Electrical detection of magnetization dynamics via spin rectification effects
Energy Technology Data Exchange (ETDEWEB)
Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca
2016-11-23
The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.
Wireless power transfer exploring spin rectification and inverse spin Hall effects
Seeger, R. L.; Garcia, W. J. S.; Dugato, D. A.; da Silva, R. B.; Harres, A.
2018-04-01
Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.
Graphene spin diode: Strain-modulated spin rectification
Energy Technology Data Exchange (ETDEWEB)
Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
2014-08-04
Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.
International Nuclear Information System (INIS)
Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi
2014-01-01
We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni 80 Fe 20 ) thin film strip sputtered onto SiO 2 substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected
Rapid characterizing of ferromagnetic materials using spin rectification
International Nuclear Information System (INIS)
Fan, Xiaolong; Wang, Wei; Wang, Yutian; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Gao, Cunxu; Xue, Desheng; Gui, Y. S.; Hu, C.-M.
2014-01-01
Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constants of the Fe crystals but also the principle of spin rectification in this method
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Peng, Bin; Han, Fangbin; Wang, Qiuru; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Soh, Wee Tee; Ong, Chong Kim [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore)
2016-03-07
We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.
Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng
2018-02-01
Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.
Energy Technology Data Exchange (ETDEWEB)
Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)
2017-03-15
The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.
International Nuclear Information System (INIS)
Soh, Wee Tee; Ong, C. K.; Peng, Bin
2015-01-01
We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films
Length dependence of rectification in organic co-oligomer spin rectifiers
International Nuclear Information System (INIS)
Hu Gui-Chao; Zhang Zhao; Li Ying; Ren Jun-Feng; Wang Chuan-Kui
2016-01-01
The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. (paper)
Energy Technology Data Exchange (ETDEWEB)
Min, Y., E-mail: minshiyi@gmail.com [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Fang, J.H.; Zhong, C.G. [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Yao, K.L. [School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 (China)
2012-05-07
For the molecular spintronics transport systems, we propose that the spin current rectifier can be constructed using the nonmagnetic lead. The proposal is confirmed according to the first-principles study of the transport characteristics of a vacuum separating (15,0) carbon nanotube bundle where only one zigzag edge is hydrogenated. The strong rectification effect for spin (charge) current is obtained in the case of the magnetic parallel (anti-parallel) configuration of two zigzag edges. Our investigations indicate that such device can be used as the spin filter and the counterpart of the p–n junction in the field of molecular electronics. -- Highlights: ► We propose that nonmagnetic leads can construct spin current rectifier. ► We propose a spin diode and a filter using CNT. ► The spin and charge current all have the rectification effect in the one-dimensional spin diode.
Electric field controlled reversible magnetic anisotropy switching studied by spin rectification
Energy Technology Data Exchange (ETDEWEB)
Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2014-03-10
In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.
Electric field controlled reversible magnetic anisotropy switching studied by spin rectification
International Nuclear Information System (INIS)
Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.
2014-01-01
In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time
Spin-dependent rectification in the C59N molecule
Indian Academy of Sciences (India)
2013-02-05
Feb 5, 2013 ... where E is the injected electron energy and ξ is a very small number ... et al [40] considered a four-site system to study transport through a ... iM ,σ (ciM ,σ ) creates (destroys) an electron with spin σ at site i of C60 and εiM is the.
Enhanced heat rectification effect in a quantum dot connected to ferromagnetic leads
Energy Technology Data Exchange (ETDEWEB)
Chi, Feng, E-mail: chifeng@semi.ac.cn [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China); College of Engineering, Bohai University, Jinzhou 121013 (China); Sun, Lian-Liang [College of Science, North China University of Technology, Beijing 100041 (China); Zheng, Jun; Guo, Yu [College of Engineering, Bohai University, Jinzhou 121013 (China)
2015-06-15
We study theoretically the heat generation by electric current in an interacting single level quantum-dot connected to ferromagnetic leads. The heat is transferred between the dot and the lattice vibration of its host material (phonon reservoir). Particular attention is paid on the heat's rectification effect achieved by properly arranging the dot level and the bias voltage. We find that this effect is remarkably enhanced when the two leads' magnetic moments are in antiparallel configuration, i.e., the magnitude of the heat generation is reduced (amplified) in the negative (positive) bias regime as compared to the cases of parallel configuration and nonmagnetic leads. The rectification effect is even enhanced when one of the lead's spin polarization approaches to unit, during which the negative differential of the heat generation is weakened due to the change of the spin-dependent electron occupation numbers on the dot. The found results may be used for thermal transistor in the newly emerged research subject of phononics. - Highlights: • Heat flow between electrons and phonons is controlled by interaction between them. • A thermal diode or rectifier is proposed to work under electrical bias. • The heat rectification effect can be enhanced by the leads' ferromagnetism.
International Nuclear Information System (INIS)
Wu, Jinghe; Guo, Kangxian; Liu, Guanghui
2014-01-01
Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.
Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain
Energy Technology Data Exchange (ETDEWEB)
Mondal, Debasish; Muthukumar, M., E-mail: muthu@polysci.umass.edu [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)
2016-08-28
We report a three dimensional Langevin dynamics simulation of a uniformly charged flexible polyelectrolyte chain, translocating through an asymmetric narrow channel with periodically varying cross sections under the influence of a periodic external electric field. When reflection symmetry of the channel is broken, a rectification effect is observed with a favored direction for the chain translocation. For a given volume of the channel unit and polymer length, the rectification occurs below a threshold frequency of the external periodic driving force. We have also observed that the extent of the rectification varies non-monotonically with increasing molecular weight and the strength of geometric asymmetry of the channel. Observed non-monotonicity of the rectification performance has been interpreted in terms of a competition between two effects arising from the channel asymmetry and change in conformational entropy. An analytical model is presented with predictions consistent with the simulation results.
Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus
Energy Technology Data Exchange (ETDEWEB)
Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)
2014-09-15
The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.
Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus
International Nuclear Information System (INIS)
Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju
2014-01-01
The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier
International Nuclear Information System (INIS)
Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.
2013-01-01
We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.
Measurement of spin pumping voltage separated from extrinsic microwave effects
International Nuclear Information System (INIS)
Iguchi, Ryo; Saitoh, Eiji
2017-01-01
Conversions between spin and charge currents are core technologies in recent spintronics. In this article, we provide methods for estimating inverse spin Hall effects (ISHEs) induced by using microwave-driven spin pumping (SP) as a spin-current generator. ISHE and SP induce an electromotive force at the ferromagnetic or spin-wave resonance, which offers a valuable electric method of studying spin physics in materials. At the resonance, a microwave for exciting the magnetization dynamics induces an additional electromotive force via rf-current rectification and thermoelectric effects. We discuss methods of separating the signals generated from such extrinsic microwave effects by controlling sample structures and configurations. These methods are helpful in performing accurate measurements on ISHE induced by SP, enabling quantitative studies on the conversion between spin and charge currents on various kinds of materials. (author)
Koroteev, Nikolai I.
1996-05-01
A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.
Fractionation and rectification apparatus
Energy Technology Data Exchange (ETDEWEB)
Sauerwald, A
1932-05-25
Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.
Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.
2015-10-01
Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping, E-mail: yangpingdm@ujs.edu.cn [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Li, Xialong; Zhao, Yanfan [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Yang, Haiying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Shuting, E-mail: wangst@mail.hust.edu.cn [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)
2013-11-01
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.
Czech Academy of Sciences Publication Activity Database
Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš
2010-01-01
Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010
International Nuclear Information System (INIS)
Ratcliffe, P.G.
1993-01-01
A discussion is presented of the role that transverse spin physics can play in providing information on the bound state dynamics in hadronic physics. Care is taken to distinguish between single- and double-spin measurements, each being discussed separately. In the case of single-spin effects it is stressed that as yet no satisfactory explanation has been provided within the framework if perturbative QCD which in fact generally predicts negligible effects. In order to clarify the situation experimental data at yet higher p T are necessary and semi-leptonic data could shed some light on the underlying scattering mechanisms. As regards double-spin correlations, the theoretical picture (although clouded by some ill-informed, often erroneous statements and even recent papers) is rather well understood and what is dearly missing is the experimental study of, for example, g 2 in deep-inelastic scattering. (author). 31 refs
International Nuclear Information System (INIS)
Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.
2011-01-01
In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.
Inverse spin Hall effect by spin injection
Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.
2007-09-01
Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.
Nazirfakhr, Maryam; Shahhoseini, Ali
2018-03-01
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR-H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I-V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I-V characteristic of O/ZGNR-H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.
Quantum Effects in Nanoantennas and Their Applications in Tunability, Mixing, and Rectification
Chen, Pai-Yen
2015-08-04
It has been recently shown that optical nanoantennas made of single or paired metallic nanoparticles can efficiently couple the propagating light into and from deeply subwavelength volumes. The strong light-matter interaction mediated by surface plasmons in metallic nanostructures allows for localizing optical fields to a subdiffraction-limited region, thereby enhancing emission of nanoemitters and offering the flexible control of nanofocused radiation. Here we theoretically study the nanodipole antennas with submicroscopic gaps, i.e. a few nanometers, for which there exists linear and high-order nonlinear quantum conductivities due to the photon-assisted tunneling effect. Noticeably, these quantum conductivities induced at the nanogap are enhanced by several orders of magnitude, due to the strongly localized optical fields associated with the plasmonic resonance.In this talk, we will show that by tailoring the geometry of nanoantennas and the quantum well structure, a quantum nanodipole antenna with a gap size of few nanometers can induce linear, high-order quantum conductivities that are considerably enhanced by the surface plasmon resonance. We envisage here a number of intriguing nanophotonic applications of these quantum nanoantennas, including (i) modulatable and switchable radiators and metamaterials, with electronic and all-optical tuning (which is related to the two photon absorption), (ii) optical rectification for detection and energy harvesting of infrared and visible light, which are related to the relevant second-order quantum conductivity, (iii) harmonic sensing for the work function and the optical index of nanoparticle, e.g. DNA and molecules, loaded inside the nanogap, and (iv) high harmonic generation and wave mixing with nonlinear quantum conductivities.
