechanism, using ensemble Monte Carlo methods. Our results confirm that spin relaxation time increases with the electronic density in the regime of moderate electronic concentrations and high temperature. We show that the electron-electron scattering in the non-degenerate regime significantly slows down spin relaxation. This result supports predictions by Glazov and Ivchenko. Most importantly, our findings highlight the importance of many-body interactions for spin dynamics: we show that only by properly taking into account electron-electron interactions within the simulations, results for the spin relaxation time—with respect to both electron density and temperature—will reach good quantitative agreement with corresponding experimental data. Our calculations contain no fitting parameters.

  1. Vibrational-rotational relaxation of the simplest hydrogen-containing molecules (review)

    International Nuclear Information System (INIS)

    Molevich, N.E.; Oraevskii, A.N.

    1987-01-01

    In connection with the development of chemical lasers much attention is now devoted to the study of kinetic processes is gaseous mixtures containing the hydrogen halides. Vibrational relaxation of molecules if primarily studied without specifying its relation to the rational levels. Rotational relaxation is regarded a priori as faster than vibrational relaxation, so that the population of the rotational levels is assumed to be in equilibrium. This approach to the relaxation of hydrogen halide molecules (and other diatomic hydrogen-containing molecules), however, is unable to explain satisfactorily the results of the papers discussed below. An analysis of the data obtained in these papers leads to the conclusion that the general picture of relaxation in diatomic hydrogen-containing molecules must be viewed as a unified process of vibrational and rotational relaxation. It is shown that those effects observed during vibrational relaxation of such molecules which are unusual from the standpoint of the theory of vibrational-translational relaxation are well explained in terms of intermolecular vibrational-rotational relaxation together with pure rotational relaxation

  2. Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene

    Directory of Open Access Journals (Sweden)

    Manuel Offidani

    2018-05-01

    Full Text Available We present a unified theoretical framework for the study of spin dynamics and relativistic transport phenomena in disordered two-dimensional Dirac systems with pseudospin-spin coupling. The formalism is applied to the paradigmatic case of graphene with uniform Bychkov-Rashba interaction and shown to capture spin relaxation processes and associated charge-to-spin interconversion phenomena in response to generic external perturbations, including spin density fluctuations and electric fields. A controlled diagrammatic evaluation of the generalized spin susceptibility in the diffusive regime of weak spin-orbit interaction allows us to show that the spin and momentum lifetimes satisfy the standard Dyakonov-Perel relation for both weak (Gaussian and resonant (unitary nonmagnetic disorder. Finally, we demonstrate that the spin relaxation rate can be derived in the zero-frequency limit by exploiting the SU(2 covariant conservation laws for the spin observables. Our results set the stage for a fully quantum-mechanical description of spin relaxation in both pristine graphene samples with weak spin-orbit fields and in graphene heterostructures with enhanced spin-orbital effects currently attracting much attention.

  3. Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O

    DEFF Research Database (Denmark)

    Thrane, N.; Trumpy, Georg

    1970-01-01

    . Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...

  4. Quantum measurement of a rapidly rotating spin qubit in diamond.

    Science.gov (United States)

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  5. Precession mechanism of spin relaxation at frequent electron-electron collisions

    CERN Document Server

    Glazov, M M

    2002-01-01

    It is shown that the spin relaxation mechanism in the two-dimensional electron gas, is controlled not only through the electron pulse relaxation processes, determining the mobility, but through the electron-electron collisions as well. It is decided to use the kinetic equation, describing the electron spin mixing in the k-space, for determining the spin relaxation time tau sub s at frequent electron-electron collisions. The tau sub s time is calculated for the nondegenerated electron gas both with an account and with no account of the exchange interaction

  6. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    Science.gov (United States)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  7. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  8. Spin Relaxation in III-V Semiconductors in various systems: Contribution of Electron-Electron Interaction

    Science.gov (United States)

    Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien

    2015-03-01

    In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.

  9. Spin relaxation in semiconductor quantum rings and dots--a comparative study.

    Science.gov (United States)

    Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M

    2011-03-23

    We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.

  10. High spin rotational bands in 65 Zn

    Indian Academy of Sciences (India)

    The nucleus 30 65 Zn was studied using the 52Cr(16O, 2)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2ħ) with several newly observed transitions placed in it.

  11. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...

  12. BROOKHAVEN: Spin rotator to boost polarization

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Alternating Gradient Synchrotron (AGS) at Brookhaven holds the world record energy for spin polarized proton beams at 22 GeV. However this required a complicated two-week commissioning effort to overcome 39 imperfection depolarizing resonances and six intrinsic depolarizing resonances

  13. Rotational and spin viscosities of water: Application to nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Bruus, Henrik; Todd, B.D.

    2010-01-01

    In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required....... We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103...

  14. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    Science.gov (United States)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  15. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ+ spin relaxation study

    International Nuclear Information System (INIS)

    Arosio, Paolo; Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-01-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] were investigated by means of the Muon Spin Relaxation (μ + SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ + SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ interm (T), associated with the intermediate relaxing component. The experimental λ interm (T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ 0 exp(Δ/k B T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state

  16. Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.

    2013-06-01

    We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.

  17. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  18. Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid

    International Nuclear Information System (INIS)

    Zayets, V.

    2014-01-01

    It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model

  19. Rotational bands terminating at maximal spin in the valence space

    Energy Technology Data Exchange (ETDEWEB)

    Ragnarsson, I.; Afanasjev, A.V. [Lund Institute of Technology (Sweden)

    1996-12-31

    For nuclei with mass A {le} 120, the spin available in {open_quotes}normal deformation configurations{close_quotes} is experimentally accessible with present detector systems. Of special interest are the nuclei which show collective features at low or medium-high spin and where the corresponding rotational bands with increasing spin can be followed in a continuous way to or close to a non-collective terminating state. Some specific features in this context are discussed for nuclei in the A = 80 region and for {sup 117,118}Xe.

  20. Spin in stationary gravitational fields and rotating frames

    International Nuclear Information System (INIS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-01-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  1. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuerui; Zhang, Jian; Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Lou, Liren; Zhu, Wei; Wang, Guanzhong, E-mail: gzwang@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2014-04-15

    We investigated the influence of spins on surface of nanodiamonds (NDs) to the longitudinal relaxation time (T{sub 1}) and transverse relaxation time (T{sub 2}) of nitrogen vacancy (NV) centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T{sub 1} and T{sub 2}, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T{sub 1} of NV center inside is highly dependent to the surface spins of the NDs. However, for the T{sub 2} of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T{sub 1} of an NV center in NDs is more sensitive to the change of the surface spin density than T{sub 2}.

  2. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Directory of Open Access Journals (Sweden)

    Xuerui Song

    2014-04-01

    Full Text Available We investigated the influence of spins on surface of nanodiamonds (NDs to the longitudinal relaxation time (T1 and transverse relaxation time (T2 of nitrogen vacancy (NV centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T1 and T2, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T1 of NV center inside is highly dependent to the surface spins of the NDs. However, for the T2 of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T1 of an NV center in NDs is more sensitive to the change of the surface spin density than T2.

  3. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    Science.gov (United States)

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  4. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  5. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  6. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  7. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2013-01-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...

  8. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  9. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    Science.gov (United States)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  10. Muon Spin Relaxation Studies of RFeAsO and MFe2As2 Based Compounds

    Science.gov (United States)

    Luke, Graeme

    2010-03-01

    Muon spin relaxation measurements of a variety of iron pnictide systems have revealed commensurate long range magnetic order in the parent compounds which can change to incommensurate order with carrier doping. Magnetic order gives way to superconductivity with increased doping; however there are regions of the phase diagrams where the two phenomena co-exist. In the case of Ba1-xKxFe2As2 there is phase separation into superconducting and magnetic domains, whereas in Ba(Fe1-xCox)2As2 the coexistence is apparently microscopic for x=0.035->0.048. Transverse field muon spin rotation measurements of single crystal Ba(Fe1-xCox)2 and Sr(Fe1-xCox)2 exhibit an Abrikosov vortex lattice from which we are able to determine the magnetic field penetration depth and Ginzburg-Landau parameter. The temperature variation of the superfluid density is well described by a two-gap model. In Ba(Fe1-xCox)2As2, both the superconducting TC and the superfluid density decrease with increasing doping above x=0.06; in all of the pnictides we find that the superfluid density obeys the same nearly linear scaling with TC as found in the cuprates.

  11. Muon spin rotation measurements on LaNiSn

    International Nuclear Information System (INIS)

    Drew, A.J.; Lee, S.L.; Ogrin, F.Y.; Charalambous, D.; Bancroft, N.; Paul, D. McK.; Takabatake, T.; Baines, C.

    2006-01-01

    The first microscopic investigation of superconductivity in LaNiSn is reported using muon spin rotation. LaNiSn is found to be mainly a type I superconductor in an intermediate state with some evidence for type II behaviour at low temperatures, possibly due to a temperature dependent Ginzburg Landau parameter κ

  12. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  13. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    International Nuclear Information System (INIS)

    Calero, C.; Chudnovsky, E.M.; Garanin, D.A.

    2007-01-01

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid

  14. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    Energy Technology Data Exchange (ETDEWEB)

    Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)

    2007-09-15

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.

  15. Thin film coatings which inhibit spin relaxation of polarized potassium atoms

    International Nuclear Information System (INIS)

    Thomas, G.E.; Holt, R.J.; Boyer, D.; Green, M.C.; Kowalczyk, R.S.; Young, L.

    1986-01-01

    A prototype of a polarized deuterium target which employs the spin exchange method is being developed. The mixing cell for mixing deuterium atoms and potassium vapor requires a surface that will reflect these atoms without being destroyed by the corrosive potassium. Thin film coating methods and a technique for coating pyrex are described. Results of spin relaxation measurements are given

  16. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  17. A novel approach to modelling non-exponential spin glass relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, R.M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: r.cywinski@leeds.ac.uk; Cywinski, R. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Pappas, C. [Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin (Germany)

    2007-07-15

    A probabilistic cluster model, originally proposed by Weron to explain the universal power law of dielectric relaxation, is shown to account for the non-exponential relaxation in spin glasses above T {sub g}. Neutron spin echo spectra measured for the cluster glass compound Co{sub 55}Ga{sub 45} are well described by the Weron relaxation function, {phi}(t)={phi} {sub o}(1+k(t/{tau}) {sup {beta}}){sup -1/k}, with the interaction parameter k scaling linearly with the non-Curie-Weiss susceptibility.

  18. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  19. Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1981-01-01

    The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate

  20. Spin relaxation in InGaN quantum disks in GaN nanowires

    KAUST Repository

    Banerjee, Animesh; Dog,; Heo, Junseok; Manchon, Aurelien; Guo, Wei; Bhattacharya, Pallab K.

    2011-01-01

    The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D'yakonov-Perel' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values. © 2011 American Chemical Society.

  1. Spin relaxation in InGaN quantum disks in GaN nanowires

    KAUST Repository

    Banerjee, Animesh

    2011-12-14

    The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D\\'yakonov-Perel\\' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values. © 2011 American Chemical Society.

  2. 13C spin relaxation measurements in RNA: Sensitivity and resolution improvement using spin-state selective correlation experiments

    International Nuclear Information System (INIS)

    Boisbouvier, Jerome; Brutscher, Bernhard; Simorre, Jean-Pierre; Marion, Dominique

    1999-01-01

    A set of new NMR pulse sequences has been designed for the measurement of 13 C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(C z ), the spin-spin relaxation rate constant R(C + ), and the CSA-dipolar cross-correlated relaxation rate constant Γ C,CH xy . The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13 C-labelled 33-mer RNA-theophylline complex. The measured R(C + )/Γ C,CH xy ratios indicate that 13 C CSA tensors do not vary significantly for the same type of carbon (C 2 , C 6 , C 8 ), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13 C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques

  3. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  4. The first muon spin rotation experiment

    CERN Document Server

    Garwin, Richard L

    2003-01-01

    The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of `85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magneti...

  5. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  6. Magnetization rotation or generation of incoherent spin waves? Suggestions for a spin-transfer effect experiment

    International Nuclear Information System (INIS)

    Bazaliy, Y. B.; Jones, B. A.

    2002-01-01

    ''Spin-transfer'' torque is created when electric current is passed through metallic ferromagnets and may have interesting applications in spintronics. So far it was experimentally studied in ''collinear'' geometries, where it is difficult to predict whether magnetization will coherently rotate or spin-waves will be generated. Here we propose an easy modification of existing experiment in which the spin-polarization of incoming current will no longer be collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with the magnetization rotation theory will be achieved. That can be an important step in reconciling alternative points of view on the effect of spin-transfer torque

  7. Novel spin dynamics in ferrimagnetic molecular chains from {sup 1}H NMR and {mu}SR spin-lattice relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L

    2004-05-01

    The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15relaxation of the homogeneous magnetization. For T{<=}15 K, NMR and {mu}SR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  8. Relaxation of electron–hole spins in strained graphene nanoribbons

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick

    2015-01-01

    We investigate the influence of magnetic field originating from the electromechanical effect on the spin-flip behaviors caused by electromagnetic field radiation in the strained graphene nanoribbons (GNRs). We show that the spin splitting energy difference (≈10 meV) due to pseudospin is much larger than the spin-orbit coupling effect (Balakrishnan et al 2013 Nat. Phys. 9 284) that might provide an evidence of broken symmetry of degeneracy. The induced spin splitting energy due to ripple waves can be further enhanced with increasing values of applied tensile edge stress for potential applications in straintronic devices. In particular, we show that the enhancement in the magnitude of the ripple waves due to externally applied tensile edge stress extends the tuning of spin-flip behaviors to larger widths of GNRs. (paper)

  9. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained

  10. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-11-17

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.

  11. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    Science.gov (United States)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  12. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  13. Spin-rotation and NMR shielding constants in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  14. Spin-rotation and NMR shielding constants in HCl

    International Nuclear Information System (INIS)

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-01-01

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1 H 35 Cl are C Cl   = −53.914 kHz and C H   = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values

  15. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    Science.gov (United States)

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  16. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr

    2015-10-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.

  17. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A

    2016-01-01

    thaliana cryptochrome 1 were obtained from molecular dynamics (MD) simulations and used to calculate the spin relaxation caused by modulation of the exchange and dipolar interactions. We find that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields....... Here we argue that certain spin relaxation mechanisms can enhance its performance. We focus on the flavin-tryptophan radical pair in cryptochrome, currently the only candidate magnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....

  18. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    Rostami, Habib; Moghaddam, Ali G; Asgari, Reza

    2016-01-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)

  19. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  20. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    Science.gov (United States)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  1. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  2. Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor

    Science.gov (United States)

    2016-08-19

    interactions. Wefind that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields to an Earth...resulting in intermediate relaxation rates (106 s−1<kSTD<10 8 s−1) therefore boost the compass sensitivity well above the level expected for a time...steps along the Trp-triad are complete within a nanosecondwhich is too fast for singlet–triplet coherence to be generated in the intermediate radical

  3. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  4. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  5. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  6. Nuclear spin-lattice relaxation in n -type insulating and metallic GaAs single crystals

    Science.gov (United States)

    Lu, J.; Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Gan, Z.; Reyes, A. P.

    2006-09-01

    The coupling of electron and nuclear spins in n-GaAs changes significantly as the donor concentration n increases through the insulator-metal critical concentration nC˜1.2×1016cm-3 . The present measurements of the Ga71 relaxation rates W made as a function of magnetic field (1-13T) and temperature (1.5-300K) for semi-insulating GaAs and for three doped n-GaAs samples with donor concentrations n=5.9×1015 , 7×1016 , and 2×1018cm-3 , show marked changes in the relaxation behavior with n . Korringa-like relaxation is found in both metallic samples for T30K phonon-induced nuclear quadrupolar relaxation is dominant. The relaxation rate measurements permit determination of the electron probability density at Ga71 sites. A small Knight shift of -3.3ppm was measured on the most metallic (2×1018cm-3) sample using magic-angle spinning at room temperature. For the n=5.9×1015cm-3 sample, a nuclear relaxation model involving the Fermi contact hyperfine interaction, rapid spin diffusion, and exchange coupled local moments is proposed. While the relaxation rate behavior with temperature for the weakly metallic sample, n=7×1016cm-3 , is similar to that found for the just-insulating sample, the magnetic field dependence is quite different. For the 5.9×1015cm-3 sample, increasing the magnetic field leads to a decrease in the relaxation rate, while for the 7×1016cm-3 sample this results in an increase in the relaxation rate ascribed to an increase in the density of states at the Fermi level as the Landau level degeneracy is increased.

  7. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  8. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  9. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    Science.gov (United States)

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  10. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  11. Nuclear relaxation study of the spin dynamics in a one-dimensional Heisenberg system, TMMC

    International Nuclear Information System (INIS)

    Bakheit, M.A.

    1974-01-01

    Changes in the nuclear relaxation time as a function of the magnetic field intensity in TMMC are very different wether the field direction is parallel or perpendicular to the direction of the exchange chains (vector c). In parallel field, the relaxation probability increases as the field decreases. The process of spin diffusion in a one-dimensional system is well illustrated by the changes experimentally observed. In perpendicular field, the relaxation probability is constant as far as H 0 >2kG, it clearly decreases for H 0 [fr

  12. Theory of spin-lattice relaxation of diffusing light nuclei in glasses

    International Nuclear Information System (INIS)

    Schirmer, A.; Schirmacher, W.

    1988-01-01

    NMR data of diffusion-induced spin-lattice relaxation in glasses cannot generally be interpreted in the framework of the classical theory of Bloembergen, Purcell and Pound (BPP). Since it is based on exponential density relaxation, generally bnot found in glasses, the BPP formula must be generalized. Here a combination of standard relaxation theory with a hopping model for diffusion in glasses is present. It is shown that the observed anomaties in the NMR data can be explained as a result of anomalous diffusion. 25 refs.; 1 figure

  13. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-01-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  14. Phase separation, clustering, and fractal characteristics in glass: A magic-angle-spinning NMR spin-lattice relaxation study

    Science.gov (United States)

    Sen, S.; Stebbins, J. F.

