Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2013-01-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...
Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.
Hansen, J S
2013-09-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.
Theory of spin-lattice relaxation of diffusing light nuclei in glasses
International Nuclear Information System (INIS)
Schirmer, A.; Schirmacher, W.
1988-01-01
NMR data of diffusion-induced spin-lattice relaxation in glasses cannot generally be interpreted in the framework of the classical theory of Bloembergen, Purcell and Pound (BPP). Since it is based on exponential density relaxation, generally bnot found in glasses, the BPP formula must be generalized. Here a combination of standard relaxation theory with a hopping model for diffusion in glasses is present. It is shown that the observed anomaties in the NMR data can be explained as a result of anomalous diffusion. 25 refs.; 1 figure
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Relaxation theory of spin-3/2 Ising system near phase transition temperatures
International Nuclear Information System (INIS)
Canko, Osman; Keskin, Mustafa
2010-01-01
Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)
International Nuclear Information System (INIS)
Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.
2014-01-01
We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C ·+ PF ·− radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical
Directory of Open Access Journals (Sweden)
Manuel Offidani
2018-05-01
Full Text Available We present a unified theoretical framework for the study of spin dynamics and relativistic transport phenomena in disordered two-dimensional Dirac systems with pseudospin-spin coupling. The formalism is applied to the paradigmatic case of graphene with uniform Bychkov-Rashba interaction and shown to capture spin relaxation processes and associated charge-to-spin interconversion phenomena in response to generic external perturbations, including spin density fluctuations and electric fields. A controlled diagrammatic evaluation of the generalized spin susceptibility in the diffusive regime of weak spin-orbit interaction allows us to show that the spin and momentum lifetimes satisfy the standard Dyakonov-Perel relation for both weak (Gaussian and resonant (unitary nonmagnetic disorder. Finally, we demonstrate that the spin relaxation rate can be derived in the zero-frequency limit by exploiting the SU(2 covariant conservation laws for the spin observables. Our results set the stage for a fully quantum-mechanical description of spin relaxation in both pristine graphene samples with weak spin-orbit fields and in graphene heterostructures with enhanced spin-orbital effects currently attracting much attention.
International Nuclear Information System (INIS)
Keskin, Mustafa; Canko, Osman
2005-01-01
The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems
Universal Mechanism of Spin Relaxation in Solids
Chudnovsky, Eugene
2006-03-01
Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).
Anisotropic spin relaxation in graphene
Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.
2008-01-01
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Indian Academy of Sciences (India)
IAS Admin
ments have shown that in some cases the nuclear spin systems may be held in special configurations called .... these methods have been commercialized, and used for clinical trials, in which hyperpolarized NMR is used to .... symmetric under exchange, meaning that exchanging the two nuclei leaves the state unchanged.
Electron spin-lattice relaxation in fractals
International Nuclear Information System (INIS)
Shrivastava, K.N.
1986-08-01
We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)
Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy
2016-04-01
The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.
Cross relaxation in nitroxide spin labels
DEFF Research Database (Denmark)
Marsh, Derek
2016-01-01
Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....
Muon spin relaxation measurements of spin-correlation decay in spin-glass AgMn
Energy Technology Data Exchange (ETDEWEB)
Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E.; Gupta, L.C. (California Univ., Riverside (USA))
1984-01-01
The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin glass temperature in AgMn is found to obey an algebraic form given by (H)sup(..gamma..-1), with ..gamma.. = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as tsup(-..gamma..), in agreement with mean field theories of spin-glass dynamics which yield ..gamma..
Muon spin relaxation measurements of spin-correlation decay in spin-glass AgMn
International Nuclear Information System (INIS)
Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.
1984-01-01
The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin glass temperature in AgMn is found to obey an algebraic form given by (H)sup(γ-1), with γ = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as tsup(-γ), in agreement with mean field theories of spin-glass dynamics which yield γ < approx. 0.5. Near the glass temperature the agreement between the data and theory is not as good. (Auth.)
Spin transport and relaxation in graphene
International Nuclear Information System (INIS)
Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.
2012-01-01
We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for
Spin relaxation in nanowires by hyperfine coupling
International Nuclear Information System (INIS)
Echeverria-Arrondo, C.; Sherman, E.Ya.
2012-01-01
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Abrupt relaxation in high-spin molecules
International Nuclear Information System (INIS)
Chang, C.-R.; Cheng, T.C.
2000-01-01
Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide
International Nuclear Information System (INIS)
Luo Xinjun; Sholl, C.A.
2002-01-01
Two Bloembergen-Purcell-Pound (BPP) models for analysing nuclear spin relaxation data for translational diffusion in disordered systems are compared with Monte Carlo simulations. One model (the a-BPP model, 'a' standing for average) is commonly used for disordered systems and the other (the Cameron-Sholl BPP model) is more rigorously based and can distinguish between site-and barrier-energy disorder. Simulated relaxation data produced using Gaussian distributions of energy disorder are analysed using the models, and the parameters obtained from the fits are compared with the values used for the simulations. It is found that both models can give reasonable fits to the data. Both models also give reasonable agreement with the simulation parameters provided that the standard deviation of the energy distribution for the a-BPP model is interpreted as the average of the site-and barrier-energy standard deviations. Quantitative estimates are given of the accuracy of the parameters from the fits. (author)
Field dependence of the electron spin relaxation in quantum dots.
Calero, Carlos; Chudnovsky, E M; Garanin, D A
2005-10-14
The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.
Electron spin relaxation in cryptochrome-based magnetoreception
DEFF Research Database (Denmark)
Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J
2016-01-01
The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...
Donor-driven spin relaxation in multivalley semiconductors.
Song, Yang; Chalaev, Oleg; Dery, Hanan
2014-10-17
The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices.
Muon spin relaxation in ferromagnets. Pt. 1
International Nuclear Information System (INIS)
Lovesey, S.W.; Karlsson, E.B.
1991-04-01
Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)
Spin-lattice relaxation of individual solid-state spins
Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.
2018-03-01
Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Suppression of Dyakonov-Perel Spin Relaxation in High-Mobility n-GaAs
Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Poletaev, N. K.; Zakharchenya, B. P.; Stinaff, E. A.; Gammon, D.; Bracker, A. S.; Ware, M. E.
2004-11-01
We report a large and unexpected suppression of the free electron spin-relaxation in lightly doped n-GaAs bulk crystals. The spin-relaxation rate shows a weak mobility dependence and saturates at a level 30 times less than that predicted by the Dyakonov-Perel theory. The dynamics of the spin-orbit field differs substantially from the usual scheme: although all the experimental data can be self-consistently interpreted as a precessional spin-relaxation induced by a random spin-orbit field, the correlation time of this random field, surprisingly, is much shorter than, and is independent of, the momentum relaxation time determined from transport measurements.
Spin Relaxation and Manipulation in Spin-orbit Qubits
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Muon spin-relaxation measurements of spin-correlation decay in spin-glass AgMn
International Nuclear Information System (INIS)
Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.
1983-01-01
The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin-glass temperature in AgMn is found to obey an algebraic form given by (H)/sup nu-1/, with nu = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as t - /sup nu/, in agreement with mean field theories of spin-glass dynamics which yield nu less than or equal to 0.5. Near the glass temperature the agreement between the data and theory is not as good
Nuclear spin relaxation by translational diffusion in solids
International Nuclear Information System (INIS)
Barton, W.A.; Sholl, C.A.
1978-01-01
The theory of nuclear spin relaxation by translational diffusion in solids developed in previous papers is applied to two-spin systems and third-nearest-neighbour jump models in FCC crystals. The two-spin systems describe the dipole-dipole interactions between stationary host spins and spins migrating amongst either the tetrahedral or the octahedral interstitial sites. The tetrahedral sites in a FCC crystal form a SC lattice and two models, the symmetric and asymmetric jump models, are considered for third-nearest-neighbour jumps on this lattice. Numerical results for the correlation function relevant for single crystals and polycrystals are presented over the entire temperature range. It is found that the simpler, but unphysical, symmetric jump model is a good approximation to the more complicated asymmetric jump model. (author)
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems
Chang, Zhiwei; Halle, Bertil
2017-08-01
In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft
Spin relaxation through lateral spin transport in heavily doped n -type silicon
Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.
2017-03-01
We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.
Mechanisms of relaxation and spin decoherence in nanomagnets
van Tol, Johan
Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.
Muon spin relaxation in ferromagnetic PdMn
International Nuclear Information System (INIS)
Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.
1983-01-01
Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets
Muon spin relaxation in ferromagnetic PdMn
Energy Technology Data Exchange (ETDEWEB)
Dodds, S.A.; Gist, G.A. (Rice Univ., Houston, TX (USA)); Heffner, R.H.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Mydosh, J.A.; Nieuwenhuys, G.J. (Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.)
1984-01-01
Positive-muon (..mu../sup +/) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at.% Mn (Tsub(c) = 5.8 K). In the paramagnetic state the inhomogeneous ..mu../sup +/ linewidth is proportional to the bulk magnetization. Below Tsub(c) the ..mu../sup +/ linewidth and the width of the ..mu../sup +/ local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets.
Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation
International Nuclear Information System (INIS)
Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.
1990-03-01
The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)
Spin-Spin Cross Relaxation in Single-Molecule Magnets
Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.
2002-10-01
The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.
Spin manipulation and relaxation in spin-orbit qubits
Borhani, Massoud; Hu, Xuedong
2012-03-01
We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Relaxation of coupled nuclear spin systems
International Nuclear Information System (INIS)
Koenigsberger, E.
1985-05-01
The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)
Motional spin relaxation in photoexcited triplet states
International Nuclear Information System (INIS)
Harryvan, D.; Faassen, E. van
1997-01-01
Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)
Theory of electron spin echoes in solids
Asadullina, N Y; Asadullin, Y Y
2002-01-01
We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published resul...
Evidence for power-law spin-correlation decay from muon spin relaxation in AgMn spin-glass
International Nuclear Information System (INIS)
MacLaughlin, D.E.; Gupta, L.C.; Cooke, D.W.; Heffner, R.H.; Leon, M.; Schillaci, M.E.
1983-01-01
Muon spin relaxation measurements have been carried out below the ''glass'' temperature T/sub g/ in AgMn spin-glasses. The muon spin-lattice relaxation rate varies with field H as H/sup -0.46plus-or-minus0.05/ for 0.30< or =T/T/sub g/< or =0.66. This suggests that impurity-spin correlations decay with time as t/sup -nu/, νapprox. =0.54 +- 0.05, in contrast to the more usual exponential decay. The present data therefore agree quantitatively with the prediction νapprox. =(1/2) of mean-field dynamic theories
Relaxations in spin glasses: Similarities and differences from ordinary glasses
International Nuclear Information System (INIS)
Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.
1984-01-01
Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter
Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction
Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.
2010-01-01
We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.
Spin relaxation of iron in mixed state hemoproteins
International Nuclear Information System (INIS)
Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.
1984-01-01
In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt
Cross-relaxation in multiple pulse NQR spin-locking
Energy Technology Data Exchange (ETDEWEB)
Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)
2008-01-15
The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.
Spin-relaxation time in the impurity band of wurtzite semiconductors
Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.
2017-09-01
The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.
Nuclear spin-lattice relaxation in nitroxide spin-label EPR
DEFF Research Database (Denmark)
Marsh, Derek
2016-01-01
that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...
Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A
2012-01-06
We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.
Nuclear spin-lattice relaxation in carbon nanostructures
Energy Technology Data Exchange (ETDEWEB)
Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)
2010-04-15
Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.
Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien
2015-03-01
In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.
Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors
International Nuclear Information System (INIS)
Miah, M Idrish
2008-01-01
We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs
Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au
2008-09-21
We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.
Chang, Zhiwei; Halle, Bertil
2013-10-14
In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft
Monte Carlo simulation of nuclear spin relaxation in disordered system
International Nuclear Information System (INIS)
Luo, X.; Sholl, C.A.
2002-01-01
Full text: Nuclear spin relaxation is a very useful technique for obtaining information about diffusion in solids. The present work is motivated by relaxation experiments on H diffusing in disordered systems such as metallic glasses or quasicrystalline materials. A theory of the spectral density functions of the magnetic dipolar interactions between diffusing spins is required in order to relate the experimental data to diffusional parameters. In simple ordered systems, the spectral density functions are well understood and a simple BPP (exponential correlation function) model is often used to interpret the data. Diffusion in disordered systems involves a distribution of activation energies and the simple extension of the BPP model that has been used traditionally is of doubtful validity. A more rigorously based BPP model has been developed, and this model has recently been applied to H diffusion in a metal quasicrystal. The improved BPP model still, however, involves approximations and the accuracy of the parameters deduced from it is not clear. The present work involves a Monte Carlo simulation of diffusion in disordered systems and the calculation of the spectral density functions and relaxation rates. The simulations use two algorithms (discrete time and continuous time) for the time-development of the system, and correctly incorporate the Fermi-Dirac distribution for equilibrium occupation of sites, as required by the principle of detailed balance and only single site occupancy of sites. The results are compared with the BPP models for some site- and barrier-energy distributions arising from the structural disorder of the system. The improved BPP model is found to give reasonable values for the diffusion and disorder parameters. Quantitative estimates of the errors involved are determined
Relaxation of nuclear spin on holes in semiconductors
International Nuclear Information System (INIS)
Gr'ncharova, E.I.; Perel', V.I.
1977-01-01
The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction
Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction
Alcalde, A. M.; Romano, C. L.; Marques, G. E.
2008-11-01
We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.
Measurements of spin-lattice relaxation time in mixed alkali halide crystals
International Nuclear Information System (INIS)
Tannus, A.
1983-01-01
Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt
Nuclear spin-lattice relaxation in nitroxide spin-label EPR.
Marsh, Derek
2016-11-01
Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots
Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus
2005-01-01
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.
Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains
Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.
2016-10-01
We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.
Spin current relaxation time in thermally evaporated pentacene films
Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji
2017-01-01
The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...
Magnetization relaxation in spin glasses above transition point
International Nuclear Information System (INIS)
Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.
1988-01-01
Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types
Boekema, C.; Brabers, V.A.M.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.
1986-01-01
Zero-field longitudinal muon-spin-relaxation (µSR) experiments have been performed on single crystals of pseudo-brookite (Fe2-xTil+x O 5; x=0.25), an anisotropic spin-glass system. The spinglass temperature (Tg) is determined to be 44.0±0.5K. Above Tg, a distinct exponential muon-spin-relaxation
Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds
Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.
2015-02-01
Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.
Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers
International Nuclear Information System (INIS)
Rostami, Habib; Moghaddam, Ali G; Asgari, Reza
2016-01-01
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Misra, Sushil K.
The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.
Thermally induced magnetic relaxation in square artificial spin ice
Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.
2016-11-01
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Muon spin relaxation by electronic excitations moving in one dimension
International Nuclear Information System (INIS)
Jestaedt, Th.; Sivia, D.S.; Cox, S.F.J.
1997-01-01
The manner in which an electronic spin, executing a linear random walk, e.g. along a polymer chain, depolarizes a muon (or proton) probe spin, is investigated by computer simulation. The essential features of the model are the assumptions of a contact hyperfine interaction with limited range and of loss of coherence between successive encounters. The low dimensionality of the motion is reflected in the shape of the relaxation functions generated, which depart significantly from simple exponentials. Fits to various functional forms are examined for different combinations of hop rate and chain length, hyperfine constant and applied magnetic field
Spin relaxation through Kondo scattering in Cu/Py lateral spin valves
Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.
Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.
Spin chains and string theory.
Kruczenski, Martin
2004-10-15
Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.
Geometrical theory of spin motion
International Nuclear Information System (INIS)
Halpern, L.
1983-01-01
A discussion of the fundamental interrelation of geometry and physical laws with Lie groups leads to a reformulation and heuristic modification of the principle of inertia and the principle of equivalence, which is based on the simple De Sitter group instead of the Poincare group. The resulting law of motion allows a unified formulation for structureless and spinning test particles. A metrical theory of gravitation is constructed with the modified principle, which is structured after the geometry of the manifold of the De Sitter group. The theory is equivalent to a particular Kaluza-Klein theory in ten dimensions with the Lorentz group as gauge group. A restricted version of this theory excludes torsion. It is shown by a reformulation of the energy momentum complex that this version is equivalent to general relativity with a cosmologic term quadratic in the curvature tensor and in which the existence of spinning particle fields is inherent from first principles. The equations of the general theory with torsion are presented and it is shown in a special case how the boundary conditions for the torsion degree of freedom have to be chosen such as to treat orbital and spin angular momenta on an equal footing. The possibility of verification of the resulting anomalous spin-spin interaction is mentioned and a model imposed by the group topology of SO(3, 2) is outlined in which the unexplained discrepancy between the magnitude of the discrete valued coupling constants and the gravitational constant in Kaluza-Klein theories is resolved by the identification of identical fermions as one orbit. The mathematical structure can be adapted to larger groups to include other degrees of freedom. 41 references
Nilsson, Tomas; Halle, Bertil
2012-08-07
The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally
Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields
International Nuclear Information System (INIS)
Lyo, S.K.
1981-01-01
The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate
International Nuclear Information System (INIS)
Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.
2004-01-01
The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived
Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.
2004-05-01
The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15
Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems
Energy Technology Data Exchange (ETDEWEB)
Lueffe, Matthias Clemens
2012-02-10
The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Relaxation and kinetics in scalar field theories
International Nuclear Information System (INIS)
Boyanovsky, D.; Lawrie, I.D.; Lee, D.
1996-01-01
A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society
Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers
Directory of Open Access Journals (Sweden)
Walid Amamou
2016-03-01
Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.
Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen
International Nuclear Information System (INIS)
Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.
1983-01-01
Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50
Muon spin relaxation studies of heavy fermion superconductors
International Nuclear Information System (INIS)
Heffner, R.H.
1993-01-01
This talk will focus recent developments in our understanding of heavy fermion (HF) superconductors and the role that positive muon spin relaxation (μSR) studies have played in helping to elucidate their properties. As illustrations two systems will be discussed: (1) UPd 2 Al 3 , one of the most recently discovered HF superconductors, which also displays coexisting magnetic order and (2) UBe 3 doped with small quantities Of Th substituted for U, which displays an interplay between its superconducting and magnetic ground states, leading to multiple superconducting states
Spin-lattice relaxation in phosphorescent triplet state molecules
International Nuclear Information System (INIS)
Verbeek, P.J.F.
1979-01-01
The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)
Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter
2018-02-01
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.
Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir
2015-01-01
Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum
2017-11-09
Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early
Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor
International Nuclear Information System (INIS)
Kominis, I. K.
2008-01-01
Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks
International Nuclear Information System (INIS)
Furman, G.B.; Panich, A.M.; Goren, S.D.
1998-01-01
The phenomena of spin diffusion and spin lattice relaxation of nuclear dipolar order in solids containing paramagnetic impurities (PI) is considered. We show that at the beginning of the relaxation process the diffusion vanishing regime realizes with non-exponential time dependence, R(t) ∼ exp [- (t/T 1d ) α ], where T 1d ∼ C p -1/α , C p is PI's concentration. For a homogeneous distribution of Pis and nuclear spins, α=Q/6, where Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into q-dimensional subsystems, each containing one PI, yield- ing α= (Q + q) /6. This result coincides with experimental data for CaF 2 doped with 0.8 - 10 -3 ωt % of Mn 2+ , where the non-exponential decay of the dipolar signal with α= 0.83 has been observed [3]. Fitting the experimental data yields a good agreement with T 1d = 66 ms . For another independent check of the obtained results we use dependence of the relaxation time on impurities concentration. In accordance that 1/α=1.2 , we have T 1d ∼ C p -1 '. 2 . Exactly this dependence on impurity concentration of the relaxation time has been found in the experiment. Then the relaxation regime starts as a non-exponential time dependent, proceed asymptotically to an to an exponential function of time, to so called diffusion limited relaxation regime with relaxation time T 1d D is inversely depends on impurities concentration. This kind of relaxation behavior of the dipolar order takes place in the experiment [2]. Using experimental results [2] from this two regime we can estimate the diffusion coefficient of the nuclear dipolar order in CaF 2 , which gives for typical values of impurity concentration C p ∼ 10 18 cm 3 the diffusion coefficient of dipolar order in the interval D ∼ 10 -11 -i- 10 -12 cm 2 /sec which is coincide to the case of Zeeman energy spin diffusion
Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception
Energy Technology Data Exchange (ETDEWEB)
Worster, Susannah; Kattnig, Daniel R.; Hore, P. J., E-mail: peter.hore@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)
2016-07-21
Long-lived spin coherence and rotationally ordered radical pairs have previously been identified as key requirements for the radical pair mechanism of the avian magnetic compass sense. Both criteria are hard to meet in a biological environment, where thermal motion of the radicals creates dynamic disorder and drives efficient spin relaxation. This has long been cited as a major stumbling block of the radical pair hypothesis. Here we combine Redfield relaxation theory with analytical solutions to a rotational diffusion equation to assess the impact of restricted rotational motion of the radicals on the operation of the compass. The effects of such motions are first investigated generally in small, model systems and are then critically examined in the magnetically sensitive flavin-tryptophan radical pair that is formed photochemically in the proposed magnetoreceptor protein, cryptochrome. We conclude that relaxation is slowest when rotational motion of the radicals within the protein is fast and highly constrained; that in a regime of slow relaxation, the motional averaging of hyperfine interactions has the potential to improve the sensitivity of the compass; and that consideration of motional effects can significantly alter the design criteria for an optimal compass. In addition, we demonstrate that motion of the flavin radical is likely to be compatible with its role as a component of a functioning radical-pair compass, whereas the motion of the tryptophan radical is less ideal, unless it is particularly fast.
The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation
Brabers, V.A.M.; Boekema, C.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.
1987-01-01
Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a
Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation
International Nuclear Information System (INIS)
Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A
2006-01-01
The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering
Wang, Zi-Wu; Li, Shu-Shen
2012-07-01
We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.
Bean, Jonathan F.; Clarkson, Robert B.; Helm, Lothar; Moriggi, Loïck; Sherry, A. Dean
2009-01-01
Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd3+ ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd3+, would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties. PMID:18283704
International Nuclear Information System (INIS)
Weber, Christopher P.