Energy Technology Data Exchange (ETDEWEB)
Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.
2013-12-15
In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied
Effect of spin rotation coupling on spin transport
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-12-15
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.
Biradical and triradical organic magnetic molecules as spin filters and rectifiers
International Nuclear Information System (INIS)
Zhu, L.; Yao, K.L.; Liu, Z.L.
2012-01-01
Graphical abstract: (a) Negative differential resistance (NDR) characteristic and antiparallel spin-current (ASC) rectification; (b) spin-current (SC) rectification and charge-current (CC) rectification properties Display Omitted Highlights: ► Organic magnetic molecules at gold electrodes as spin/charge rectifier. ► Spin diode/rectification stems from length and asymmetry of molecular framework. ► Negative differential resistance, spin-filtering and switching evidenced. - Abstract: We have theoretically investigated the spin-polarized transport properties of molecular junctions consisting of biradical and triradical organic magnetic molecules sandwiched between two symmetric gold electrodes, respectively. It shows that these junctions function as a spin rectifier or a combination of spin and charge rectifiers with high spin rectification ratios exceeding 100, wherein the spin diode/rectification effect stems from the conjugated length and asymmetry of the molecular framework, which is the pre-requisite for electronic asymmetry of the adsorbed species. The negative differential resistance, spin-filtering and switching properties are also unveiled. In particular, it is revealed that the strong couplings between the electrodes and molecules are responsible for the negative differential resistance.
Biradical and triradical organic magnetic molecules as spin filters and rectifiers
Energy Technology Data Exchange (ETDEWEB)
Zhu, L. [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, K.L., E-mail: klyao@hust.edu.cn [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of Science, Shengyang 110015 (China); Liu, Z.L. [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)
2012-03-13
Graphical abstract: (a) Negative differential resistance (NDR) characteristic and antiparallel spin-current (ASC) rectification; (b) spin-current (SC) rectification and charge-current (CC) rectification properties Display Omitted Highlights: Black-Right-Pointing-Pointer Organic magnetic molecules at gold electrodes as spin/charge rectifier. Black-Right-Pointing-Pointer Spin diode/rectification stems from length and asymmetry of molecular framework. Black-Right-Pointing-Pointer Negative differential resistance, spin-filtering and switching evidenced. - Abstract: We have theoretically investigated the spin-polarized transport properties of molecular junctions consisting of biradical and triradical organic magnetic molecules sandwiched between two symmetric gold electrodes, respectively. It shows that these junctions function as a spin rectifier or a combination of spin and charge rectifiers with high spin rectification ratios exceeding 100, wherein the spin diode/rectification effect stems from the conjugated length and asymmetry of the molecular framework, which is the pre-requisite for electronic asymmetry of the adsorbed species. The negative differential resistance, spin-filtering and switching properties are also unveiled. In particular, it is revealed that the strong couplings between the electrodes and molecules are responsible for the negative differential resistance.
Compound nucleus effects in spin-spin cross sections
International Nuclear Information System (INIS)
Thompson, W.J.
1976-01-01
By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)
Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.
Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo
2015-09-21
Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.
Spin Current Noise of the Spin Seebeck Effect and Spin Pumping
Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.
2018-01-01
We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.
International Nuclear Information System (INIS)
Entin-Wohlman, O.
2005-01-01
Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other
Universal intrinsic spin Hall effect
Czech Academy of Sciences Publication Activity Database
Sinova, J.; Culcer, D.; Sinitsyn, N. A.; Niu, Q.; Jungwirth, Tomáš; MacDonald, A. H.
2004-01-01
Roč. 92, č. 12 (2004), 126603/1-126603/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor quantum wells * spin-orbit interaction * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004
International Nuclear Information System (INIS)
Dhar, S.; Basu, B.; Ghosh, Subir
2007-01-01
We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis
Observation of the spin Nernst effect
Meyer, S.; Chen, Y.-T.; Wimmer, S.; Althammer, M.; Wimmer, T.; Schlitz, R.; Geprägs, S.; Huebl, H.; Ködderitzsch, D.; Ebert, H.; Bauer, G. E. W.; Gross, R.; Goennenwein, S. T. B.
2017-10-01
The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.
Magnetocaloric effect in quantum spin-s chains
Directory of Open Access Journals (Sweden)
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
FERMILAB: High energy spin effects
Energy Technology Data Exchange (ETDEWEB)
Anon.