    1994-07-01

    A comparative study of the 29Si spin-lattice relaxation behavior (induced by trace amounts of paramagnetic dopants in the glass) in phase-separated Li2Si4O9 and monophasic Li2Si2O5 and Na2Si2O5 glasses has been made in order to understand the nature of clustering and the resulting intermediate-range ordering. Optically clear tetrasilicate and disilicate glasses were prepared with 500 to 2000 ppm of Gd2O3, a paramagnetic dopant. The constituent structural units (Q3 and Q4 species) in all tetrasilicate glasses show strong differential relaxation following a power-law behavior. This is due to preferential partitioning of Gd3+ into the lower silica (Q3-rich) regions of these glasses, indicating the presence of Q species clusters too small to produce optical opalescence (a few nm to perhaps tens of nm). Preliminary results on 6Li spin-lattice relaxation in these glasses support this hypothesis. Differential relaxation becomes more pronounced on annealing due to growth of such clusters. No such differential relaxation was observed in the monophase disilicate glasses. For spin-lattice relaxation induced by direct dipolar coupling to paramagnetic ions, the recovery of magnetization is proportional to time as M(t)~tα where α is a function of the dimensionality D of mass distribution of the constituent Q species around the Gd3+ paramagnetic centers in the glass. For tetrasilicate glasses D~=2.62+/-0.22 and the system behaves as a mass fractal up to a length scale of 2 to 3 nm. D is thus equal to, within error, the theoretical value of 2.6 for an infinite percolation cluster of one type of Q species in another. For disilicate glasses, D~=3.06+/-0.18 which indicates a three-dimensional (and thus nonfractal) mass distribution of the constituent Q species over the same length scale.

  15. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  16. Spin-rotation interaction of alkali-metal endash He-atom pairs

    International Nuclear Information System (INIS)

    Walker, T.G.; Thywissen, J.H.; Happer, W.

    1997-01-01

    A treatment of the spin-rotation coupling between alkali-metal atoms and He atoms is presented. Rotational distortions are accounted for in the wave function using a Coriolis interaction in the rotating frame. The expectation value of the spin-orbit interaction gives values of the spin-rotation coupling that explain previous experimental results. For spin-exchange optical pumping, the results suggest that lighter alkali-metal atoms would be preferred spin-exchange partners, other factors being equal. copyright 1997 The American Physical Society

  17. High-spin rotational states in {sup 179}Os

    Energy Technology Data Exchange (ETDEWEB)

    Burde, J [Lawrence Berkeley Lab., CA (United States); [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Deleplanque, M A; Diamond, R M; Macchiavelli, A O; Stephens, F S; Beausang, C W [Lawrence Berkeley Lab., CA (United States)

    1992-08-01

    The rotational bands of the osmium isotopes display very interesting properties that vary with the neutron number. On the one hand the yrast bands of {sup 182,184,186}Os display a sudden and rather strong gain in aligned angular momentum,, whereas the lighter osmium nuclei such as {sup 176,178,180}Os show a more gradual increase of alignment characteristic of strongly interacting bands. In addition, an unusual rotational band has been found in {sup 178}Os. It consists of seven regularly spaced transitions about 36 keV apart which correspond closely to the spacing of the superdeformed band in {sup 152}Dy after an A{sup 5/3} normalization. this band populates the yrast band directly, and the moment of inertia J{sup (1)} is found to be much smaller than J{sup (2)}. The most likely interpretation of this is a band with large deformation which is undergoing systematic changes in deformation, pairing and/or alignment. This latter finding in particular motivated us to carry out research on the higher spin states in {sup 179}Os. Dracoulis et al. have published their results on 5 rotational bands in {sup 179}Os. In the present work we found six new bands and extended appreciably the spin limits in the other five. (author). 5 refs., 3 figs.

  18. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  19. Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation

    Science.gov (United States)

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-09-01

    We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.

  20. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo Johannes; Liu, Jing; Ben Youssef, J.; Liang, Lei; van Wees, Bart

    2017-01-01

    The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we

  1. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  2. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    Science.gov (United States)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  3. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  4. Nuclear spin dominated relaxation of atomic tunneling systems in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Annina

    2016-11-16

    The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.

  5. Anomalous longitudinal relaxation of nuclear spins in CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, Chahan M. [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104, Freiburg (Germany); Kohlrautz, Jonas; Haase, Juergen [University of Leipzig, Faculty of Physics and Earth Sciences, Linnestr. 5, 04103, Leipzig (Germany); Fine, Boris V. [Skolkovo Institute of Science and Technology, 100 Novaya Str., Skolkovo, Moscow Region, 143025 (Russian Federation); Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg (Germany)

    2017-06-15

    We consider the effect of non-secular resonances for interacting nuclear spins in solids which were predicted theoretically to exist in the presence of strong static and strong radio-frequency magnetic fields. These resonances imply corrections to the standard secular approximation for the nuclear spin-spin interaction in solids, which, in turn, should lead to an anomalous longitudinal relaxation in nuclear magnetic resonance experiments. In this article, we investigate the feasibility of the experimental observation of this anomalous longitudinal relaxation in calcium fluoride (CaF{sub 2}) and conclude that such an observation is realistic. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    International Nuclear Information System (INIS)

    Lemen, L.

    2015-01-01

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  7. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemen, L. [Univ Cincinnati (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  8. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    Science.gov (United States)

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  9. The rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation

    International Nuclear Information System (INIS)

    Bobodzhanov, P.Kh.; Yusupov, I.Kh.; Marupov, R.

    2001-01-01

    Present article is devoted to study of rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation. The experimental data of study of structure and molecular mobility of wool creatine modified by spin labels was considered.

  10. Spin dependence of rotational damping by the rotational plane mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, S; Bracco, A; Million, B [Milan Univ. (Italy). Ist. di Fisica; Herskind, B; Dossing, T; Rasmussen, P [Niels Bohr Inst., Copenhagen (Denmark); Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics

    1992-08-01

    In the study of deformed nuclei by gamma spectroscopy, the large quadrupole transition strength known from rotational bands at high excitation energy may be distributed over all final states of a given parity within an interval defined as the rotational damping width {Gamma}{sub rot} The method of rotational plane mapping extracts a value of {Gamma}{sub rot} from the width of valleys in certain planes in the grid plots of triple gamma coincidence data sets. The method was applied to a high spin triple data set on {sup 162,163}Tm taken with NORDBALL at the tandem accelerator of the Niels Bohr Institute, and formed in the reaction {sup 37}Cl + {sup 130}Te. The value {Gamma}{sub rot} = 85 keV was obtained. Generally, experimental values seem to be lower than theoretical predictions, although the only calculation made was for {sup 168}Yb. 6 refs., 3 figs.

  11. Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L

    2013-01-01

    Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)

  12. Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin

    International Nuclear Information System (INIS)

    Yang, Ciann-Dong; Weng, Hung-Jen

    2012-01-01

    Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.

  13. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  14. An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians

    International Nuclear Information System (INIS)

    Hughes, Ciaran; Mehta, Dhagash; Wales, David J.

    2014-01-01

    Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems

  15. Spin reorientation and structural relaxation of atomic layers: Pushing the limits of accuracy

    International Nuclear Information System (INIS)

    Meyerheim, H.L.; Sander, D.; Popescu, R.; Kirschner, J.; Robach, O.; Ferrer, S.

    2004-01-01

    The correlation between an ad-layer-induced spin reorientation transition (SRT) and the ad-layer-induced structural relaxation is investigated by combined in situ surface x-ray diffraction and magneto-optical Kerr-effect experiments on Ni/Fe/Ni(111) layers on W(110). The Fe-induced SRT from in-plane to out-of-plane, and the SRT back to in-plane upon subsequent coverage by Ni, are each accompanied by a small lattice relaxation of at most 0.002 Angstrom. Such a small strain variation excludes a magnetoelasticity driven SRT, and we suggest the interface anisotropy as a possible driving force

  16. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  17. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  18. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  19. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    Science.gov (United States)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  20. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2014-04-21

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized

  1. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  2. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  3. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  4. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  5. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals.

    Science.gov (United States)

    Hoffmann, S K; Goslar, J; Lijewski, S

    2011-08-31

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.

  6. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  7. Spin rotation in ErGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Murasik, A. E-mail: amur@cyf.gov.pl; Czopnik, A. E-mail: czopnik@int.pan.wroc.pl; Keller, L. E-mail: lukas.keller@psi.ch; Fischer, P. E-mail: peter.fischer@psi.ch

    2000-04-01

    The magnetic phase diagram of ErGa{sub 3}, built up from bulk magnetisation data, shows in zero-applied magnetic field two successive transitions at T{sub 1}=2.6 and T{sub 2} congruent with 2.8 K, respectively. The magnetic ordering of ErGa{sub 3} examined by neutron diffraction, can be derived from the so-called {l_brace}((1)/(2)), ((1)/(2)), 0{r_brace} structure, i.e. one in which the successive antiparallel (1 1 0) sheets of spins have additionally superimposed on them a sinusoidal modulation parallel to the [1 0 0] axis. The temperature dependence of neutron diffraction diagrams studied on the single crystal, revealed in the range of (2.6-2.78) K an abrupt reorientation of the Er{sup 3+} spins from the nearly [1 1 0] direction, towards the [1 0 0] axis. In this way previously observed effect on the polycrystalline sample has been confirmed. This rotation can be attributed to the T{sub 1} transition found in the H-T magnetic phase diagram.

  8. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  9. Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Wang, J; Chan, K S

    2010-01-01

    We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.

  10. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  11. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  12. Muon spin relaxation and nonmagnetic Kondo state in PrInAg2

    International Nuclear Information System (INIS)

    MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society

  13. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  14. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  15. Effect of nuclear spin on chemical reactions and internal molecular rotation

    International Nuclear Information System (INIS)

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of 13 C and 12 C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. 13 C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride

  16. Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications

    Science.gov (United States)

    Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2018-03-01

    Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.

  17. Muon spin relaxation measurements of the fluctuation modes in spin-glass AgNm

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R.H.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.

    1983-01-01

    Recently reported zero-field ..mu..SR measurements below the spin-glass transition temperature in AgMn (1.6 at%) show a temperature dependent inhomogeneous width. The authors discuss these data in terms of a model in which the local field undergoes limited-amplitude fluctuations. The authors find that both very slow (approx. = 0.3 ..mu..s/sup -1/) and rapid (approx. = 3000 ..mu..s/sup -1/) fluctuations are required. 10 references, 1 figure, 1 table.

  18. Spinning rate decay of levitated high-Tc superconductors in rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Terentiev, A.N.; Kutukova, E.O.; Kuznetsov, A.A. (Inst. of Chemical Physics, Academy of Sciences, Moscow (Russia)); Mozhaev, A.P. (Moscow State Univ., Dept. of Chemistry (Russia))

    1992-04-01

    The rotation damping of a levitated superconductor was examined in the static field of a ring-shaped magnet and in the rotating field of coils. It was demonstrated that the pinning force mainly contributed to magnetic friction while the influence of a viscous component was negligible. The rotating magnetic field created a torque, reducing the angular deceleration under relaxation. Dependence of the rotational field-induced torque on the field-intensity was step-like. A relationship between the step-like behavior of rotational field-induced torque and pinning center distribution is discussed. The origins of friction torque and rotational field-produced torque are discussed. (orig.).

  19. Spin rotation function in a microscopic non-relativistic optical model

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    A microscopic optical potential, which is calculated non-relativistically with a density-dependent effective force, is used to calculate cross-section, polarization and spin-rotation function for elastic proton scattering from 40 Ca at 160 MeV and 497 MeV. At 160 MeV, the agreement to the data is comparable to phenomenological fits, and the spin-rotation can be used to distinguish between microscopic and Woods-Saxon potentials. A good fit to the spin-rotation function results at 497 MeV, whereas the polarization data are not well reproduced

  20. Asymmetric recombination and electron spin relaxation in the semiclassical theory of radical pair reactions

    International Nuclear Information System (INIS)

    Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2014-01-01

    We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C ·+ PF ·− radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical

  1. Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads

    2009-01-01

    thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...... properties. In this work, we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination......-off between computational cost and accuracy. Both methods predict nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both magnetic and nonmagnetic...

  2. Zero-field spin relaxation of the positive muon in copper

    International Nuclear Information System (INIS)

    Clawson, C.W.

    1982-07-01

    The spin relaxation of the μ + in high purity single crystal and polycrystalline copper has been measured at temperatures between 0.5 0 K and 5.2 0 K by the zero-field μ + SR technique. In both types of sample the experiments show a temperature independent dipolar width Δ/sub z/ = 0.389 +- 0.003 μs -1 and a hopping rate decreasing from approx. 0.5 μs -1 at 0.5 0 K to approx. 0.05 μs -1 above 5 0 K. This is the first direct proof of a dynamic effect in the low temperature μ + spin relaxation in copper. The relationship between the zero-field and transverse-field dipolar widths is discussed, and the measured zero-field width is found to be approx. 10% larger than expected based on the known transverse-field widths. A new μ + SR spectrometer has been constructed and used in this work. The spectrometer and the associated beam lines and data acquisition facilities are discussed

  3. Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.M.; Fang, X.W.; Bud' ko, S.L.; Straszheim, W.E.; McCallum, R.W.; Schmidt-Rohr, K.

    2008-02-15

    The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature {sup 13}C NMR spin-lattice relaxation, T{sub 1,c}, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagnetic-like and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. {sup 13}C NMR T{sub 1,c} relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of {approx} 0.01 emu/g at 300 K. Thus, a reduction of T{sub 1,c} by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to {approx}30 unpaired electrons per {approx}4.6 nm diameter nanodiamond grain.

  4. Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)

    2016-02-15

    The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.

  5. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  6. Phase-shift and spin-rotation phenomena in neutron interferometry

    International Nuclear Information System (INIS)

    Badurek, G.; Rauch, H.; Zeilinger, A.; Bauspiess, W.; Bonse, U.

    1976-01-01

    The perfect-crystal neutron interferometer was used to study characteristic phenomena arising from simultaneous phase shift and spin rotation of neutron waves. In accordance with theoretical predictions, the beams leaving the interferometer became partially polarized, even with unpolarized incident neutrons. The intensity and the polarization as a function of phase shift and spin rotation have been found to oscillate with the same period, displaying a mutual beat pattern

  7. Spin alignment and collective moment of inertia of the basic rotational band in the cranking model

    International Nuclear Information System (INIS)

    Tanaka, Yoshihide

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)

  8. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe2O3 nanoparticle system

    Science.gov (United States)

    Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.

    2015-03-01

    Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  9. The relativistic rotation of spin and asymptotic behaviour of the form factor of the composite system

    International Nuclear Information System (INIS)

    Trubnikov, S.V.

    1984-01-01

    The relativistic rotation of nucleon spin in addition to deuteron spin leads to the appearance of the new term in the deuteron charge form factor (DCFF). This term is absent in the traditional approaches and essentially influences the asymptotic behaviour of DCFF. General formulae are obtained for the DCFF asymptotics in the relativistic and nonrelativistic impulse approximation

  10. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  11. Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.

    Science.gov (United States)

    Dong, Hui; Hwang, Seong-Min; Wendland, Michael; You, Lixing; Clarke, John; Inglis, Ben

    2017-12-01

    To investigate tissue-specific differences, a quantitative comparison was made between relaxation dispersion in postmortem pig brain measured at ultralow fields (ULF) and spin locking at 7 tesla (T). The goal was to determine whether ULF-MRI has potential advantages for in vivo human brain imaging. Separate specimens of gray matter and white matter were investigated using an ULF-MRI system with superconducting quantum interference device (SQUID) signal detection to measure T1ULF at fields from 58.7 to 235.0 μT and using a commercial MRI scanner to measure T1ρ7T at spin-locking fields from 5.0 to 235.0 μT. At matched field strengths, T1ρ7T is 50 to 100% longer than T1ULF. Furthermore, dispersion in T1ULF is close to linear between 58.7 and 235 µT, whereas dispersion in T1ρ7T is highly nonlinear over the same range. A subtle elbow in the T1ULF dispersion at approximately 140 µT is tentatively attributed to the local dipolar field of macromolecules. It is suggested that different relaxation mechanisms dominate each method and that ULF-MRI has a fundamentally different sensitivity to the macromolecular structure of neural tissue. Ultralow-field MRI may offer distinct, quantitative advantages for human brain imaging, while simultaneously avoiding the severe heating limitation imposed on high-field spin locking. Magn Reson Med 78:2342-2351, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Science.gov (United States)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  13. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  14. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Ilyushin, V. V.; Mescheryakov, A. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Alekseev, E. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Quantum Radiophysics Department of V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkov (Ukraine); Hougen, J. T., E-mail: jon.hougen@nist.gov [Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States); Xu, Li-Hong [Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 (Canada)

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  15. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  16. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  17. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  18. Computation of transverse muon-spin relaxation functions including trapping-detrapping reactions, with application to electron-irradiated tantalum

    International Nuclear Information System (INIS)

    Doering, K.P.; Aurenz, T.; Herlach, D.; Schaefer, H.E.; Arnold, K.P.; Jacobs, W.; Orth, H.; Haas, N.; Seeger, A.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1986-01-01

    A new technique for the economical evaluation of transverse muon spin relaxation functions in situations involving μ + trapping at and detrapping from crystal defects is applied to electron-irradiated Ta exhibiting relaxation maxima at about 35 K, 100 K, and 250 K. The long-range μ + diffusion is shown to be limted by traps over the entire temperature range investigated. The (static) relaxation rates for several possible configurations of trapped muons are discussed, including the effect of the simultaneous presence of a proton in a vacancy. (orig.)