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field
Energy Technology Data Exchange (ETDEWEB)
Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.
Spinning particle approach to higher spin field theory
International Nuclear Information System (INIS)
Corradini, Olindo
2011-01-01
We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.
Suppression of Electron Spin Relaxation in Mn-Doped GaAs
Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.
2008-08-01
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
Muon spin relaxation and nonmagnetic Kondo state in PrInAg2
International Nuclear Information System (INIS)
MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.
2000-01-01
Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society
Chudnovsky, Eugene M.
2007-01-01
An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...
Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels
Marsh, Derek
2018-05-01
Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.
Spin relaxation in quantum dots due to electron exchange with leads.
Vorontsov, A B; Vavilov, M G
2008-11-28
We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. A single expression fits the entire current profile and describes the structure of both the conduction peaks and the suppressed ("valley") region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.
Spin-Relaxation Anisotropy in a GaAs Quantum Dot
Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.
2014-01-01
We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit
Dielectric Relaxation of Water: Theory and Experiment
International Nuclear Information System (INIS)
Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj
2010-06-01
We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)
Electron spin relaxation in a transition-metal dichalcogenide quantum dot
Pearce, Alexander J.; Burkard, Guido
2017-06-01
We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.
Experimental comparison of diffusional nuclear magnetic relaxation theories using ZrHsub(1.684)
International Nuclear Information System (INIS)
Korn, C.; Goren, S.
1984-01-01
The spin-lattice relaxation time of hydrogen in ZrHsub(1.684) was measured at a resonance frequency of 16.69 MHz as a function of temperature in a temperature range where the major relaxation mechanism was hydrogen diffusion. This parameter was used to calculate the hydrogen jump frequencies using the theories of Bloembergen, Purcell and Pound (BPP), of Bustard and of Barton and Sholl. A comparison shows that the BPP theory gives results closest to Arrhenius-type behaviour. The diffusional activation energy was found to be 13.3 kcal mol -1 . (Auth.)
Spin Relaxation in GaAs: Importance of Electron-Electron Interactions
Directory of Open Access Journals (Sweden)
Gionni Marchetti
2014-04-01
Full Text Available We study spin relaxation in n-type bulk GaAs, due to the Dyakonov–Perel mechanism, using ensemble Monte Carlo methods. Our results confirm that spin relaxation time increases with the electronic density in the regime of moderate electronic concentrations and high temperature. We show that the electron-electron scattering in the non-degenerate regime significantly slows down spin relaxation. This result supports predictions by Glazov and Ivchenko. Most importantly, our findings highlight the importance of many-body interactions for spin dynamics: we show that only by properly taking into account electron-electron interactions within the simulations, results for the spin relaxation time—with respect to both electron density and temperature—will reach good quantitative agreement with corresponding experimental data. Our calculations contain no fitting parameters.
Microscopic theory of ultrafast spin linear reversal
Energy Technology Data Exchange (ETDEWEB)
Zhang, G P, E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, IN 47809 (United States)
2011-05-25
A recent experiment (Vahaplar et al 2009 Phys. Rev. Lett. 103 117201) showed that a single femtosecond laser can reverse the spin direction without spin precession, or spin linear reversal (SLR), but its microscopic theory has been missing. Here we show that SLR does not occur naturally. Two generic spin models, the Heisenberg and Hubbard models, are employed to describe magnetic insulators and metals, respectively. We find analytically that the spin change is always accompanied by a simultaneous excitation of at least two spin components. The only model that has prospects for SLR is the Stoner single-electron band model. However, under the influence of the laser field, the orbital angular momenta are excited and are coupled to each other. If a circularly polarized light is used, then all three components of the orbital angular momenta are excited, and so are their spins. The generic spin commutation relation further reveals that if SLR exists, it must involve a complicated multiple state excitation.
Theory of the spin Peltier effect
Ohnuma, Y.; Matsuo, M.; Maekawa, S.
2017-10-01
A microscopic theory of the spin Peltier effect in a bilayer structure comprising a paramagnetic metal (PM) and a ferromagnetic insulator (FI) based on the nonequilibrium Green's function method is presented. Spin current and heat current driven by temperature gradient and spin accumulation are formulated as functions of spin susceptibilities in the PM and the FI, and are summarized by Onsager's reciprocal relations. By using the current formulas, we estimate heat generation and absorption at the interface driven by the heat-current injection mediated by spins from PM into FI.
Statistical foundation of the Kubo-Tomita theory of magnetic relaxation
International Nuclear Information System (INIS)
Yul'met'ev, R.M.
1974-01-01
With the aim to give the statistical foundation of the Kubo-Tomita theory the theoretical-functional method of the projection operators is applied to the phenomenon of magnetic relaxation. The exact nonmarkov nonlinear kinetic equations are found for the time correlation functions (TCF) of the longitudinal and transversal components of the spin magnetization of a system including the spin-lattice interaction lambda H' in a general form. The markov kinetic equations of the well-known Bloch-type are derived in the weak coupling Van Hove limits t → infinity, lambda → 0, lambda 2 t=const., and the rate of the spin-lattice (T 1 -1 ) and spin-spin (T 2 -1 ) relaxation is obtained from the relaxation coefficients. It is found that the formulas of the Kubo-Tomita for T 1 -1 and T 2 -1 are correct only in the case of rapid thermal motions when ω 0 tau 0 0 is the resonance frequency and tau 0 is the typical correlation time of the molecular thermal motions). In the other limiting case (ω 0 tau 0 >>1) of slow motion, the effective spectral densities which enter T 1 and T 2 are determined by a set of relaxation times Tsub(β)sup(n) of the spin irreducible operators Vsub(β)sup(n) from the spin-lattice interaction lambda H'. It is found that the time dependence of the transversal component of magnetization had been left out in the collision integral of Kubo-Tomita's theory. Precisely considering this circumstance the frequency dependence of T 2 -1 on the resonance frequency must be changed. (author)
Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O
DEFF Research Database (Denmark)
Thrane, N.; Trumpy, Georg
1970-01-01
. Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...
Precession mechanism of spin relaxation at frequent electron-electron collisions
Glazov, M M
2002-01-01
It is shown that the spin relaxation mechanism in the two-dimensional electron gas, is controlled not only through the electron pulse relaxation processes, determining the mobility, but through the electron-electron collisions as well. It is decided to use the kinetic equation, describing the electron spin mixing in the k-space, for determining the spin relaxation time tau sub s at frequent electron-electron collisions. The tau sub s time is calculated for the nondegenerated electron gas both with an account and with no account of the exchange interaction
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...... properties. In this work, we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination......-off between computational cost and accuracy. Both methods predict nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both magnetic and nonmagnetic...
Holography and higher-spin theories
International Nuclear Information System (INIS)
Petkou, T.
2005-01-01
I review recent work on the holographic relation between higher-spin theories in Anti-de Sitter spaces and conformal field theories. I present the main results of studies concerning the higher-spin holographic dual of the three-dimensional O(N) vector model. I discuss the special role played by certain double-trace deformations in Conformal Field Theories that have higher-spin holographic duals. Moreover, I show that duality transformations in a U(1) gauge theory on AdS 4 induce boundary double-trace deformations and argue that a similar effect takes place in the holography of linearized higher-spin theories on AdS 4 . (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
Optimal relaxed causal sampler using sampled-date system theory
Shekhawat, Hanumant; Meinsma, Gjerrit
This paper studies the design of an optimal relaxed causal sampler using sampled data system theory. A lifted frequency domain approach is used to obtain the existence conditions and the optimal sampler. A state space formulation of the results is also provided. The resulting optimal relaxed causal
Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro
2015-05-01
The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.
International Nuclear Information System (INIS)
Arosio, Paolo; Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro
2015-01-01
The spin dynamics of the molecular magnetic chain [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] were investigated by means of the Muon Spin Relaxation (μ + SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ + SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ interm (T), associated with the intermediate relaxing component. The experimental λ interm (T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ 0 exp(Δ/k B T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state
Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet
Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.
2013-06-01
We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.
Invariant functionals in higher-spin theory
Directory of Open Access Journals (Sweden)
M.A. Vasiliev
2017-03-01
Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
String fields, higher spins and number theory
Polyakov, Dimitri
2018-01-01
The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.
Energy Technology Data Exchange (ETDEWEB)
Song, Xuerui; Zhang, Jian; Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Lou, Liren; Zhu, Wei; Wang, Guanzhong, E-mail: gzwang@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)
2014-04-15
We investigated the influence of spins on surface of nanodiamonds (NDs) to the longitudinal relaxation time (T{sub 1}) and transverse relaxation time (T{sub 2}) of nitrogen vacancy (NV) centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T{sub 1} and T{sub 2}, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T{sub 1} of NV center inside is highly dependent to the surface spins of the NDs. However, for the T{sub 2} of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T{sub 1} of an NV center in NDs is more sensitive to the change of the surface spin density than T{sub 2}.
Directory of Open Access Journals (Sweden)
Xuerui Song
2014-04-01
Full Text Available We investigated the influence of spins on surface of nanodiamonds (NDs to the longitudinal relaxation time (T1 and transverse relaxation time (T2 of nitrogen vacancy (NV centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T1 and T2, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T1 of NV center inside is highly dependent to the surface spins of the NDs. However, for the T2 of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T1 of an NV center in NDs is more sensitive to the change of the surface spin density than T2.
Mechanical torques generated by optically pumped atomic spin relaxation at surfaces
International Nuclear Information System (INIS)
Herman, R.M.
1982-01-01
It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms
Mechanical torques generated by optically pumped atomic spin relaxation at surfaces
Herman, R. M.
1982-03-01
It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.
Theory of unidirectional spin heat conveyer
Adachi, Hiroto; Maekawa, Sadamichi
2015-05-01
We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.
International Nuclear Information System (INIS)
Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.
2004-01-01
Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid
Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.
Smith, Jonathan C; Joyce, Carol A
2004-01-01
Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to
Relaxation of the electron spin in quantum dots via one- and two-phonon processes
International Nuclear Information System (INIS)
Calero, C.; Chudnovsky, E.M.; Garanin, D.A.
2007-01-01
We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid
Relaxation of the electron spin in quantum dots via one- and two-phonon processes
Energy Technology Data Exchange (ETDEWEB)
Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)
2007-09-15
We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.
Thin film coatings which inhibit spin relaxation of polarized potassium atoms
International Nuclear Information System (INIS)
Thomas, G.E.; Holt, R.J.; Boyer, D.; Green, M.C.; Kowalczyk, R.S.; Young, L.
1986-01-01
A prototype of a polarized deuterium target which employs the spin exchange method is being developed. The mixing cell for mixing deuterium atoms and potassium vapor requires a surface that will reflect these atoms without being destroyed by the corrosive potassium. Thin film coating methods and a technique for coating pyrex are described. Results of spin relaxation measurements are given
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)
1975-03-11
When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.
The eigenmode perspective of NMR spin relaxation in proteins
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Yury E., E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il; Meirovitch, Eva, E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)
2013-12-14
We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D{sub 1}, the local (probe-related) diffusion tensor, D{sub 2}, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the {sup 15}N−{sup 1}H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D{sub 2} ≫ D{sub 1}), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the
A novel approach to modelling non-exponential spin glass relaxation
Energy Technology Data Exchange (ETDEWEB)
Pickup, R.M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: r.cywinski@leeds.ac.uk; Cywinski, R. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Pappas, C. [Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin (Germany)
2007-07-15
A probabilistic cluster model, originally proposed by Weron to explain the universal power law of dielectric relaxation, is shown to account for the non-exponential relaxation in spin glasses above T {sub g}. Neutron spin echo spectra measured for the cluster glass compound Co{sub 55}Ga{sub 45} are well described by the Weron relaxation function, {phi}(t)={phi} {sub o}(1+k(t/{tau}) {sup {beta}}){sup -1/k}, with the interaction parameter k scaling linearly with the non-Curie-Weiss susceptibility.
International Nuclear Information System (INIS)
Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi
1995-01-01
Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)
Spin relaxation in InGaN quantum disks in GaN nanowires
Banerjee, Animesh; Dog,; Heo, Junseok; Manchon, Aurelien; Guo, Wei; Bhattacharya, Pallab K.
2011-01-01
The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D'yakonov-Perel' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values. © 2011 American Chemical Society.
Spin relaxation in InGaN quantum disks in GaN nanowires
Banerjee, Animesh
2011-12-14
The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D\\'yakonov-Perel\\' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values. © 2011 American Chemical Society.
International Nuclear Information System (INIS)
Boisbouvier, Jerome; Brutscher, Bernhard; Simorre, Jean-Pierre; Marion, Dominique
1999-01-01
A set of new NMR pulse sequences has been designed for the measurement of 13 C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(C z ), the spin-spin relaxation rate constant R(C + ), and the CSA-dipolar cross-correlated relaxation rate constant Γ C,CH xy . The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13 C-labelled 33-mer RNA-theophylline complex. The measured R(C + )/Γ C,CH xy ratios indicate that 13 C CSA tensors do not vary significantly for the same type of carbon (C 2 , C 6 , C 8 ), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13 C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.
Hanni, Matti; Lantto, Perttu; Vaara, Juha
2011-08-14
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.
Spin-lattice relaxation times and knight shift in InSb and InAs
International Nuclear Information System (INIS)
Braun, P.; Grande, S.
1976-01-01
For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)
Energy Technology Data Exchange (ETDEWEB)
Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L
2004-05-01
The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15
Relaxation of electron–hole spins in strained graphene nanoribbons
International Nuclear Information System (INIS)
Prabhakar, Sanjay; Melnik, Roderick
2015-01-01
We investigate the influence of magnetic field originating from the electromechanical effect on the spin-flip behaviors caused by electromagnetic field radiation in the strained graphene nanoribbons (GNRs). We show that the spin splitting energy difference (≈10 meV) due to pseudospin is much larger than the spin-orbit coupling effect (Balakrishnan et al 2013 Nat. Phys. 9 284) that might provide an evidence of broken symmetry of degeneracy. The induced spin splitting energy due to ripple waves can be further enhanced with increasing values of applied tensile edge stress for potential applications in straintronic devices. In particular, we show that the enhancement in the magnitude of the ripple waves due to externally applied tensile edge stress extends the tuning of spin-flip behaviors to larger widths of GNRs. (paper)
International Nuclear Information System (INIS)
Carretta, P.; Rigamonti, A.; Sala, R.
1997-01-01
63 Cu nuclear quadrupole resonance (NQR) relaxation measurements in La 2 CuO 4 doped Zn are used in order to investigate the temperature dependence of the in-plane magnetic correlation length ξ 2D and the effects associated to spin vacancies in two dimensional quantum Heisenberg antiferromagnets (QHAF). The relaxation rates T 1 -1 and T 2 -1 have been related to the static generalized susceptibility χ(q,0) and to the decay rate Γ q of the normal excitations. By using scaling arguments for χ(q,0) and Γ q , the relaxation rates have been expressed in close form in terms of ξ 2D (x,T) and its dependence on temperature and spin doping x thus extracted. The experimental findings are analyzed in light of the renormalized classical (RC) and quantum critical (QC) behaviors predicted for ξ 2D by recent theories for S=1/2 HAF in square lattices. It is first shown that in pure La 2 CuO 4 , ξ 2D is consistent with a RC regime up to about 900 K, with tendency toward the QC regime above. The spin vacancies reduce the Nacute eel temperature according to the law T N (x)∼T N (0)(1 3.5x). From the temperature dependence of 63 Cu NQR relaxation rate T 1 -1 , T 2 -1 and from the composition dependence of T N it is consistently proved that the effect on ξ 2D can be accounted for by the modification of the spin stiffness in a simple dilutionlike model, the system still remaining in the RC regime, at least for T≤900 K. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Miah, M. Idrish
2008-01-01
High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au
2008-11-17
High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.
On spin chains and field theories
International Nuclear Information System (INIS)
Roiban, Radu
2004-01-01
We point out that the existence of global symmetries in a field theory is not an essential ingredient in its relation with an integrable model. We describe an obvious construction which, given an integrable spin chain, yields a field theory whose 1-loop scale transformations are generated by the spin chain hamiltonian. We also identify a necessary condition for a given field theory to be related to an integrable spin chain. As an example, we describe an anisotropic and parity-breaking generalization of the XXZ Heisenberg spin chain and its associated field theory. The system has no nonabelian global symmetries and generally does not admit a supersymmetric extension without the introduction of more propagating bosonic fields. For the case of a 2-state chain we find the spectrum and the eigenstates. For certain values of its coupling constants the field theory associated to this general type of chain is the bosonic sector of the q-deformation of N = 4 SYM theory. (author)
Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics
International Nuclear Information System (INIS)
Altaner, Bernhard
2017-01-01
Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)
Theory of surface recombination of spin-polarized hydrogen
International Nuclear Information System (INIS)
Christou, C.T.; Haftel, M.I.
1989-01-01
A theory is presented, based on the Faddeev equations, for direct two-body recombination of hydrogen atoms on a liquid helium surface. The equations developed are applicable to hydrogen or deuterium atoms in any spin state, but are applied in particular to dipolar recombination of b state hydrogen atoms. The equations yield terms corresponding to one- and two-step processes. These terms are calculated for low temperatures (T = 0.1 to 1.1 K) and high field strengths (B = 4 to 14 T). The one-step term increases slowly with B, while the two-step term is rapidly decreasing. While the overall rate is quite small (∼5 x 10 -18 cm 2 /s) compared to recombination by two-body spin-relaxation, the results have important consequences in understanding the experimentally measured three-atom dipolar surface recombination rates. In three-atom recombination, where the role of spin-relaxation and the two-atom one-step processes are repressed, the role of the underlying two-atom, two-step process is enhanced. The field dependence of the process relevant to the three-atom system is calculated and found to be in fairly good agreement with the experimental three-atom data. The role of possible liquid excitations in enhancing the contribution of the two-step processes is also discussed. 33 refs.; 1 figure; 6 tabs
Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3
International Nuclear Information System (INIS)
Lukac, M.; Otto, F.W.; Hahn, E.L.
1989-01-01
We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs
Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor
DEFF Research Database (Denmark)
Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A
2016-01-01
thaliana cryptochrome 1 were obtained from molecular dynamics (MD) simulations and used to calculate the spin relaxation caused by modulation of the exchange and dipolar interactions. We find that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields....... Here we argue that certain spin relaxation mechanisms can enhance its performance. We focus on the flavin-tryptophan radical pair in cryptochrome, currently the only candidate magnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....
Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}
Energy Technology Data Exchange (ETDEWEB)
Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)
2011-07-01
The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.
Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs
Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.
2014-03-01
A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.
International Nuclear Information System (INIS)
Mahieu, Nathalie
1992-01-01
The work reported in this research thesis aimed at characterizing micellar phases formed by some surfactants (sodium carboxylates) in aqueous solution. After some recalls on nuclear magnetic resonance dealing with spin relaxation (longitudinal relaxation, transverse relaxation, relaxation in the rotating coordinate system, and crossed relaxation), and comments on the dipolar mechanism responsible of relaxation phenomena, the author presents the methods used for relaxation parameter measurement and the data processing software issued from experiments. He presents experiments which allowed the self-diffusion coefficient to be measured, reports data processing, and addresses problems of special diffusion and of coherence transfers during diffusion measurements. Results of proton relaxation measurements are then presented and discussed. They are used to determine the micellar state of the studied carboxylates. The case of the oleate is also addressed. Measurements of carbon-13 relaxation times are reported, and exploited in terms of structural parameters by using the Relaxator software. An original method of the hetero-nuclear Overhauser method is presented, and used to assess the average distance between water molecules and micelle surface [fr
Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor
2016-08-19
interactions. Wefind that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields to an Earth...resulting in intermediate relaxation rates (106 s−1<kSTD<10 8 s−1) therefore boost the compass sensitivity well above the level expected for a time...steps along the Trp-triad are complete within a nanosecondwhich is too fast for singlet–triplet coherence to be generated in the intermediate radical
Angular momentum of phonons and its application to single-spin relaxation
Nakane, Jotaro J.; Kohno, Hiroshi
2018-05-01
We reexamine the relaxation process of a single spin embedded in an elastic medium, a problem studied recently by Garanin and Chudnovsky (GC) [Phys. Rev. B 92, 024421 (2015), 10.1103/PhysRevB.92.024421] from the viewpoint of angular-momentum transfer. Using Noether's theorem, we identify two distinct angular momenta of the medium, one Newtonian discussed by GC and the other field-theoretical, both of which consist of an orbital part and a spin part. For both angular momenta, we found that the orbital part is as essential as the spin part in the relaxation process. In particular, the angular-momentum transfer from the (real) spin to the Newtonian orbital part may be considered as an incipient rotation that leads to the Einstein-de Haas effect.
Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging
Directory of Open Access Journals (Sweden)
Fabio Baselice
2014-01-01
Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.
Energy Technology Data Exchange (ETDEWEB)
Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)
2016-06-14
Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.
Nuclear spin-lattice relaxation in n -type insulating and metallic GaAs single crystals
Lu, J.; Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Gan, Z.; Reyes, A. P.
2006-09-01
The coupling of electron and nuclear spins in n-GaAs changes significantly as the donor concentration n increases through the insulator-metal critical concentration nC˜1.2×1016cm-3 . The present measurements of the Ga71 relaxation rates W made as a function of magnetic field (1-13T) and temperature (1.5-300K) for semi-insulating GaAs and for three doped n-GaAs samples with donor concentrations n=5.9×1015 , 7×1016 , and 2×1018cm-3 , show marked changes in the relaxation behavior with n . Korringa-like relaxation is found in both metallic samples for T30K phonon-induced nuclear quadrupolar relaxation is dominant. The relaxation rate measurements permit determination of the electron probability density at Ga71 sites. A small Knight shift of -3.3ppm was measured on the most metallic (2×1018cm-3) sample using magic-angle spinning at room temperature. For the n=5.9×1015cm-3 sample, a nuclear relaxation model involving the Fermi contact hyperfine interaction, rapid spin diffusion, and exchange coupled local moments is proposed. While the relaxation rate behavior with temperature for the weakly metallic sample, n=7×1016cm-3 , is similar to that found for the just-insulating sample, the magnetic field dependence is quite different. For the 5.9×1015cm-3 sample, increasing the magnetic field leads to a decrease in the relaxation rate, while for the 7×1016cm-3 sample this results in an increase in the relaxation rate ascribed to an increase in the density of states at the Fermi level as the Landau level degeneracy is increased.