1991-03-15
While many physicists would agree that it is important to study interactions of different isospin states (for example comparing proton and neutron data), many of them also accept as normal data averaged or integrated over ordinary spin. However an ongoing programme at Brookhaven studying elastic scattering (where the incoming particles 'bounce' off each other) produced marked spin effects which are not well understood. Our understanding of particle interactions should not be influenced by which observables are easy to measure and which aren't, and until a clear understanding of spin effects emerges, it is important to continue and extend these studies.
International Nuclear Information System (INIS)
Anon.
1995-01-01
energies of 1.2, 2.5 et 3.6 GeV, underline that spin effects decrease with energy and tend to zero in agreement with the prediction of a nonpertubative quantum chromodynamics (QCD) model, where the strong fluctuations of vacuum gluon fields (instantons) provide the main contribution. The rapid vanishing of neutron-proton difference, observed for the first time, suggests that the prediction is valid for both isospin 0 and 1 states. It will be interesting to take measurements using a transversely polarized beam and target, where different behaviour is expected. With the polarizing solenoid shipped to Mainz for another experiment, the JINR setup needs a new solenoid and superconducting coils for transverse target polarization. Construction has begun in Dubna and Kharkov, respectively. Additional INTAS financial support will be requested
Su, Yantao; Xin, Chao; Feng, Yancong; Lin, Qinxian; Wang, Xinwei; Liang, Jun; Zheng, Jiaxin; Lin, Yuan; Pan, Feng
2016-10-11
The present work intends to explain why ultrathin Al 2 O 3 atomic-layer-deposited (ALD) on the back contact with rectification and tunneling effects can significantly improve the performance of CdTe solar cells in our previous work [ Liang , J. ; et al. Appl. Phys. Lett. 2015 , 107 , 013907 ]. Herein, we further study the mechanism through establishing the interfacial energy band diagram configuration of the ALD Al 2 O 3 /Cu x Te by experiment of X-ray photoelectron spectroscopy and first-principles calculations and conclude to find the band alignment with optimized layer thickness (about 1 nm ALD Al 2 O 3 ) as the key factor for rectification and tunneling effects.
Helicity formalism and spin effects
International Nuclear Information System (INIS)
Anselmino, M.; Caruso, F.; Piovano, U.
1990-01-01
The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)
Spin Hall effect by surface roughness
Zhou, Lingjun
2015-01-08
The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.
Extrinsic spin Hall effect in graphene
Rappoport, Tatiana
The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.
Thermal rectification in nonlinear quantum circuits
DEFF Research Database (Denmark)
Ruokola, T.; Ojanen, T.; Jauho, Antti-Pekka
2009-01-01
We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at finit...
Precision Rectification of Airborne SAR Image
DEFF Research Database (Denmark)
Dall, Jørgen; Liao, M.; Zhang, Zhe
1997-01-01
A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...
Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)
2013-12-09
The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.
Spin Hall effect and Berry phase of spinning particles
International Nuclear Information System (INIS)
Berard, Alain; Mohrbach, Herve
2006-01-01
We consider the adiabatic evolution of the Dirac equation in order to compute its Berry curvature in momentum space. It is found that the position operator acquires an anomalous contribution due to the non-Abelian Berry gauge connection making the quantum mechanical algebra noncommutative. A generalization to any known spinning particles is possible by using the Bargmann-Wigner equation of motions. The noncommutativity of the coordinates is responsible for the topological spin transport of spinning particles similarly to the spin Hall effect in spintronic physics or the Magnus effect in optics. As an application we predict new dynamics for nonrelativistic particles in an electric field and for photons in a gravitational field
Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices.
Huang, Qi-Kun; Yan, Yi; Zhang, Kun; Li, Huan-Huan; Kang, Shishou; Tian, Yu-Feng
2016-11-23
Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation.
Chudnovsky, Eugene M.
2007-01-01
An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...
Spin Hall effect-driven spin torque in magnetic textures
Manchon, Aurelien; Lee, K.-J.
2011-01-01
Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.
Spin Hall effect-driven spin torque in magnetic textures
Manchon, Aurelien
2011-07-13
Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.
Local rectification of heat flux
Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.
2017-09-01
We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.
Thermal imaging of spin Peltier effect
Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi
2016-12-01
The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.
Xu, Ai-Hua; Liu, Juan; Luo, Bo
2016-10-01
Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.
Theory of the spin Peltier effect
Ohnuma, Y.; Matsuo, M.; Maekawa, S.
2017-10-01
A microscopic theory of the spin Peltier effect in a bilayer structure comprising a paramagnetic metal (PM) and a ferromagnetic insulator (FI) based on the nonequilibrium Green's function method is presented. Spin current and heat current driven by temperature gradient and spin accumulation are formulated as functions of spin susceptibilities in the PM and the FI, and are summarized by Onsager's reciprocal relations. By using the current formulas, we estimate heat generation and absorption at the interface driven by the heat-current injection mediated by spins from PM into FI.
Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions
Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo
2015-01-01
Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...
Tunneling Anomalous and Spin Hall Effects.
Matos-Abiague, A; Fabian, J
2015-07-31
We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.