  19. Matrix-assisted relaxation in Fe(phen){sub 2}(NCS){sub 2} spin-crossover microparticles, experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)

    2016-07-18

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  20. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  1. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    International Nuclear Information System (INIS)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-01-01

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated

  2. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    Science.gov (United States)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  3. Complete snake and rotator schemes for spin polarization in proton rings and large electron rings

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-11-01

    In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)

  4. Observability of the probability current density using spin rotator as a quantum clock

    International Nuclear Information System (INIS)

    Home, D.; Alok Kumar Pan; Md Manirul Ali

    2005-01-01

    Full text: An experimentally realizable scheme is formulated which can test any quantum mechanical approach for calculating the arrival time distribution. This is specifically illustrated by using the modulus of the probability current density for calculating the arrival time distribution of spin-1/2 neutral particles at the exit point of a spin rotator (SR) which contains a constant magnetic field. Such a calculated time distribution is then used for evaluating the distribution of spin orientations along different directions for these particles emerging from the SR. Based on this, the result of spin measurement along any arbitrary direction for such an ensemble is predicted. (author)

  5. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  6. Structural transition in Mo{sub 3}Sb{sub 7} probed by muon spin relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Y. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koyama, T.; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Watanabe, I. [Advanced Meson Science Laboratory, RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, H., E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2009-04-15

    Longitudinal-field muSR measurements have been made for Mo{sub 3}Sb{sub 7} focusing on the nature of the structural transition recently found at T{sub S}approx =50K. Taking account of a critical behavior of the relaxation rate lambda at approxT{sub S}, together with the motional narrowing of the nuclear dipolar field revealed in a zero-field experiment, and the tetragonal lattice symmetry lowering below T{sub S}, we propose long-range order of spin-singlet dimers, i.e., the formation of the valence bond crystal below T{sub S}. As a possible origin, the frustration in the interdimer antiferromagnetic interaction is suggested.

  7. Nuclear spin relaxation due to hydrogen diffusion in b.c.c. metals

    International Nuclear Information System (INIS)

    Faux, D.A.; Hall, C.K.

    1989-01-01

    We present Monte Carlo simulation results for the proton-proton contribution to the T 1 -1 relaxation rate for hydrogen spins diffusing on the tetrahedral sites of a b.c.c. metal. It is assumed that each hydrogen blocks all sites to the zeroth (no multiple-occupancy), second or third neighbour and that longer-range interactions may be neglected. Comparisons are made to the BPP and Torrey models. It is found that both the BPP and Torrey models give reasonable values for the peak height but that their predictions for the peak position and the high- and low-temperature limit are in error, particularly for large blocking distances. (orig.)

  8. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  9. Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time

    Directory of Open Access Journals (Sweden)

    Mariana Bruno

    2008-12-01

    Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.

  10. An NMR thermometer for cryogenic magic-angle spinning NMR: The spin-lattice relaxation of 127I in cesium iodide

    Science.gov (United States)

    Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G.; Beckett, Peter; Denning, Mark; Carravetta, Marina; al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H.

    2011-10-01

    The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.

  11. Orientational order and rotational relaxation in the plastic crystal phase of tetrahedral molecules.

    Science.gov (United States)

    Rey, Rossend

    2008-01-17

    A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.

  12. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Science.gov (United States)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  13. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions

    International Nuclear Information System (INIS)

    Salmon, L.; Licinio, A.; Jensen, M.R.; Blackledge, M.; Ortega Roldan, J.L.; Van Nuland, N.; Lescop, E.

    2011-01-01

    We have recently presented a titration approach for the determination of residual dipolar couplings (RDCs) from experimentally inaccessible complexes. Here, we extend this approach to the measurement of 15 N spin relaxation rates and demonstrate that this can provide long-range structural, dynamic, and kinetic information about these elusive systems. (authors)

  14. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  15. Assessment of protein solution versus crystal structure determination using spin- diffusion-suppressed NOE and heteronuclear relaxation data

    International Nuclear Information System (INIS)

    LeMaster, David M.

    1997-01-01

    A spin-diffusion-suppressed NOE buildup series has been measured for E. coli thioredoxin.The extensive 13C and 15N relaxation data previously reported for this protein allow for direct interpretation of dynamical contributions to the 1H-1H cross-relaxation rates for a large proportion of the NOE cross peaks. Estimates of the average accuracy for these derived NOE distances are bounded by 4% and 10%, based on a comparison to the corresponding X-ray distances. An independent fluctuation model is proposed for prediction of the dynamical corrections to 1H-1H cross-relaxation rates, based solely on experimental structural and heteronuclear relaxation data. This analysis is aided by the demonstration that heteronuclear order parameters greater than 0.6 depend only on the variance of the H-X bond orientation,independent of the motional model in either one- or two-dimensional diffusion (i.e., 1- S2 = 3/4 sin2 2 θσ). The combination of spin-diffusion-suppressed NOE data and analysis of dynamical corrections to 1H-1H cross-relaxation rates based on heteronuclear relaxation data has allowed for a detailed interpretation of various discrepancies between the reported solution and crystal structures

  16. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    Science.gov (United States)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  17. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    OpenAIRE

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  18. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    Science.gov (United States)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  19. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  20. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  1. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement.

    Science.gov (United States)

    Morita, Takaumi; Damjanović, Marko; Katoh, Keiichi; Kitagawa, Yasutaka; Yasuda, Nobuhiro; Lan, Yanhua; Wernsdorfer, Wolfgang; Breedlove, Brian K; Enders, Markus; Yamashita, Masahiro

    2018-02-28

    Herein we report the synthesis and characterization of a dinuclear Tb III single-molecule magnet (SMM) with two [TbPc 2 ] 0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the Tb III ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc 2 ] -/0/+ and the axially symmetric dinuclear Tb III phthalocyaninato triple-decker complex (Tb 2 (obPc) 3 ). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc 2 unit is P QTM , the probability of QTM simultaneously occurring in 1 is P QTM 2 , meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (T B ) was determined to be ca. 16 K with an energy barrier for spin reversal (U eff ) of 588 cm -1 (847 K) due to D 4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (H bias ), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported Tb III triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large U eff causes strong uniaxial magnetic anisotropy in 1, leading to a χ ax value (1.39

  2. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  3. Rotating Wigner molecules and spin-related behaviors in quantum rings

    International Nuclear Information System (INIS)

    Yang Ning; Zhu Jialin; Dai Zhensheng

    2008-01-01

    The trial wavefunctions for few-electron quantum rings are presented to describe the spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the single-particle orbits which contain two variational parameters to describe the shape and size dependence of electron localization in the ring-like confinement. They can explicitly show the size dependence of single-particle orbital occupation to give an understanding of the spin rules of ground states without magnetic fields. They can also correctly describe the spin and angular momentum transitions in magnetic fields. By examining the von Neumann entropy, it is demonstrated that the wavefunctions can illustrate the entanglement between electrons in quantum rings, including the AB oscillations as well as the spin and size dependence of the entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors of a few electrons in quantum rings

  4. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  5. Towards the Rational Design of MRI Contrast Agents: Electron Spin Relaxation Is Largely Unaffected by the Coordination Geometry of Gadolinium(III)–DOTA-Type Complexes

    Science.gov (United States)

    Bean, Jonathan F.; Clarkson, Robert B.; Helm, Lothar; Moriggi, Loïck; Sherry, A. Dean

    2009-01-01

    Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd3+ ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd3+, would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties. PMID:18283704

  6. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

    Directory of Open Access Journals (Sweden)

    Nemati Hasan

    2011-01-01

    Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.

  7. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  8. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  9. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    Science.gov (United States)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  10. Effects of spin vacancies on the correlated spin dynamics in La2Cu1-xZnxO4 from 63Cu nuclear quadrupole resonance relaxation

    International Nuclear Information System (INIS)

    Carretta, P.; Rigamonti, A.; Sala, R.

    1997-01-01

    63 Cu nuclear quadrupole resonance (NQR) relaxation measurements in La 2 CuO 4 doped Zn are used in order to investigate the temperature dependence of the in-plane magnetic correlation length ξ 2D and the effects associated to spin vacancies in two dimensional quantum Heisenberg antiferromagnets (QHAF). The relaxation rates T 1 -1 and T 2 -1 have been related to the static generalized susceptibility χ(q,0) and to the decay rate Γ q of the normal excitations. By using scaling arguments for χ(q,0) and Γ q , the relaxation rates have been expressed in close form in terms of ξ 2D (x,T) and its dependence on temperature and spin doping x thus extracted. The experimental findings are analyzed in light of the renormalized classical (RC) and quantum critical (QC) behaviors predicted for ξ 2D by recent theories for S=1/2 HAF in square lattices. It is first shown that in pure La 2 CuO 4 , ξ 2D is consistent with a RC regime up to about 900 K, with tendency toward the QC regime above. The spin vacancies reduce the Nacute eel temperature according to the law T N (x)∼T N (0)(1 3.5x). From the temperature dependence of 63 Cu NQR relaxation rate T 1 -1 , T 2 -1 and from the composition dependence of T N it is consistently proved that the effect on ξ 2D can be accounted for by the modification of the spin stiffness in a simple dilutionlike model, the system still remaining in the RC regime, at least for T≤900 K. copyright 1997 American Institute of Physics

  11. Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics

    Science.gov (United States)

    Aurnou, J.

    2005-12-01

    The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.

  12. 31P spin-lattice relaxation time measurements in biological systems

    International Nuclear Information System (INIS)

    Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1989-01-01

    Spin-lattice relaxation time (T 1 ) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T 1 ) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T 1 values. T 1 values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15±0.02 sec (β-ATP in the liver) to 8.5±1.6 sec (PDE in the kidney). T 1 value of β-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T 1 values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of 13 P spectra, and for correcting distortions of signal intensities in the spectra. (author)

  13. Electron spin-lattice relaxation of low-symmetry Ni.sup.2+./sup. centers in LiF

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Dejneka, Alexandr; Jastrabík, Lubomír; Lančok, Ján

    2014-01-01

    Roč. 104, č. 25 (2014), "252902-1"-"252902-4" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : Ni 2+ centers * LiF single crystals * electron spin-lattice relaxation * electron spin echo technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  14. The new conceptual design of snakes and spin rotators in RHIC

    International Nuclear Information System (INIS)

    Lee, S.Y.; Courant, E.D.

    1990-01-01

    We discuss the generalized snake configurations, which offers either the advantages of shorter total snake length and smaller horizontal orbit displacement in the compact configuration or the dual functions of a snake and a 90 degree spin rotation for the helicity state. The generalized snake is then applied to the polarized proton collision in RHIC. The possible schemes of obtaining high luminosity are discussed

  15. Resonant amplification of neutrino spin rotation in matter and the solar-neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.

    1988-01-01

    It is shown that in the presence of matter there can occur resonant amplification of the flavor-changing neutrino spin rotation in transverse magnetic fields, which is roughly analogous to the Mikheyev-Smirnov-Wolfenstein effect in neutrino oscillations. Possible consequences for solar neutrinos are briefly discussed. (orig.)

  16. Langevin equation method for the rotational Brownian motion and orientational relaxation in liquids: II. Symmetrical top molecules

    CERN Document Server

    Coffey, W T; Titov, S V

    2003-01-01

    A theory of orientational relaxation for the inertial rotational Brownian motion of a symmetric top molecule is developed using the Langevin equation rather than the Fokker-Planck equation. The infinite hierarchy of differential-recurrence relations for the orientational correlation functions for the relaxation behaviour is derived by averaging the corresponding Euler-Langevin equations. The solution of this hierarchy is obtained using matrix continued fractions allowing the calculation of the correlation times and the spectra of the orientational correlation functions for typical values of the model parameters.

  17. Predicting superdeformed rotational band-head spin in A ∼ 190 mass region using variable moment of inertia model

    International Nuclear Information System (INIS)

    Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.

    2016-01-01

    The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)

  18. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  19. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  20. Muon-spin-relaxation study of magnetism in ErBa2Cu3O6.2

    International Nuclear Information System (INIS)

    Lichti, R.L.; Chan, K.B.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Flint, J.A.; Cooke, D.W.; Kwok, R.S.; Willis, J.O.

    1990-01-01

    The copper magnetism of ErBa 2 Cu 3 O 6.2 is examined by transverse-field (TF) and zero-field (ZF) muon-spin relaxation (μSR). These data indicate two magnetic phases with T N1 congruent 330 K and T N2 ∼65 K. The second phase is signaled by deviation of the ZF-μSR frequencies from a standard magnetization curve and an abrupt change in the TF-μSR relaxation rate. A relaxation feature indicates a muon depolarization mechanism with a T 3/2 dependence in the low-temperature phase. Observed fields are compared to those calculated for proposed magnetic structures

  1. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, D., E-mail: dariyasavchenko@gmail.com [Institute of Physics of the Czech Academy of Sciences, Prague 182 21 (Czech Republic); National Technical University of Ukraine “Kyiv Polytechnic Institute,” Kyiv 03056 (Ukraine); Shanina, B.; Kalabukhova, E. [V.E. Lashkaryov Institute of Semiconductor Physics, NASU, Kyiv 03028 (Ukraine); Pöppl, A. [Institute of Experimental Physics II, Leipzig University, Leipzig D-04103 (Germany); Lančok, J. [Institute of Physics of the Czech Academy of Sciences, Prague 182 21 (Czech Republic); Mokhov, E. [A.F. Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg 19710 (Russian Federation)

    2016-04-07

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10{sup 17 }cm{sup −3} at T = 10–40 K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (N{sub k1,k2}) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T{sub 1}{sup −1}), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T{sup 9}, respectively. The character of the temperature dependence of the T{sub 1}{sup −1} for the donor electrons of N substituting hexagonal (“h”) site (N{sub h}) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (T{sub m}{sup −1}) with the temperature increase for the N{sub h} donors in both types of the samples, as well as for the N{sub k1,k2} donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time T{sub m} for the N{sub k1,k2} donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at N{sub h} and N{sub k1,k2} sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  2. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  3. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum

  4. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  5. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  6. Pulsar spin-down: the glitch-dominated rotation of PSR J0537-6910

    Science.gov (United States)

    Antonopoulou, D.; Espinoza, C. M.; Kuiper, L.; Andersson, N.

    2018-01-01

    The young, fast-spinning X-ray pulsar J0537-6910 displays an extreme glitch activity, with large spin-ups interrupting its decelerating rotation every ∼100 d. We present nearly 13 yr of timing data from this pulsar, obtained with the Rossi X-ray Timing Explorer. We discovered 22 new glitches and performed a consistent analysis of all 45 glitches detected in the complete data span. Our results corroborate the previously reported strong correlation between glitch spin-up size and the time to the next glitch, a relation that has not been observed so far in any other pulsar. The spin evolution is dominated by the glitches, which occur at a rate of ∼3.5 per year, and the post-glitch recoveries, which prevail the entire interglitch intervals. This distinctive behaviour provides invaluable insights into the physics of glitches. The observations can be explained with a multicomponent model that accounts for the dynamics of the neutron superfluid present in the crust and core of neutron stars. We place limits on the moment of inertia of the component responsible for the spin-up and, ignoring differential rotation, the velocity difference it can sustain with the crust. Contrary to its rapid decrease between glitches, the spin-down rate increased over the 13 yr, and we find the long-term braking index nl = -1.22(4), the only negative braking index seen in a young pulsar. We briefly discuss the plausible interpretations of this result, which is in stark contrast to the predictions of standard models of pulsar spin-down.

  7. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  8. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2012-01-01

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  9. Spinning and rotating strings for N=1 SYM theory and brane constructions

    International Nuclear Information System (INIS)

    Schvellinger, Martin

    2004-01-01

    We obtain spinning and rotating closed string solutions in AdS 5 x T 1,1 background, and show how these solutions can be mapped onto rotating closed strings embedded in configurations of intersecting branes in type IIA string theory. Then, we discuss spinning closed string solutions in the UV limit of the Klebanov-Tseytlin background, and also properties of classical solutions in the related intersecting brane constructions in the UV limit. We comment on extensions of this analysis to the deformed conifold background, and in the corresponding intersecting brane construction, as well as its relation to the deep IR limit of the Klebanov-Strassler solution. We briefly discuss on the relation between type IIA brane constructions and their related M-theory descriptions, and how solitonic solutions are related in both descriptions. (author)

  10. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  11. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  12. Differential saturation study of radial and angular modulation mechanisms of electron spin--lattice relaxation for trapped hydrogen atoms in sulfuric acid glasses. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Plonka, A; Kevan, L

    1976-11-01

    A differential ESR saturation study of allowed transitions and forbidden proton spin-flip satellite transitions for trapped hydrogen atoms in sulfuric acid glasses indicates that angular modulation dominates the spin-lattice relaxation mechanisms and suggests that the modulation arises from motion of the H atom.

  13. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  14. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, Ján; Mokhov, E.

    2016-01-01

    Roč. 119, č. 13 (2016), 1-7, č. článku 135706. ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk LO1409; GA MŠk LM2015088 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * SiC * nitrogen donors * relaxation times Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  15. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  16. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  17. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  18. Proton spin-lattice relaxation in a liquid crystal-Aerosil complex above the bulk isotropization temperature

    Energy Technology Data Exchange (ETDEWEB)

    Anoardo, E.; Grinberg, F.; Vilfan, M.; Kimmich, R

    2004-02-16

    We present a study of the molecular dynamics in an octylcyanobiphenyl (8CB)-Aerosil complex above the bulk isotropization temperature. Using proton nuclear magnetic relaxation experiments in the laboratory frame (T{sub 1}{sup -1}) and in the rotating-frame (T{sub 1{rho}}{sup -1}), we found a notable increase of the relaxation rates in the kHz frequency range as compared to the bulk 8CB liquid crystal at the same temperature. The field-cycling technique was used for the laboratory frame experiments while a conventional apparatus was used for the rotating frame method. The observed behavior is analyzed with the aid of Monte Carlo simulations on the basis of a two-phase fast-exchange model distinguishing surface-ordered and bulk phases. Two processes affecting the low frequency relaxation could be identified: reorientation mediated by translational displacements, accounting for molecular reorientations, and exchange losses of molecules from the surface to the bulk.