International Nuclear Information System (INIS)
Luo Xinjun; Sholl, C A
2003-01-01
Magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of exponentials. The theory is applied to diffusion on octahedral and tetrahedral interstitial sites in the face-centred cubic structure. Monte Carlo simulations have been used to generate relaxation data for parameters typical for H in metals. It is found that only a single exponential would be observable in the high- and low-temperature limits, but that two-exponential recoveries could be observable in the vicinity of the maximum in the relaxation rate as a function of temperature. The Monte Carlo relaxation data has been fitted using a Bloembergen-Pound-Purcell (BPP) model to assess the accuracy of the BPP model
Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir
2015-11-21
The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.
Bernatowicz, Piotr
2015-10-01
Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.
Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.
Yu, T; Wu, M W
2015-07-01
The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.
Spin fluctuations in iron based superconductors probed by NMR relaxation rate
Energy Technology Data Exchange (ETDEWEB)
Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)
2013-07-01
We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.
Nuclear relaxation study of the spin dynamics in a one-dimensional Heisenberg system, TMMC
International Nuclear Information System (INIS)
Bakheit, M.A.
1974-01-01
Changes in the nuclear relaxation time as a function of the magnetic field intensity in TMMC are very different wether the field direction is parallel or perpendicular to the direction of the exchange chains (vector c). In parallel field, the relaxation probability increases as the field decreases. The process of spin diffusion in a one-dimensional system is well illustrated by the changes experimentally observed. In perpendicular field, the relaxation probability is constant as far as H 0 >2kG, it clearly decreases for H 0 [fr
Lattice relaxation theory of localized excitations in quasi-one-dimensional systems
International Nuclear Information System (INIS)
Wang Chuilin; Su Zhaobin; Yu Lu.
1993-04-01
The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs
International Nuclear Information System (INIS)
Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure
2016-01-01
In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.
Sen, S.; Stebbins, J. F.
1994-07-01
A comparative study of the 29Si spin-lattice relaxation behavior (induced by trace amounts of paramagnetic dopants in the glass) in phase-separated Li2Si4O9 and monophasic Li2Si2O5 and Na2Si2O5 glasses has been made in order to understand the nature of clustering and the resulting intermediate-range ordering. Optically clear tetrasilicate and disilicate glasses were prepared with 500 to 2000 ppm of Gd2O3, a paramagnetic dopant. The constituent structural units (Q3 and Q4 species) in all tetrasilicate glasses show strong differential relaxation following a power-law behavior. This is due to preferential partitioning of Gd3+ into the lower silica (Q3-rich) regions of these glasses, indicating the presence of Q species clusters too small to produce optical opalescence (a few nm to perhaps tens of nm). Preliminary results on 6Li spin-lattice relaxation in these glasses support this hypothesis. Differential relaxation becomes more pronounced on annealing due to growth of such clusters. No such differential relaxation was observed in the monophase disilicate glasses. For spin-lattice relaxation induced by direct dipolar coupling to paramagnetic ions, the recovery of magnetization is proportional to time as M(t)~tα where α is a function of the dimensionality D of mass distribution of the constituent Q species around the Gd3+ paramagnetic centers in the glass. For tetrasilicate glasses D~=2.62+/-0.22 and the system behaves as a mass fractal up to a length scale of 2 to 3 nm. D is thus equal to, within error, the theoretical value of 2.6 for an infinite percolation cluster of one type of Q species in another. For disilicate glasses, D~=3.06+/-0.18 which indicates a three-dimensional (and thus nonfractal) mass distribution of the constituent Q species over the same length scale.
Energy Technology Data Exchange (ETDEWEB)
Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)
2004-07-01
Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and
Spin chain and duality between string theory and gauge theories
International Nuclear Information System (INIS)
Gorskij, A.S.
2005-01-01
One discusses a string pattern hidden by the integrable spin chains describing the evolution equations in the Yang- Mills theory. It is shown that the single-loop correction to the dilatation operator in N = 4 theory may be expressed in terms of two-point correlation functions at two-dimensional world surface of a string. Correspondence between the Neumann integrable systems and the spin chains leads us to believe that passing to the finite values of the coupling constants in the gauge theory corresponds to the quantization of the world surface. The model of string bits for the digitized world surface is assumed to be in line with representation of the integrable spin chains in terms of the separable variables [ru
Spin fluctuation theory of itinerant electron magnetism
Takahashi, Yoshinori
2013-01-01
This volume shows how collective magnetic excitations determine most of the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.
Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System
Hicks, J.; Holabird, K.
2005-03-01
Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).
Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.
Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens
2018-03-14
Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.
Shan, Juan; Cornelissen, Ludo Johannes; Liu, Jing; Ben Youssef, J.; Liang, Lei; van Wees, Bart
2017-01-01
The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we
Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral
International Nuclear Information System (INIS)
Code, R.F.; Armstrong, R.L.; Cheng, P.-T.
1992-01-01
The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)
Spin-orbit coupling induced two-electron relaxation in silicon donor pairs
Song, Yang; Das Sarma, S.
2017-09-01
We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.
Nuclear spin dominated relaxation of atomic tunneling systems in glasses
Energy Technology Data Exchange (ETDEWEB)
Luck, Annina
2016-11-16
The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.
Charges in nonlinear higher-spin theory
Energy Technology Data Exchange (ETDEWEB)
Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2017-03-30
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS{sub 4} Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.
Charges in nonlinear higher-spin theory
International Nuclear Information System (INIS)
Didenko, V.E.; Misuna, N.G.; Vasiliev, M.A.
2017-01-01
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS 4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.
Anomalous longitudinal relaxation of nuclear spins in CaF{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Kropf, Chahan M. [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104, Freiburg (Germany); Kohlrautz, Jonas; Haase, Juergen [University of Leipzig, Faculty of Physics and Earth Sciences, Linnestr. 5, 04103, Leipzig (Germany); Fine, Boris V. [Skolkovo Institute of Science and Technology, 100 Novaya Str., Skolkovo, Moscow Region, 143025 (Russian Federation); Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg (Germany)
2017-06-15
We consider the effect of non-secular resonances for interacting nuclear spins in solids which were predicted theoretically to exist in the presence of strong static and strong radio-frequency magnetic fields. These resonances imply corrections to the standard secular approximation for the nuclear spin-spin interaction in solids, which, in turn, should lead to an anomalous longitudinal relaxation in nuclear magnetic resonance experiments. In this article, we investigate the feasibility of the experimental observation of this anomalous longitudinal relaxation in calcium fluoride (CaF{sub 2}) and conclude that such an observation is realistic. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Higher spin gauge theories in any dimension
International Nuclear Information System (INIS)
Vasiliev, M.A.
2004-01-01
Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system
Partially massless higher-spin theory
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)
2017-02-16
We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV complete, includes gravity, and can live on dS as well as AdS. The linearized spectrum includes three massive particles and an infinite tower of partially massless particles, in addition to the usual spectrum of particles present in the Vasiliev theory, in agreement with predictions from a putative dual CFT with the same symmetry algebra. We compute the masses of the particles which are not fixed by the massless or partially massless gauge symmetry, finding precise agreement with the CFT predictions. This involves computing several dozen of the lowest-lying terms in the expansion of the trilinear form of the enlarged higher-spin algebra. We also discuss nuances in the theory that occur in specific dimensions; in particular, the theory dramatically truncates in bulk dimensions D=3,5 and has non-diagonalizable mixings which occur in D=4,7.
Partially massless higher-spin theory
International Nuclear Information System (INIS)
Brust, Christopher; Hinterbichler, Kurt
2017-01-01
We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV complete, includes gravity, and can live on dS as well as AdS. The linearized spectrum includes three massive particles and an infinite tower of partially massless particles, in addition to the usual spectrum of particles present in the Vasiliev theory, in agreement with predictions from a putative dual CFT with the same symmetry algebra. We compute the masses of the particles which are not fixed by the massless or partially massless gauge symmetry, finding precise agreement with the CFT predictions. This involves computing several dozen of the lowest-lying terms in the expansion of the trilinear form of the enlarged higher-spin algebra. We also discuss nuances in the theory that occur in specific dimensions; in particular, the theory dramatically truncates in bulk dimensions D=3,5 and has non-diagonalizable mixings which occur in D=4,7.
International Nuclear Information System (INIS)
Shevtsov, O; Löfwander, T
2014-01-01
Non-equilibrium phenomena in superconductors have attracted much attention since the first experiments on charge imbalance in the early 1970's. Nowadays a new promising line of research lies at an intersection between superconductivity and spintronics. Here we develop a quasiclassical theory of a single junction between a normal metal and a superconductor with a spin-active interface at finite bias voltages. Due to spin-mixing and spin-filtering effects of the interface a non-equilibrium magnetization (or spin imbalance) is induced at the superconducting side of the junction, which relaxes to zero in the bulk. A peculiar feature of the system is the presence of interface-induced Andreev bound states, which influence the magnitude and the decay length of spin imbalance. Recent experiments on spin and charge density separation in superconducting wires required external magnetic field for observing a spin signal via non-local measurements. Here, we propose an alternative way to observe spin imbalance without applying magnetic field
Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells
International Nuclear Information System (INIS)
Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L
2013-01-01
Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)
Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory
Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.
2010-01-01
Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar
Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics
Altaner, Bernhard
2017-11-01
Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.
An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians
International Nuclear Information System (INIS)
Hughes, Ciaran; Mehta, Dhagash; Wales, David J.
2014-01-01
Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems
Spin reorientation and structural relaxation of atomic layers: Pushing the limits of accuracy
International Nuclear Information System (INIS)
Meyerheim, H.L.; Sander, D.; Popescu, R.; Kirschner, J.; Robach, O.; Ferrer, S.
2004-01-01
The correlation between an ad-layer-induced spin reorientation transition (SRT) and the ad-layer-induced structural relaxation is investigated by combined in situ surface x-ray diffraction and magneto-optical Kerr-effect experiments on Ni/Fe/Ni(111) layers on W(110). The Fe-induced SRT from in-plane to out-of-plane, and the SRT back to in-plane upon subsequent coverage by Ni, are each accompanied by a small lattice relaxation of at most 0.002 Angstrom. Such a small strain variation excludes a magnetoelasticity driven SRT, and we suggest the interface anisotropy as a possible driving force
Coherence transfer and electron T1-, T2-relaxation in nitroxide spin labels
DEFF Research Database (Denmark)
Marsh, Derek
2017-01-01
-hyperfine anisotropies of isolated nitroxide spin labels. Results compatible with earlier treatments by Redfield theory are obtained without specifically evaluating matrix elements. Extension to single-transition operators for isolated nitroxides predicts electron coherence transfer by pseudosecular electron...
Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen
2014-10-01
The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.
Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun
Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P
2012-06-06
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great
Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets
International Nuclear Information System (INIS)
Wal, A.J. van der.
1979-01-01
Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)
The water proton spin-lattice relaxation times in virus-infected cells
International Nuclear Information System (INIS)
Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.
1979-01-01
The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)
Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model
Sitnitsky, A. E.
2011-12-01
We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.
Hoffmann, S K; Goslar, J; Lijewski, S
2011-08-31
Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.
International Nuclear Information System (INIS)
Lipperheide, R.; Wille, U.
2006-01-01
A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered
Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals
International Nuclear Information System (INIS)
Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.
1986-01-01
A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption
Dynamical renormalization group approach to relaxation in quantum field theory
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de
2003-01-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths
International Nuclear Information System (INIS)
Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.
1988-01-01
NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table
Energy Technology Data Exchange (ETDEWEB)
Tacke, Christian
2015-07-01
Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.
The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory
International Nuclear Information System (INIS)
Liu, B.-G.; Pu, F.-C.
2001-01-01
The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood
Perturbative analysis in higher-spin theories
Energy Technology Data Exchange (ETDEWEB)
Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2016-07-28
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.
2018-03-01
Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.
SU (N ) spin-wave theory: Application to spin-orbital Mott insulators
Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin
2018-05-01
We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.
Muon spin relaxation measurements of the fluctuation modes in spin-glass AgNm
Energy Technology Data Exchange (ETDEWEB)
Heffner, R.H.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.
1983-01-01
Recently reported zero-field ..mu..SR measurements below the spin-glass transition temperature in AgMn (1.6 at%) show a temperature dependent inhomogeneous width. The authors discuss these data in terms of a model in which the local field undergoes limited-amplitude fluctuations. The authors find that both very slow (approx. = 0.3 ..mu..s/sup -1/) and rapid (approx. = 3000 ..mu..s/sup -1/) fluctuations are required. 10 references, 1 figure, 1 table.
Post-seismic relaxation theory on laterally heterogeneous viscoelastic model
Pollitz, F.F.
2003-01-01
Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.
International Nuclear Information System (INIS)
Sugiyama, Jun; Ikedo, Yutaka; Mukai, Kazuhiko; Nozaki, Hiroshi; Russo, Peter L.; Ansaldo, Eduardo J.; Brewer, Jess H.; Andreica, Daniel; Amato, Alex
2009-01-01
In order to elucidate the nature of layered cobalt dioxides A x CoO 2 , we have investigated their microscopic magnetism by means of positive muon-spin rotation and relaxation (μ + SR) spectroscopy, in particular for A=Li, Na, and K. The dome-shaped magnetic phase diagram for Na x CoO 2 with x≥0.75 suggests the competition between the spin concentration and geometrical frustration on the two-dimensional triangular lattice of the CoO 2 plane. The additional experiment on Li x CoO 2 and K x CoO 2 indicates both a weakly coupled regime for the d electrons in the CoO 2 plane and an ignorable weak effect of the inter-plane interaction on their magnetic order at low T.
Magnetoresistance in spin glass alloys: Theory and experiment
International Nuclear Information System (INIS)
Mookerjee, A.; Chowdhury, D.
1984-11-01
The magnetoresistance of spin glass alloys is examined within the percolation model of Mookerjee and Chowdhury (1983), the mode freezing model of Hertz (1983) and the constrained relaxation model of Palmer et al. (1984). All three models yield qualitatively similar results in excellent agreement with the experiments of Majumdar (1983, 1984) on AgMn. (author)
Conformal higher spin theory and twistor space actions
Hähnel, Philipp; McLoughlin, Tristan
2017-12-01
We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.
Light-front higher-spin theories in flat space
Ponomarev, Dmitry; Skvortsov, Evgeny
2017-03-01
We revisit the problem of interactions of higher-spin fields in flat space. We argue that all no-go theorems can be avoided by the light-cone approach, which results in more interaction vertices as compared to the usual covariant approaches. It is stressed that there exist two-derivative gravitational couplings of higher-spin fields. We show that some reincarnation of the equivalence principle still holds for higher-spin fields—the strength of gravitational interaction does not depend on spin. Moreover, it follows from the results by Metsaev that there exists a complete chiral higher-spin theory in four dimensions. We give a simple derivation of this theory and show that the four-point scattering amplitude vanishes. Also, we reconstruct the quartic vertex of the scalar field in the unitary higher-spin theory, which turns out to be perturbatively local.
Light-front higher-spin theories in flat space
International Nuclear Information System (INIS)
Ponomarev, Dmitry; Skvortsov, Evgeny
2017-01-01
We revisit the problem of interactions of higher-spin fields in flat space. We argue that all no-go theorems can be avoided by the light-cone approach, which results in more interaction vertices as compared to the usual covariant approaches. It is stressed that there exist two-derivative gravitational couplings of higher-spin fields. We show that some reincarnation of the equivalence principle still holds for higher-spin fields—the strength of gravitational interaction does not depend on spin. Moreover, it follows from the results by Metsaev that there exists a complete chiral higher-spin theory in four dimensions. We give a simple derivation of this theory and show that the four-point scattering amplitude vanishes. Also, we reconstruct the quartic vertex of the scalar field in the unitary higher-spin theory, which turns out to be perturbatively local. (paper)
International Nuclear Information System (INIS)
Solontsov, A.
2015-01-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects
Zero-field spin relaxation of the positive muon in copper
International Nuclear Information System (INIS)
Clawson, C.W.
1982-07-01
The spin relaxation of the μ + in high purity single crystal and polycrystalline copper has been measured at temperatures between 0.5 0 K and 5.2 0 K by the zero-field μ + SR technique. In both types of sample the experiments show a temperature independent dipolar width Δ/sub z/ = 0.389 +- 0.003 μs -1 and a hopping rate decreasing from approx. 0.5 μs -1 at 0.5 0 K to approx. 0.05 μs -1 above 5 0 K. This is the first direct proof of a dynamic effect in the low temperature μ + spin relaxation in copper. The relationship between the zero-field and transverse-field dipolar widths is discussed, and the measured zero-field width is found to be approx. 10% larger than expected based on the known transverse-field widths. A new μ + SR spectrometer has been constructed and used in this work. The spectrometer and the associated beam lines and data acquisition facilities are discussed
Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder
Energy Technology Data Exchange (ETDEWEB)
Levin, E.M.; Fang, X.W.; Bud' ko, S.L.; Straszheim, W.E.; McCallum, R.W.; Schmidt-Rohr, K.
2008-02-15
The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature {sup 13}C NMR spin-lattice relaxation, T{sub 1,c}, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagnetic-like and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. {sup 13}C NMR T{sub 1,c} relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of {approx} 0.01 emu/g at 300 K. Thus, a reduction of T{sub 1,c} by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to {approx}30 unpaired electrons per {approx}4.6 nm diameter nanodiamond grain.
Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals
Energy Technology Data Exchange (ETDEWEB)
Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)
2016-02-15
The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.
Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.
2015-03-01
Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.
Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu
2018-05-01
Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.
Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.
Dong, Hui; Hwang, Seong-Min; Wendland, Michael; You, Lixing; Clarke, John; Inglis, Ben
2017-12-01
To investigate tissue-specific differences, a quantitative comparison was made between relaxation dispersion in postmortem pig brain measured at ultralow fields (ULF) and spin locking at 7 tesla (T). The goal was to determine whether ULF-MRI has potential advantages for in vivo human brain imaging. Separate specimens of gray matter and white matter were investigated using an ULF-MRI system with superconducting quantum interference device (SQUID) signal detection to measure T1ULF at fields from 58.7 to 235.0 μT and using a commercial MRI scanner to measure T1ρ7T at spin-locking fields from 5.0 to 235.0 μT. At matched field strengths, T1ρ7T is 50 to 100% longer than T1ULF. Furthermore, dispersion in T1ULF is close to linear between 58.7 and 235 µT, whereas dispersion in T1ρ7T is highly nonlinear over the same range. A subtle elbow in the T1ULF dispersion at approximately 140 µT is tentatively attributed to the local dipolar field of macromolecules. It is suggested that different relaxation mechanisms dominate each method and that ULF-MRI has a fundamentally different sensitivity to the macromolecular structure of neural tissue. Ultralow-field MRI may offer distinct, quantitative advantages for human brain imaging, while simultaneously avoiding the severe heating limitation imposed on high-field spin locking. Magn Reson Med 78:2342-2351, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
SUSY field theories in higher dimensions and integrable spin chains
International Nuclear Information System (INIS)
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
Five- and six-dimensional SUSY gauge theories, with one or two compactified directions, are discussed. The 5d theories with the matter hypermultiplets in the fundamental representation are associated with the twisted XXZ spin chain, while the group product case with bi-fundamental matter corresponds to the higher rank spin chains. The Riemann surfaces for 6d theories with fundamental matter and two compact directions are proposed to correspond to the XYZ spin chain based on the Sklyanin algebra. We also discuss the obtained results within the brane and geometrical engineering frameworks and explain the relation to the toric diagrams. (orig.)
Theory of strong hybridization-induced relaxation in uranium systems
International Nuclear Information System (INIS)
Hu, G.; Cooper, B.R.
1988-01-01
Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment
International Nuclear Information System (INIS)
Vladimirov, A.A.; Plakida, N.M.; Ihle, D.
2010-01-01
A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found
Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects
Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.
2017-10-01
We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.
Theory of Spin Waves in Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Cooke, J. F.
1976-01-01
A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...
International Nuclear Information System (INIS)
Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi
2007-01-01
We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly
International Nuclear Information System (INIS)
Marques, Rosana G.G.; Tavares, Maria I.B.
2001-01-01
The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)
Unitarity in three-dimensional flat space higher spin theories
International Nuclear Information System (INIS)
Grumiller, D.; Riegler, M.; Rosseel, J.
2014-01-01
We investigate generic flat-space higher spin theories in three dimensions and find a no-go result, given certain assumptions that we spell out. Namely, it is only possible to have at most two out of the following three properties: unitarity, flat space, non-trivial higher spin states. Interestingly, unitarity provides an (algebra-dependent) upper bound on the central charge, like c=42 for the Galilean W_4"("2"−"1"−"1") algebra. We extend this no-go result to rule out unitary “multi-graviton” theories in flat space. We also provide an example circumventing the no-go result: Vasiliev-type flat space higher spin theory based on hs(1) can be unitary and simultaneously allow for non-trivial higher-spin states in the dual field theory.
International Nuclear Information System (INIS)
Doering, K.P.; Aurenz, T.; Herlach, D.; Schaefer, H.E.; Arnold, K.P.; Jacobs, W.; Orth, H.; Haas, N.; Seeger, A.; Max-Planck-Institut fuer Metallforschung, Stuttgart
1986-01-01
A new technique for the economical evaluation of transverse muon spin relaxation functions in situations involving μ + trapping at and detrapping from crystal defects is applied to electron-irradiated Ta exhibiting relaxation maxima at about 35 K, 100 K, and 250 K. The long-range μ + diffusion is shown to be limted by traps over the entire temperature range investigated. The (static) relaxation rates for several possible configurations of trapped muons are discussed, including the effect of the simultaneous presence of a proton in a vacancy. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)
2016-07-18
In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.