Extrinsic spin Nernst effect from first principles.
Tauber, Katarina; Gradhand, Martin; Fedorov, Dmitry V; Mertig, Ingrid
2012-07-13
We present an ab initio description of the thermal transport phenomenon called the spin Nernst effect. It refers to generation of a spin accumulation or a pure spin current transverse to an applied temperature gradient. This is similar to the intensively studied spin Hall effect described by intrinsic and extrinsic mechanisms due to an applied electric field. Analogously, several contributions are present for the spin Nernst effect. Here we investigate the extrinsic skew scattering mechanism which is dominant in the limit of dilute alloys. Our calculations are based on a fully relativistic Korringa-Kohn-Rostoker method and a solution of the linearized Boltzmann equation. As a first application, we consider a Cu host with Au, Ti, and Bi impurities.
Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects
Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.
2017-10-01
We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.
Spin Hall effect by surface roughness
Zhou, Lingjun; Grigoryan, Vahram L.; Maekawa, Sadamichi; Wang, Xuhui; Xiao, Jiang
2015-01-01
induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.
Inverse spin Hall effect induced by spin pumping into semiconducting ZnO
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)
2014-02-03
The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.
Inverse spin Hall effect induced by spin pumping into semiconducting ZnO
International Nuclear Information System (INIS)
Lee, Jung-Chuan; Huang, Leng-Wei; Hung, Dung-Shing; Chiang, Tung-Han; Huang, J. C. A.; Liang, Jun-Zhi; Lee, Shang-Fan
2014-01-01
The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered
Minimal model of spin-transfer torque and spin pumping caused by the spin Hall Effect
Czech Academy of Sciences Publication Activity Database
Chen, W.; Sigrist, M.; Sinova, Jairo; Manske, D.
2016-01-01
Roč. 115, č. 21 (2016), 1-5, č. článku 217203. ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : spintronics * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.
2017-11-01
In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.
Mesoscopic spin Hall effect in semiconductor nanostructures
Zarbo, Liviu
The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities
International Nuclear Information System (INIS)
Laloee, F.; Freed, J.H.
1988-01-01
Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.
2017-12-01
Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.
Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers
Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel
Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.
Photonic spin Hall effect at metasurfaces.
Yin, Xiaobo; Ye, Ziliang; Rho, Junsuk; Wang, Yuan; Zhang, Xiang
2013-03-22
The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.
Spin Hall effect on a noncommutative space
International Nuclear Information System (INIS)
Ma Kai; Dulat, Sayipjamal
2011-01-01
We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V 1 (r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, σ=ρθ (ρ is the electron concentration, θ is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.
Experimental realization of a silicon spin field-effect transistor
Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian
2007-01-01
A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after...
Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect
Energy Technology Data Exchange (ETDEWEB)
Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)
2014-10-13
We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.
Crossover between spin swapping and Hall effect in disordered systems
Saidaoui, Hamed Ben Mohamed
2015-07-16
We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.
Crossover between spin swapping and Hall effect in disordered systems
Saidaoui, Hamed Ben Mohamed; Otani, Y.; Manchon, Aurelien
2015-01-01
We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.
High spin effects in superdense matter
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.
1978-04-01
A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe
Observation of the Spin Peltier Effect for Magnetic Insulators
Flipse, J.; Dejene, F.K.; Wagenaar, D.; Bauer, G.E.W.; Ben Youssef, J.; Van Wees, B.J.
2014-01-01
We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin
Thermal rectification based on phonon hydrodynamics and thermomass theory
Directory of Open Access Journals (Sweden)
Dong Yuan
2016-06-01
Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.
Local spin valve effect in lateral (Ga,MnAs/GaAs spin Esaki diode devices
Directory of Open Access Journals (Sweden)
M. Ciorga
2011-06-01
Full Text Available We report here on a local spin valve effect observed unambiguously in lateral all-semiconductor all-electrical spin injection devices, employing p+ −(Ga,MnAs/n+ −GaAs Esaki diode structures as spin aligning contacts. We discuss the observed local spin-valve signal as a result of the interplay between spin-transport-related contribution and the tunneling anisotropic magnetoresistance of the magnetic contacts. The magnitude of the spin-related magnetoresistance change is equal to 30 Ω which is twice the magnitude of the measured non-local signal.
Spin Hall Effect in Doped Semiconductor Structures
Tse, Wang-Kong; Das Sarma, Sankar
2006-03-01
We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.
Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions
International Nuclear Information System (INIS)
Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor
2007-01-01
We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters
Magnon polarons in the spin seebeck effect
Kikkawa, T.; Shen, K.; Flebus, B.; Duine, R.A.; Uchida, K.I.; Qiu, Z.; Bauer, G.E.W.; Saitoh, E.
2016-01-01
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y3Fe5O12 at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide
Inverse spin-valve effect in nanoscale Si-based spin-valve devices
Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam
2017-12-01
We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.