  19. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    Science.gov (United States)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  20. Localized excitons in quantum wells show spin relaxation without coherence loss

    DEFF Research Database (Denmark)

    Zimmermann, R.; Langbein, W.; Runge, E.

    2001-01-01

    The coherence in the secondary emission from quantum well excitons is studied using the speckle method. Analysing the different polarization channels allows to conclude that (i) no coherence loss occurs in the cross-polarized emission, favouring spin beating instead of spin dephasing, and that (i...

  1. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    Science.gov (United States)

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  2. Neutron scattering and muon spin rotation as probes of light interstitial transport

    International Nuclear Information System (INIS)

    Brown, D.W.

    1985-01-01

    The transport of light interstitials, specifically of hydrogen isotopes and the positive muon, is studied with the help of microscopic transport models. The principal observables are the differential neutron scattering cross section of the hydrogen isotopes and the muon spin rotation signal of the positive muon. The transport feature of primary interest is coherence arising as a result of persistence of quantum mechanical phase memory. Evaluation of observables is based on the generalized master equation, or alternatively, the stochastic Liouville equation. The latter is applied to obtain the neutron scattering lineshapes for local tunneling systems as well as for extended Bravais and non-Bravais lattices. It is found that the usual form of the stochastic Liouville equation does not address adequately transport among non-degenerate site-states. An appropriate modification is suggested and employed to obtain scattering lineshapes applicable to recent experiments on impurity-trapped hydrogen. The muon spin rotation signal is formulated under the assumption that spin interactions constitute a negligible source of scattering for muon transport. The depolarization function is evaluated for the cases of local tunneling systems and simple models of spatially extended transport. The former addresses consequences of coherence and both address the consequences of the spatial extent of the muon wavefunction. It is found that the depolarization function is sensitive to the wave function extent, and the detail attributable to it is characterized

  3. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...

  4. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)

    2009-08-31

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  5. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    International Nuclear Information System (INIS)

    Krivoruchenko, Mikhail I

    2009-01-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  6. METHODOLOGICAL NOTES: Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Science.gov (United States)

    Krivoruchenko, Mikhail I.

    2009-08-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).

  7. Near-threshold photoionization of the Xe 3d spin-orbit doublet: Relativistic, relaxation, and intershell interaction effects

    International Nuclear Information System (INIS)

    Radojevic, V.; Davidovic, D.M.; Amusia, M.Ya.

    2003-01-01

    Results of calculations of the near-threshold photoionization of the xenon 3d spin-orbit doublet are reported. Our theoretical analysis is undertaken in order to interpret and enlighten the very detailed measurements of this process [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2001)], which revealed a previously unobserved interesting feature--an additional broad maximum--in the partial xenon 3d 5/2 cross section. This double maximum was not produced by earlier calculations, except in the recent study by Amusia et al. [Phys. Rev. Lett. 88, 093002 (2002)], which, in contrast to the present one, is not ab initio and relativistic in character. The partial photoionization cross sections of 3d 5/2 and 3d 3/2 subshells, photoelectron anisotropy parameters, and spin-polarization parameters that were so far not studied either experimentally or theoretically are calculated. Many-electron correlations, relativistic effects, and relaxation effects of the ionic core in the ionization process are taken into account by using the relativistic random-phase approximation, modified to include the relaxation of the considered subshell

  8. Coherence transfer and electron T1-, T2-relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2017-01-01

    -hyperfine anisotropies of isolated nitroxide spin labels. Results compatible with earlier treatments by Redfield theory are obtained without specifically evaluating matrix elements. Extension to single-transition operators for isolated nitroxides predicts electron coherence transfer by pseudosecular electron...

  9. Temperature dependence of electron spin-lattice relaxation of radiation-produced silver atoms in polycrystalline aqueous and glassy organic matrices. Importance of relaxation by tunneling modes in disordered matrices

    International Nuclear Information System (INIS)

    Michalik, J.; Kevan, L.

    1978-01-01

    The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)

  10. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  11. Stationary states and rotational properties of spin-orbit-coupled Bose-Einstein condensates held under a toroidal trap

    Science.gov (United States)

    He, Zhang-Ming; Zhang, Xiao-Fei; Kato, Masaya; Han, Wei; Saito, Hiroki

    2018-06-01

    We consider a pseudospin-1/2 Bose-Einstein condensate with Rashba spin-orbit coupling in a two-dimensional toroidal trap. By solving the damped Gross-Pitaevskii equations for this system, we show that the system exhibits a rich variety of stationary states, such as vehicle wheel and flower-petal stripe patterns. These stationary states are stable against perturbation with thermal energy and can survive for a long time. In the presence of rotation, our results show that the rotating systems have exotic vortex configurations. These phenomenon originates from the interplay among spin-orbit coupling, trap geometry, and rotation.

  12. Lattice Distortion Mediated Paramagnetic Relaxation in High-Spin High-Symmetry Molecular Magnets

    Science.gov (United States)

    Garg, Anupam

    1998-08-01

    Field-dependent maxima in the relaxation rate of the magnetic molecules Mn12-Ac and Fe8-tacn have commonly been ascribed to some resonant tunneling phenomena. We argue instead that the relaxation is purely due to phonons. The rate maxima arise because of a Jahn-Teller-like distortion caused by the coupling of phonons to degenerate Zeeman levels of the molecule at the top of the barrier. The binding energy of the distorted intermediate states lowers the barrier height and increases the relaxation rate. A nonperturbative calculation of this effect is carried out for a model system. An approximate result for the field variation near a maximum is found to agree reasonably with experiment.

  13. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT.

    Science.gov (United States)

    Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E

    2010-11-01

    Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.

  14. Muon spin rotation studies of defect states in solids: the story of anomalous muonium

    International Nuclear Information System (INIS)

    Estle, T.L.

    1983-01-01

    Muon spin rotation (μSR) is a powerful technique to study magnetic phenomena, light interstitial diffusion, and hydrogenic chemistry. However it has been applied in several other areas of science where its applicability was not immediately apparent. One of these is the study of an unusual muonic defect, anomalous muonium, produced when μ + stops in semiconducting crystals. The study of anomalous muonium and the process of inferring its structure are described. For this defect, μSR has learned far more than have efforts to study the analogous hydrogenic center

  15. Nuclear spin relaxation due to motion on inequivalent sites: H diffusion on O and T sites in the face-centred cubic structure

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C A

    2003-01-01

    Magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of exponentials. The theory is applied to diffusion on octahedral and tetrahedral interstitial sites in the face-centred cubic structure. Monte Carlo simulations have been used to generate relaxation data for parameters typical for H in metals. It is found that only a single exponential would be observable in the high- and low-temperature limits, but that two-exponential recoveries could be observable in the vicinity of the maximum in the relaxation rate as a function of temperature. The Monte Carlo relaxation data has been fitted using a Bloembergen-Pound-Purcell (BPP) model to assess the accuracy of the BPP model

  16. Topological spin excitations induced by an external magnetic field coupled to a surface with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2013-01-01

    We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)

  17. Spin-relaxation without coherence loss: Fine-structure splitting of localized excitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Zimmermann, R.; Runge, E.

    2000-01-01

    We investigate the polarization dynamics of the secondary emission from a disordered quantum well after resonant excitation. Using the speckle analysis technique we determine the coherence degree of the emission, and find that the polarization-relaxed emission has a coherence degree comparable to...

  18. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860, Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Manchado, A. [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C., E-mail: ggs@astrosen.unam.mx [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  19. Studies of spin relaxation and recombination at the HERMES hydrogen/deuterium gas target

    International Nuclear Information System (INIS)

    Baumgarten, C.

    2000-09-01

    The HERMES (HERA measurement of spin) experiment is located in the eastern straight section of the HERA storage ring at DESY in Hamburg. It is designed to study the spin structure of the nucleons by deep inelastic scattering of polarized positrons resp. electrons provided by the HERA storage ring at 27.5 GeV impingingon the nucleons of internal polarized gas targets. The setup of the HERMES experiment is shown. First results are the measurement of the spin structure functions g 1 n with the polarized 3 He target (1995) and of g 1 p with polarized atomic hydrogen target, which was operated in 1996 and 1997. Beneath the inclusive physics, the possibility to detect and identify hadronic scattering products allows the measurement of semi-inclusive processes with the central item of the HERMES physics program. (orig.)

  20. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  1. Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents.

    Science.gov (United States)

    Laus, Sabrina; Sour, Angélique; Ruloff, Robert; Tóth, Eva; Merbach, André E

    2005-05-06

    The EPTPA5) chelate, which ensures fast water exchange in GdIII complexes, has been coupled to three different generations (5, 7, and 9) of polyamidoamine (PAMAM) dendrimers through benzylthiourea linkages (H5EPTPA = ethylenepropylenetriamine-N,N,N',N'',N''-pentaacetic acid). The proton relaxivities measured at pH 7.4 for the dendrimer complexes G5-(GdEPTPA)111, G7-(GdEPTPA)253 and G9-(GdEPTPA)1157 decrease with increasing temperature, indicating that, for the first time for dendrimers, slow water exchange does not limit relaxivity. At a given field and temperature, the relaxivity increases from G5 to G7, and then slightly decreases for G9 (r1 = 20.5, 28.3 and 27.9 mM(-1) s(-1), respectively, at 37 degrees C, 30 MHz). The relaxivities show a strong and reversible pH dependency for all three dendrimer complexes. This originates from the pH-dependent rotational dynamics of the dendrimer skeleton, which was evidenced by a combined variable-temperature and multiple-field 17O NMR and 1H relaxivity study performed at pH 6.0 and 9.9 on G5-(GdEPTPA)111. The longitudinal 17O and 1H relaxation rates of the dendrimeric complex are strongly pH-dependent, whereas they are not for the [Gd(EPTPA)(H2O)]2- monomer chelate. The longitudinal 17O and 1H relaxation rates have been analysed by the Lipari-Szabo spectral density functions and correlation times have been calculated for the global motion of the entire macromolecule (tau(gO)) and the local motion of the GdIII chelates on the surface (tau(lO)), correlated by means of an order parameter S2. The dendrimer complex G5-(GdEPTPA)111 has a considerably higher tau(gO) under acidic than under basic conditions (tau(298)gO = 4040 ps and 2950 ps, respectively), while local motions are less influenced by pH (tau(298)lO = 150 and 125 ps). The order parameter, characterizing the rigidity of the macromolecule, is also higher at pH 6.0 than at pH 9.9 (S2 = 0.43 vs 0.36, respectively). The pH dependence of the global correlation time can be

  2. Spin-Rotation Hyperfine Splittings at Moderate to High J Values in Methanol

    Science.gov (United States)

    Xu, Li-Hong; Hougen, Jon T.; Belov, Sergey; Golubiatnikov, G. Yu; Lapinov, Alexander; Ilyushin, V.; Alekseev, E. A.; Mescheryakov, A. A.

    2015-06-01

    In this talk we present a possible explanation, based on torsionally mediated proton-spin-overall-rotation interaction operators, for the surprising observation in Nizhny Novgorod several years ago of doublets in some Lamb-dip sub-millimeter-wave transitions between torsion-rotation states of E symmetry in methanol. These observed doublet splittings, some as large as 70 kHz, were later confirmed by independent Lamb-dip measurements in Kharkov. In this talk we first show the observed J-dependence of the doublet splittings for two b-type Q branches (one from each laboratory), and then focus on our theoretical explanation. The latter involves three topics: (i) group theoretically allowed terms in the spin-rotation Hamiltonian, (ii) matrix elements of these terms between the degenerate components of torsion-rotation E states, calculated using wavefunctions from an earlier global fit of torsion-rotation transitions of methanol in the vt = 0, 1, and 2 states, and (iii) least-squares fits of coefficients of these terms to about 35 experimentally resolved doublet splittings in the quantum number ranges of K = -2 to +2, J = 13 to 34, and vt = 0. Rather pleasing residuals are obtained for these doublet splittings, and a number of narrow transitions, in which no doublet splitting could be detected, are also in agreement with predictions from the theory. Some remaining disagreements between experiment and the present theoretical explanation will be mentioned. G. Yu. Golubiatnikov, S. P. Belov, A. V. Lapinov, "CH_3OH Sub-Doppler Spectroscopy," (Paper MF04) and S.P. Belov, A.V. Burenin, G.Yu. Golubiatnikov, A.V. Lapinov, "What is the Nature of the Doublets in the E-Methanol Lamb-dip Spectra?" (Paper FB07), 68th International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2013. Li-Hong Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman, "Torsion-Rotation Global Analysis of the First Three Torsional States (vt = 0, 1, 2

  3. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  4. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  5. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  6. Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence

    International Nuclear Information System (INIS)

    Sankar, S.S.; Mole, P.A.; Coulson, R.L.

    1986-01-01

    1 H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D 2 O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations

  7. Accelerated territorial arterial spin labeling based on shared rotating control acquisition: an observer study for validation

    International Nuclear Information System (INIS)

    Kamano, Hironori; Yoshiura, Takashi; Hiwatashi, Akio; Yamashita, Koji; Takayama, Yukihisa; Nagao, Eiki; Sagiyama, Koji; Honda, Hiroshi; Zimine, Ivan

    2012-01-01

    Shared rotating control acquisition can shorten the imaging time of territorial arterial spin labeling (tASL) by 33% compared with the normal control acquisition scheme but potentially results in an inaccurate estimate of vascular territories due to imperfect magnetization transfer compensation. Our purpose was to validate the accuracy of the shared rotating control acquisition method in evaluation of vascular territories. Twenty-four patients underwent tASL at a 3.0-T MRI with the conventional normal control acquisition method. Composite vascular territory maps, in which the blood flows from the right and left internal carotid arteries and the posterior circulation were encoded in red-green-blue, were generated as a normal averaged control-label scheme and as a simulated shared rotating control scheme. Two observers independently reported the most dominant territorial flow in 26 brain regions corresponding to the arterial segments at three post-labeling time points. Inter-reader and inter-method agreements were analyzed using κ statistics. Overall inter-reader agreements were excellent for both the normal control and the shared rotating control methods (κ = 0.98, respectively). Overall inter-method agreement was also excellent (κ = 0.98), although relatively low agreement was noted in the bilateral posterior cerebral artery territories (κ = 0.79 to 0.93). Our results suggested that tASL using shared rotating control acquisition can provide information on the vascular territories comparable to that obtained using the normal control acquisition while substantially shortening the imaging time. (orig.)

  8. Magnetic moments of high spin rotational states in 158Dy and 164Dy+

    International Nuclear Information System (INIS)

    Seiler-Clark, G.

    1983-09-01

    For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de

  9. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    Science.gov (United States)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  10. Theory of nuclear spin relaxation in disordered systems: comparison of Bloembergen-Purcell-Pound models and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C.A.

    2002-01-01

    Two Bloembergen-Purcell-Pound (BPP) models for analysing nuclear spin relaxation data for translational diffusion in disordered systems are compared with Monte Carlo simulations. One model (the a-BPP model, 'a' standing for average) is commonly used for disordered systems and the other (the Cameron-Sholl BPP model) is more rigorously based and can distinguish between site-and barrier-energy disorder. Simulated relaxation data produced using Gaussian distributions of energy disorder are analysed using the models, and the parameters obtained from the fits are compared with the values used for the simulations. It is found that both models can give reasonable fits to the data. Both models also give reasonable agreement with the simulation parameters provided that the standard deviation of the energy distribution for the a-BPP model is interpreted as the average of the site-and barrier-energy standard deviations. Quantitative estimates are given of the accuracy of the parameters from the fits. (author)

  11. Rotational relaxation of CF+(X1Σ) in collision with He(1S)

    Science.gov (United States)

    Denis-Alpizar, O.; Inostroza, N.; Castro Palacio, J. C.

    2018-01-01

    The carbon monofluoride cation (CF+) has been detected recently in Galactic and extragalactic regions. Therefore, excitation rate coefficients of this molecule in collision with He and H2 are necessary for a correct interpretation of the astronomical observations. The main goal of this work is to study the collision of CF+ with He in full dimensionality at the close-coupling level and to report a large set of rotational rate coefficients. New ab initio interaction energies at the CCSD(T)/aug-cc-pv5z level of theory were computed, and a three-dimensional potential energy surface was represented using a reproducing kernel Hilbert space. Close-coupling scattering calculations were performed at collisional energies up to 1600 cm-1 in the ground vibrational state. The vibrational quenching cross-sections were found to be at least three orders of magnitude lower than the pure rotational cross-sections. Also, the collisional rate coefficients were reported for the lowest 20 rotational states of CF+ and an even propensity rule was found to be in action only for j > 4. Finally, the hyperfine rate coefficients were explored. These data can be useful for the determination of the interstellar conditions where this molecule has been detected.

  12. Numerical investigation of the pulsed NF3 + H2 chemical laser using a model which includes rotational relaxation and semi-classical laser equations

    International Nuclear Information System (INIS)

    Creighton, J.R.