Structural transition in Mo{sub 3}Sb{sub 7} probed by muon spin relaxation
Energy Technology Data Exchange (ETDEWEB)
Tabata, Y. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koyama, T.; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Watanabe, I. [Advanced Meson Science Laboratory, RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, H., E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2009-04-15
Longitudinal-field muSR measurements have been made for Mo{sub 3}Sb{sub 7} focusing on the nature of the structural transition recently found at T{sub S}approx =50K. Taking account of a critical behavior of the relaxation rate lambda at approxT{sub S}, together with the motional narrowing of the nuclear dipolar field revealed in a zero-field experiment, and the tetragonal lattice symmetry lowering below T{sub S}, we propose long-range order of spin-singlet dimers, i.e., the formation of the valence bond crystal below T{sub S}. As a possible origin, the frustration in the interdimer antiferromagnetic interaction is suggested.
Nuclear spin relaxation due to hydrogen diffusion in b.c.c. metals
International Nuclear Information System (INIS)
Faux, D.A.; Hall, C.K.
1989-01-01
We present Monte Carlo simulation results for the proton-proton contribution to the T 1 -1 relaxation rate for hydrogen spins diffusing on the tetrahedral sites of a b.c.c. metal. It is assumed that each hydrogen blocks all sites to the zeroth (no multiple-occupancy), second or third neighbour and that longer-range interactions may be neglected. Comparisons are made to the BPP and Torrey models. It is found that both the BPP and Torrey models give reasonable values for the peak height but that their predictions for the peak position and the high- and low-temperature limit are in error, particularly for large blocking distances. (orig.)
Solid state proton spin-lattice relaxation in four structurally related organic molecules
International Nuclear Information System (INIS)
Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.
2003-01-01
We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure
Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time
Directory of Open Access Journals (Sweden)
Mariana Bruno
2008-12-01
Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.
Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G.; Beckett, Peter; Denning, Mark; Carravetta, Marina; al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H.
2011-10-01
The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.
Ginzburg-Landau-type theory of nonpolarized spin superconductivity
Lv, Peng; Bao, Zhi-qiang; Guo, Ai-Min; Xie, X. C.; Sun, Qing-Feng
2017-01-01
Since the concept of spin superconductor was proposed, all the related studies concentrate on the spin-polarized case. Here, we generalize the study to the spin-non-polarized case. The free energy of nonpolarized spin superconductor is obtained, and Ginzburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by the super spin current is equal to the one induced by an equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and related topics such as the Bose-Einstein condensate of magnons and spin superfluidity.
Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.
2016-04-01
We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.
Quantum mechanics and field theory with fractional spin and statistics
International Nuclear Information System (INIS)
Forte, S.
1992-01-01
Planar systems admit quantum states that are neither bosons nor fermions, i.e., whose angular momentum is neither integer nor half-integer. After a discussion of some examples of familiar models in which fractional spin may arise, the relevant (nonrelativistic) quantum mechanics is developed from first principles. The appropriate generalization of statistics is also discussed. Some physical effects of fractional spin and statistics are worked out explicitly. The group theory underlying relativistic models with fractional spin and statistics is then introduced and applied to relativistic particle mechanics and field theory. Field-theoretical models in 2+1 dimensions are presented which admit solitons that carry fractional statistics, and are discussed in a semiclassical approach, in the functional integral approach, and in the canonical approach. Finally, fundamental field theories whose Fock states carry fractional spin and statistics are discussed
Muon Spin Relaxation Studies of RFeAsO and MFe2As2 Based Compounds
Luke, Graeme
2010-03-01
Muon spin relaxation measurements of a variety of iron pnictide systems have revealed commensurate long range magnetic order in the parent compounds which can change to incommensurate order with carrier doping. Magnetic order gives way to superconductivity with increased doping; however there are regions of the phase diagrams where the two phenomena co-exist. In the case of Ba1-xKxFe2As2 there is phase separation into superconducting and magnetic domains, whereas in Ba(Fe1-xCox)2As2 the coexistence is apparently microscopic for x=0.035->0.048. Transverse field muon spin rotation measurements of single crystal Ba(Fe1-xCox)2 and Sr(Fe1-xCox)2 exhibit an Abrikosov vortex lattice from which we are able to determine the magnetic field penetration depth and Ginzburg-Landau parameter. The temperature variation of the superfluid density is well described by a two-gap model. In Ba(Fe1-xCox)2As2, both the superconducting TC and the superfluid density decrease with increasing doping above x=0.06; in all of the pnictides we find that the superfluid density obeys the same nearly linear scaling with TC as found in the cuprates.
Fuson, Michael M.
2017-01-01
Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…
International Nuclear Information System (INIS)
Salmon, L.; Licinio, A.; Jensen, M.R.; Blackledge, M.; Ortega Roldan, J.L.; Van Nuland, N.; Lescop, E.
2011-01-01
We have recently presented a titration approach for the determination of residual dipolar couplings (RDCs) from experimentally inaccessible complexes. Here, we extend this approach to the measurement of 15 N spin relaxation rates and demonstrate that this can provide long-range structural, dynamic, and kinetic information about these elusive systems. (authors)
New directions in the theory of spin-polarized atomic hydrogen and deuterium
International Nuclear Information System (INIS)
Koelman, J.M.V.A.
1988-01-01
The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs
International Nuclear Information System (INIS)
LeMaster, David M.
1997-01-01
A spin-diffusion-suppressed NOE buildup series has been measured for E. coli thioredoxin.The extensive 13C and 15N relaxation data previously reported for this protein allow for direct interpretation of dynamical contributions to the 1H-1H cross-relaxation rates for a large proportion of the NOE cross peaks. Estimates of the average accuracy for these derived NOE distances are bounded by 4% and 10%, based on a comparison to the corresponding X-ray distances. An independent fluctuation model is proposed for prediction of the dynamical corrections to 1H-1H cross-relaxation rates, based solely on experimental structural and heteronuclear relaxation data. This analysis is aided by the demonstration that heteronuclear order parameters greater than 0.6 depend only on the variance of the H-X bond orientation,independent of the motional model in either one- or two-dimensional diffusion (i.e., 1- S2 = 3/4 sin2 2 θσ). The combination of spin-diffusion-suppressed NOE data and analysis of dynamical corrections to 1H-1H cross-relaxation rates based on heteronuclear relaxation data has allowed for a detailed interpretation of various discrepancies between the reported solution and crystal structures
Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.
2008-02-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Spin Gauge Theory of Gravity in Clifford Space
International Nuclear Information System (INIS)
Pavsic, Matej
2006-01-01
A theory in which 16-dimensional curved Clifford space (C-space) provides a realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: 'extra dimensions' are in C-space. We explore the spin gauge theory in C-space and show that the generalized spin connection contains the usual 4-dimensional gravity and Yang-Mills fields of the U(1) x SU(2) x SU(3) gauge group. The representation space for the latter group is provided by 16-component generalized spinors composed of four usual 4-component spinors, defined geometrically as the members of four independent minimal left ideals of Clifford algebra
Spin-out Management: Theory and Practice.
Jagersma, P.K.; Gorp, D.
2003-01-01
The structure of a firm, an important element of the business model, plays a key role in building an innovative and market-driven organization. Due to failures in the structure of companies, growth opportunities are sometimes not fully realized. Spin-out management is a process by which a new or
Spin Wave Theory of Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1977-01-01
A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...
International Nuclear Information System (INIS)
Bar'yakhtar, V.G.; Belykh, V.G.; Soboleva, T.K.
1989-01-01
In the framework of the general hydrodynamic approach a method is proposed for describing the relaxation of low-frequency magnetic excitations in disordered spin systems and many-sublattice magnets. Expressions are obtained in terms of Goldstone fields for the dissipation function both in the exchange approximation and when allowance is made for relativistic interactions
Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan
2012-08-01
EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.
Energy Technology Data Exchange (ETDEWEB)
Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)
2015-05-07
The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.
Proof of the Spin Statistics Connection 2: Relativistic Theory
Santamato, Enrico; De Martini, Francesco
2017-12-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.
Einstein-Dirac theory in spin maximum I
International Nuclear Information System (INIS)
Crumeyrolle, A.
1975-01-01
An unitary Einstein-Dirac theory, first in spin maximum 1, is constructed. An original feature of this article is that it is written without any tetrapod technics; basic notions and existence conditions for spinor structures on pseudo-Riemannian fibre bundles are only used. A coupling gravitation-electromagnetic field is pointed out, in the geometric setting of the tangent bundle over space-time. Generalized Maxwell equations for inductive media in presence of gravitational field are obtained. Enlarged Einstein-Schroedinger theory, gives a particular case of this E.D. theory. E. S. theory is a truncated E.D. theory in spin maximum 1. A close relation between torsion-vector and Schroedinger's potential exists and nullity of torsion-vector has a spinor meaning. Finally the Petiau-Duffin-Kemmer theory is incorporated in this geometric setting [fr
Cosmological viability of theories with massive spin-2 fields
Energy Technology Data Exchange (ETDEWEB)
Koennig, Frank
2017-03-30
Theories of spin-2 fields take on a particular role in modern physics. They do not only describe the mediation of gravity, the only theory of fundamental interactions of which no quantum field theoretical description exists, it furthermore was thought that they necessarily predict massless gauge bosons. Just recently, a consistent theory of a massive graviton was constructed and, subsequently, generalized to a bimetric theory of two interacting spin-2 fields. This thesis studies both the viability and consequences at cosmological scales in massive gravity as well as bimetric theories. We show that all consistent models that are free of gradient and ghost instabilities behave like the cosmological standard model, LCDM. In addition, we construct a new theory of massive gravity which is stable at both classical background and quantum level, even though it suffers from the Boulware-Deser ghost.
A gauge field theory of fermionic continuous-spin particles
Energy Technology Data Exchange (ETDEWEB)
Bekaert, X., E-mail: xavier.bekaert@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science, Daejeon (Korea, Republic of); Najafizadeh, M., E-mail: mnajafizadeh@gmail.com [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of)
2016-09-10
In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
A gauge field theory of fermionic continuous-spin particles
International Nuclear Information System (INIS)
Bekaert, X.; Najafizadeh, M.; Setare, M.R.
2016-01-01
In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
Higher-Spin Triplet Fields and String Theory
Directory of Open Access Journals (Sweden)
D. Sorokin
2010-01-01
Full Text Available We review basic properties of reducible higher-spin multiplets, called triplets, and demonstrate how they naturally appear as part of the spectrum of String Field Theory in the tensionless limit. We show how in the frame-like formulation the triplet fields are endowed with the geometrical meaning of being components of higher-spin vielbeins and connections and present actions describing their free dynamics.
Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni
International Nuclear Information System (INIS)
Fahmi, A.; Qachaou, A.
2009-01-01
In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.
Higher point spin field correlators in D=4 superstring theory
International Nuclear Information System (INIS)
Haertl, D.; Schlotterer, O.; Stieberger, S.
2010-01-01
Calculational tools are provided allowing to determine general tree-level scattering amplitudes for processes involving bosons and fermions in heterotic and superstring theories in four space-time dimensions. We compute higher-point superstring correlators involving massless four-dimensional fermionic and spin fields. In D=4 these correlators boil down to a product of two pure spin field correlators of left- and right-handed spin fields. This observation greatly simplifies the computation of such correlators. The latter are basic ingredients to compute multi-fermion superstring amplitudes in D=4. Their underlying fermionic structure and the fermionic couplings in the effective action are determined by these correlators.
TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging
International Nuclear Information System (INIS)
Lemen, L.
2015-01-01
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging
Energy Technology Data Exchange (ETDEWEB)
Lemen, L. [Univ Cincinnati (United States)
2015-06-15
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4
de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.
2007-03-01
We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.
Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)
2017-07-01
Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.
Topics in field theory-higher spins, CFT, and gravity
International Nuclear Information System (INIS)
Yang, Z.
1990-01-01
Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies
Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.
2016-05-01
The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.
Directory of Open Access Journals (Sweden)
Ramon Francisco Barajas, Jr., MD
2017-12-01
Full Text Available Spin-lattice relaxation in the rotating frame magnetic resonance imaging allows for the quantitative assessment of spin-lock contrast within tissues. We describe the utility of spin-lattice relaxation in the rotating frame metrics in characterizing glioblastoma biological heterogeneity. A 84-year-old man presented to our institution with a right frontal temporal mass. Prior tissue sampling from a peripheral nonenhancing lesion was nondiagnostic. Stereotactic image-guided tissue sampling of the nonenhancing T2-fluid-attenuated inversion recovery hyperintense region involving the anterior cingulate gyrus with elevated spin-lattice relaxation in the rotating frame metrics provided a pathologic diagnosis of glioblastoma. This case illustrates the utility of spin-lattice relaxation in the rotating frame magnetic resonance imaging in identifying biologically aggressive regions within glioblastoma.
Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.
Nascimento, Daniel R; DePrince, A Eugene
2018-05-08
The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.
DEFF Research Database (Denmark)
Sharma, S.; Pittalis, S.; Kurth, S.
2007-01-01
The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....
Bulk magnon spin current theory for the longitudinal spin Seebeck effect
Energy Technology Data Exchange (ETDEWEB)
Rezende, S.M., E-mail: rezende@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Rodríguez-Suárez, R.L. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Facultad de Física, Pontificia Universidad Católica de Chile, Casilla, 306 Santiago (Chile); Cunha, R.O.; López Ortiz, J.C.; Azevedo, A. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil)
2016-02-15
The longitudinal spin Seebeck effect (LSSE) consists in the generation of a spin current parallel to a temperature gradient applied across the thickness of a bilayer made of a ferromagnetic insulator (FMI), such as yttrium iron garnet (YIG), and a metallic layer (ML) with strong spin orbit coupling, such as platinum. The LSSE is usually detected by a DC voltage generated along the ML due to the conversion of the spin current into a charge current perpendicular to the static magnetic field by means of the inverse spin Hall effect. Here we present a model for the LSSE that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the FMI. We show that the spin current pumped into the metallic layer by the magnon accumulation in the FMI provides continuity of the spin current at the FMI/ML interface and is essential for the existence of the LSSE. The results of the theory are in good agreement with experimental LSSE data in YIG/Pt bilayers on the variation of the DC voltage with the sample temperature, with the FMI layer thickness and with the intensity of high magnetic fields. - Highlights: • We present a theory for the longitudinal spin Seebeck effect based on bulk magnons. • The model explains quantitatively the measured voltage in YIG/Pt created by the LSSE. • The model explains quantitatively the temperature dependence of LSSE measured in YIG/Pt. • The model agrees qualitatively with the measured dependence of LSSE with YIG thickness. • The model agrees qualitatively with the measured dependence of LSSE on magnetic field.
31P spin-lattice relaxation time measurements in biological systems
International Nuclear Information System (INIS)
Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi
1989-01-01
Spin-lattice relaxation time (T 1 ) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T 1 ) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T 1 values. T 1 values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15±0.02 sec (β-ATP in the liver) to 8.5±1.6 sec (PDE in the kidney). T 1 value of β-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T 1 values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of 13 P spectra, and for correcting distortions of signal intensities in the spectra. (author)
Electron spin-lattice relaxation of low-symmetry Ni.sup.2+./sup. centers in LiF
Czech Academy of Sciences Publication Activity Database
Azamat, Dmitry; Badalyan, A. G.; Dejneka, Alexandr; Jastrabík, Lubomír; Lančok, Ján
2014-01-01
Roč. 104, č. 25 (2014), "252902-1"-"252902-4" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : Ni 2+ centers * LiF single crystals * electron spin-lattice relaxation * electron spin echo technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014
Quasilinear theory of a spin-flip laser
International Nuclear Information System (INIS)
Arunasalam, V.
1973-09-01
A discussion of the nonlinear electrodynamic behavior of a gas of spin 1/2 particles in a uniform external magnetic field is presented. In particular, the quasilinear time evolution of a spin-flip laser system is examined in detail both from the point of view of the thermodynamics of negative temperature systems and the quantum kinetic methods of nonequilibrium statistical mechanics. It is shown that the quasilinear steady state of a spin-flip laser system is that state at which the populations of the spin-up and the spin-down states are equal to each other, and this quasilinear steady state is the state of minimum entropy production. The maximum output power of the spin-flip laser predicted by the theory presented in this paper is shown to be in reasonably good agreement with experimental results. The method used here is based on the general principles of nonrelativistic quantum theory and takes account of the Doppler broadening, collisional broadening, and Compton recoil effects. 30 refs., 1 fig
Irreversibility and higher-spin conformal field theory
Anselmi, Damiano
2000-08-01
I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.
Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
Shimahara, Hiroshi
2018-04-01
We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.
PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance
2014-12-01
The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries
International Nuclear Information System (INIS)
Konrat, Robert; Tollinger, Martin
1999-01-01
A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented
Muon-spin-relaxation study of magnetism in ErBa2Cu3O6.2
International Nuclear Information System (INIS)
Lichti, R.L.; Chan, K.B.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Flint, J.A.; Cooke, D.W.; Kwok, R.S.; Willis, J.O.
1990-01-01
The copper magnetism of ErBa 2 Cu 3 O 6.2 is examined by transverse-field (TF) and zero-field (ZF) muon-spin relaxation (μSR). These data indicate two magnetic phases with T N1 congruent 330 K and T N2 ∼65 K. The second phase is signaled by deviation of the ZF-μSR frequencies from a standard magnetization curve and an abrupt change in the TF-μSR relaxation rate. A relaxation feature indicates a muon depolarization mechanism with a T 3/2 dependence in the low-temperature phase. Observed fields are compared to those calculated for proposed magnetic structures
Energy Technology Data Exchange (ETDEWEB)
Savchenko, D., E-mail: dariyasavchenko@gmail.com [Institute of Physics of the Czech Academy of Sciences, Prague 182 21 (Czech Republic); National Technical University of Ukraine “Kyiv Polytechnic Institute,” Kyiv 03056 (Ukraine); Shanina, B.; Kalabukhova, E. [V.E. Lashkaryov Institute of Semiconductor Physics, NASU, Kyiv 03028 (Ukraine); Pöppl, A. [Institute of Experimental Physics II, Leipzig University, Leipzig D-04103 (Germany); Lančok, J. [Institute of Physics of the Czech Academy of Sciences, Prague 182 21 (Czech Republic); Mokhov, E. [A.F. Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg 19710 (Russian Federation)
2016-04-07
We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10{sup 17 }cm{sup −3} at T = 10–40 K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (N{sub k1,k2}) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T{sub 1}{sup −1}), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T{sup 9}, respectively. The character of the temperature dependence of the T{sub 1}{sup −1} for the donor electrons of N substituting hexagonal (“h”) site (N{sub h}) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (T{sub m}{sup −1}) with the temperature increase for the N{sub h} donors in both types of the samples, as well as for the N{sub k1,k2} donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time T{sub m} for the N{sub k1,k2} donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at N{sub h} and N{sub k1,k2} sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.
Theory of superconductivity and spin excitations in cuprates
Plakida, Nikolay M.
2018-06-01
A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.
Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization
Energy Technology Data Exchange (ETDEWEB)
Berber, S. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)]. E-mail: berber@comas.frsc.tsukuba.ac.jp; Oshiyama, A. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)
2006-04-01
We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range {approx}4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes.
Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization
International Nuclear Information System (INIS)
Berber, S.; Oshiyama, A.
2006-01-01
We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes
Morita, Takaumi; Damjanović, Marko; Katoh, Keiichi; Kitagawa, Yasutaka; Yasuda, Nobuhiro; Lan, Yanhua; Wernsdorfer, Wolfgang; Breedlove, Brian K; Enders, Markus; Yamashita, Masahiro
2018-02-28
Herein we report the synthesis and characterization of a dinuclear Tb III single-molecule magnet (SMM) with two [TbPc 2 ] 0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the Tb III ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc 2 ] -/0/+ and the axially symmetric dinuclear Tb III phthalocyaninato triple-decker complex (Tb 2 (obPc) 3 ). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc 2 unit is P QTM , the probability of QTM simultaneously occurring in 1 is P QTM 2 , meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (T B ) was determined to be ca. 16 K with an energy barrier for spin reversal (U eff ) of 588 cm -1 (847 K) due to D 4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (H bias ), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported Tb III triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large U eff causes strong uniaxial magnetic anisotropy in 1, leading to a χ ax value (1.39
Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes
Nagnibeda, Ekaterina; Nagnibeda, Ekaterina
2009-01-01
This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.
Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.
Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H
2015-01-28
Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.
Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation
International Nuclear Information System (INIS)
Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.
2015-01-01
Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T 1 . Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in 13 CH 3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states
NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)
2014-04-21
We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized
Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films
Energy Technology Data Exchange (ETDEWEB)
Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)
2016-05-02
Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.
Semiclassical spinning strings and confining gauge theories
International Nuclear Information System (INIS)
Bigazzi, F.; Cotrone, A.L.; Martucci, L.
2004-03-01
We study multi-charged rotating string states on Type II B regular backgrounds dual to confining SU(N) gauge theories with (softly broken) N=1 supersymmetry, in the infra red regime. After exhibiting the classical energy/charge relations for the folded and circular two-charge strings, we compute in the latter case the one loop sigma-model quantum correction. The classical relation has an expansion in positive powers of the analogous of the BMN effective coupling, while the quantum corrections are non perturbative in nature and are not subleading in the limit of infinite charge. We comment about the dual field theory multi-charged hadrons and the implications of our computation for the AdS/N=4 duality. (author)
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
Energy Technology Data Exchange (ETDEWEB)
Lim, Ae Ran [Department of Science Education, Jeonju University, Jeonju 560-759, Chonbuk (Korea, Republic of)], E-mail: aeranlim@hanmail.net; Shin, Chang Woo [Solid State Analysis Team, Korea Basic Science Institute, Daegu 702-701 (Korea, Republic of)
2008-11-30
Successive phase transitions in a Na{sub 3}H(SO{sub 4}){sub 2} single crystal were found at 296, 513, and 533 K. To investigate the mechanism of the phase transition at 296 K, the {sup 1}H and {sup 23}Na spin-lattice relaxation time and the spin-spin relaxation time of Na{sub 3}H(SO{sub 4}){sub 2} were measured near the phase transition temperature using a FT NMR spectrometer. The spin-lattice relaxation time, T{sub 1}, for {sup 1}H in Na{sub 3}H(SO{sub 4}){sub 2} crystals exhibits a minimum below T{sub C1} (=296 K) indicating the presence of distinct molecular motion governed by the Bloembergen-Purcell-Pound (BPP) theory. Although the results for the {sup 1}H and {sup 23}Na relaxation times provide no evidence of the phase transition at T{sub C1}, the separation of the {sup 23}Na resonance lines changes abruptly at T{sub C1}. The phase transition at 296 K produces a change in the separation of the Na resonance line that is associated with a change in the atomic positions in the vicinity of the Na ions. Also, the nuclear spin-lattice relaxation process in Na{sub 3}H(SO{sub 4}){sub 2} crystals with the electric-quadrupole-type interaction proceed via Raman process. These results are compared with those obtained for other M{sub 3}H(SO{sub 4}){sub 2} (M=K, Rb, and Cs) crystals, which have similar hydrogen-bonded structures.