Observation of the Spin Nernst Effect in Platinum
Goennenwein, Sebastian
Thermoelectric effects - arising from the interplay between thermal and charge transport phenomena - have been extensively studied and are considered well established. Upon taking into account the spin degree of freedom, however, qualitatively new phenomena arise. A prototype example for these so-called magneto-thermoelectric or spin-caloritronic effects is the spin Seebeck effect, in which a thermal gradient drives a pure spin current. In contrast to their thermoelectric counterparts, not all the spin-caloritronic effects predicted from theory have yet been observed in experiment. One of these `missing' phenomena is the spin Nernst effect, in which a thermal gradient gives rise to a transverse pure spin current. We have observed the spin Nernst effect in yttrium iron garnet/platinum (YIG/Pt) thin film bilayers. Upon applying a thermal gradient within the YIG/Pt bilayer plane, a pure spin current flows in the direction orthogonal to the thermal drive. We detect this spin current as a thermopower voltage, generated via magnetization-orientation dependent spin transfer into the adjacent YIG layer. Our data shows that the spin Nernst and the spin Hall effect in in Pt have different sign, but comparable magnitude, in agreement with first-principles calculations. Financial support via Deutsche Forschungsgemeinschaft Priority Programme SPP 1538 Spin-Caloric Transport is gratefully acknowledged.
Separation processes, I: Azeotropic rectification
Directory of Open Access Journals (Sweden)
Milojević Svetomir
2005-01-01
Full Text Available In a series of two articles, the problems of azeotrope separation (part I and the design of separation units (part II were analyzed. The basic definition and equations of vapour-liquid equilibria for ideal and non-ideal systems, the importance of the activity coefficient calculation necessary for the analysis of non-ideal equilibrium systems, as well as theoretical aspects of azeotrope rectification and the determination of the optimal third component (modifier or azeotrope agent are presented in the first part.
Spin and magnetization effects in plasmas
International Nuclear Information System (INIS)
Brodin, G; Marklund, M; Zamanian, J; Stefan, M
2011-01-01
Quantum effects in plasmas are of interest for a diverse set of systems, and have thus as a field been revived and attracted a lot of attention from a wide community over the past decade. In models of quantum plasmas, the effects studied mostly are due to the quantum particle dispersion and tunnelling. Such effects can be of importance in dense systems and on short length scales. There are also a number of effects related to spin and statistics. However, up to recently the magnetization effect in plasmas due to the intrinsic electron spin has been largely ignored. The magnetization dynamics of e.g. solids has many important applications, such as components for memory storage, but has also been discussed in more 'proper' plasma environments, such as fusion plasmas. Furthermore, also from a basic science point-of-view the effects of intrinsic spin and gyromagnetic effects are of considerable interest. Here we give a short review of a number of different models for treating magnetization effects in plasmas, with a focus on recent results. In particular, the transition between kinetic models and fluid models is discussed. We also give a number of examples of applications of such theories, as well as an outlook for possible future work.
Magnon Polarons in the Spin Seebeck Effect.
Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji
2016-11-11
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
Mosendz, O.; Vlaminck, V.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.
2010-01-01
Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in nonmagnetic conductors. Here we study the spin-pumping-induced
High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex
Energy Technology Data Exchange (ETDEWEB)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)
2016-04-21
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.
Spin thermoelectric effects in organic single-molecule devices
Energy Technology Data Exchange (ETDEWEB)
Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn
2017-05-25
Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.
Thermal conductivity and rectification in asymmetric archaeal lipid membranes
Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven
2018-05-01
Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering
Widespread spin polarization effects in photoemission from topological insulators
Energy Technology Data Exchange (ETDEWEB)
Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.
2011-06-22
High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.
Effect of quantum tunneling on spin Hall magnetoresistance.
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-22
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y 3 Fe 5 O 12 ) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Novel spin effects in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1993-02-01
This report discusses a number of interesting hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. These include constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton; the principle of hadron helicity retention in high x F inclusive reactions; predictions based on total hadron helicity conservation in high momentum transfer exclusive reactions; the dependence of nuclear structure functions and shadowing on virtual photon polarization; and general constraints on the magnetic moment of hadrons. I also will discuss the implications of several measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F
Current rectification by mediating electroactive polymers
Energy Technology Data Exchange (ETDEWEB)
Ybarra, Gabriel; Moina, Carlos [Centro de Investigacion sobre Electrodeposicion y Procesos Superficiales, Instituto Nacional de Tecnologia Industrial, CC 157, (1650) San Martin (Argentina); Florit, M. Ines [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina); Posadas, Dionisio [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina)], E-mail: dposadas@inifta.unlp.edu.ar
2008-04-20
In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe{sup 2+/3+} and on the Fe(CN){sub 6}{sup 3-/4-} redox couples in solution that prove the proposed mechanisms of electrochemical rectification.