    1975-01-01

    Waveforms and population distributions have been calculated by a numerical model and compared with experiment for an electric-discharge-initiated, pulsed NF 3 + H 2 chemical laser. The model treats each vibrational-rotational state separately, allowing rotational relaxation between adjacent states as well as vibrational relaxation and lasing according to P-branch selection rules. Calculated waveforms agree with experiment and show several features not seen when rotational equilibrium is assumed: simultaneous lasing on many transitions, cascade behavior, spikes due to laser relaxation oscillations, non-Boltzmann rotational distributions, and ''hole burning'' in the population distributions. The calculations give insight into the physical phenomena governing the shape and duration of the waveforms. The effect of varying certain parameters, relaxation rates, temperature, pressure, and diluents, is studied. Best fit to experimental waveforms is obtained when the rotational relaxation rate and collisional line broadening rate are approximately equal at about 10 times the hard sphere collision rate. The IXION computer code, developed for these calculations, is described in detail. In addition, an analytic model is presented which accounts for major features of the total (all transitions) output waveform of the laser assuming rotational equilibrium, a steady state laser model, and constant temperature. A second computer code, MINOTAR, was developed as a general purpose chemical kinetics code. It verifies the analytic model and extends the results to adiabatic reactions where the temperature varies, and can yield waveforms using the assumptions of rotational equilibrium and a steady state laser. The MINOTAR code, being general, can also be used for chemical kinetics problems such as air pollution and combustion

  13. Extended Thermodynamics of Rarefied Polyatomic Gases: 15-Field Theory Incorporating Relaxation Processes of Molecular Rotation and Vibration

    Directory of Open Access Journals (Sweden)

    Takashi Arima

    2018-04-01

    Full Text Available After summarizing the present status of Rational Extended Thermodynamics (RET of gases, which is an endeavor to generalize the Navier–Stokes and Fourier (NSF theory of viscous heat-conducting fluids, we develop the molecular RET theory of rarefied polyatomic gases with 15 independent fields. The theory is justified, at mesoscopic level, by a generalized Boltzmann equation in which the distribution function depends on two internal variables that take into account the energy exchange among the different molecular modes of a gas, that is, translational, rotational, and vibrational modes. By adopting the generalized Bhatnagar, Gross and Krook (BGK-type collision term, we derive explicitly the closed system of field equations with the use of the Maximum Entropy Principle (MEP. The NSF theory is derived from the RET theory as a limiting case of small relaxation times via the Maxwellian iteration. The relaxation times introduced in the theory are shown to be related to the shear and bulk viscosities and heat conductivity.

  14. Properties of rotational bands at the spin limit in A {approximately} 50, A {approximately} 65 and A {approximately} 110 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, V.P.; Andrews, H.R.; Ball, G.C. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    There is now widespread evidence for the smooth termination of rotational bands in A {approx_equal} 110 nuclei at spins of 40-to-50{Dirac_h}s. The characteristics of these bands are compared to those of bands recently observed to high spin in {sup 64}Zn and {sup 48}Cr, studied with the 8{pi} {gamma}-ray spectrometer coupled to the Chalk River miniball charged-particle-detector array.

  15. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  16. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    Science.gov (United States)

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  17. A study of spin-lattice relaxation rates of glucose, fructose, sucrose and cherries using high-T c SQUID-based NMR in ultralow magnetic fields

    Science.gov (United States)

    Liao, Shu-Hsien; Wu, Pei-Che

    2017-08-01

    We study the concentration dependence of spin-lattice relaxation rates, T 1 -1, of glucose, fructose, sucrose and cherries by using high-T c SQUID-based NMR at magnetic fields of ˜97 μT. The detected NMR signal, Sy (T Bp), is fitted to [1 - exp(-T Bp/T 1)] to derive T 1 -1, where Sy (T Bp) is the strength of the NMR signal, T Bp is the duration of pre-polarization and T 1 -1 is the spin-lattice relaxation rate. It was found that T 1 -1 increases as the sugar concentrations increase. The increased T 1 -1 is due to the presence of more molecules in the surroundings, which increases the spin-lattice interaction and in turn enhances T 1 -1. The T 1 -1 versus degrees Brix curve provides a basis for determining unknown Brix values for cherries as well as other fruits.

  18. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    Science.gov (United States)

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  19. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  20. Muon spin rotation study of the topological superconductor SrxBi2Se3

    Science.gov (United States)

    Leng, H.; Cherian, D.; Huang, Y. K.; Orain, J.-C.; Amato, A.; de Visser, A.

    2018-02-01

    We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor SrxBi2Se3 with nominal concentrations x =0.15 and 0.18 (Tc˜3 K). The TF spectra (B =10 mT), measured after cooling to below Tc in field, did not show any additional damping of the muon precession signal due to the flux line lattice within the experimental uncertainty. This puts a lower bound on the magnetic penetration depth λ ≥2.3 μ m . However, when we induce disorder in the vortex lattice by changing the magnetic field below Tc, a sizable damping rate is obtained for T →0 . The data provide microscopic evidence for a superconducting volume fraction of ˜70 % in the x =0.18 crystal and thus bulk superconductivity.

  1. Muon spin rotation studies involving muonium at high pH

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.M.; Walker, D.C.

    1983-06-01

    The muon spin rotation method was used to determine the muon yields in concentrated KOH solutions and to evaluate Arrhenius parameters for the reaction of muonium with hydroxyl ions in dilute aqueous solutions. This latter reaction is relatively slow due to a substantial activation energy, yet there is no kinetic isotope effect at room temperature. The kinetics are well represented by the relationship log ksub(M) = 14.38 - 2100(+-260)/T. The observed enhancement of the diamagentic muon yield (Psub(D)) from 0.62 to 0.79 as the (KOH) was increased from 0 to 20 M can be accounted for in terms of a 'hot-model' mechanism, by allowing Ksub(M) (or the hot fraction) to vary somewhat. The failure of Psub(D) to reach 1.0 in such concentrated OH - solutions shows that the muons do not all emerge from the epithermal processes of the track as free μ + ions

  2. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    Science.gov (United States)

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  3. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.

    Science.gov (United States)

    Cobb, C E; Hustedt, E J; Beechem, J M; Beth, A H

    1993-01-01

    An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional

  4. Search for right-handed currents by means of muon spin rotation

    International Nuclear Information System (INIS)

    Stoker, D.P.

    1985-01-01

    A muon spin rotation (μSR) technique has been used to place limits on right-handed weak currents in μ + decay. A beam of almost 100% polarized surface muons obtained from the TRIUMF M13 beamline was stopped in essentially non-depolarizing >99.99% pure metal foils. The μ + spins were precessed by 70-G or 110-G transverse fields. Decay e + emitted within 225 mrad of the beam direction and with momenta above 46 MeV/c were momentum-analyzed to 0.2%. Comparison of the μSR signal amplitude with that expected for (V-A) decay yields an endpoint asymmetry XiP/sub μ/δ/rho > 0.9951 with 90% confidence. In the context of manifest left-right symmetric models with massless neutrinos the results imply the 90% confidence limits M(W 2 ) > 381 GeV/c 2 and -0.057 2 is a predominantly right-handed gauge boson and zeta is the left-right mixing angle. Limits on M(W 2 ) for M(nu/sub μR/) does not equal 0 are also presented. The endpoint asymmetry is used to deduce limits on the nu/sub μL/ mass and helicity in π + decay, non-(V-A) couplings in helicity projection form, and the mass scale of composite leptons

  5. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    International Nuclear Information System (INIS)

    Tuite, M.J.; Yandow, D.R.; DeSmet, A.A.; Orwin, J.F.; Quintana, F.A.

    1994-01-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2 * -weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2 * -weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  6. Search for right-handed currents by means of muon spin rotation

    International Nuclear Information System (INIS)

    Stoker, D.P.

    1985-09-01

    A muon spin rotation (μSR) technique has been used to place limits on right-handed weak currents in μ + decay. A beam of almost 100% polarized 'surface' muons obtained from the TRIUMF M13 beamline was stopped in essentially non-depolarizing >99.99% pure metal foils. The μ + spins were precessed by 70-G or 110-G transverse fields. Decay e + emitted within 225 mrad of the beam direction and with momenta above 46 MeV/c were momentum-analyzed to 0.2%. Comparison of the μSR signal amplitude with that expected for (V-A) decay yields an endpoint asymmetry xiPμdelta/rho>0.9951 with 90% confidence. In the context of manifest left-right symmetric models with massless neutrinos the results imply the 90% confidence limits M(W 2 )>381 GeV/c 2 and -0.057 2 is a predominantly right-handed gauge boson and zeta is the left-right mixing angle. Limits on M(W 2 ) for M(nu/sub μR) is not equal to 0 are also presented. The endpoint asymmetry is used to deduce limits on the nu/sub nu/sub μL/ mass and helicity in π + decay, non-(V-A) couplings in helicity projection form, and the mass scale of composite leptons

  7. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Yandow, D R [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); DeSmet, A A [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Orwin, J F [Div. of Orthopedic Surgery, Univ. of Wisconsin, Madison, WI (United States); Quintana, F A [Dept. of Biostatistics, Univ. of Wisconsin, Madison, WI (United States)

    1994-10-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2{sup *}-weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2{sup *}-weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  8. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    Science.gov (United States)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  9. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Berber, S. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)]. E-mail: berber@comas.frsc.tsukuba.ac.jp; Oshiyama, A. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)

    2006-04-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range {approx}4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes.

  10. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  11. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Science.gov (United States)

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  12. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    CERN Document Server

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  13. Singlet ground-state fluctuations in praseodymium observed by muon spin relaxation in PrP and PrP0.9

    International Nuclear Information System (INIS)

    Noakes, D R; Waeppling, R; Kalvius, G M; Jr, M F White; Stronach, C E

    2005-01-01

    Muon spin relaxation (μSR) in the singlet ground-state compounds PrP and PrP 0.9 reveals the unusual situation of a Lorentzian local field distribution with fast-fluctuation-limit strong-collision dynamics, a case that does not show motional narrowing. Contrary to publications by others, where PrP 0.9 was asserted to have vacancy-induced spin-glass freezing, no spin-glass freezing is seen in PrP 0.9 or PrP down to ≤100mK. This was confirmed by magnetization measurements on these same samples. In both compounds, the muon spin relaxation rate does increase as temperature decreases, demonstrating increasing strength of the paramagnetic response. A Monte Carlo model of fluctuations of Pr ions out of their crystalline-electric-field singlet ground states into their magnetic excited states (and back down again) produces the strong-collision-dynamic Lorentzian relaxation functions observed at each individual temperature but not the observed temperature dependence. This model contains no exchange interaction, and so predicts decreasing paramagnetic response as the temperature decreases, contrary to the temperature dependence observed. Comparison of the simulations to the data suggests that the exchange interaction is causing the system to approach magnetic freezing (by mode softening), but fails to complete the process

  14. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet.

    Science.gov (United States)

    Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R

    2009-10-09

    Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.

  15. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  16. Hyperfine fields and spin relaxation of Ce in GdAl2 and DyAl2

    International Nuclear Information System (INIS)

    Waeckelgaard, E.; Karlsson, E.; Lindgren, B.; Mayer, A.

    1987-04-01

    We have investigated the ferromagnetic state of the cubic intermetallic compounds GdAl 2 and DyAl 2 with the 140 Ce nuclei using DPAC. The local fields of Ce are for the lowest measured temperatures B eff (30 K) = 54(2) T for GdAl 2 and B eff (12.5 K) = 27(1) T for DyAl 2 which are considerably lower than the hyperfine field measured for a free Ce ion (183 T). By introducing a crystal field, of cubic symmetry, a lower hyperfine field is obtained which is in quantitative agreement with the local field of Ce in GdAl 2 . For DyAl 2 an additional effect, represented by a non-magnetic level below the lowest magnetic level, may explain a further reduction of the hyperfine field. Two models relating to a Kondo non-magnetic state of Ce are discussed. Spin relaxation in the paramagnetic state are also studied and compared with observations of the same systems measured with μSR. (authors)

  17. Assessing the effects of subject motion on T2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators.

    Science.gov (United States)

    Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar

    2017-12-01

    Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Enhanced 29Si spin-lattice relaxation and observation of three-dimensional lattice connectivity in zeolites by two-dimensional 29Si MASS NMR

    International Nuclear Information System (INIS)

    Sivadinarayana, C.; Choudhary, V.R.; Ganapathy, S.

    1994-01-01

    It is shown that considerable sensitivity enhancement is achieved in the 29 Si magic angle sample spinning (MASS) NMR spectra of highly siliceous zeolites by pre treating the material with oxygen. The presence of adsorbed molecular oxygen in zeolite channels promotes an efficient 29 Si spin-lattice relaxation via a paramagnetic interaction between the lattice 29 Si T-site and the adsorbed oxygen on zeolite channels. This affords an efficient 2-D data collection and leads to increased sensitivity. The utility of this method is demonstrated in a two-dimensional COSY-45 NMR experiment of a high silica zeolite ZSM-5. (author). 20 refs., 3 figs., 1 tab

  19. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe{sub 2}O{sub 3} nanoparticle system

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, V.; Perovic, M., E-mail: mara.perovic@vinca.rs; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V. [University of Belgrade, Condensed Matter Physics Laboratory, Institute of Nuclear Sciences Vinca (Serbia)

    2015-03-15

    Spherical γ-Fe{sub 2}O{sub 3} nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe{sub 2}O{sub 3} nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  20. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    Science.gov (United States)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  1. Muon spin rotation studies of electronic excitations and magnetism in the vortex cores of superconductors

    International Nuclear Information System (INIS)

    Sonier, J E

    2007-01-01

    The focus of this paper is on recent progress in muon spin rotation (μSR) studies of the vortex cores in type-II superconductors. By comparison of μSR measurements of the vortex core size in a variety of materials with results from techniques that directly probe electronic states, the effect of delocalized quasiparticles on the spatial variation of field in a lattice of interacting vortices has been determined for both single-band and multi-band superconductors. These studies demonstrate the remarkable accuracy of what some still consider an exotic technique. In recent years μSR has also been used to search for magnetism in and around the vortex cores of high-temperature superconductors. As a local probe μSR is specially suited for detecting static or quasistatic magnetism having short-range or random spatial correlations. As discussed in this review, μSR experiments support a generic phase diagram of competing superconducting and magnetic order parameters, characterized by a quantum phase transition to a state where the competing order is spatially nonuniform

  2. The one-parameter subgroup of rotations generated by spin transformations in three-dimensional real space

    International Nuclear Information System (INIS)

    Gazoya, E.D.K.; Prempeh, E.; Banini, G.K.

    2015-01-01

    The relationship between the spin transformations of the special linear group of order 2, SL (2, C) and the aggregate SO(3) of the three-dimensional pure rotations when considered as a group in itself (and not as a subgroup of the Lorentz group), is investigated. It is shown, by the spinor map X - → AXA ct which is all action of SL(2. C) on the space of Hermitian matrices, that the one- parameter subgroup of rotations generated are precisely those of angles which are multiples 2π. (au)

  3. Geometric Magnetic Frustration in Li3Mg2OsO6 Studied with Muon Spin Relaxation

    Science.gov (United States)

    Carlo, J. P.; Derakhshan, S.; Greedan, J. E.

    Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A5BO6, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li3Mg2OsO6 using muon spin relaxation (μSR), a highly sensitive local probe of magnetism. Previous studies of this family included Li5OsO6, which exhibits AF order below 50K with minimal evidence for frustration, and Li4MgReO6, which exhibits glassy magnetism. Li3Mg2RuO6, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, Li3Mg2OsO6 (5d3 vs. 4d3) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration. Financial support from the Research Corporation for Science Advancement.

  4. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    Science.gov (United States)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  5. Design and Simulation of a Spin Rotator for Longitudinal Field Measurements in the Low Energy Muons Spectrometer

    Science.gov (United States)

    Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.

    We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.

  6. Off-centre dynamic Jahn-Teller effect studied by electron spin relaxation of Cu2+ ions in SrF2 crystal

    International Nuclear Information System (INIS)

    Hoffmann, S.K.

    2000-01-01

    Temperature cw-EPR and pulsed EPR electron spin echo experiments were performed for a low concentration of Cu 2+ ions in cubic SrF 2 crystals. The well resolved EPR spectrum at low temperatures (below 30 K) with parameters g parallel = 2.493, g perpendicular = 2.083, A parallel = 121, A perpendicular = 8.7, A parallel ( 19 F) = 135, A parallel ( 19 F) = 33.0 (A-values in 10 -4 cm -1 ) is transformed continuously into a single broad line above 225 K on heating, due to the g-factor shift and EPR line broadening. These data along with the angular variation EPR data are described in terms of a pseudo-Jahn-Teller effect of (T 2g +A 2u )x(a 1g +e g +t 1u ) type producing six off-centre positions of the Cu 2+ ion in the fluorine cube. Above 30 K a two-step averaging g -factor process occurs and is governed by vibronic dynamics between potential wells of the off-centre positions. This dynamics governs the electron spin relaxation in the whole temperature range. The electron spin-lattice relaxation rate 1/T 1 grows rapidly by six orders of magnitude in the temperature range 30-100 K and is determined by the Orbach-type process with excitations to two excited vibronic levels of energy 83 and 174 cm -1 . For higher temperatures the relaxation is dominated by overbarrier jumps leading to the isotropic EPR spectrum above 225 K. The phase memory time T M has the rigid lattice value 3.5 μs determined by nuclear spectral diffusion and its temperature variation is governed by the vibronic dynamics indicating that the excitations between vibronic levels produce a dephasing of the electron spin precessional motion. (author)

  7. Thermoelectric effects and spin injection into superconductors with exchange field

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, Tero [Dept. Phys., Univ. Jyvaeskylae (Finland); Silaev, Mihail [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Dept. Theor. Physics, KTH, Stockholm (Sweden); Virtanen, Pauli [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Giazotto, Francesco [NEST CNR-INFM and SNS Pisa (Italy); Ozaeta, Asier; Bergeret, Sebastian [CFM-CSIC and DIPC, San Sebastian (Spain)

    2015-07-01

    When a thin superconducting film is exposed to a longitudinal magnetic field or is in proximity to a ferromagnet, an exchange field separating the spin bands emerges in it. For low enough exchange fields superconductivity survives, but its response to external driving is strongly modified. In my talk I will show how at linear response such systems exhibit very strong thermoelectric response with an almost ideal efficiency. For strong driving, this effect creates a spin accumulation that can only relax via thermalization, and therefore at low temperatures has a very long range. Therefore our work explains recent observations of the long-range spin accumulation in spin-split superconductors. When injecting spin from injectors with non-collinear magnetization compared to the exchange field, the spins start to rotate around the latter. I will describe how superconductivity modifies this spin Hanle effect so that the resulting nonlocal magnetoresistance depends on the details of spin relaxation, therefore allowing for probing them.