Field theory of the spinning electron: I - Internal motions
International Nuclear Information System (INIS)
Salesi, Giovanni; Recami, Erasmo; Universidade Estadual de Campinas, SP
1994-05-01
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v μ , which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs
Field theory of the spinning electron: I - Internal motions
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1994-05-01
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.
Charged spin fluid in the Einstein-Cartan theory
International Nuclear Information System (INIS)
de Ritis, R.; Lavorgna, M.; Platania, G.; Stornaiolo, C.
1985-01-01
We propose a variational principle describing a charged spin fluid in the Einstein-Cartan theory. We show that this fluid can be described by the current vector V/sub i/ which has a potential decomposition and generalizes the results given by Taub. We also derive Maxwell's equations in the presence of spin and torsion. The Eulerian description of the fluid is given by an action integral whose Lagrangian is the pressure plus the free Lagrangians of the gravitational and electromagnetic fields. Finally, we analyze the circulation and Bernoulli theorems using the current vector V/sub i/
Integrable spin chain in superconformal Chern-Simons theory
International Nuclear Information System (INIS)
Bak, Dongsu; Rey, Soo-Jong
2008-01-01
N = 6 superconformal Chern-Simons theory was proposed as gauge theory dual to Type IIA string theory on AdS 4 x CP 3 . We study integrability of the theory from conformal dimension spectrum of single trace operators at planar limit. At strong 't Hooft coupling, the spectrum is obtained from excitation energy of free superstring on OSp(6|4; R)/SO(3, 1) x SU(3) x U(1) supercoset. We recall that the worldsheet theory is integrable classically by utilizing well-known results concerning sigma model on symmetric space. With R-symmetry group SU(4), we also solve relevant Yang-Baxter equation for a spin chain system associated with the single trace operators. From the solution, we construct alternating spin chain Hamiltonian involving three-site interactions between 4 and 4-bar . At weak 't Hooft coupling, we study gauge theory perturbatively, and calculate action of dilatation operator to single trace operators up to two loops. To ensure consistency, we computed all relevant Feynman diagrams contributing to the dilatation opeator. We find that resulting spin chain Hamiltonian matches with the Hamiltonian derived from Yang-Baxter equation. We further study new issues arising from the shortest gauge invariant operators TrY I Y † J = (15, 1). We observe that 'wrapping interactions' are present, compute the true spectrum and find that the spectrum agrees with prediction from supersymmetry. We also find that scaling dimension computed naively from alternating spin chain Hamiltonian coincides with the true spectrum. We solve Bethe ansatz equations for small number of excitations, and find indications of correlation between excitations of 4's and 4-bar 's and of nonexistence of mesonic (44-bar ) bound-state.
Thurber, Kent R; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.
The spin-statistics connection in classical field theory
International Nuclear Information System (INIS)
Morgan, J A
2006-01-01
The spin-statistics connection is obtained for a simple formulation of a classical field theory containing even and odd Grassmann variables. To that end, the construction of irreducible canonical realizations of the rotation group corresponding to general causal fields is reviewed. The connection is obtained by imposing local commutativity on the fields and exploiting the parity operation to exchange spatial coordinates in the scalar product of classical field evaluated at one spatial location with the same field evaluated at a distinct location. The spin-statistics connection for irreducible canonical realizations of the Poincare group of spin j is obtained in the form: classical fields and their conjugate momenta satisfy fundamental field-theoretic Poisson bracket relations for 2j even and fundamental Poisson antibracket relations for 2j odd
Thermodynamics of spinning branes and their dual field theories
DEFF Research Database (Denmark)
Harmark, Troels; Obers, N. A.
2000-01-01
We discuss general spinning p-branes of string and M-theory and use their thermodynamics along with the correspondence between near-horizon brane solutions and field theories with 16 supercharges to describe the thermodynamic behavior of these theories in the presence of voltages under the R......-symmetry. The thermodynamics is used to provide two pieces of evidence in favor of a smooth interpolation function between the free energy at weak and strong coupling of the field theory. (i) A computation of the boundaries of stability shows that for the D2, D3, D4, M2 and M5-branes the critical values of Omega/T in the two...... limits are remarkably close and (ii) The tree-level R^4 corrections to the spinning D3-brane generate a decrease in the free energy at strong coupling towards the weak coupling result. We also comment on the generalization to spinning brane bound states and their thermodynamics, which are relevant...
Algebraic construction of interacting higher spin field theories
International Nuclear Information System (INIS)
Fougere, F.
1991-10-01
We develop a general framework which we believe may provide some insights into the structure of interacting 'high spin' field theories. A finite or infinite set of classical spin fields is described by means of a field defined on an enlarged spacetime manifold. The free action and its gauge symmetries are gathered into a nilpotent differential operator on this manifold. In particular, the choice of Grassmann-valued extra coordinates leads to theories involving only a finite set of fields, the possible contents (spin multiplicities, degree of reducibility, etc.) of which are classified according to the representations of a unitary algebra. The interacting theory is characterized by a functional of the field on the enlarged manifold. We show that there is among these functionals a natural graded Lie algebra structure allowing one to rewrite the gauge invariance condition of the action in a concise form which is a nonlinear generalization of the nilpotency condition of the free theory. We obtain the general solution of this 'classical master equation' , which can be built recurrently starting form the cubic vertex, and we study its symmetries. Our formalism lends itself to a systematic introduction of additional conditions, such as locality, polynomiality, etc. We write down the general form of the solutions exhibiting a scale invariance. The case of a spin 1 field yields, as a unique solution, Yang-Mills theory. In view of quantization, we show that the solution of the classical master equation straightforwardly provides a solution of the (quantum) Batalin-Vilkoviski master equation. One may then obtain a gauge fixed action in the usual way
Relaxation of vacuum energy in q-theory
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
Energy Technology Data Exchange (ETDEWEB)
Plonka, A; Kevan, L
1976-11-01
A differential ESR saturation study of allowed transitions and forbidden proton spin-flip satellite transitions for trapped hydrogen atoms in sulfuric acid glasses indicates that angular modulation dominates the spin-lattice relaxation mechanisms and suggests that the modulation arises from motion of the H atom.
Vibrational relaxation in liquids: Comparisons between gas phase and liquid phase theories
International Nuclear Information System (INIS)
Russell, D.J.
1990-12-01
The vibrational relaxation of iodine in liquid xenon was studied to understand what processes are important in determining the density dependence of the vibrational relaxation. This examination will be accomplished by taking simple models and comparing the results to both experimental outcomes and the predictions of molecular dynamics simulations. The vibration relaxation of iodine is extremely sensitive to the iodine potential. The anharmonicity of iodine causes vibrational relaxation to be much faster at the top of the iodine well compared to the vibrational relaxation at the bottom. A number of models are used in order to test the ability of the Isolated Binary Collision theory's ability to predict the density dependence of the vibrational relaxation of iodine in liquid xenon. The models tested vary from the simplest incorporating only the fact that the solvent occupies volume to models that incorporate the short range structure of the liquid in the radial distribution function. None of the models tested do a good job of predicting the actual relaxation rate for a given density. This may be due to a possible error in the choice of potentials to model the system
Czech Academy of Sciences Publication Activity Database
Savchenko, Dariia; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, Ján; Mokhov, E.
2016-01-01
Roč. 119, č. 13 (2016), 1-7, č. článku 135706. ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk LO1409; GA MŠk LM2015088 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * SiC * nitrogen donors * relaxation times Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016
Population annealing: Theory and application in spin glasses
Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.
2015-01-01
Population annealing is an efficient sequential Monte Carlo algorithm for simulating equilibrium states of systems with rough free energy landscapes. The theory of population annealing is presented, and systematic and statistical errors are discussed. The behavior of the algorithm is studied in the context of large-scale simulations of the three-dimensional Ising spin glass and the performance of the algorithm is compared to parallel tempering. It is found that the two algorithms are similar ...
Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu
2018-04-01
We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.
Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory
International Nuclear Information System (INIS)
Janda, A.
2006-01-01
We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)
Field theory of the spinning electron: Internal motions
Salesi, Giovanni; Recami, Erasmo
1996-01-01
We present here a field theory of the spinning electron, by writing down a new equation for the 4-velocity field v^mu (different from that of Dirac theory), which allows a classically intelligible description of the electron. Moreover, we make explicit the noticeable kinematical properties of such velocity field (which also result different from the ordinary ones). At last, we analyze the internal zitterbewegung (zbw) motions, for both time-like and light-like speeds. We adopt in this paper t...
Molecular excitation dynamics and relaxation quantum theory and spectroscopy
Valkunas, Leonas; Mancal, Tomas
2013-01-01
Meeting the need for a work that brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire field rather than just single aspects.Written by an experienced author and recognized authority in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all find this a must-have for their research. Also suitable as supplementary reading in graduate
Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.
2017-01-01
A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERLYCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (muSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the material into the ...
Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass
International Nuclear Information System (INIS)
Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.
1986-01-01
Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE
Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.
Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil
2012-05-28
Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.
Bytchenkoff, Dimitri; Rodts, Stéphane
2011-01-01
The form of the two-dimensional (2D) NMR-relaxation spectra--which allow to study interstitial fluid dynamics in diffusive systems by correlating spin-lattice (T(1)) and spin-spin (T(2)) relaxation times--has given rise to numerous conjectures. Herein we find analytically a number of fundamental structural properties of the spectra: within the eigen-modes formalism, we establish relationships between the signs and intensities of the diagonal and cross-peaks in spectra obtained by various 1 and 2D NMR-relaxation techniques, reveal symmetries of the spectra and uncover interdependence between them. We investigate more specifically a practically important case of porous system that has sets of T(1)- and T(2)-eigenmodes and eigentimes similar to each other by applying the perturbation theory. Furthermore we provide a comparative analysis of the application of the, mathematically more rigorous, eigen-modes formalism and the, rather more phenomenological, first-order two-site exchange model to diffusive systems. Finally we put the results that we could formulate analytically to the test by comparing them with computer-simulations for 2D porous model systems. The structural properties, in general, are to provide useful clues for assignment and analysis of relaxation spectra. The most striking of them--the presence of negative peaks--underlines an urgent need for improvement of the current 2D Inverse Laplace Transform (ILT) algorithm used for calculation of relaxation spectra from NMR raw data. Copyright © 2010 Elsevier Inc. All rights reserved.
Localized excitons in quantum wells show spin relaxation without coherence loss
DEFF Research Database (Denmark)
Zimmermann, R.; Langbein, W.; Runge, E.
2001-01-01
The coherence in the secondary emission from quantum well excitons is studied using the speckle method. Analysing the different polarization channels allows to conclude that (i) no coherence loss occurs in the cross-polarized emission, favouring spin beating instead of spin dephasing, and that (i...
Remarks on a gauge theory for continuous spin particles
Energy Technology Data Exchange (ETDEWEB)
Rivelles, Victor O. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)
2017-07-15
We discuss in a systematic way the gauge theory for a continuous spin particle proposed by Schuster and Toro. We show that it is naturally formulated in a cotangent bundle over Minkowski spacetime where the gauge field depends on the spacetime coordinate x{sup μ} and on a covector η{sub μ}. We discuss how fields can be expanded in η{sub μ} in different ways and how these expansions are related to each other. The field equation has a derivative of a Dirac delta function with support on the η-hyperboloid η{sup 2} + 1 = 0 and we show how it restricts the dynamics of the gauge field to the η-hyperboloid and its first neighbourhood. We then show that on-shell the field carries one single irreducible unitary representation of the Poincare group for a continuous spin particle. We also show how the field can be used to build a set of covariant equations found by Wigner describing the wave function of one-particle states for a continuous spin particle. Finally we show that it is not possible to couple minimally a continuous spin particle to a background abelian gauge field, and we make some comments about the coupling to gravity. (orig.)
Shu, Lei
Some filled skutterudite compounds have recently been found to exhibit very interesting properties. The first Pr-based heavy-fermion superconductor, PrOs4Sb12, is an intriguing material due to the unusual properties of both its normal and superconducting states. Comprehensive muon spin rotation and relaxation studies and magnetic susceptibility measurements, described in this dissertation, have been performed to investigate the microscopic properties of PrOs4Sb12 and its Ru and La doped alloys. The temperature dependence of penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) is weaker than those measured by radiofrequency measurements. A scenario based on two-band superconductivity in PrOs4Sb 12, is proposed to resolve this difference. TF-muSR experiments also suggest the suppression of superfluid density with Ru doping, probably due to impurity scattering. In addition, magnetic susceptibility data as well as analysis of the muSR data in PrOs4Sb12 reveal a nearly linear relation of mu+ Knight shift vs. magnetic susceptibility. This suggests that the muon charge does not affect the crystalline electric field splitting of Pr3+ near neighbors. Additional evidence comes from the fact that the superconducting transition temperature Tc measured from muSR is consistent with the bulk superconducting values. Zero-field muon spin relaxation (ZF-muSR) experiments have been carried out in the Pr(Os1-xRux) 4Sb12 and Pr1-yLayOs 4Sb12 alloy systems to investigate the time-reversal symmetry (TRS) breaking found in an earlier ZF-muSR study of the end compound PrOs 4Sb12. The results from measurements at KEK, Japan, suggest that Ru doping is considerably more efficient than La doping in suppressing TRS breaking superconducting in PrOs4Sb12. However, we think that the spontaneous local field that indicates TRS breaking detected by ZF-muSR may depend on sample quality if those fields are from inhomogeneity in the
Quantum optimal control theory and dynamic coupling in the spin-boson model
International Nuclear Information System (INIS)
Jirari, H.; Poetz, W.
2006-01-01
A Markovian master equation describing the evolution of open quantum systems in the presence of a time-dependent external field is derived within the Bloch-Redfield formalism. It leads to a system-bath interaction which depends on the control field. Optimal control theory is used to select control fields which allow accelerated or decelerated system relaxation, or suppression of relaxation (dissipation) altogether, depending on the dynamics we impose on the quantum system. The control-dissipation correlation and the nonperturbative treatment of the control field are essential for reaching this goal. The optimal control problem is formulated within Pontryagin's minimum principle and the resulting optimal differential system is solved numerically. As an application, we study the dynamics of a spin-boson model in the strong coupling regime under the influence of an external control field. We show how trapping the system in unstable quantum states and transfer of population can be achieved by optimized control of the dissipative quantum system. We also used optimal control theory to find the driving field that generates the quantum Z gate. In several cases studied, we find that the selected optimal field which reduces the purity loss significantly is a multicomponent low-frequency field including higher harmonics, all of which lie below the phonon cutoff frequency. Finally, in the undriven case we present an analytic result for the Lamb shift at zero temperature
Spin and orbital exchange interactions from Dynamical Mean Field Theory
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2016-02-15
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.
Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu
2017-03-21
Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.
DEFF Research Database (Denmark)
Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto
2017-01-01
iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...
Warped conformal field theory as lower spin gravity
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Warped conformal field theory as lower spin gravity
Directory of Open Access Journals (Sweden)
Diego M. Hofman
2015-08-01
Full Text Available Two dimensional Warped Conformal Field Theories (WCFTs may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R×U(1 Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Smith, Jonathan C; Karmin, Aaron D
2002-12-01
This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.
International Nuclear Information System (INIS)
Radojevic, V.; Davidovic, D.M.; Amusia, M.Ya.
2003-01-01
Results of calculations of the near-threshold photoionization of the xenon 3d spin-orbit doublet are reported. Our theoretical analysis is undertaken in order to interpret and enlighten the very detailed measurements of this process [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2001)], which revealed a previously unobserved interesting feature--an additional broad maximum--in the partial xenon 3d 5/2 cross section. This double maximum was not produced by earlier calculations, except in the recent study by Amusia et al. [Phys. Rev. Lett. 88, 093002 (2002)], which, in contrast to the present one, is not ab initio and relativistic in character. The partial photoionization cross sections of 3d 5/2 and 3d 3/2 subshells, photoelectron anisotropy parameters, and spin-polarization parameters that were so far not studied either experimentally or theoretically are calculated. Many-electron correlations, relativistic effects, and relaxation effects of the ionic core in the ionization process are taken into account by using the relativistic random-phase approximation, modified to include the relaxation of the considered subshell
Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing
International Nuclear Information System (INIS)
Wood, R.F.
1993-06-01
The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons
International Nuclear Information System (INIS)
Michalik, J.; Kevan, L.
1978-01-01
The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)
Pohjola, Teemu; Schoeller, Herbert
2000-12-01
In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.
Molecular theory for nuclear magnetic relaxation in protein solutions and tissue
International Nuclear Information System (INIS)
Kimmich, R.; Nusser, W.; Gneiting, T.
1990-01-01
A model theory is presented explaining a series of striking phenomena observed with nuclear magnetic relaxation in protein systems such as solutions or tissue. The frequency, concentration and temperature dependences of proton or deuteron relaxation times of protein solutions and tissue are explained. It is concluded that the translational diffusion of water molecules along the rugged surfaces of proteins and, to a minor degree, protein backbone fluctuations are crucial processes. The rate limiting factor of macromolecular tumbling is assumed to be given by the free water content in a certain analogy to the free-volume model of Cohen ad Turnbull. There are two characteristic water mass fractions indicating the saturation of the hydration shells and the onset of protein tumbling. A closed and relatively simple set of relaxation formulas is presented. The potentially fractal nature of the diffusion of water molecules on the protein surface is discussed. (author). 43 refs.; 4 figs
Lattice Distortion Mediated Paramagnetic Relaxation in High-Spin High-Symmetry Molecular Magnets
Garg, Anupam
1998-08-01
Field-dependent maxima in the relaxation rate of the magnetic molecules Mn12-Ac and Fe8-tacn have commonly been ascribed to some resonant tunneling phenomena. We argue instead that the relaxation is purely due to phonons. The rate maxima arise because of a Jahn-Teller-like distortion caused by the coupling of phonons to degenerate Zeeman levels of the molecule at the top of the barrier. The binding energy of the distorted intermediate states lowers the barrier height and increases the relaxation rate. A nonperturbative calculation of this effect is carried out for a model system. An approximate result for the field variation near a maximum is found to agree reasonably with experiment.
Theory of high-resolution tunneling spin transport on a magnetic skyrmion
Palotás, Krisztián; Rózsa, Levente; Szunyogh, László
2018-05-01
Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.
Linear spin-wave theory of incommensurably modulated magnets
DEFF Research Database (Denmark)
Ziman, Timothy; Lindgård, Per-Anker
1986-01-01
Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...
International Nuclear Information System (INIS)
Carvalho, R.A.
1977-01-01
A magnetic circular dicroism spectrometer is described, which was used in the following experiments: 1) The spin-lattice relaxation time (T 1 ) for F centers in NaCl, NaBr, CsBr and CsCl, at 1,8 0 K in magnetic fields up to 15000Gs is described. The suitability of the theory of ref. (08) to explain the differences observed for halides of differents alkali ions as well as for different structures is verified proves that the hyperfine interaction is the most important mechanism for this kind of centers. It is also verified that, for temperatures between 6 0 K and 15 0 K, T 1 experimental values fits the theory of ref. (21) reasonably well, for F centers in KBr. This theory us an extension of that of ref. (8). 2) The MCD spectra for KCl:Co ++ and Caf 2 :Co ++ in different magnetic fields up to 56KGs, and in temperature range between 1,8 0 K and 4,2 0 K is obtained. The results are consistent with the assumption that Co ++ centers are intersticial in KCl lattice [pt
Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E
2010-11-01
Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.
Spin-relaxation without coherence loss: Fine-structure splitting of localized excitons
DEFF Research Database (Denmark)
Langbein, Wolfgang; Zimmermann, R.; Runge, E.
2000-01-01
We investigate the polarization dynamics of the secondary emission from a disordered quantum well after resonant excitation. Using the speckle analysis technique we determine the coherence degree of the emission, and find that the polarization-relaxed emission has a coherence degree comparable to...
Theory of spin-dependent tunnelling in magnetic junctions
International Nuclear Information System (INIS)
Mathon, J.
2002-01-01
Rigorous theory of the tunnelling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches ∼65% in the tunnelling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunnelling current is negative in the metallic regime but becomes positive P∼35% in the tunnelling regime. Calculation of the TMR of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of ∼20 atomic planes and the spin polarization of the tunnelling current is positive for all MgO thicknesses. It is also found that spin-dependent tunnelling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the Γ point (k parallel = 0) even for MgO thicknesses as large as ∼20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains non-zero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunnelling from a Cu interlayer, i.e. non-zero TMR. Numerical modelling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the non-magnetic layer is lost and with it the TMR. (author)
Studies of spin relaxation and recombination at the HERMES hydrogen/deuterium gas target
International Nuclear Information System (INIS)
Baumgarten, C.
2000-09-01
The HERMES (HERA measurement of spin) experiment is located in the eastern straight section of the HERA storage ring at DESY in Hamburg. It is designed to study the spin structure of the nucleons by deep inelastic scattering of polarized positrons resp. electrons provided by the HERA storage ring at 27.5 GeV impingingon the nucleons of internal polarized gas targets. The setup of the HERMES experiment is shown. First results are the measurement of the spin structure functions g 1 n with the polarized 3 He target (1995) and of g 1 p with polarized atomic hydrogen target, which was operated in 1996 and 1997. Beneath the inclusive physics, the possibility to detect and identify hadronic scattering products allows the measurement of semi-inclusive processes with the central item of the HERMES physics program. (orig.)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-12-01
The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.