Current rectification by mediating electroactive polymers
International Nuclear Information System (INIS)
Ybarra, Gabriel; Moina, Carlos; Florit, M. Ines; Posadas, Dionisio
2008-01-01
In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe 2+/3+ and on the Fe(CN) 6 3-/4- redox couples in solution that prove the proposed mechanisms of electrochemical rectification
Thermoelectric effects and spin injection into superconductors with exchange field
Energy Technology Data Exchange (ETDEWEB)
Heikkilae, Tero [Dept. Phys., Univ. Jyvaeskylae (Finland); Silaev, Mihail [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Dept. Theor. Physics, KTH, Stockholm (Sweden); Virtanen, Pauli [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Giazotto, Francesco [NEST CNR-INFM and SNS Pisa (Italy); Ozaeta, Asier; Bergeret, Sebastian [CFM-CSIC and DIPC, San Sebastian (Spain)
2015-07-01
When a thin superconducting film is exposed to a longitudinal magnetic field or is in proximity to a ferromagnet, an exchange field separating the spin bands emerges in it. For low enough exchange fields superconductivity survives, but its response to external driving is strongly modified. In my talk I will show how at linear response such systems exhibit very strong thermoelectric response with an almost ideal efficiency. For strong driving, this effect creates a spin accumulation that can only relax via thermalization, and therefore at low temperatures has a very long range. Therefore our work explains recent observations of the long-range spin accumulation in spin-split superconductors. When injecting spin from injectors with non-collinear magnetization compared to the exchange field, the spins start to rotate around the latter. I will describe how superconductivity modifies this spin Hanle effect so that the resulting nonlocal magnetoresistance depends on the details of spin relaxation, therefore allowing for probing them.
Effective Hamiltonian for 2-dimensional arbitrary spin Ising model
International Nuclear Information System (INIS)
Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)
1983-08-01
The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)
Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching
International Nuclear Information System (INIS)
Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao
2011-01-01
The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.
Entropy production and rectification efficiency in colloid transport along a pulsating channel
Florencia Carusela, M.; Rubi, J. Miguel
2018-06-01
We study the current rectification of particles moving in a pulsating channel under the influence of an applied force. We have shown the existence of different rectification scenarios in which entropic and energetic effects compete. The effect can be quantified by means of a rectification coefficient that is analyzed in terms of the force, the frequency and the diffusion coefficient. The energetic cost of the motion of the particles expressed in terms of the entropy production depends on the importance of the entropic contribution to the total force. Rectification is more important at low values of the applied force when entropic effects become dominant. In this regime, the entropy production is not invariant under reversal of the applied force. The phenomenon observed could be used to optimize transport in microfluidic devices or in biological channels.
Korenev, V. L.
2005-01-01
It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.
Spin hall effect associated with SU(2) gauge field
Tao, Y.
2010-01-01
In this paper, we focus on the connection between spin Hall effect and spin force. Here we investigate that the spin force due to spin-orbit coupling, which, in two-dimensional system, is equivalent to forces of Hirsch and Chudnovsky besides constant factors 3 and frac{3}{2} respectively, is a part of classic Anandan force, and that the spin Hall effect is an anomalous Hall effect. Furthermore, we develop the method of AC phase to derive the expression for the spin force, and note that the most basic spin Hall effect indeed originate from the AC phase and is therefore an intrinsic quantum mechanical property of spin. This method differs from approach of Berry phase in the study of anomalous Hall effect , which is the intrinsic property of the perfect crystal. On the other hand, we use an elegant skill to show that the Chudnovsky-Drude model is reasonable. Here we have improved the theoretical values of spin Hall conductivity of Chudnovsky. Compared to the theoretical values of spin Hall conductivity in the Chudnovsky-Drude model, ours are in better agreement with experimentation. Finally, we discuss the relation between spin Hall effect and fractional statistics.
Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields
International Nuclear Information System (INIS)
Yu Zhaoxian; Jiao Zhiyong
2004-01-01
In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior
Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo
2017-10-26
The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.
International Nuclear Information System (INIS)
Karabulut, I.; Mora-Ramos, M.E.; Duque, C.A.
2011-01-01
The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.
International Nuclear Information System (INIS)
Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian
2014-01-01
The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation
Desactivation of tritium waters by rectification methods
International Nuclear Information System (INIS)
Egorov, A.I.; Tyunis, V.M.
2002-01-01
Results of experiments into the basic rectification processes dedicated to tritium separation from reactor, technological and waste waters are presented. Coefficients of separation for rectification of water (1.028), ammonia (1.05), azeotrope H 2 O - HTO - HNO 3 (1.098) and D 2 O - DTO - DNO 3 (1.039) are performed. Operating schemes of tritium separating units are reviewed [ru
Magnus effects on spinning transonic missiles
Seginer, A.; Rosenwasser, I.
1983-01-01
Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.
The effect of spin in swing bowling in cricket: model trajectories for spin alone
Robinson, Garry; Robinson, Ian
2015-02-01
In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is
Electric-field effects in optically generated spin transport
International Nuclear Information System (INIS)
Miah, M. Idrish
2009-01-01
Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.