  8. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  10. Tuning of the hole spin relaxation time in single self-assembled In{sub 1−x}Ga{sub x}As/GaAs quantum dots by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hai; Guo, Guang-Can; He, Lixin, E-mail: helx@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2014-11-28

    We investigate the electric field tuning of the phonon-assisted hole spin relaxation in single self-assembled In{sub 1−x}Ga{sub x}As/GaAs quantum dots (QDs), using an atomistic empirical pseudopotential method. We find that the electric field along the growth direction can tune the hole spin relaxation time for more than one order of magnitude. The electric field can prolong or shorten the hole spin lifetime and the tuning shows an asymmetry in terms of the field direction. The asymmetry is more pronounced for the taller dot. The results show that the electric field is an effective way to tune the hole spin-relaxation in self-assembled QDs.

  11. $^{11}$B and $^{27}$Al NMR spin-lattice relaxation and Knight shift study of Mg$_{1-x}$Al$_x$B$_2$. Evidence for anisotropic Fermi surface

    OpenAIRE

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-01-01

    We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...

  12. Competition/coexistence of magnetism and superconductivity in iron pnictides probed by muon spin rotation

    International Nuclear Information System (INIS)

    Takeshita, Soshi; Kadono, Ryosuke

    2009-01-01

    The presence of macroscopic phase separation into superconducting and magnetic phases in LaFeAsO 1-x F x and CaFe 1-x Co x AsF is demonstrated by muon spin rotation (μSR) measurement across their phase boundaries (x=0.06 for LaFeAsO 1-x F x and x=0.075-0.15 for CaFe 1-x Co x AsF). In LaFeAsO 0.94 F 0.06 , both magnetism and superconductivity develop simultaneously below a common critical temperature, T m ≅T c ≅18 K, where the magnetism is characterized by strong randomness. A similar, but more distinct segregation of these two phases is observed in CaFe 1-x Co x AsF, where the magnetic phase retains T m close to that of the parent compound (T c m ≅80-120 K) and the superconducting volume fraction is mostly proportional to the Co content x. The close relationship between magnetism and superconductivity is discussed based on these experimental observations. Concerning the superconducting phase, an assessment is made on the anisotropy of the order parameter in the superconducting state of LaFeAsO 1-x F x , CaFe 1-x Co x AsF and Ba 1-x K x Fe 2 As 2 (x=0.4) based on the temperature dependence of superfluid density [n s (T)] measured by μSR. The gap parameter, 2Δ/k B T c , determined from n s (T) exhibits a tendency that values in the hole-doped pnictides (Ba 1-x K x Fe 2 As 2 ) are much greater than those in electron-doped ones (LaFeAsO 1-x F x and CaFe 1-x Co x AsF), suggesting a difference in the coupling to bosons mediating the Cooper pairs between relevant d electron bands.

  13. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  14. A new parallel algorithm for simulation of spin glasses on scales of space-time periods of external fields with consideration of relaxation effects

    International Nuclear Information System (INIS)

    Gevorkyan, A.S.; Abajyan, H.G.

    2011-01-01

    We have investigated the statistical properties of an ensemble of disordered 1D spatial spin chains (SSCs) of finite length, placed in an external field, with consideration of relaxation effects. The short-range interaction complex-classical Hamiltonian was first used for solving this problem. A system of recurrent equations is obtained on the nodes of the spin-chain lattice. An efficient mathematical algorithm is developed on the basis of these equations with consideration of the advanced Sylvester conditions which allow step by step construct a huge number of stable spin chains in parallel. The distribution functions of different parameters of spin-glass system are constructed from the first principles of the complex classical mechanics by analyzing the calculation results of the 1D SSCs ensemble. It is shown that the behavior of the parameter distributions is quite different depending on the external fields. The energy ensembles and constants of spin-spin interactions are changed smoothly depending on the external field in the limit of statistical equilibrium, while some of them such as the mean value of polarizations of ensemble and parameters of its orderings are frustrated. We have also studied some critical properties of the ensemble of such catastrophes in the Clausius-Mossotti equation depending on the value of the external field. We have shown that the generalized complex-classical approach excludes these catastrophes allowing one to organize continuous parallel computing on the whole region of values of the external field including critical points. A new representation of the partition function based on these investigations is suggested. As opposed to usual definition, this function is a complex one and its derivatives are everywhere defined, including critical points

  15. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    International Nuclear Information System (INIS)

    SivaRanjan, Uppala; Ramachandran, Ramesh

    2014-01-01

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R 2 ) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R 2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR

  16. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)

    2014-02-07

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.

  17. Relaxation-compensated difference spin diffusion NMR for detecting {sup 13}C–{sup 13}C long-range correlations in proteins and polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tuo; Williams, Jonathan K. [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus [Brandeis University, Department of Chemistry (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-02-15

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly {sup 13}C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular {sup 13}C–{sup 13}C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D {sup 1}H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for {sup 13}C T{sub 1} relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T{sub 1} relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T{sub 1} relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter

  18. Relaxation-compensated difference spin diffusion NMR for detecting 13C–13C long-range correlations in proteins and polysaccharides

    International Nuclear Information System (INIS)

    Wang, Tuo; Williams, Jonathan K.; Schmidt-Rohr, Klaus; Hong, Mei

    2015-01-01

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13 C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13 C– 13 C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1 H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13 C T 1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T 1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T 1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks

  19. The ideal relativistic rotating gas as a perfect fluid with spin

    International Nuclear Information System (INIS)

    Becattini, F.; Tinti, L.

    2010-01-01

    We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f(x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet-Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term -(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.

  20. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  1. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  2. Complex methyl groups dynamics in [(CH3)4P]3Sb2Br9 (PBA) from low to high temperatures by proton spin-lattice relaxation and narrowing of proton NMR spectrum.

    Science.gov (United States)

    Latanowicz, L; Medycki, W; Jakubas, R

    2009-11-01

    Molecular dynamics of a polycrystalline sample of [(CH(3))(4)P](3)Sb(2)Br(9) (PBA) has been studied on the basis of the T(1) (24.7 MHz) relaxation time measurement, the proton second moment of NMR and the earlier published T(1) (90 MHz) relaxation times. The study was performed in a wide range of temperatures (30-337 K). The tunnel splitting omega(T) of the methyl groups was estimated as of low frequency (from kHz to few MHz). The proton spin pairs of the methyl group are known to perform a complex internal motion being a resultant of four components. Three of them involve mass transportation over and through the potential barrier and are characterized by the correlation times tau(3) and tau(T)of the jumps over the barrier and tunnel jumps in the threefold potential of the methyl group and tau(iso) the correlation time of isotropic rotation of the whole TMP cation. For tau(3) and tau(iso) the Arrhenius temperature dependence was assumed, while for tau(T)--the Schrödinger one. The fourth motion causes fluctuations of the tunnel splitting frequency, omega(T), and it is related to the lifetime of the methyl spin at the energy level. The correlation function for this fourth motion (tau(omega) correlation time) has been proposed by Müller-Warmuth et al. In this paper a formula for the correlation function and spectral density of the complex motion made of the above-mentioned four components was derived and used in interpretation of the T(1) relaxation time. The second moment of proton NMR line at temperatures below 50K is four times lower than its value for the rigid structure. The three components of the internal motion characterized by tau(T), tau(H), and tau(iso) were proved to reduce the second moment of the NMR line. The tunnel jumps of the methyl group reduce M(2) at almost 0K, the classical jumps over the barrier reduce M(2) in the vicinity of 50K, while the isotropic motion near 150K. Results of the study on the dynamics of CH(3) groups of TMP cation based on

  3. Classical and statistical mechanics of celestial-scale spinning strings: Rotating space elevators

    Science.gov (United States)

    Golubović, L.; Knudsen, S.

    2009-05-01

    We introduce novel and unique class of dynamical systems, Rotating Space Elevators (RSE). The RSEs are multiply rotating systems of strings reaching into outer space. Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. The RSEs exhibit interesting nonlinear dynamics and statistical physics phenomena.

  4. Quantitative rotating frame relaxometry methods in MRI.

    Science.gov (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  6. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  7. Toward Monte Carlo simulation of general cases of static muon spin relaxation in disordered magnetic materials: long-range magnetic order in alloys

    International Nuclear Information System (INIS)

    Noakes, D.R.

    2001-01-01

    Monte Carlo simulations of zero-field (ZF) muon spin relaxation (μSR) functions generated by long-range-ordered states with disorder are presented, for the completely static limit. Understanding of this is necessary before Monte Carlo simulation of the effect of short-range magnetic ordering on μSR in spin glasses can begin. Alloy disorder, controlled by the magnetic ion concentration parameter f m , and partial ordering of each moment, controlled by the order parameter f o , are considered. Qualitatively different behavior is seen depending on whether the dense moment, perfect-order limit ( f m =1, f o =1) field at the muon site is non-zero, or cancels (as can happen in high-symmetry materials). Around the edges of the two-dimensional ( f m ,f o ) parameter space, four limit cases with qualitatively different behavior are identified: (A) f o →0, the random frozen spin glass for arbitrary magnetic ion concentration; (B) f o →1, nearly perfect magnetic ordering in a alloy of arbitrary magnetic ion concentration; (C) f m →0, magnetic order developing (as f o increases) in a dilute magnetic alloy; (D) f m →1, magnetic order developing (as f o increases) in a dense magnetic material. Case A was discussed in a previous publication. The results for case D answer the question of how the Gaussian Kubo-Toyabe relaxation function for perfect disorder develops into an oscillating function as magnetic order develops in a material. Case C indicates that the effects of magnetic ordering in the dilute moment limit produce only subtle effects in ZF-μSR spectra that would be difficult to unambiguously identify as due to ordering in a real-world experiment. Case B generates complicated multi-frequency behavior

  8. Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2018-06-01

    New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8-10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.

  9. Changes in the Earth’s Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Directory of Open Access Journals (Sweden)

    Sung-Ho Na

    2016-12-01

    Full Text Available The atmosphere strongly affects the Earth’s spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i the Earth orientation parameter and ii the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth’s spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth’s pole has been observed. The change in the Earth’s inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  10. Rotation and solvation of ammonium ion

    International Nuclear Information System (INIS)

    Perrin, C.L.; Gipe, R.K.

    1987-01-01

    From nitrogen-15 spin-lattice relaxation times and nuclear Overhauser enhancements, the rotational correlations time tau/sub c/ for 15 NH 4 + was determined in s series of solvents. Values of tau/sub c/ range from 0.46 to 20 picoseconds. The solvent dependent of tau/sub c/ cannot be explained in terms of solvent polarity, molecular dipole moment, solvent basicity, solvent dielectric relaxation, or solvent viscosity. The rapid rotation and the variation with solvent can be accounted for by a model that involves hydrogen bonding of an NH proton to more than one solvent molecule in a disordered solvation environment. 25 references, 1 table

  11. Tuning the probe location on zwitterionic micellar system with variation of pH and addition of surfactants with different alkyl chains: solvent and rotational relaxation studies.

    Science.gov (United States)

    Banerjee, Chiranjib; Mandal, Sarthak; Ghosh, Surajit; Rao, Vishal Govind; Sarkar, Nilmoni

    2012-09-13

    In this manuscript, we have modulated the location of an anionic probe, Coumarin-343 (C-343) in a zwitterionic (N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16)) micellar system by three different approaches. The effect of addition of the surfactant sodium dodecyl sulfate (SDS) and the room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium octylsulfate (EmimOs) and N,N-dimethylethanol hexanoate (DAH), to the micellar solution has been studied. The effect of pH variation has been studied as well using solvent and rotational measurements. Migration of the anionic probe, C-343, from the palisade layer of SB-16 micelle to the bulk water has been observed to varying extents with the addition of SDS and EmimOs. The effect is much more pronounced in the presence of SDS and can be ascribed to the presence of the long alkyl (dodecyl) chain on SDS which can easily orient itself and fuse inside the SB-16 micelle and facilitate the observed migration of the probe molecule. This phenomenon is confirmed by faster solvation and rotational relaxation of the investigated probe molecule. The analogous fusion process is difficult in case of EmimOs and DAH because of their comparatively smaller alkyl (octyl and hexanoate) chain. However, the direction of C-343 migration is reversed with the decrease of pH of the SB-16 micellar medium. An increase in the average solvation and rotational relaxation time of the probe in acidic medium has been observed. Since experimental conditions are maintained such that the probe molecules and the zwitterionic SB-16 micelles remain oppositely charged, the observed results can be attributed to the increased electrostatic interaction (attractive) between them. Temperature dependent study also supports this finding.

  12. Correlation and disorder-enhanced nematic spin response in superconductors with weakly broken rotational symmetry

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.

    2012-01-01

    Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...

  13. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei; Estudo da interacao do poliisobutileno com parafinas por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  14. Magnetism of unconventional nanoscaled materials. An X-ray circular dichroism and muon spin rotation study

    International Nuclear Information System (INIS)

    Tietze, Thomas Hermann

    2014-01-01

    significant shape dependence was observed. This part of the thesis provides a microscopic understanding of the electronic and magnetic properties of Ni nanocluster on graphene and the cluster/graphene interaction. The resulting strong change in the Ni d states is very important concerning the choice of suitable materials for graphene based spintronic devices. The second part of this thesis is dedicated to the indirect influence of the nanoparticle size on the magnetic properties of an oxide system. In particular the origin of ferromagnetism in actual nonmagnetic ZnO is discussed. The reason for ferromagnetism in ZnO depends strongly on its microscopic properties. Nanocrystalline samples with adequate small grains are mandatory. The key parameter is the so called specific grain boundary area which is defined as ratio of grain surface to grain volume. If this value exceeds a certain threshold limit, ZnO can become ferromagnetic even without doping atoms. Here the ferromagnetic coupling is suggested to occur within the grain boundaries itself. A direct proof of this hypothesis is difficult. Measurement methods like SQUID do not provide information on the microscopic origin of the sample magnetization. Therefore, this problem was addressed using low energy muon spin rotation (μSR). Here, the magnetic moment of the muon is utilized as a local magnetic probe. Three different sample systems were investigated, varying the respective grain size. Two nanograined samples with an average grain size of 31 nm and 65 nm were compared to a nonmagnetic reference ZnO single crystal. A detailed TEM analysis of the grain size distribution showed that in both nanograined samples a significant fraction of grains is smaller than the threshold condition. SQUID and μSR measurements show a clear relation between magnetization respectively magnetic volume fraction and the sample volume occupied by grain boundaries. For larger grain boundary volume a larger saturation magnetization and μSR related

  15. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    Indian Academy of Sciences (India)

    PACS No. 21.60.−n. 1. Introduction. Superdeformed (SD) nuclei are one of the most challenging and ... like A ∼ 60, 80, 130, 150 and 190 [2,3]. ..... work and the research is progressing to give systematic features of rotational bands of SD.

  16. Electron spin-lattice relaxation mechanisms of radiation produced trapped electrons and hydrogen atoms in aqueous and organic glassy matrices. Modulation of electron nuclear dipolar interaction by tunnelling modes in a glassy matrix. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, M K; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry

    1977-01-01

    The spin lattice relaxation of trapped electrons in aqueous and organic glasses and trapped hydrogen atoms in phosphoric acid glass has been directly studied as a function of temperature by the saturation recovery method. Below 50 to 100 K, the major spin lattice relaxation mechanism involves modulation of the electron nuclear dipolar (END) interaction with nuclei in the radical's environment by tunnelling of those nuclei between two or more positions. This relaxation mechanism occurs with high efficiency and has a characteristic linear temperature dependence. The tunnelling nuclei around trapped electrons do not seem to involve the nearest neighbor nuclei which are oriented by the electron in the process of solvation. Instead the tunnelling nuclei typically appear to be next nearest neighbors to the trapped electron. The identities of the tunnelling nuclei have been deduced by isotopic substitution and are attributed to: Na in 10 mol dm/sup -3/ NaOH aqueous glass, ethyl protons in ethanol glass, methyl protons in methanol glass and methyl protons in MTHF glass. For trapped hydrogen atoms in phosphoric acid, the phosphorus nuclei appear to be the effective tunnelling nuclei. Below approximately 10 K the spin lattice relaxation is dominated by a temperature independent cross relaxation term for H atoms in phosphoric acid glass and for electrons in 10 mol dm/sup -3/ NaOH aqueous glass, but not for electrons in organic glasses. This is compared with recent electron-electron double resonance studies of cross relaxation in these glasses. The spin lattice relaxation of O/sup -/ formed in 10 mol dm/sup -3/ NaOH aqueous glass was also studied and found to be mainly dominated by a Raman process with an effective Debye temperature of about 100 K.

  17. In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer

    International Nuclear Information System (INIS)

    Fang Jian-Cheng; Wang Tao; Li Yang; Cai Hong-Wei; Zhang Hong

    2015-01-01

    A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam’s direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell’s transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium’s D1 line. Furthermore, the residual magnetic fields are measured with σ + - and σ – -polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. (paper)

  18. Determination of proton-nucleon analyzing powers and spin-rotation-depolarization parameters at 500 MeV

    International Nuclear Information System (INIS)

    Marshall, J.A.; Barlett, M.L.; Fergerson, R.W.; Hoffmann, G.W.; Milner, E.C.; Ray, L.; Amann, J.F.; Bonner, B.E.; McClelland, J.B.