Energy Technology Data Exchange (ETDEWEB)
Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2016-08-01
To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.
The spin polarized linear response from density functional theory: Theory and application to atoms
Energy Technology Data Exchange (ETDEWEB)
Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)
2014-11-14
Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.
Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.
Liu, Mengxiao; Kim, Yaewon; Hilty, Christian
2017-09-05
Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.
Stochastic theory of relaxation and collisional broadening of spectral line shapes
International Nuclear Information System (INIS)
Faid, K.
1986-01-01
A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the averaged density matrix of a system immersed in a thermal bath. This theory is then used as the basis of a new stochastic approach to the phenomenon of collisional broadening of spectral line shapes. Single-photon and multiphoton processes are studied. The features of a line shape are linked by simple expressions to the statistical properties of a stochastic hermitian Hamiltonian. The ordinary line shape predicted by Kubo's approach is generalized. The present approach predicts broadening as well as asymmetry and shift. A representation of line shapes in multiphoton processes by diagrams is also developed
International Nuclear Information System (INIS)
Paglietti, A.
1978-01-01
This paper is concerned with the thermodynamical theory of materials with fading memory exhibiting the creep and relaxation properties. It is shown that, once the current thermodynamical approach is followed, the second principle of thermodynamics implies for these materials further restrictions on the free-energy functional in addition to the well-known ones deduced in the general theory of materials with fading memory. The possibility of an experimental check of the current approach and the possibility of an alternative and more general approach are briefly discussed. (author)
Irreversibility and higher-spin conformal field theory
Anselmi, D
2000-01-01
I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...
Energy Technology Data Exchange (ETDEWEB)
Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))
1989-11-01
By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).
International Nuclear Information System (INIS)
Takahashi, Hideo; Shimada, Ichio
2007-01-01
Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules
Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence
International Nuclear Information System (INIS)
Sankar, S.S.; Mole, P.A.; Coulson, R.L.
1986-01-01
1 H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D 2 O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two
Theory of electrically controlled resonant tunneling spin devices
Ting, David Z. -Y.; Cartoixa, Xavier
2004-01-01
We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.
Why QCD lattice theory is important to spin physicists
International Nuclear Information System (INIS)
Rebbi, C.
1982-01-01
The lattice formulation of a quantum field theory allows calculations in the regime of strong coupling, by expansion techniques, and for intermediate coupling, by Monte Carlo simulations. These computations are especially valuable in the case of Quantum Chromodynamics (QCD), where several of the most important problems are not amenable to a perturbative analysis. Monte carlo simulations, in particular, have recently emerged as a very powerful tool and have been used to evaluate a variety of important physical quantities, such as the string tension, the deconfinement temperature, the scale of the interquark potential, glueball masses and masses in the quark model spectrum. If we consider those problems of strong interactions where spin plays an important role, it is unlikely, for the moment at least, that the lattice formulation may be of relevance where the phenomena being investigated involve propagations over extended domains of space-time; thus, for instance, it is impossible to perform a meaningful simulation of a scattering experiment on the lattice. But we are at the stage where Monte Carlo calculations begin to provide relevant information on spectroscopic properties related to spin. These are briefly discussed
Star-product functions in higher-spin theory and locality
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2015-06-04
Properties of the functional classes of star-product elements associated with higher-spin gauge fields and gauge parameters are elaborated. Cohomological interpretation of the nonlinear higher-spin equations is given. An algebra ℋ, where solutions of the nonlinear higher-spin equations are valued, is found. A conjecture on the classes of star-product functions underlying (non)local maps and gauge transformations in the nonlinear higher-spin theory is proposed.
International Nuclear Information System (INIS)
Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao
1999-01-01
The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)
Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S
2008-02-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Liao, Shu-Hsien; Wu, Pei-Che
2017-08-01
We study the concentration dependence of spin-lattice relaxation rates, T 1 -1, of glucose, fructose, sucrose and cherries by using high-T c SQUID-based NMR at magnetic fields of ˜97 μT. The detected NMR signal, Sy (T Bp), is fitted to [1 - exp(-T Bp/T 1)] to derive T 1 -1, where Sy (T Bp) is the strength of the NMR signal, T Bp is the duration of pre-polarization and T 1 -1 is the spin-lattice relaxation rate. It was found that T 1 -1 increases as the sugar concentrations increase. The increased T 1 -1 is due to the presence of more molecules in the surroundings, which increases the spin-lattice interaction and in turn enhances T 1 -1. The T 1 -1 versus degrees Brix curve provides a basis for determining unknown Brix values for cherries as well as other fruits.
Prescription Drug Use among College Students: A Test of Criminal Spin Theory
Lin, Wan-Chun
2017-01-01
Criminal spin theory developed by Ronel intends to provide a more comprehensive explanation of criminal behavior. It includes wide-ranging factors that impact human behavior at an individual, group, and cultural level. According to criminal spin theory, an event or a set of events can impact human emotions, thoughts, and behaviors. With the…
Freed, Karl F
2014-10-14
A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition" [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.
Energy Technology Data Exchange (ETDEWEB)
Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute and Department of Chemistry, University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 (United States)
2014-10-14
A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, “The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition” [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.
Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.
2015-11-01
We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.
Duality for massive spin two theories in arbitrary dimensions
International Nuclear Information System (INIS)
Gonzalez, B.; Urrutia, L.F.; Khoudeir, A.; Montemayor, R.
2008-01-01
Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor T A[B 1 B 2 ...B D-2 ] , without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Stolpe, Mathias
2008-01-01
the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem. In contrast to heuristic methods considered in other approaches, Part I....... The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible...
Directory of Open Access Journals (Sweden)
A. M. Abd El-Latief
2016-01-01
Full Text Available The fractional mathematical model of Maxwell’s equations in an electromagnetic field and the fractional generalized thermoelastic theory associated with two relaxation times are applied to a 1D problem for a thick plate. Laplace transform is used. The solution in Laplace transform domain has been obtained using a direct method and its inversion is calculated numerically using a method based on Fourier series expansion technique. Finally, the effects of the two fractional parameters (thermo and magneto on variable fields distributions are made. Numerical results are represented graphically.
Energy Technology Data Exchange (ETDEWEB)
Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com [Departments of Materials Science and Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.
International Nuclear Information System (INIS)
Mirigian, Stephen; Schweizer, Kenneth S.
2015-01-01
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry
Energy Technology Data Exchange (ETDEWEB)
Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
Theory of spin Hall effect: extension of the Drude model.
Chudnovsky, Eugene M
2007-11-16
An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field, and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall conductivity sigma s and charge conductivity sigma c are related through sigma s=[2pi variant /(3mc2)]sigma2c with m being the bare electron mass. The theoretically computed value is in agreement with experiment.
Analytical theory and possible detection of the ac quantum spin Hall effect.
Deng, W Y; Ren, Y J; Lin, Z X; Shen, R; Sheng, L; Sheng, D N; Xing, D Y
2017-07-11
We develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
Singlet ground-state fluctuations in praseodymium observed by muon spin relaxation in PrP and PrP0.9
International Nuclear Information System (INIS)
Noakes, D R; Waeppling, R; Kalvius, G M; Jr, M F White; Stronach, C E
2005-01-01
Muon spin relaxation (μSR) in the singlet ground-state compounds PrP and PrP 0.9 reveals the unusual situation of a Lorentzian local field distribution with fast-fluctuation-limit strong-collision dynamics, a case that does not show motional narrowing. Contrary to publications by others, where PrP 0.9 was asserted to have vacancy-induced spin-glass freezing, no spin-glass freezing is seen in PrP 0.9 or PrP down to ≤100mK. This was confirmed by magnetization measurements on these same samples. In both compounds, the muon spin relaxation rate does increase as temperature decreases, demonstrating increasing strength of the paramagnetic response. A Monte Carlo model of fluctuations of Pr ions out of their crystalline-electric-field singlet ground states into their magnetic excited states (and back down again) produces the strong-collision-dynamic Lorentzian relaxation functions observed at each individual temperature but not the observed temperature dependence. This model contains no exchange interaction, and so predicts decreasing paramagnetic response as the temperature decreases, contrary to the temperature dependence observed. Comparison of the simulations to the data suggests that the exchange interaction is causing the system to approach magnetic freezing (by mode softening), but fails to complete the process
International Nuclear Information System (INIS)
Noerenberg, W.
1976-01-01
Relaxation phenomena in deeply inelastic collisions are qualitatively discussed and compared with precompound reactions. Different approaches for describing these processes are reviewed, in particular the microscopic transport theories, which can be understood from a generalized master equation for macroscopic variables. The Markoff approximation and the classical limit for the relative motion lead to two coupled equations, the classical equation of relative motion with friction and a Pauli master equation for the internal degrees of freedom. The master equation approximated by the corresponding Fokker-Planck equation for mass transfer and energy dissipation is discussed in detail. Simple analytic expressions are derived for the transport coefficients as functions of excitation energy, total mass, mass fragmentation and relative angular momentum. Calculated transport coefficients are compared with experimental values. Problems and future developments in microscopic transport theories are outlined. (orig.) [de
Higher spin currents in the orthogonal coset theory
Energy Technology Data Exchange (ETDEWEB)
Ahn, Changhyun [Kyungpook National University, Department of Physics, Taegu (Korea, Republic of)
2017-06-15
In the coset model (D{sub N}{sup (1)} + D{sub N}{sup (1)}, D{sub N}{sup (1)}) at levels (k{sub 1}, k{sub 2}), the higher spin 4 current that contains the quartic WZW currents contracted with a completely symmetric SO(2N) invariant d tensor of rank 4 is obtained. The three-point functions with two scalars are obtained for any finite N and k{sub 2} with k{sub 1} = 1. They are determined also in the large N 't Hooft limit. When one of the levels is the dual Coxeter number of SO(2N), k{sub 1} = 2N - 2, the higher spin (7)/(2) current, which contains the septic adjoint fermions contracted with the above d tensor and the triple product of structure constants, is obtained from the operator product expansion (OPE) between the spin (3)/(2) current living in the N = 1 superconformal algebra and the above higher spin 4 current. The OPEs between the higher spin (7)/(2), 4 currents are described. For k{sub 1} = k{sub 2} = 2N - 2 where both levels are equal to the dual Coxeter number of SO(2N), the higher spin 3 current of U(1) charge (4)/(3), which contains the six products of spin (1)/(2) (two) adjoint fermions contracted with the product of the d tensor and two structure constants, is obtained. The corresponding N = 2 higher spin multiplet is determined by calculating the remaining higher spin (7)/(2), (7)/(2), 4 currents with the help of two spin (3)/(2) currents in the N = 2 superconformal algebra. The other N = 2 higher spin multiplet, whose U(1) charge is opposite to the one of the above N = 2 higher spin multiplet, is obtained. The OPE between these two N = 2 higher spin multiplets is also discussed. (orig.)
Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.
2017-10-01
A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERYLCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (μSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the materials into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and a softer inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperature, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background μSR signal.
Hyperfine fields and spin relaxation of Ce in GdAl2 and DyAl2
International Nuclear Information System (INIS)
Waeckelgaard, E.; Karlsson, E.; Lindgren, B.; Mayer, A.
1987-04-01
We have investigated the ferromagnetic state of the cubic intermetallic compounds GdAl 2 and DyAl 2 with the 140 Ce nuclei using DPAC. The local fields of Ce are for the lowest measured temperatures B eff (30 K) = 54(2) T for GdAl 2 and B eff (12.5 K) = 27(1) T for DyAl 2 which are considerably lower than the hyperfine field measured for a free Ce ion (183 T). By introducing a crystal field, of cubic symmetry, a lower hyperfine field is obtained which is in quantitative agreement with the local field of Ce in GdAl 2 . For DyAl 2 an additional effect, represented by a non-magnetic level below the lowest magnetic level, may explain a further reduction of the hyperfine field. Two models relating to a Kondo non-magnetic state of Ce are discussed. Spin relaxation in the paramagnetic state are also studied and compared with observations of the same systems measured with μSR. (authors)
Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar
2017-12-01
Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Sivadinarayana, C.; Choudhary, V.R.; Ganapathy, S.
1994-01-01
It is shown that considerable sensitivity enhancement is achieved in the 29 Si magic angle sample spinning (MASS) NMR spectra of highly siliceous zeolites by pre treating the material with oxygen. The presence of adsorbed molecular oxygen in zeolite channels promotes an efficient 29 Si spin-lattice relaxation via a paramagnetic interaction between the lattice 29 Si T-site and the adsorbed oxygen on zeolite channels. This affords an efficient 2-D data collection and leads to increased sensitivity. The utility of this method is demonstrated in a two-dimensional COSY-45 NMR experiment of a high silica zeolite ZSM-5. (author). 20 refs., 3 figs., 1 tab
Spin foam models of Yang-Mills theory coupled to gravity
International Nuclear Information System (INIS)
Mikovic, A
2003-01-01
We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barrett-Crane ansatz. In the Euclidean gravity case, we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidean gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity
Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms
International Nuclear Information System (INIS)
Guo, Y.; Whitehead, M.A.
1988-01-01
The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, and Bogdanovic's Fermi-hole parameters [Phys. Rev. A 14, 1 (1976)], and Vosko, Wilk, and Nusair's correlation correction [Can. J. Phys. 58, 1200 (1980)], are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered
International Nuclear Information System (INIS)
Hirsch, J.E.
2005-01-01
The existence of macroscopic spin currents in the ground state of superconductors is predicted within the theory of hole superconductivity. Here it is shown that the electromagnetic Darwin interaction is attractive for spin currents and repulsive for charge currents. It is also shown that the mere existence of spin currents implies that some electrons are moving at relativistic speeds in macroscopic superconductors, which in turn implies that the Darwin interaction plays a fundamental role in stabilizing the superconducting state
Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.
2016-12-01
Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.
Energy Technology Data Exchange (ETDEWEB)
Nikolic, V.; Perovic, M., E-mail: mara.perovic@vinca.rs; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V. [University of Belgrade, Condensed Matter Physics Laboratory, Institute of Nuclear Sciences Vinca (Serbia)
2015-03-15
Spherical γ-Fe{sub 2}O{sub 3} nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe{sub 2}O{sub 3} nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.
Neoclassical theory of elementary charges with spin of 1/2
Energy Technology Data Exchange (ETDEWEB)
Babin, Anatoli; Figotin, Alexander [Department of Mathematics University of California at Irvine, Irvine, California 92697-3875 (United States)
2014-08-15
We advance here our neoclassical theory of elementary charges by integrating into it the concept of spin of 1/2. The developed spinorial version of our theory has many important features identical to those of the Dirac theory such as the gyromagnetic ratio, expressions for currents including the spin current, and antimatter states. In our theory, the concepts of charge and anticharge relate naturally to their “spin” in its rest frame in two opposite directions. An important difference with the Dirac theory is that both the charge and anticharge energies are positive whereas their frequencies have opposite signs.
Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}
Sperling, Marcus; Steinacker, Harold C.
2018-02-01
We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \
Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs
Mean-field theory of spin-glasses with finite coordination number
Kanter, I.; Sompolinsky, H.
1987-01-01
The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)
2014-05-21
We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.
Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective
Energy Technology Data Exchange (ETDEWEB)
Moskalenko, Andrey S., E-mail: andrey.moskalenko@uni-konstanz.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz (Germany); Zhu, Zhen-Gang, E-mail: zgzhu@ucas.ac.cn [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Berakdar, Jamal, E-mail: jamal.berakdar@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)
2017-02-17
This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver
Motion of spinning particles. Post-Newtonian approximation in the Einstein-Cartan theory
Energy Technology Data Exchange (ETDEWEB)
Boccaletti, D; Agostini, W; Festa, P [Rome Univ. (Italy). Ist. di Matematica
1979-01-11
The equations of motion of spinning particles are obtained in the post-Newtonian approximation of the Einstein-Cartan theory. The starting point of the calculation is the Hehl combined equation and a semi-classical model is assumed for the system of spinning particles. Comparison is made with an analogous quantum result obtained in the context of Gupta quantization of the linearized Einstein theory.
Nuclear reactivity indices in the context of spin polarized density functional theory
International Nuclear Information System (INIS)
Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio
2006-01-01
In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented
Theory of single-spin inelastic tunneling spectroscopy.
Fernández-Rossier, J
2009-06-26
I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.
Geometric Magnetic Frustration in Li3Mg2OsO6 Studied with Muon Spin Relaxation
Carlo, J. P.; Derakhshan, S.; Greedan, J. E.
Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A5BO6, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li3Mg2OsO6 using muon spin relaxation (μSR), a highly sensitive local probe of magnetism. Previous studies of this family included Li5OsO6, which exhibits AF order below 50K with minimal evidence for frustration, and Li4MgReO6, which exhibits glassy magnetism. Li3Mg2RuO6, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, Li3Mg2OsO6 (5d3 vs. 4d3) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration. Financial support from the Research Corporation for Science Advancement.
SU(2) x U(1) unified theory for charge, orbit and spin currents
International Nuclear Information System (INIS)
Jin Peiqing; Li Youquan; Zhang Fuchun
2006-01-01
Spin and charge currents in systems with Rashba or Dresselhaus spin-orbit couplings are formulated in a unified version of four-dimensional SU(2) x U(1) gauge theory, with U(1) being the Maxwell field and SU(2) being the Yang-Mills field. While the bare spin current is non-conserved, it is compensated by a contribution from the SU(2) gauge field, which gives rise to a spin torque in the spin transport, consistent with the semi-classical theory of Culcer et al. Orbit current is shown to be non-conserved in the presence of electromagnetic fields. Similar to the Maxwell field inducing forces on charge and charge current, we derive forces acting on spin and spin current induced by the Yang-Mills fields such as the Rashba and Dresselhaus fields and the sheer strain field. The spin density and spin current may be considered as a source generating Yang-Mills field in certain condensed matter systems
Theory of the Spin Galvanic Effect at Oxide Interfaces
Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto
2017-12-01
The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)
2015-01-22
We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.
Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density
Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.
1988-01-01
The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.
Gauge field theory approach to spin transport in a 2D electron gas
Directory of Open Access Journals (Sweden)
B. Berche
2009-01-01
Full Text Available We discuss the Pauli Hamiltonian including the spin-orbit interaction within an U(1×SU(2 gauge theory interpretation, where the gauge symmetry appears to be broken. This interpretation offers new insight into the problem of spin currents in the condensed matter environment, and can be extended to Rashba and Dresselhaus spin-orbit interactions. We present a few outcomes of the present formulation: i it automatically leads to zero spin conductivity, in contrast to predictions of Gauge symmetric treatments, ii a topological quantization condition leading to voltage quantization follows, and iii spin interferometers can be conceived in which, starting from an arbitrary incoming unpolarized spinor, it is always possible to construct a perfect spin filtering condition.
Tunneling spin injection into single layer graphene.
Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K
2010-10-15
We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130 Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.
Dual descriptors within the framework of spin-polarized density functional theory.
Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P
2008-08-14
Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.
International Nuclear Information System (INIS)
Tao, Ruibao.
1991-09-01
A method is developed to make a Bose transformation which is restricted in proper space. A self-consistent independent spin wave representation (SCISWR) is found for two dimensional isotropic antiferromagnet of Heisenberg square lattices. In the SCISWR, we have successfully done the renormalization from both the dynamic and kinematic interaction and calculated the corrections from the correlations of the nearest neighbour and next nearest neighbour sites. An anisotropic excitation energy of spin wave in improper space is found self-consistently and has a gap. The difficulty of divergence appearing from higher order perturbation terms in the conventional spin wave theory has been overcome and the convergence in our approach seems quite good. We find the energy of ground state E approx. -0.659 in low order approximation and the magnetization of sublattice M z = 0.430 x (N/2) for system with spin 1/2. It is also proved that a physical spin excitation restricted in proper space is still isotropic and has no gap. (author). 17 refs
International Nuclear Information System (INIS)
Hoffmann, S.K.
2000-01-01
Temperature cw-EPR and pulsed EPR electron spin echo experiments were performed for a low concentration of Cu 2+ ions in cubic SrF 2 crystals. The well resolved EPR spectrum at low temperatures (below 30 K) with parameters g parallel = 2.493, g perpendicular = 2.083, A parallel = 121, A perpendicular = 8.7, A parallel ( 19 F) = 135, A parallel ( 19 F) = 33.0 (A-values in 10 -4 cm -1 ) is transformed continuously into a single broad line above 225 K on heating, due to the g-factor shift and EPR line broadening. These data along with the angular variation EPR data are described in terms of a pseudo-Jahn-Teller effect of (T 2g +A 2u )x(a 1g +e g +t 1u ) type producing six off-centre positions of the Cu 2+ ion in the fluorine cube. Above 30 K a two-step averaging g -factor process occurs and is governed by vibronic dynamics between potential wells of the off-centre positions. This dynamics governs the electron spin relaxation in the whole temperature range. The electron spin-lattice relaxation rate 1/T 1 grows rapidly by six orders of magnitude in the temperature range 30-100 K and is determined by the Orbach-type process with excitations to two excited vibronic levels of energy 83 and 174 cm -1 . For higher temperatures the relaxation is dominated by overbarrier jumps leading to the isotropic EPR spectrum above 225 K. The phase memory time T M has the rigid lattice value 3.5 μs determined by nuclear spectral diffusion and its temperature variation is governed by the vibronic dynamics indicating that the excitations between vibronic levels produce a dephasing of the electron spin precessional motion. (author)
Dirac relaxation of the Israel junction conditions: Unified Randall-Sundrum brane theory
International Nuclear Information System (INIS)
Davidson, Aharon; Gurwich, Ilya
2006-01-01
Following Dirac's brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying the bulk coordinate system itself. Imposing appropriate Dirac-style boundary conditions on the constrained 'sandwiched' gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the Z 2 -symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and in the generic Z 2 -asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from general relativity
Theory of current-induced spin polarization in an electron gas
Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto
2017-05-01
We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.