    1986-01-01

    500 MeV p-arrow-right+p elastic and quasielastic, and p-arrow-right+n quasielastic, analyzing powers (A/sub y/) and spin-rotation-depolarization parameters (D/sub S//sub S/, D/sub S//sub L/, D/sub L//sub S/, D/sub L//sub L/, D/sub N//sub N/) were determined for center-of-momentum angular ranges 6.8 0 -55.4 0 (elastic) and 22.4 0 -55.4 0 (quasielastic); liquid hydrogen and deuterium targets were used. The p-arrow-right+p elastic and quasielastic results are in good agreement; both the p-arrow-right+p and p-arrow-right+n parameters are well described by current phase shift solutions

  19. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    Science.gov (United States)

    Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.

    2018-03-01

    The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.

  20. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    Science.gov (United States)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  1. Perturbation of longitudinal relaxation rate in rotating frame (PLRF) analysis for quantification of chemical exchange saturation transfer signal in a transient state.

    Science.gov (United States)

    Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong

    2017-11-01

    To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices (  ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med 78:1711-1723, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Probing spin dynamics and quantum relaxation in Li Y0.998 Ho0.002 F4 via 19F NMR

    Science.gov (United States)

    Graf, M. J.; Lascialfari, A.; Borsa, F.; Tkachuk, A. M.; Barbara, B.

    2006-01-01

    We report measurements of F19 nuclear spin-lattice relaxation 1/T1 as a function of temperature and external magnetic field in a LiY0.998Ho0.002F4 single crystal, a single-ion magnet exhibiting interesting quantum effects. The F19 1/T1 is found to depend on the coupling with the diluted rare-earth (RE) moments, making it an effective probe of the rare-earth spin dynamics. The results for 1/T1 show a behavior similar to that observed in molecular nanomagnets, a result which we attribute to the discreteness of the energy levels in both cases. At intermediate temperatures the lifetime broadening of the crystal field split RE magnetic levels follows a T3 power law. At low temperature the field dependence of 1/T1 shows peaks in correspondence to the critical magnetic fields for energy level crossings (LC). A key result of this study is that the broadening of the levels at LC is found to become extremely small at low temperatures, about 1.7mT , a value which is comparable to the weak dipolar fields at the RE lattice positions. Thus, unlike the molecular magnets, decoherence effects are strongly suppressed, and it may be possible to measure directly the level repulsions at avoided level crossings.

  3. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  4. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  5. Spin transport in non-inertial frame

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2014-09-01

    The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin–orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the k{sup →}.p{sup →} method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

  6. Nuclear spin phonon relaxation by Raman process in Na{sub 3}H(SO{sub 4}){sub 2} single crystals with the electric-quadrupole-type interaction using {sup 1}H and {sup 23}Na NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ae Ran [Department of Science Education, Jeonju University, Jeonju 560-759, Chonbuk (Korea, Republic of)], E-mail: aeranlim@hanmail.net; Shin, Chang Woo [Solid State Analysis Team, Korea Basic Science Institute, Daegu 702-701 (Korea, Republic of)

    2008-11-30

    Successive phase transitions in a Na{sub 3}H(SO{sub 4}){sub 2} single crystal were found at 296, 513, and 533 K. To investigate the mechanism of the phase transition at 296 K, the {sup 1}H and {sup 23}Na spin-lattice relaxation time and the spin-spin relaxation time of Na{sub 3}H(SO{sub 4}){sub 2} were measured near the phase transition temperature using a FT NMR spectrometer. The spin-lattice relaxation time, T{sub 1}, for {sup 1}H in Na{sub 3}H(SO{sub 4}){sub 2} crystals exhibits a minimum below T{sub C1} (=296 K) indicating the presence of distinct molecular motion governed by the Bloembergen-Purcell-Pound (BPP) theory. Although the results for the {sup 1}H and {sup 23}Na relaxation times provide no evidence of the phase transition at T{sub C1}, the separation of the {sup 23}Na resonance lines changes abruptly at T{sub C1}. The phase transition at 296 K produces a change in the separation of the Na resonance line that is associated with a change in the atomic positions in the vicinity of the Na ions. Also, the nuclear spin-lattice relaxation process in Na{sub 3}H(SO{sub 4}){sub 2} crystals with the electric-quadrupole-type interaction proceed via Raman process. These results are compared with those obtained for other M{sub 3}H(SO{sub 4}){sub 2} (M=K, Rb, and Cs) crystals, which have similar hydrogen-bonded structures.

  7. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  8. F19 relaxation in non-magnetic hexafluorides

    International Nuclear Information System (INIS)

    Rigny, P.

    1969-01-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr

  9. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  10. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  11. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    Science.gov (United States)

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  12. Effect of thermal annealing on electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Harasawa, Ryo; Yasue, Yuya; Aritake, Takanori; Jiang, Canyu; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ji, Lian; Lu, Shulong [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou (China)

    2016-08-15

    The effect of thermal annealing on the electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  13. Effect of thermal annealing on electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  14. Combined Fat Imaging/Look Locker for mapping of lipid spin-lattice (T1) relaxation time

    Science.gov (United States)

    Jihyun Park, Annie; Yung, Andrew; Kozlowski, Piotr; Reinsberg, Stefan

    2012-10-01

    Tumor hypoxia is a main problem arising in the treatment of cancer due to its resistance to cytotoxic therapy such as radiation and chemotherapy, and selection for more aggressive tumor phenotypes. Attempts to improve and quantify tumor oxygenation are in development and tools to assess the success of such schemes are required. Monitoring oxygen level with MRI using T1 based method (where oxygen acts as T1 shortening agent) is a dynamic and noninvasive way to study tumor characteristics. The method's sensitivity to oxygen is higher in lipids than in water due to higher oxygen solubility in lipid. Our study aims to develop a time-efficient method to spatially map T1 of fat inside the tumor. We are combining two techniques: Fat/Water imaging and Look Locker (a rapid T1 measurement technique). Fat/Water Imaging is done with either Dixon or Direct Phase Encoding (DPE) method. The combination of these techniques poses new challenges that are tackled using spin dynamics simulations as well as experiments in vitro and in vivo.

  15. Measurements of the spin rotation parameter R in high energy elastic scattering and helicity amplitudes at Serpukhov energies

    International Nuclear Information System (INIS)

    Pierrard, J.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Gaidot, A.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The spin rotation parameter R in pp and π + p elastic scattering at 45GeV/c has been measured at the Serpukhov accelerator, for /t/ ranging from 0.2 to 0.5(GeV/c) 2 . The results are presented, together with previous R measurements at 3.8, 6, 16 and 40GeV/c, and are compared with the predictions of Regge pole models. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues. An s-channel helicity amplitude analysis for pion-nucleon scattering at 40GeV/c is made using all available data. Significant results are obtained for the non flip amplitude in isoscalar exchange and for flip amplitudes on both isovector and isoscalar exchanges. The helicity flip in isoscalar exchange is non negligible. The energy dependence of this amplitude, at 6, 16 and 40GeV/c, is compared with predictions of Regge pole models [fr

  16. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    Science.gov (United States)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  17. Muon-spin-rotation measurements of the London penetration depths in YBa2Cu3O6.97

    International Nuclear Information System (INIS)

    Puempin, B.; Keller, H.; Kuendig, W.; Odermatt, W.; Savic, I.M.; Schneider, J.W.; Simmler, H.; Zimmermann, P.; Kaldis, E.; Rusiecki, S.; Maeno, Y.; Rossel, C.

    1990-01-01

    Muon-spin-rotation (μSR) experiments on a high-quality sintered YBa 2 Cu 3 O x sample [x=6.970(1)] were performed, in order to obtain an accurate knowledge of the magnitude and the temperature dependence of the magnetic penetration depth in this copper oxide superconductor. Special attention was given to the data analysis. In particular, the systematic errors introduced by different types of analyses were estimated. Our results show that the temperature dependence of the effective penetration depth λ eff into the sintered sample is well described by the two-fluid model, with λ eff (0)=155(10) nm. This behavior of λ eff (T) is consistent with conventional s-wave pairing. With the anisotropy ratio γ=λ c /λ ab =5(1) measured in a previous μSR experiment, the penetration depths λ ab (0)=130(10) nm and λ c (0)=500--800 nm (parallel and perpendicular to the CuO 2 planes, respectively) were extracted. Our results are compared with those obtained by other experimental techniques and theoretical predictions

  18. Magneto-optical measurement of spin-lattice relaxation time in KBr and in the Na and Cs halogenetes and Co++ ion magnetic circular dichroism study in KCl

    International Nuclear Information System (INIS)

    Carvalho, R.A.

    1977-01-01

    A magnetic circular dicroism spectrometer is described, which was used in the following experiments: 1) The spin-lattice relaxation time (T 1 ) for F centers in NaCl, NaBr, CsBr and CsCl, at 1,8 0 K in magnetic fields up to 15000Gs is described. The suitability of the theory of ref. (08) to explain the differences observed for halides of differents alkali ions as well as for different structures is verified proves that the hyperfine interaction is the most important mechanism for this kind of centers. It is also verified that, for temperatures between 6 0 K and 15 0 K, T 1 experimental values fits the theory of ref. (21) reasonably well, for F centers in KBr. This theory us an extension of that of ref. (8). 2) The MCD spectra for KCl:Co ++ and Caf 2 :Co ++ in different magnetic fields up to 56KGs, and in temperature range between 1,8 0 K and 4,2 0 K is obtained. The results are consistent with the assumption that Co ++ centers are intersticial in KCl lattice [pt

  19. Anisotropy of the proton spin--lattice relaxation time in the superconducting intercalation complex TaS2(NH3): Structural and bonding implications

    International Nuclear Information System (INIS)

    Gamble, F.R.; Silbernagel, B.G.

    1975-01-01

    The nature of the interaction responsible for the formation of molecular intercalation complexes between Lewis bases and layered transition metal dichalcogenides is not well understood. To some extent this is due to a lack of structural information. A prototype of these complexes is TaS 2 (NH 3 ), in which monolayers of ammonia are inserted between the metallic, superconducting layers of TaS 2 . The compound is crystalline and stoichiometric. Measurement of the anisotropy of the proton spin--lattice relaxation time at 300 degreeK indicates that the molecular threefold symmetry axis is not perpendicular to the disulfide layers as suggested by other workers, but is parallel to the layers. This orientation precludes direct interaction between the molecular lone pair orbital and the transition metal atoms. The interactions governing the structure of this complex may be similar to those obtaining in the intercalation complexes between TaS 2 and a number of substituted pyridines, in which complexes the axis of the lone pair orbital is also parallel to the layers

  20. Muon-spin rotation studies of the flux lattice in {kappa}-(BEDT-TTF){sub 2}Cu(SCN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.L. [Saint Andrews Univ. (United Kingdom). Sch. of Phys. and Astron.; Blundell, S.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Pratt, F.L. [RIKEN-RAL, Didcot (United Kingdom); Pattenden, P.A. [Oxford Univ. (United Kingdom). Dept. of Physics; Forgan, E.M. [Birmingham Univ. (United Kingdom). School of Physics and Space Research; Sasaki, T. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Aegerter, C.M. [Zurich Univ. (Switzerland). Inst. fuer Physik; Hunt, M. [Zurich Univ. (Switzerland). Inst. fuer Physik; Chow, K.H. [Oxford Univ. (United Kingdom). Dept. of Physics; Hayes, W. [Oxford Univ. (United Kingdom). Dept. of Physics; Singleton, J. [Oxford Univ. (United Kingdom). Dept. of Physics; Keller, H. [Zurich Univ. (Switzerland). Inst. fuer Physik; Savic, I.M. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1997-02-15

    Muon spin rotation ({mu}SR) studies of the vortex lattice in the superconductor {kappa}-(BEDT-TTF){sub 2}Cu(SCN){sub 2} have revealed a crossover from a quasi-2d to a vortex-line lattice structure for fields below a characteristic field B{sub cr}. The {mu}SR-lineshapes measured from the vortex-line lattice have allowed a re-evaluation of the in-plane penetration depth. (orig.)

  1. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  2. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  3. Homogenization of Doppler broadening in spin-noise spectroscopy

    Science.gov (United States)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  4. Moessbauer and muon spin relaxation investigation of magnetic and superconducting properties of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp; Bubel, Sirko; Maeter, Hemke; Sarkar, Rajib; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Harnagea, Luminita; Wurmehl, Sabine; Buechner, Bernd [IFW Dresden, Postfach 270016, 01171 Dresden (Germany); Luetkens, Hubertus [Paul-Scherrer-Institut, 5232 Villigen (Switzerland)

    2013-07-01

    The antiferromagnetic parent compound, CaFe{sub 2}As{sub 2}, shows a supression of the spin density wave and a subsequent superconducting state upon partial substitution of Ca by Na. Along the substitution series, superconducting transition temperatures up to ∼35 K were found. We studied the electronic phase diagram of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} using Moessbauer spectroscopy and muon spin relaxation experiments. We have analyzed the data in terms of magnetic and superconducting properties and possible coexistence of superconductivity and spin density wave order. We compared our results with recently published data of Ba{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}.

  5. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    Science.gov (United States)

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  6. Rotary spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, I. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, BP2, Gif-sur-Yvette (France)

    1959-07-01

    Torrey has observed the free precession of nuclear spins around an r-f field H{sub 1}, fixed in a frame rotating at the Larmor frequency ω{sub 0} = γH{sub 0} around a large d-c magnetic field H{sub 0}. He showed that for an H{sub 1}, much larger than inhomogeneity of H{sub 0}, the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H{sub 1}. We report here on a method of overcoming the inhomogeneity of H{sub 1}, by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H{sub 1}, is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302.

  7. Rotary spin echoes

    International Nuclear Information System (INIS)

    Solomon, I.

    1959-01-01

    Torrey has observed the free precession of nuclear spins around an r-f field H 1 , fixed in a frame rotating at the Larmor frequency ω 0 = γH 0 around a large d-c magnetic field H 0 . He showed that for an H 1 , much larger than inhomogeneity of H 0 , the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H 1 . We report here on a method of overcoming the inhomogeneity of H 1 , by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H 1 , is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302

  8. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Johannes J.; Agarwal, Vipin; Hellwagner, Johannes; Lends, Alons; Cadalbert, Riccardo; Meier, Beat H., E-mail: beme@ethz.ch; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2016-12-15

    Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[{sup 2}H,{sup 13}C,{sup 15}N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

  9. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    Science.gov (United States)

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  10. AC relaxation in the iron(8) molecular magnet

    Science.gov (United States)

    Rose, Geordie

    2000-11-01

    We investigate the low energy magnetic relaxation characteristics of the ``iron eight'' (Fe8) molecular magnet. Each molecule in this material contains a cluster of eight Fe 3+ ions surrounded by organic ligands. The molecules arrange themselves into a regular lattice with triclinic symmetry. At sufficiently low energies, the electronic spins of the Fe3+ ions lock together into a ``quantum rotator'' with spin S = 10. We derive a low energy effective Hamiltonian for this system, valid for temperatures less than Tc ~ 360 mK , where Tc is the temperature at which the Fe8 system crosses over into a ``quantum regime'' where relaxation characteristics become temperature independent. We show that in this regime the dominant environmental coupling is to the environmental spin bath in the molecule. We show how to explicitly calculate these couplings, given crystallographic information about the molecule, and do this for Fe8. We use this information to calculate the linewidth, topological decoherence and orthogonality blocking parameters. All of these quantities are shown to exhibit an isotope effect. We demonstrate that orthogonality blocking in Fe8 is significant and suppresses coherent tunneling. We then use our low energy effective Hamiltonian to calculate the single-molecule relaxation rate in the presence of an external magnetic field with both AC and DC components by solving the Landau-Zener problem in the presence of a nuclear spin bath. Both sawtooth and sinusoidal AC fields are analyzed. This single-molecule relaxation rate is then used as input into a master equation in order to take into account the many-molecule nature of the full system. Our results are then compared to quantum regime relaxation experiments performed on the Fe8 system.

  11. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  12. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  13. F{sup 19} relaxation in non-magnetic hexafluorides; Contribution a l'etude de la relaxation des fluors dans les hexafluorures non magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Rigny, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [French] Les proprietes de la resonance magnetique des fluors dans les hexafluorures de molybdene, tungstene et uranium sont influencees par l'existence de deplacements chimiques tres anisotropes. Dans les phases solides, la valeur de cette anisotropie peut etre determinee par l'analyse des formes de raies et son existence permet de montrer que les molecules sont en rotation empechee autour de leur atome central. L'etude du temps de relaxation longitudinal en fonction de la temperature et de la frequence montre que la relaxation est due aux mouvements moleculaires, aux plus hautes temperatures. Les proprietes dynamiques du mouvement sont obtenues par l'etude complete de la relaxation spin-reseau dans le referentiel

  14. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

  15. Electron spin dynamics of Ce.sup.3+./sup. ions in YAG crystals studied by pulse-EPR and pump-probe Faraday rotation

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Belykh, V.V.; Yakovlev, D.R.; Fobbe, F.; Feng, D.H.; Evers, E.; Jastrabík, Lubomír; Dejneka, Alexandr; Bayer, M.

    2017-01-01

    Roč. 96, č. 7 (2017), s. 1-10, č. článku 075160. ISSN 2469-9950 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : electron spin dynamics * Ce 3+ ions * YAG crystals * pulse-EPR * Faraday rotation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  16. Non-Arrhenius conductivity in the fast ionic conductor Li0.5La0.5TiO3: Reconciling spin-lattice and electrical-conductivity relaxations

    International Nuclear Information System (INIS)

    Leon, C.; Santamaria, J.; Paris, M.A.; Sanz, J.; Ibarra, J.; Torres, L.M.

    1997-01-01

    Nuclear magnetic resonance and electrical conductivity measurements are conducted to study the dynamics of the ionic diffusion process in the crystalline ionic conductor Li 0.5 La 0.5 TiO 3 . dc conductivity shows a non-Arrhenius temperature dependence, similar to the one recently reported for some ionic conducting glasses. Spin-lattice and conductivity relaxations are analyzed in the same frequency and temperature range in terms of the non-Arrhenius dependence of the correlation time. Both relaxations are then described using a single correlation function of the form f(t)=exp(-(t/τ) β ), with β=0.4 over the whole temperature range. copyright 1997 The American Physical Society

  17. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  18. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  19. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field

    International Nuclear Information System (INIS)

    Casado-Pascual, Jesus

    2010-01-01

    Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  20. Output-only cyclo-stationary linear-parameter time-varying stochastic subspace identification method for rotating machinery and spinning structures

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2015-02-01

    Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via

  1. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    Science.gov (United States)

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  2. Rotational history of the sun: Spin-down of the interior by circulation currents and fluid instabilities

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1980-01-01

    A number of astronomical observations show that solar-type stars begin the main-sequence stage with surface rotation rates which are much greater than that of the sun. The subsequent decrease in the surface rotation rate is due to the braking torque exerted by magnetically-coupled mass loss (the solar wind). The direct braking action of the solar wind should be confined to the convective envelope so the rotation of the radiative interior remains an open question. After reviewing the relevant astronomical data, we describe how angular momentum could be transported out of the radiative interior by fluid instabilities and estimate the time scales for such transport. This picture is used to construct an evolutionary model of the sun, which predicts the present rotation of the radiative interior. The results of such a model are interpreted in terms of the measured oblateness of the solar surface

  3. Determination of the Rotational Diffusion Tensor of Macromolecules in Solution from NMR Relaxation Data with a Combination of Exact and Approximate Methods—Application to the Determination of Interdomain Orientation in Multidomain Proteins

    Science.gov (United States)

    Ghose, Ranajeet; Fushman, David; Cowburn, David

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.

  4. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins.

    Science.gov (United States)

    Ghose, R; Fushman, D; Cowburn, D

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.

  5. Experimental determination of the spin-rotation coupling constant in the Cs129Xe and K129Xe molecules

    International Nuclear Information System (INIS)

    Wu, Z.; Happer, W.

    1984-01-01

    Since alkali-noble gas van der Waals molecules are involved in the spin transfer process, the physics can be naturally divided into two parts. One of them is to study the formation and break-up rates of the molecules, the chemical equilibrium constant, etc. The other aspect of this problem is to study how the individual angular momenta evolve during the lifetime of the molecule. The experiments described address the second aspect

  6. Multiscale approach to mechanical behavior of polymeric nanocomposites: an application of T1.rho.(13C) relaxation experiments at variable spin-locking fields

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Brus, Jiří

    2014-01-01

    Roč. 59, č. 9 (2014), s. 662-666 ISSN 0032-2725 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : polyamide 6 * nanocomposite * T1ρ(13C) relaxation Subject RIV: JI - Composite Materials Impact factor: 0.633, year: 2014

  7. Muon-Spin Rotation Measurements of the Magnetic Field Dependence of the Vortex-Core Radius and Magnetic Penetration Depth in NbSe2

    International Nuclear Information System (INIS)

    Sonier, J.E.; Kiefl, R.F.; Brewer, J.H.; Chakhalian, J.; Dunsiger, S.R.; MacFarlane, W.A.; Miller, R.I.; Wong, A.; Luke, G.M.; Brill, J.W.

    1997-01-01

    Muon-spin rotation spectroscopy (μSR) has been used to measure the internal magnetic field distribution in NbSe 2 for H c1 c2 . The deduced profiles of the supercurrent density J s indicate that the vortex-core radius ρ 0 in the bulk decreases sharply with increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which ρ 0 depends on the intervortex spacing is used to model this behavior. In addition, we find for the first time that the in-plane magnetic penetration depth λ ab increases linearly with H in the vortex state of a conventional superconductor. copyright 1997 The American Physical Society

  8. Muon spin rotation studies of magnetic order and strong magnetic correlations in magnetic and superconducting systems based on the high Tc copper oxide structures

    International Nuclear Information System (INIS)

    Rudnick, J.J.; Filipkowski, M.E.; Tan, Z.; Chamberland, B.; Niedermayer, C.; Weidinger, A.; Golnik, A.; Simon, R.; Rauer, M.; Recknagel, E.; Gluckler, H.; Baines, C.

    1990-01-01

    In this paper the authors review results of a series of muon spin rotation (μSR) studies extending down to milli Kelvin temperatures in order to explore the existence of magnetic correlations below T C in the La 2-x Sr x CuO 4 system. Evidence is presented for the existence of local magnetic fields thought to originate from Cu electronic moments in both superconducting La 2-x Sr x CuO 4 and in superconducting oxygen deficient YBa 2 Cu 3 O 6.6 . μSR results are also presented for oxygen deficient and superconducting GdBa 2 Cu 3 O 6+x samples. Some discussion of the relevance of these results to recent proposals for pairing mechanisms is presented

  9. Electronic changes induced by μ+ in PrIn3: Muon-spin-rotation observation and crystalline-electric-field model calculation

    International Nuclear Information System (INIS)

    Tashma, T.; Amato, A.; Grayevsky, A.; Gygax, F.N.; Pinkpank, M.; Schenck, A.; Kaplan, N.

    1997-01-01

    Muon spin rotation in a single crystal of PrIn 3 reveals a significant influence of the implanted μ + on the local susceptibility χ 1 of the neighboring Pr +3 ions below ∼60K. It is found that χ 1 differs from χ bulk both in magnitude and in symmetry. All of the changes are accounted for by a model calculation based on crystalline-electric-field theory. The extent of the μ + -induced magnetic changes in the present system of PrIn 3 is rather modest compared to previously reported induced changes in PrNi 5 . However, the model-derived electronic-structure changes around the μ + in PrIn 3 appear remarkably similar to those in PrNi 5 , as is to be expected if the driving perturbation in both systems is primarily Coulombic in nature. copyright 1997 The American Physical Society

  10. Studies of diluted antiferromagnets MnxMg1-xTiO3 with x=0.55 and 0.70 by muon spin relaxation method

    International Nuclear Information System (INIS)

    Fukaya, A.; Ito, A.; Torikai, E.; Nishiyama, K.; Nagamine, K.

    1997-01-01

    Longitudinal fields μSR measurements have been performed in order to probe the spin dynamics in the diluted antiferromagnets Mn x Mg 1-x TiO 3 with x=0.70 and 0.55. In the x=0.70 sample which forms the antiferromagnetic long-range order, the static and fluctuating fields coexist at the muon stopping site below T N . On the other hand, in the x=0.55 sample which shows the spin-glass behavior, the local fields fluctuate rather fast even below T SG . We infer that this drastic change occurs when Mn x Mg 1-x TiO 3 transforms from an antiferromagnetic system to a spin-glass system by dilution

  11. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    Science.gov (United States)

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Behavior of cesium and thallium cations inside a calixarene cavity as probed by nuclear spin relaxation. Evidence of cation-pi interactions in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-08-06

    We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded to a proton, thus subjected essentially to the dipolar interaction with that proton, we could obtain the correlation time describing the reorientation of the CH bond. The rest of this study has demonstrated that it is also the correlation time describing the tumbling of the whole calixarene assembly. From three non-proton-bearing carbons of the aromatic cycles (thus subjected to the chemical shift anisotropy and dipolar mechanisms), we have been able to determine the variation of the chemical shift anisotropy when going from the free to the complex form of the calixarene. These variations not only provide the location of the cation inside the calixarene cavity but also constitute a direct experimental proof of the cation-pi interactions. These results are complemented by cesium and thallium relaxation measurements performed again at two values of the magnetic field B(0). An estimation of the mean distance between the cation and the calixarene protons could be obtained. These measurements have also revealed an important chemical shift anisotropy of thallium upon complexation.

  13. Mechanical generation of spin current

    Directory of Open Access Journals (Sweden)

    Mamoru eMatsuo

    2015-07-01

    Full Text Available We focus the recent results on spin-current generation from mechanical motion such as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is constructed by using the low energy expansion of the generally covariant Dirac equation. Related issues on spin-manipulation by mechanical rotation are also discussed.

  14. The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

    Science.gov (United States)

    Fischle, Andreas; Neff, Patrizio; Raabe, Dierk

    2017-08-01

    The rotation {{polar}}(F) \\in {{SO}}(3) arises as the unique orthogonal factor of the right polar decomposition F = {{polar}}(F) U of a given invertible matrix F \\in {{GL}}^+(3). In the context of nonlinear elasticity Grioli (Boll Un Math Ital 2:252-255, 1940) discovered a geometric variational characterization of {{polar}}(F) as a unique energy-minimizing rotation. In preceding works, we have analyzed a generalization of Grioli's variational approach with weights (material parameters) μ > 0 and μ _c ≥ 0 (Grioli: μ = μ _c). The energy subject to minimization coincides with the Cosserat shear-stretch contribution arising in any geometrically nonlinear, isotropic and quadratic Cosserat continuum model formulated in the deformation gradient field F :=\

  15. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  16. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin ... which changes from a simple exponential to a stretched exponential and a power law by increasing the constraints in the system. ... Current Issue

  17. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY

    International Nuclear Information System (INIS)

    Fushman, David; Cowburn, David

    1999-01-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D-parallel /D-perpendicular -1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D-parallel /D-perpendicular ≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems

  18. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection

    DEFF Research Database (Denmark)

    Weininger, Ulrich; Brath, Ulrika; Modig, Kristofer

    2014-01-01

    Protein dynamics on the microsecond-millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications...... on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because...... they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R 1ρ experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively (13)C...

  19. A molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions

    DEFF Research Database (Denmark)

    De Luca, Sergio; Todd, Billy; Hansen, Jesper Schmidt

    2014-01-01

    by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected...... into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational–rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency...... of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V...

  20. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  1. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  2. Minimization of spin-lattice relaxation time with highly viscous solvents for acquisition of natural abundance nitrogen-15 and silicon-29 nuclear magnetic resonance spectra

    International Nuclear Information System (INIS)

    Bammel, B.P.; Evilia, R.F.

    1982-01-01

    The use of high viscosity solution conditions to decrease T 1 of 15 N and 29 Si nuclei so that natural abundance NMR spectra can be acquired in reasonable times is illustrated. Significant T 1 decreases with negligible increases in peak width are observed. No spectral shifts are observed in any of the cases studied. Highly viscous solutions are produced by using glycerol as a solvent for water-soluble molecules and a mixed solvent consisting of toluene saturated with polystyrene for organic-soluble molecules. The microviscosity in the latter solvent is found to be much less than the observed macroviscosity. Hydrogen bonding of glycerol to the NH 2 of 2-aminopyridine results in a greater than predicted decrease in T 1 for this nitrogen. The technique appears to be a useful alternative to paramagnetic relaxation reagents

  3. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    Science.gov (United States)

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. © The Author(s) 2015.

  4. Estimates of methyl 13C and 1H CSA values (Δσ) in proteins from cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Tugarinov, Vitali; Scheurer, Christoph; Brueschweiler, Rafael; Kay, Lewis E.

    2004-01-01

    Simple pulse schemes are presented for the measurement of methyl 13 C and 1 H CSA values from 1 H- 13 C dipole/ 13 C CSA and 1 H- 13 C dipole/ 1 H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13 C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1 H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1 H CSA in dimethylmalonic acid

  5. Polarons induced electronic transport, dielectric relaxation and magnetodielectric coupling in spin frustrated Ba{sub 2}FeWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pezhumkattil Palakkal, Jasnamol [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Lekshmi, P. Neenu; Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Valant, Matjaz [Materials Research Laboratory, University of Nova Gorica, Nova Gorica 5000 (Slovenia); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Varma, Manoj Raama, E-mail: manoj@niist.res.in [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India)

    2016-04-15

    Highlights: • Ordered double perovskite Ba{sub 2}FeWO{sub 6} synthesized in reducing atmosphere possess a tetragonal I4/m crystal structure with mixed valent Fe/W cations. • Ba{sub 2}FeWO{sub 6} has an antiferromagnetic structure with T{sub N} at 19 K. • Insulating Ba{sub 2}FeWO{sub 6} shows different conducting mechanisms at different temperature regions and dielectric relaxation. • The polarons invoked by the mixed valence state of cations and their disordered arrangements are solely responsible for the various physical phenomena observed in Ba{sub 2}FeWO{sub 6}. - Abstract: Mixed valent double perovskite Ba{sub 2}FeWO{sub 6}, with tetragonal crystal structure, synthesized in a highly controlled reducing atmosphere, shows antiferromagnetic transition at T{sub N} = 19 K. A cluster glass-like transition is observed around 30 K arising from the competing interactions between inhomogeneous magnetic states. The structural distortion leads to the formation of polarons that are not contributing to DC conduction below charge ordering temperature, T{sub CO} = 279 K. Above T{sub CO}, small polarons will start to hop by exploiting thermal energy and participate in the conduction mechanism. The polarons are also responsible for the dielectric relaxor behavior, in which the dielectric relaxation time follows non-linearity in temperature as proposed by Fulcher. The material also exhibits a small room temperature magnetoresistance of 1.7% at 90 kOe. An intrinsic magnetodielectric coupling of ∼4% near room temperature and at lower temperatures, as well as an extrinsic magnetodielectric coupling change from +4% to −6% at around 210 K are reported.

  6. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  7. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Kiminori [Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, Oxford (United Kingdom); Liddell, Paul; Gust, Devens [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604 (United States); Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  8. Measurements of the spin rotation parameterf A in the elastic pion- proton scattering in the D$_{13}$(1700) resonance region

    CERN Document Server

    Alekseev, I G; Beloglasov, Yu A; Budkovsky, P E; Bunyatova, E I; Kanavets, V P; Kovalev, A I; Koroleva, L I; Kruglov, S P; Morozov, B V; Nesterov, V M; Novinsky, D V; Ryltzov, V V; Shchedrov, V A; Sulimov, A D; Sumachev, Yu V; Svirida, D N; Trautman, V Yu; Zhurkin, V V

    2001-01-01

    The spin rotation parameters A and R were measured for the elastic pion-proton scattering by the PNPI-ITEP collaboration in the D/sub 13 /(1700) resonance region. The main goal of the experimental program is to resolve the current partial-wave analyses (PWA) uncertainties. Simultaneously with A and R the polarization parameter P was measured with the purpose to improve the experimental database and estimate systematic errors. The constraint which demands a smooth energy dependence of all pi /sup -/p transverse amplitude zeros in the complex plane together with the new experimental data on the A parameter can lead to the conclusion that the Barrelet branch of "zero trajectories" is chosen improperly in PWA of the Carnegie- Mellon-Lawrence-Berkeley-Laboratory groups at the range of the pion beam momentum near 1.0 GeV/c. The setup included a longitudinally polarized proton target with superconductive magnet, multiwire spark chambers and carbon polarimeter with thick filter. The experiment was performed at the IT...

  9. Emergence of the persistent spin helix in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2008-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH) .2 SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (alpha) and linear Dresselhaus (beta 1), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta 3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta 1. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning alpha and beta 1. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying beta 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics

  10. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Koralek, Jake

    2011-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (α) and linear Dresselhaus (β 1 ), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (β 3 ) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α → β 1 . Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning α and β 1 . Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying β 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  11. The effects of bone on proton NMR relaxation times of surrounding liquids

    Science.gov (United States)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  12. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  13. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  14. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    DEFF Research Database (Denmark)

    Bernhard, C.; Wang, C. N.; Nuccio, L.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsu......Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity....... In the nonsuperconducting samples at 0 demonstrated by μSR at x = 0.055 [P. Marsik et al., Phys. Rev. Lett. 105...

  15. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  16. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  17. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors. Comparison of echo-planar, HASTE, and spin-echo sequences

    International Nuclear Information System (INIS)

    Abe, Yasuko; Yamashita, Yasuyuki; Tang, Yi; Namimoto, Tomohiro; Takahashi, Mutsumasa

    2000-01-01

    The purpose of this study was to evaluate the accuracy of T2 calculation from single shot imaging sequences such as echo-planar imaging (EPI) and half-Fourier single shot turbo spin-echo (HASTE) imaging. For the phantom study, we prepared vials containing different concentrations of agarose, copper sulfate, and nickel chloride. The temperature of the phantom was kept at 22 deg C. MR images were obtained with a 1.5-Tesla superconductive magnet. Spin-echo (SE)-type EPI and HASTE sequences with different TEs were obtained for T2 calculation, and the T2 values were compared with those obtained from the Carr-Purcell-Meiborm-Gill (CPMG) sequence. The clinical study group consisted of 30 consecutive patients referred for MR imaging to characterize focal liver lesions. A total of 40 focal liver lesions were evaluated, including 25 primary or metastatic solid masses and 15 non-solid lesions. Single shot SE-type EPI and HASTE were both performed with TEs of 64 and 90 msec. In the phantom study, the T2 values obtained from both single shot sequences showed significant correlations with those from the CPMG sequence (T2 on EPI vs. T2 on CPMG: r=0.98, p<0.01; T2 on HASTE vs. T2 on CPMG: r=0.99, p<0.01). In the clinical study, mean T2 values for liver calculated from EPI (42 msec) were significantly shorter than those calculated from the HASTE sequence (58 msec) (p<0.001). Mean T2 values for solid tumors were 95 msec with HASTE and 72 msec with EPI, and mean T2 values for non-solid lesions were 128 msec with HASTE and 159 msec with EPI. Although mean T2 values between solid and non-solid lesions were significantly different for both EPI and HASTE sequences (p=0.01 for HASTE, p<0.001 for EPI), the overlap of solid and non-solid lesions was less frequent in EPI than in HASTE. With single shot sequences, it is possible to obtain the T2 values that show excellent correlation with the CPMG sequence. Although both HASTE and EPI are useful to calculate T2 values, EPI appears to be more

  18. Magnetic relaxation in analytical, coordination and bioinorganic chemistry

    International Nuclear Information System (INIS)

    Mikhajlov, O.

    1982-01-01

    Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)

  19. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  20. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.