Spinning gravitating objects in the effective field theory in the post-Newtonian scheme
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-09-30
We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments
International Nuclear Information System (INIS)
Pavarini, E; Baek, S H; Suh, B J; Borsa, F; Bud'ko, S L; Canfield, P C
2003-01-01
We have performed 11 B NMR measurements in 11 B enriched MgB 2 powder sample in the normal phase. The Knight shift was accurately determined by using the magic angle spinning technique. Results for 11 B and 27 Al Knight shifts (K) and relaxation rates (1/T 1 ) are also reported for AlB 2 . The data show a dramatic decrease of both K and 1/T 1 for 11 B in AlB 2 with respect to MgB 2 . We compare experimental results with ab initio calculated NMR relaxation rates and Knight shifts. The experimental values for 1/T 1 and K are in most cases in good agreement with the theoretical results. We show that the decrease of K and 1/T 1 for 11 B is consistent with a drastic drop of the density of states at the boron site in AlB 2 with respect to MgB 2
Anyons as spin particles: from classical mechanics to field theory
Plyushchay, Mikhail S.
1995-01-01
(2+1)-dimensional relativistic fractional spin particles are considered within the framework of the group-theoretical approach to anyons starting from the level of classical mechanics and concluding by the construction of the minimal set of linear differential field equations.
Spin Propensities of Octahedral Complexes From Density Functional Theory
DEFF Research Database (Denmark)
Mortensen, Sara R.; Kepp, Kasper Planeta
2015-01-01
assessment of spin state propensities versus ligand and metal type and reveal, e.g., that CN- is consistently weaker than CO for M(II) but stronger than CO for M(III) and SCN- and NCS- change order in M(II) versus M(III) complexes. Contrary to expectation based on the spectrochemical series, Cl- and Br...
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
International Nuclear Information System (INIS)
Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen
2004-01-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at Ο(p 4 ) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS-UMR 7095, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2014-12-01
The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.
Energy Technology Data Exchange (ETDEWEB)
Wei, Hai; Guo, Guang-Can; He, Lixin, E-mail: helx@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)
2014-11-28
We investigate the electric field tuning of the phonon-assisted hole spin relaxation in single self-assembled In{sub 1−x}Ga{sub x}As/GaAs quantum dots (QDs), using an atomistic empirical pseudopotential method. We find that the electric field along the growth direction can tune the hole spin relaxation time for more than one order of magnitude. The electric field can prolong or shorten the hole spin lifetime and the tuning shows an asymmetry in terms of the field direction. The asymmetry is more pronounced for the taller dot. The results show that the electric field is an effective way to tune the hole spin-relaxation in self-assembled QDs.
Directory of Open Access Journals (Sweden)
Debashis Mukherjee
2002-06-01
Full Text Available Abstract: We present in this paper two new versions of Rayleigh-SchrÃ‚Â¨odinger (RS and the Brillouin-Wigner (BW state-specific multi-reference perturbative theories (SSMRPT which stem from our state-specific multi-reference coupled-cluster formalism (SS-MRCC, developed with a complete active space (CAS. They are manifestly sizeextensive and are designed to avoid intruders. The combining coefficients cÃŽÂ¼ for the model functions ÃÂ†ÃŽÂ¼ are completely relaxed and are obtained by diagonalizing an effective operator in the model space, one root of which is the target eigenvalue of interest. By invoking suitable partitioning of the hamiltonian, very convenient perturbative versions of the formalism in both the RS and the BW forms are developed for the second order energy. The unperturbed hamiltonians for these theories can be chosen to be of both MÃÂ†ller-Plesset (MP and Epstein-Nesbet (EN type. However, we choose the corresponding Fock operator fÃŽÂ¼ for each model function ÃÂ†ÃŽÂ¼, whose diagonal elements are used to define the unperturbed hamiltonian in the MP partition. In the EN partition, we additionally include all the diagonal direct and exchange ladders. Our SS-MRPT thus utilizes a multi-partitioning strategy. Illustrative numerical applications are presented for potential energy surfaces (PES of the ground (1ÃŽÂ£+ and the first delta (1ÃŽÂ” states of CH+ which possess pronounced multi-reference character. Comparison of the results with the corresponding full CI values indicates the efficacy of our formalisms.
On Killing tensors and cubic vertices in higher-spin gauge theories
International Nuclear Information System (INIS)
Bekaert, X.; Boulanger, N.; Leclercq, S.; Cnockaert, S.
2006-01-01
The problem of determining all consistent non-Abelian local interactions is reviewed in flat space-time. The antifield-BRST formulation of the free theory is an efficient tool to address this problem. Firstly, it allows to compute all on-shell local Killing tensor fields, which are important because of their deep relationship with higher-spin algebras. Secondly, under the sole assumptions of locality and Poincare invariance, all non-trivial consistent deformations of a sum of spin-three quadratic actions deforming the Abelian gauge algebra were determined. They are compared with lower-spin cases. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Theory of spin and lattice wave dynamics excited by focused laser pulses
Shen, Ka; Bauer, Gerrit E. W.
2018-06-01
We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.
Spin transistor action from Onsager reciprocity and SU(2) gauge theory
Energy Technology Data Exchange (ETDEWEB)
Adagideli, Inanc [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey); Lutsker, Vitalij; Scheid, Matthias; Richter, Klaus [Institut fuer Theoretische Physik, Universitaet Regensburg, 93040 Regensburg (Germany); Jacquod, Philippe [Physics Department, University of Arizona, Tucson, AZ (United States)
2012-07-01
We construct a local gauge transformation to show how, in confined systems, a generic, weak non-homogeneous SU(2) spin-orbit Hamiltonian reduces to two U(1) Hamiltonians for spinless fermions at opposite magnetic fields, to leading order in the spin-orbit strength. Using an Onsager relation, we further show how the resulting spin conductance vanishes in a two-terminal setup, and how it is turned on by either weakly breaking time-reversal symmetry or opening additional transport terminals. We numerically check our theory for mesoscopic cavities as well as Aharonov-Bohm rings.
Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.
2002-01-01
We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...
Chiral effective-field theory of the nucleon spin structure
Pascalutsa, Vladimir
2017-01-01
I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].
Duffin-Kemmer formulation of spin one-half particle gauge theory
International Nuclear Information System (INIS)
Samiullah, M.; Mansour, H.M.M.
1981-02-01
We have gauge formulated the spin one-half particle equation in the Duffin-Kemmer formalism of Barut et al. The theory distinguishes between the left and the right chiral states and has a built in chirality. As an example the theory has been applied to the Weinberg Salam model reproducing all its essential features. In view of the built in chirality a lattice gauge version of such a theory is expected to be useful. (author)
A covariant formulation of the relativistic Hamiltonian theory on the light cone (fields with spin)
International Nuclear Information System (INIS)
Atakishiev, N.M.; Mir-Kasimov, R.M.; Nagiyev, Sh.M.
1978-01-01
A Hamiltonian formulation of quantum field theory on the light cone, developed earlier, is extended to the case of particles with spin. The singularities accompanying each field theory in light-front variables are removed by the introduction of an infinite number of counterterms of a new type, which can be included into the interaction Hamiltonian. A three-dimensional diagram technique is formulated, which is applied to calculate the fermion self-energy in the lowest order of perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Kimmich, R; Nusser, W; Gneiting, T [Ulm Universitaet (Federal Republic of Germany). Sektion Kernresonanzspektroskopie
1990-04-01
A model theory is presented explaining a series of striking phenomena observed with nuclear magnetic relaxation in protein systems such as solutions or tissue. The frequency, concentration and temperature dependences of proton or deuteron relaxation times of protein solutions and tissue are explained. It is concluded that the translational diffusion of water molecules along the rugged surfaces of proteins and, to a minor degree, protein backbone fluctuations are crucial processes. The rate limiting factor of macromolecular tumbling is assumed to be given by the free water content in a certain analogy to the free-volume model of Cohen ad Turnbull. There are two characteristic water mass fractions indicating the saturation of the hydration shells and the onset of protein tumbling. A closed and relatively simple set of relaxation formulas is presented. The potentially fractal nature of the diffusion of water molecules on the protein surface is discussed. (author). 43 refs.; 4 figs.
Theory of Spin States of Quantum Dot Molecules
Ponomarev, I. V.; Reinecke, T. L.; Scheibner, M.; Stinaff, E. A.; Bracker, A. S.; Doty, M. F.; Gammon, D.; Korenev, V. L.
2007-04-01
The photoluminescence spectrum of an asymmetric pair of coupled InAs quantum dots in an applied electric field shows a rich pattern of level anticrossings, crossings and fine structure that can be understood as a superposition of charge and spin configurations. We present a theoretical model that provides a description of the energy positions and intensities of the optical transitions in exciton, biexciton and charged exciton states of coupled quantum dots molecules.
International Nuclear Information System (INIS)
Gevorkyan, A.S.; Abajyan, H.G.
2011-01-01
We have investigated the statistical properties of an ensemble of disordered 1D spatial spin chains (SSCs) of finite length, placed in an external field, with consideration of relaxation effects. The short-range interaction complex-classical Hamiltonian was first used for solving this problem. A system of recurrent equations is obtained on the nodes of the spin-chain lattice. An efficient mathematical algorithm is developed on the basis of these equations with consideration of the advanced Sylvester conditions which allow step by step construct a huge number of stable spin chains in parallel. The distribution functions of different parameters of spin-glass system are constructed from the first principles of the complex classical mechanics by analyzing the calculation results of the 1D SSCs ensemble. It is shown that the behavior of the parameter distributions is quite different depending on the external fields. The energy ensembles and constants of spin-spin interactions are changed smoothly depending on the external field in the limit of statistical equilibrium, while some of them such as the mean value of polarizations of ensemble and parameters of its orderings are frustrated. We have also studied some critical properties of the ensemble of such catastrophes in the Clausius-Mossotti equation depending on the value of the external field. We have shown that the generalized complex-classical approach excludes these catastrophes allowing one to organize continuous parallel computing on the whole region of values of the external field including critical points. A new representation of the partition function based on these investigations is suggested. As opposed to usual definition, this function is a complex one and its derivatives are everywhere defined, including critical points
Energy Technology Data Exchange (ETDEWEB)
Wang, Tuo; Williams, Jonathan K. [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus [Brandeis University, Department of Chemistry (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)
2015-02-15
The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly {sup 13}C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular {sup 13}C–{sup 13}C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D {sup 1}H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for {sup 13}C T{sub 1} relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T{sub 1} relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T{sub 1} relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter
International Nuclear Information System (INIS)
Wang, Tuo; Williams, Jonathan K.; Schmidt-Rohr, Klaus; Hong, Mei
2015-01-01
The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13 C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13 C– 13 C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1 H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13 C T 1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T 1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T 1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks
Three-dimensional spin-3 theories based on general kinematical algebras
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Grumiller, Daniel; Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); Rosseel, Jan [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)
2017-01-25
We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inönü-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call “Carroll Gravity”, whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.
Maharjan, Rijan; Brown, Eric
2017-12-01
We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Heavy baryon chiral perturbation theory and the spin 3/2 delta resonances
Energy Technology Data Exchange (ETDEWEB)
Kambor, J.
1996-12-31
Heavy baryon chiral perturbation theory is briefly reviewed, paying particular attention to the role of the spin 3/2 delta resonances. The concept of resonance saturation for the baryonic sector is critically discussed. Starting from a relativistic formulation of the pion-nucleon-delta system, the heavy baryon chiral Lagrangian including spin 3/2 resonances is constructed by means of a 1/m-expansion. The effective theory obtained admits a systematic expansion in terms of soft momenta, the pion mass M{sub {pi}} and the delta-nucleon mass difference {Delta}. (author). 22 refs.
Spinning Dust Radiation: A Review of the Theory
Directory of Open Access Journals (Sweden)
Yacine Ali-Haïmoud
2013-01-01
Full Text Available This paper reviews the current status of theoretical modeling of electric dipole radiation from spinning dust grains. The fundamentally simple problem of dust grain rotation appeals to a rich set of concepts of classical and quantum physics, owing to the diversity of processes involved. Rotational excitation and damping rates through various mechanisms are discussed, as well as methods of computing the grain angular momentum distribution function. Assumptions on grain properties are reviewed. The robustness of theoretical predictions now seems mostly limited by the uncertainties regarding the grains themselves, namely, their abundance, dipole moments, and size and shape distribution.
Spin flipping in ring-coupled-cluster-doubles theory
DEFF Research Database (Denmark)
Klopper, Wim; M. Teale, Andrew; Coriani, Sonia
2011-01-01
We report a critical analysis and comparison of a variety of random-phase-approximation (RPA) based approaches to determine the electronic ground-state energy. Interrelations between RPA variants are examined by numerical examples with particular attention paid to the role of spin......-flipped excitations and the behaviour of the adiabatic-connection integrands where appropriate. In general, it is found that RPA variants that include Hartree–Fock exchange contributions are unsuitable as generally applicable methods for the determination of correlation energies. Of the remaining methods only...... the direct RPA and RPA with second-order screened exchange are recommended for general use....
Self-dual spin-3 and 4 theories
International Nuclear Information System (INIS)
Aragone, C.; Khoudeir, A.
1991-08-01
We present self-dual pure spin-3 and 4 actions using the physical relevant Dreibein fields. Since these actions start with a Chern-Simons like kinetic term (and therefore cannot be obtained through dimensional reduction) one might wonder whether they need the presence of auxiliary, ghost-killing fields. It turns out that they must contain, also in this three dimensional case, auxiliary fields. Auxiliary scalars do not break self-duality; their free action does not contain kinetic terms. (author). 12 refs
International Nuclear Information System (INIS)
Ardehali, M.
1990-01-01
Some simple inequalities which demonstrate the incompatibility of local realism with quantum theory are derived. They establish, for the first time, necessary conditions for violation of the generalized spin-s Bell inequalities for a set of three distinct noncoplanar axes. For s=1/2, however, these inequalities are equivalent to Wigner's results, thus giving necessary and sufficient conditions
DEFF Research Database (Denmark)
Faber, Rasmus; Sauer, Stephan P. A.
2012-01-01
on the choice of one-electron basis set, the choice of correlated wave function method and the inclusion of zero-point vibrational and temperature corrections. All terms of the SSCC have been evaluated at the second-order polarization propagator, SOPPA and SOPPA(CCSD), and coupled cluster singles and doubles...... (CCSD) levels of theory and for the most correlation dependent term, the paramagnetic spin-orbit contribution (PSO), also at the very accurate CC3 level. We ¿nd that in order to get results that are well converged with respect to the basis set, one needs to use special SSCC optimized basis sets...
Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.
2018-05-01
In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.
Directory of Open Access Journals (Sweden)
Takashi Arima
2018-04-01
Full Text Available After summarizing the present status of Rational Extended Thermodynamics (RET of gases, which is an endeavor to generalize the Navier–Stokes and Fourier (NSF theory of viscous heat-conducting fluids, we develop the molecular RET theory of rarefied polyatomic gases with 15 independent fields. The theory is justified, at mesoscopic level, by a generalized Boltzmann equation in which the distribution function depends on two internal variables that take into account the energy exchange among the different molecular modes of a gas, that is, translational, rotational, and vibrational modes. By adopting the generalized Bhatnagar, Gross and Krook (BGK-type collision term, we derive explicitly the closed system of field equations with the use of the Maximum Entropy Principle (MEP. The NSF theory is derived from the RET theory as a limiting case of small relaxation times via the Maxwellian iteration. The relaxation times introduced in the theory are shown to be related to the shear and bulk viscosities and heat conductivity.
To the theory of spin-charge separation in one-dimensional correlated electron systems
International Nuclear Information System (INIS)
Zvyagin, A.A.
2004-01-01
Spin-charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteracting electrons: They carry charges -e and spins 1/2 . It is believed that for any one-dimensional correlated electron system, low-lying electron excitations carry either only spin and no charge, or only charge without spin. That is why recent experiments looked for such low-lying collective electron excitations, one of which carries only spin, and the other carries only charge. Here we show that despite the fact that for exactly solvable one-dimensional correlated electron models there exist excitations which carry only spin and only charge, in all these models with short-range interactions the low-energy physics is described by low-lying collective excitations, one of which carries both spin and charge
Energy Technology Data Exchange (ETDEWEB)
Kamusella, Sirko
2017-03-01
In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy
Theory of vibrational relaxation in mixtures of ortho- and para-hydrogen
International Nuclear Information System (INIS)
Moise, A.; Pritchard, H.O.
1981-01-01
A numerical study of the vibrational relaxation at 500 K of a mixture of ortho-H 2 and para-H 2 is described. The required state-to-state rate constants were calculated and missing pieces of data were estimated by interpolation. It is concluded that only one relaxation time will be observed in any mixture of orth-H 2 and para-H 2 and that (except at very high dilutions in a third inert gas) the relaxation rate constant will be close to the mean of the individual rate constants for relaxation, weighted according to the respective mole fractions of ortho-H 2 and para-H 2 present in the mixture. The relaxation process can be modelled as an electrical RC network, whose time constants can be written down as sums of the appropriate microscopic rate constants. By using this model the conditions required for a mixture of two gases to exhibit two distinct vibrational relaxation times can be explored
International Nuclear Information System (INIS)
Noakes, D.R.
2001-01-01
Monte Carlo simulations of zero-field (ZF) muon spin relaxation (μSR) functions generated by long-range-ordered states with disorder are presented, for the completely static limit. Understanding of this is necessary before Monte Carlo simulation of the effect of short-range magnetic ordering on μSR in spin glasses can begin. Alloy disorder, controlled by the magnetic ion concentration parameter f m , and partial ordering of each moment, controlled by the order parameter f o , are considered. Qualitatively different behavior is seen depending on whether the dense moment, perfect-order limit ( f m =1, f o =1) field at the muon site is non-zero, or cancels (as can happen in high-symmetry materials). Around the edges of the two-dimensional ( f m ,f o ) parameter space, four limit cases with qualitatively different behavior are identified: (A) f o →0, the random frozen spin glass for arbitrary magnetic ion concentration; (B) f o →1, nearly perfect magnetic ordering in a alloy of arbitrary magnetic ion concentration; (C) f m →0, magnetic order developing (as f o increases) in a dilute magnetic alloy; (D) f m →1, magnetic order developing (as f o increases) in a dense magnetic material. Case A was discussed in a previous publication. The results for case D answer the question of how the Gaussian Kubo-Toyabe relaxation function for perfect disorder develops into an oscillating function as magnetic order develops in a material. Case C indicates that the effects of magnetic ordering in the dilute moment limit produce only subtle effects in ZF-μSR spectra that would be difficult to unambiguously identify as due to ordering in a real-world experiment. Case B generates complicated multi-frequency behavior
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin
On the infinite-dimensional spin-2 symmetries in Kaluza-Klein theories
International Nuclear Information System (INIS)
Hohm, O.; Hamburg Univ.
2005-11-01
We consider the couplings of an infinite number of spin-2 fields to gravity appearing in Kaluza-Klein theories. They are constructed as the broken phase of a massless theory possessing an infinite-dimensional spin-2 symmetry. Focusing on a circle compactification of four-dimensional gravity we show that the resulting gravity/spin-2 system in D=3 has in its unbroken phase an interpretation as a Chern-Simons theory of the Kac-Moody algebra iso(1,2) associated to the Poincare group and also fits into the geometrical framework of algebra-valued differential geometry developed by Wald. Assigning all degrees of freedom to scalar fields, the matter couplings in the unbroken phase are determined, and it is shown that their global symmetry algebra contains the Virasoro algebra together with an enhancement of the Ehlers group SL(2,R) to its affine extension. The broken phase is then constructed by gauging a subgroup of the global symmetries. It is shown that metric, spin-2 fields and Kaluza-Klein vectors combine into a Chern-Simons theory for an extended algebra, in which the affine Poincare subalgebra acquires a central extension. (orig.)
A comment on continuous spin representations of the Poincare group and perturbative string theory
Energy Technology Data Exchange (ETDEWEB)
Font, A. [Departamento de Fisica, Centro de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Quevedo, F. [Abdus Salam ICTP, Trieste (Italy); DAMTP/CMS, University of Cambridge, Wilberforce Road, Cambridge (United Kingdom); Theisen, S. [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Golm (Germany)
2014-11-04
We make a simple observation that the massless continuous spin representations of the Poincare group are not present in perturbative string theory constructions. This represents one of the very few model-independent low-energy consequences of these models. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Higher charges in dynamical spin chains for SYM theory
International Nuclear Information System (INIS)
Agarwal, Abhishek; Ferretti, Gabriele
2005-01-01
We construct, to the first two non-trivial orders, the next conserved charge in the su(2|3) sector of N = 4 Super Yang-Mills theory. This represents a test of integrability in a sector where the interactions change the number of sites of the chain. The expression for the charge is completely determined by the algebra and can be written in a diagrammatic form in terms of the interactions already present in the hamiltonian. It appears likely that this diagrammatic expression remains valid in the full theory and can be generalized to higher loops and higher charges thus helping in establishing complete integrability for these dynamical chains
Conformal higher-spin symmetries in twistor string theory
Directory of Open Access Journals (Sweden)
D.V. Uvarov
2014-12-01
Full Text Available It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains psl(4|4,R superalgebra. In quantum theory this infinite-dimensional symmetry breaks down to SL(4|4,R one.
Nuclear magnetic relaxation of methyl group in liquids
International Nuclear Information System (INIS)
Blicharska, B.
1986-01-01
The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)
Spin Singlet Quantum Hall Effect and nonabelian Landau-Ginzburg theory
International Nuclear Information System (INIS)
Balatsky, A.
1991-01-01
In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a wave function for charged semions in a magnetic field and a wave function for the Chiral Spin Liquid of neutral spin-1/2 semions. We introduce field-theoretic model in which the electron operators are factorized in terms of charged spinless semions (holons) and neutral spin-1/2 semions (spinons). Broken time reversal symmetry and short ranged spin correlations lead to Su(2) κ=1 Chern-Simons term in Landau-Ginzburg action for SQHE phase. We construct appropriate coherent states for SQHE phase and show the existence of SU(2) valued gauge potential. This potential appears as a result of ''spin rigidity'' of the ground state against any displacements of nodes of wave function from positions of the particles and reflects the nontrivial monodromy in the presence of these displacenmants. We argue that topological structure of Su(2) κ=1 Chern-Simons theory unambiguously dictates semion statistics of spinons. 19 refs
Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th
2010-07-01
We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.
Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application.
Li, Zhendong; Liu, Wenjian; Zhang, Yong; Suo, Bingbing
2011-04-07
The excited states of open-shell systems calculated by unrestricted Kohn-Sham-based time-dependent density functional theory (U-TD-DFT) are often heavily spin-contaminated and hence meaningless. This is solved ultimately by the recently proposed spin-adapted time-dependent density functional theory (TD-DFT) (S-TD-DFT) [J. Chem. Phys. 133, 064106 (2010)]. Unlike the standard restricted open-shell Kohn-Sham-based TD-DFT (R-TD-DFT) which can only access the singlet-coupled single excitations, the S-TD-DFT can capture both the singlet- and triplet-coupled single excitations with the same computational effort as the U-TD-DFT. The performances of the three approaches (U-TD-DFT, R-TD-DFT, and S-TD-DFT) are compared for both the spin-conserving and spin-flip excitations of prototypical open-shell systems, the nitrogen (N(2)(+)) and naphthalene (C(10)H(8)(+)) cations. The results show that the S-TD-DFT gives rise to balanced descriptions of excited states of open-shell systems.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
Energy Technology Data Exchange (ETDEWEB)
Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Generalized spin-wave theory: Application to the bilinear-biquadratic model
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
International Nuclear Information System (INIS)
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-01-01
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
International Nuclear Information System (INIS)
Oliveira, M.A.B. de.
1984-01-01
We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt
Energy Technology Data Exchange (ETDEWEB)
Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br
2001-07-01
The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)
M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures
International Nuclear Information System (INIS)
Tsimpis, Dimitrios
2006-01-01
The requirement of N = 1 supersymmetry for M-theory backgrounds of the form of a warped product M x w X, where X is an eight-manifold and M is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ on X. ξ lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y: = X x S 1 , where S 1 is a circle of constant radius, implying the reduction of the structure group of Y to Spin(7). In general, however, there is no reduction of the structure group of X itself. This situation can be described in the language of generalized Spin(7) structures, defined in terms of certain spinors of Spin(TY+T*Y). We express the condition for N = 1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in X in terms of a 'preferred' Spin(7) structure, we show that the requirement of N = 1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27 of Spin(7), in terms of the warp factor and a one-form L on X (not necessarily nowhere-vanishing) constructed as a ξ bilinear; in addition, L is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7) holonomy
Spin theory of the density functional: reduced matrices and density functions
International Nuclear Information System (INIS)
Pavlov, R.; Delchev, Y.; Pavlova, K.; Maruani, J.
1993-01-01
Expressions for the reduced matrices and density functions of N-fermion systems of arbitrary order s (1<=s<=N) are derived within the frame of rigorous spin approach to the density functional theory (DFT). Using the local-scale transformation method and taking into account the particle spin it is shown that the reduced matrices and density functions are functionals of the total one-fermion density. Similar dependence is found for the distribution density of s-particle aggregates. Generalization and applicability of DFT to the case of s-particle ensembles and aggregates is discussed. 14 refs
Hardness and softness reactivity kernels within the spin-polarized density-functional theory
International Nuclear Information System (INIS)
Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul
2005-01-01
Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined
Mass and spin of double dual solutions in Poincare gauge theory
International Nuclear Information System (INIS)
Mielke, E.W.; Wallner, R.P.
1988-01-01
Mass and spin are derived for a class of exact solutions of the Poincare gauge (PG) theory of gravity, provided the curvature fulfills a modified double-duality ansatz. It is executed a (3+1)-decomposition and clarified and semplified the structure of the energy-momentum and spin complexes. In case the quadratic PG Lagrangian contains the curvature-square pieces in the Yang-Mills fashion, the (3+1)-decomposition provides rather detailed information on admissible solutions. The PG energy-momentum complex turns out to be intimately related to the von Freud complex of general relativity
M-theory on Spin(7) manifolds, fluxes and 3D, N=1 supergravity
International Nuclear Information System (INIS)
Becker, Melanie; Constantin, Dragos; Gates, S. James; Linch, William D.; Merrell, Willie; Phillips, J.
2004-01-01
We calculate the most general causal N=1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using ectoplasmic integration theory. One example of such an action can be obtained by compactifying M-theory on a Spin(7) holonomy manifold taking non-vanishing fluxes into account. We show that the resulting three-dimensional theory is in agreement with the more general construction. The scalar potential resulting from Kaluza-Klein compactification stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. This potential can be written in terms of the superpotential previously discussed in the literature
M-theory on Spin(7) manifolds, fluxes and 3D, N=1 supergravity
Energy Technology Data Exchange (ETDEWEB)
Becker, Melanie E-mail: melanieb@physics.umd.edu; Constantin, Dragos E-mail: dragos@physics.umd.edu; Gates, S. James E-mail: gatess@wam.umd.edu; Linch, William D. E-mail: ldw@physics.umd.edu; Merrell, Willie E-mail: williem@physics.umd.edu; Phillips, J. E-mail: ferrigno@physics.umd.edu
2004-04-05
We calculate the most general causal N=1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using ectoplasmic integration theory. One example of such an action can be obtained by compactifying M-theory on a Spin(7) holonomy manifold taking non-vanishing fluxes into account. We show that the resulting three-dimensional theory is in agreement with the more general construction. The scalar potential resulting from Kaluza-Klein compactification stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. This potential can be written in terms of the superpotential previously discussed in the literature.
Energy Technology Data Exchange (ETDEWEB)
Anoardo, E.; Grinberg, F.; Vilfan, M.; Kimmich, R
2004-02-16
We present a study of the molecular dynamics in an octylcyanobiphenyl (8CB)-Aerosil complex above the bulk isotropization temperature. Using proton nuclear magnetic relaxation experiments in the laboratory frame (T{sub 1}{sup -1}) and in the rotating-frame (T{sub 1{rho}}{sup -1}), we found a notable increase of the relaxation rates in the kHz frequency range as compared to the bulk 8CB liquid crystal at the same temperature. The field-cycling technique was used for the laboratory frame experiments while a conventional apparatus was used for the rotating frame method. The observed behavior is analyzed with the aid of Monte Carlo simulations on the basis of a two-phase fast-exchange model distinguishing surface-ordered and bulk phases. Two processes affecting the low frequency relaxation could be identified: reorientation mediated by translational displacements, accounting for molecular reorientations, and exchange losses of molecules from the surface to the bulk.
Directory of Open Access Journals (Sweden)
D. H. Berman
2014-03-01
Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.
Energy Technology Data Exchange (ETDEWEB)
Bowman, M K; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry
1977-01-01
The spin lattice relaxation of trapped electrons in aqueous and organic glasses and trapped hydrogen atoms in phosphoric acid glass has been directly studied as a function of temperature by the saturation recovery method. Below 50 to 100 K, the major spin lattice relaxation mechanism involves modulation of the electron nuclear dipolar (END) interaction with nuclei in the radical's environment by tunnelling of those nuclei between two or more positions. This relaxation mechanism occurs with high efficiency and has a characteristic linear temperature dependence. The tunnelling nuclei around trapped electrons do not seem to involve the nearest neighbor nuclei which are oriented by the electron in the process of solvation. Instead the tunnelling nuclei typically appear to be next nearest neighbors to the trapped electron. The identities of the tunnelling nuclei have been deduced by isotopic substitution and are attributed to: Na in 10 mol dm/sup -3/ NaOH aqueous glass, ethyl protons in ethanol glass, methyl protons in methanol glass and methyl protons in MTHF glass. For trapped hydrogen atoms in phosphoric acid, the phosphorus nuclei appear to be the effective tunnelling nuclei. Below approximately 10 K the spin lattice relaxation is dominated by a temperature independent cross relaxation term for H atoms in phosphoric acid glass and for electrons in 10 mol dm/sup -3/ NaOH aqueous glass, but not for electrons in organic glasses. This is compared with recent electron-electron double resonance studies of cross relaxation in these glasses. The spin lattice relaxation of O/sup -/ formed in 10 mol dm/sup -3/ NaOH aqueous glass was also studied and found to be mainly dominated by a Raman process with an effective Debye temperature of about 100 K.
International Nuclear Information System (INIS)
Fang Jian-Cheng; Wang Tao; Li Yang; Cai Hong-Wei; Zhang Hong
2015-01-01
A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam’s direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell’s transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium’s D1 line. Furthermore, the residual magnetic fields are measured with σ + - and σ – -polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. (paper)
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.
Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators
Université de Genève
2011-01-01
Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...
The classical limit of quantum theories: Particles in external metrics and with spin
International Nuclear Information System (INIS)
Hogreve, J.J.
1983-01-01
The intention of this work is to provide some further steps in this program, particullary the clarification of certain aspects of the classical limit of quantum theory. Here the classical limit is understood in the sense that we consider a family of quantum theories parametrized by (h/2π) > 0, and then take the limit (h/2π) -> 0. From a mathematical point of view we are thus in the area calles 'asymptotic perturbation theory'. In detail, we examine the canonical partition function Tr [esup(-x)] with x=tH((h/2π)) for Hamiltonians H ((h/2π)) involving the Laplace-Beltrami operator on manifolds, and show that after scaling it by (h/2π)sup(N) it converges to its corresponding classical counterpart. This is done in chapter I. In chapter II we prove the convergence to its classical limit of the partition function for Hamiltonians including spin degrees of freedom, i.e. Hamiltonians of Pauli type. In this case taking the classical limit includes also manipulation on the spin space in the sense that the weight of the representation of the spin operators has to tend to infinity simultanously as (h/2π) approaches zero. Under this procedure the spin space itself, that is the representation space of the spin operators, turn into certain coadjoint orbits of the respective Lie group. The main result of chapter III is a generalized Ehrenfest theorem; as (h/2π) -> 0 the quantum mechanical time evolution generated by Hamiltonians including external metrics and vector potentials becomes a solution of the corresponding classical canonical Hamiltonian equations. (orig./HSI) [de
Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Sakai, Hironori; Matsuda, Tatsuma D.; Yamamoto, Etsuji
2017-07-01
We have carried out an analysis of magnetic data in 69 uranium, 7 neptunium, and 4 plutonium ferromagnets with the spin fluctuation theory developed by Takahashi [Y. Takahashi, J. Phys. Soc. Jpn. 55, 3553 (1986), 10.1143/JPSJ.55.3553]. The basic and spin fluctuation parameters of the actinide ferromagnets are determined and the applicability of the spin fluctuation theory to actinide 5 f system has been discussed. Itinerant ferromagnets of the 3 d transition metals and their intermetallics follow a generalized Rhodes-Wohlfarth relation between peff/ps and TC/T0 , viz., peff/ps∝(TC/T0) -3 /2 . Here, ps, peff, TC, and T0 are the spontaneous and effective magnetic moments, the Curie temperature, and the width of spin fluctuation spectrum in energy space, respectively. The same relation is satisfied for TC/T0uranium and neptunium ferromagnets below (TC/T0)kink=0.32 ±0.02 , where a kink structure appears in relation between the two quantities. ps increases more weakly above (TC/T0)kink. A possible interpretation with the TC/T0 dependence of ps is given.
Probing spin dynamics and quantum relaxation in Li Y0.998 Ho0.002 F4 via 19F NMR
Graf, M. J.; Lascialfari, A.; Borsa, F.; Tkachuk, A. M.; Barbara, B.
2006-01-01
We report measurements of F19 nuclear spin-lattice relaxation 1/T1 as a function of temperature and external magnetic field in a LiY0.998Ho0.002F4 single crystal, a single-ion magnet exhibiting interesting quantum effects. The F19 1/T1 is found to depend on the coupling with the diluted rare-earth (RE) moments, making it an effective probe of the rare-earth spin dynamics. The results for 1/T1 show a behavior similar to that observed in molecular nanomagnets, a result which we attribute to the discreteness of the energy levels in both cases. At intermediate temperatures the lifetime broadening of the crystal field split RE magnetic levels follows a T3 power law. At low temperature the field dependence of 1/T1 shows peaks in correspondence to the critical magnetic fields for energy level crossings (LC). A key result of this study is that the broadening of the levels at LC is found to become extremely small at low temperatures, about 1.7mT , a value which is comparable to the weak dipolar fields at the RE lattice positions. Thus, unlike the molecular magnets, decoherence effects are strongly suppressed, and it may be possible to measure directly the level repulsions at avoided level crossings.
Directory of Open Access Journals (Sweden)
Kasper S. Kjær
2017-07-01
Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.
Nuclear magnetic relaxation in aqueous praseodymium and europium solutions
International Nuclear Information System (INIS)
Lopez, J.L.; Diaz, D.
1991-01-01
A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported
Partially massless higher-spin theory II: one-loop effective actions
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH, 44106 (United States)
2017-01-30
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D=7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D=4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D=4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.
Partially massless higher-spin theory II: one-loop effective actions
International Nuclear Information System (INIS)
Brust, Christopher; Hinterbichler, Kurt
2017-01-01
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D=7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D=4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D=4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.
Spinning and rotating strings for N=1 SYM theory and brane constructions
International Nuclear Information System (INIS)
Schvellinger, Martin
2004-01-01
We obtain spinning and rotating closed string solutions in AdS 5 x T 1,1 background, and show how these solutions can be mapped onto rotating closed strings embedded in configurations of intersecting branes in type IIA string theory. Then, we discuss spinning closed string solutions in the UV limit of the Klebanov-Tseytlin background, and also properties of classical solutions in the related intersecting brane constructions in the UV limit. We comment on extensions of this analysis to the deformed conifold background, and in the corresponding intersecting brane construction, as well as its relation to the deep IR limit of the Klebanov-Strassler solution. We briefly discuss on the relation between type IIA brane constructions and their related M-theory descriptions, and how solitonic solutions are related in both descriptions. (author)
Directory of Open Access Journals (Sweden)
Huai-Chun Chen
Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral
Flux compactification of M-theory on compact manifolds with Spin(7) holonomy
International Nuclear Information System (INIS)
Constantin, D.
2005-01-01
At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin(7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin(7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N =1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin(7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin(7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost, which
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.
Calculation of the spin-isospin response functions in an extended semi-classical theory
International Nuclear Information System (INIS)
Chanfray, G.
1987-01-01
We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data
Spin-polarized neutron matter at different orders of chiral effective field theory
Sammarruca, F.; Machleidt, R.; Kaiser, N.
2015-01-01
Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...
International Nuclear Information System (INIS)
Zhang, Xing; Herbert, John M.
2014-01-01
We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state
Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis
2012-01-01
We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially
International Nuclear Information System (INIS)
Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng
2014-01-01
The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement
Spin foam model for pure gauge theory coupled to quantum gravity
International Nuclear Information System (INIS)
Oriti, Daniele; Pfeiffer, Hendryk
2002-01-01
We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale
Energy Technology Data Exchange (ETDEWEB)
Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)
2014-09-14
An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
Directory of Open Access Journals (Sweden)
Alex Thomson
2018-01-01
Full Text Available Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP^{1} theory of bosonic spinons coupled to a U(1 gauge field, and with a global SU(2 spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z_{2} topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π-flux state are described by (2+1-dimensional quantum chromodynamics (QCD_{3} with a SU(2 gauge group and N_{f}=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017.PRXHAE2160-330810.1103/PhysRevX.7.031051] that this QCD_{3} theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD_{3} and obtain fermionic dual descriptions of the phases with Z_{2} topological order obtained earlier using the bosonic CP^{1} theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1 gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
International Nuclear Information System (INIS)
Heinemann, K.; Ellison, J.A.
2015-01-01
We return to our study (2001) of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in this study, we now employ a discrete-time formalism, beginning with the Poincare maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. The particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Thus the group theoretical notion is exhibited. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory.
Energy Technology Data Exchange (ETDEWEB)
Heinemann, K.; Ellison, J.A. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Barber, D.P.; Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-01-15
We return to our study (2001) of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in this study, we now employ a discrete-time formalism, beginning with the Poincare maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. The particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Thus the group theoretical notion is exhibited. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory.
International Nuclear Information System (INIS)
Capelle, K.; Gross, E.
1997-01-01
It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society
Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin
2012-10-28
The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.
Topics in phase-shift analysis and higher spin field theory
International Nuclear Information System (INIS)
Reisen, J.C.J.M.
1983-01-01
The first part of this thesis considers several aspects of the existence of phase-shift ambiguities. The subject is introduced with a few remarks on scattering theory and previous work in this area is discussed. The mathematical restrictions of presenting such problems clearly are considered and the construction of different unitary amplitudes which correspond to the same differential cross section is described. So far, examples of phase-shift ambiguities have only been found for rather special cases but the author shows that these results can be considerably generalized for spinless elastic scattering, leading to properties of phase-shift ambiguities being revealed that were previously absent. These properties are discussed in detail. Phase-shift ambiguities for the spin-0-spin-1/2 elastic scattering are then considered and again generalized. The second part of this thesis is concerned with the investigation of a free field theory for both massive and massless particles with higher spin (1, 2 and 3). A root method has been used which is described and shown to lead to the free field equations and the subsidiary conditions. A field equation and Lagrangian are constructed for massive particles and the former is then used to derive a massless field equation and Lagrangian. The relation between massive and massless field equations is investigated in more detail and particularly the expressions for the amplitude describing exchange of a particle between two external sources are compared. (Auth./C.F.)
C -P -T anomaly matching in bosonic quantum field theory and spin chains
Sulejmanpasic, Tin; Tanizaki, Yuya
2018-04-01
We consider the O (3 ) nonlinear sigma model with the θ term and its linear counterpart in 1+1D. The model has discrete time-reflection and space-reflection symmetries at any θ , and enjoys the periodicity in θ →θ +2 π . At θ =0 ,π it also has a charge-conjugation C symmetry. Gauging the discrete space-time reflection symmetries is interpreted as putting the theory on the nonorientable R P2 manifold, after which the 2 π periodicity of θ and the C symmetry at θ =π are lost. We interpret this observation as a mixed 't Hooft anomaly among charge-conjugation C , parity P , and time-reversal T symmetries when θ =π . Anomaly matching implies that in this case the ground state cannot be trivially gapped, as long as C ,P , and T are all good symmetries of the theory. We make several consistency checks with various semiclassical regimes, and with the exactly solvable XYZ model. We interpret this anomaly as an anomaly of the corresponding spin-half chains with translational symmetry, parity, and time reversal [but not involving the SO(3)-spin symmetry], requiring that the ground state is never trivially gapped, even if SO(3) spin symmetry is explicitly and completely broken. We also consider generalizations to C PN -1 models and show that the C -P -T anomaly exists for even N .
Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane
Energy Technology Data Exchange (ETDEWEB)
Bart, G.R.; Fenster, S.
1976-06-01
The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance.
Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane
International Nuclear Information System (INIS)
Bart, G.R.; Fenster, S.
1976-06-01
The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance
High-temperature expansion along the self-dual line of three-dimensional Z(2) spin-gauge theory
International Nuclear Information System (INIS)
Bhanot, G.
1981-01-01
We exploit the self-duality of the three-dimensional Ising spin-gauge theory to develop an eighth-order high-temperature expansion for the partition function along the self-dual line. This generates a high-temperature series for the gauge-invariant, nearest-neighbor spin-spin correlation function. A Pade analysis of this series reveals a pole along the self-dual line. Recent Monte Carlo simulations indicate that this theory has a first-order self-dual line emerging from a triple point. We interpret the Pade pole as a theoretical estimate of the end point of this self-dual line
International Nuclear Information System (INIS)
Rindani, S.D.
1989-03-01
A gauge-invariant theory of a massive spin-3/2 particle interaction with external electromagnetic and gravitational fields, obtained earlier by Kaluza-Klein reduction of a massless Rarita-Schwinger theory, is quantized using Dirac's procedure. The field anticommutators are found to be positive definite. The theory, which was earlier shown to be free from the classical Velo-Zwanziger problem of noncausal propagation modes, is thus also free from the problem of negative-norm states, a long-standing problem associated with massive spin-3/2 theories with external interaction. (author). 19 refs
Quantum spin transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Schindler, Christoph
2012-05-15
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Quantum spin transport in semiconductor nanostructures
International Nuclear Information System (INIS)
Schindler, Christoph
2012-01-01
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Energy Technology Data Exchange (ETDEWEB)
Wu, Hao; Harasawa, Ryo; Yasue, Yuya; Aritake, Takanori; Jiang, Canyu; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ji, Lian; Lu, Shulong [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou (China)
2016-08-15
The effect of thermal annealing on the electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.
Directory of Open Access Journals (Sweden)
Hao Wu
2016-08-01
Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.
Aderka, Idan M; Pollack, Mark H; Simon, Naomi M; Smits, Jasper A J; Van Ameringen, Michael; Stein, Murray B; Hofmann, Stefan G
2013-12-01
The Social Phobia Inventory (SPIN) is a widely used measure in mental health settings and a 3-item version (mini-SPIN) has been developed as a screening instrument for social anxiety disorder. In the present study, we examined the psychometric properties of the SPIN and developed a brief version (mini-SPIN-R) designed to assess social anxiety severity using item response theory. Our sample included 569 individuals with social anxiety disorder who participated in 2 clinical trials and filled out a battery of self-report measures. Using a nonparametric kernel smoothing method we identified the most sensitive items of the SPIN. These 3 items comprised the mini-SPIN-R, which was found to have greater internal consistency, and to capture a greater range of symptoms compared to the mini-SPIN. The mini-SPIN-R evidenced superior convergent validity compared to the mini-SPIN and both measures had similar divergent validity. Thus, the mini-SPIN-R is a promising brief measure of social anxiety severity. Copyright © 2013. Published by Elsevier Ltd.
The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory
International Nuclear Information System (INIS)
Ding You; Rovelli, Carlo
2010-01-01
A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit). We also generalize the definition of the volume operator in the spin-foam model to the Lorentzian signature and show that it matches the one of loop quantum gravity, as in the Euclidean case.