Electric-field effects in optically generated spin transport
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au
2009-05-25
Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.
Spin effects in high energy quark-quark scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Selyugin, O.V.
1993-01-01
The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab
OPTICS. Quantum spin Hall effect of light.
Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco
2015-06-26
Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.
Direct observation of the spin-dependent Peltier effect.
Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J
2012-02-05
The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.
Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves
Cheng, Yihong; Chen, Kai; Zhang, Shufeng
2018-01-01
We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.
Spin-torsion effects in the hyperfine structure of methanol
International Nuclear Information System (INIS)
Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.
2015-01-01
The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling
Simulating realistic implementations of spin field effect transistor
Gao, Yunfei; Lundstrom, Mark S.; Nikonov, Dmitri E.
2011-04-01
The spin field effect transistor (spinFET), consisting of two ferromagnetic source/drain contacts and a Si channel, is predicted to have outstanding device and circuit performance. We carry out a rigorous numerical simulation of the spinFET based on the nonequilibrium Green's function formalism self-consistently coupled with a Poisson solver to produce the device I-V characteristics. Good agreement with the recent experiments in terms of spin injection, spin transport, and the magnetoresistance ratio (MR) is obtained. We include factors crucial for realistic devices: tunneling through a dielectric barrier, and spin relaxation at the interface and in the channel. Using these simulations, we suggest ways of optimizing the device. We propose that by choosing the right contact material and inserting tunnel oxide barriers between the source/drain and channel to filter different spins, the MR can be restored to ˜2000%, which would be beneficial to the reconfigurable logic circuit application.
Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures
N'diaye, P. B.; Akosa, C. A.; Manchon, A.
2016-01-01
We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-B\\"uttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic a...
Proposed new test of spin effects in general relativity.
O'Connell, R F
2004-08-20
The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernible. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars.
Energy Technology Data Exchange (ETDEWEB)
Vinolin, Ada [Dept. of Physics, Madurai Kamaraj University College, Alagarkoil Road, Madurai-625002 (India); Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, Government Arts College, Melur-625106, Tamilnadu (India)
2014-04-24
Simultaneous effects of electric field and magnetic field on exciton binding energy as a function of dot radius in a cylindrical GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} strained quantum dot are investigated. The strain contribution includes the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical calculations are performed using variational procedure within the single band effective mass approximation. Optical rectification in the GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot is computed in the presence of electric and magnetic fields.
Observation of the spin Peltier effect for magnetic insulators.
Flipse, J; Dejene, F K; Wagenaar, D; Bauer, G E W; Ben Youssef, J; van Wees, B J
2014-07-11
We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modeling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques.
Spin effects in perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1980-12-01
The spin dependence of large momentum transfer exclusive and inclusive reactions can be used to test the gluon spin and other basic elements of QCD. In particular, exclusive processes including hadronic decays of heavy quark resonances have the potential of isolating QCD hard scattering subprocesses in situations where the helicities of all the interacting constituents are controlled. The predictions can be summarized in terms of QCD spin selection rules. The calculation of magnetic moment and other hadronic properties in QCD are mentioned
Bulk magnon spin current theory for the longitudinal spin Seebeck effect
Energy Technology Data Exchange (ETDEWEB)
Rezende, S.M., E-mail: rezende@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Rodríguez-Suárez, R.L. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Facultad de Física, Pontificia Universidad Católica de Chile, Casilla, 306 Santiago (Chile); Cunha, R.O.; López Ortiz, J.C.; Azevedo, A. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil)
2016-02-15
The longitudinal spin Seebeck effect (LSSE) consists in the generation of a spin current parallel to a temperature gradient applied across the thickness of a bilayer made of a ferromagnetic insulator (FMI), such as yttrium iron garnet (YIG), and a metallic layer (ML) with strong spin orbit coupling, such as platinum. The LSSE is usually detected by a DC voltage generated along the ML due to the conversion of the spin current into a charge current perpendicular to the static magnetic field by means of the inverse spin Hall effect. Here we present a model for the LSSE that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the FMI. We show that the spin current pumped into the metallic layer by the magnon accumulation in the FMI provides continuity of the spin current at the FMI/ML interface and is essential for the existence of the LSSE. The results of the theory are in good agreement with experimental LSSE data in YIG/Pt bilayers on the variation of the DC voltage with the sample temperature, with the FMI layer thickness and with the intensity of high magnetic fields. - Highlights: • We present a theory for the longitudinal spin Seebeck effect based on bulk magnons. • The model explains quantitatively the measured voltage in YIG/Pt created by the LSSE. • The model explains quantitatively the temperature dependence of LSSE measured in YIG/Pt. • The model agrees qualitatively with the measured dependence of LSSE with YIG thickness. • The model agrees qualitatively with the measured dependence of LSSE on magnetic field.
Anisotropic intrinsic spin Hall effect in quantum wires
International Nuclear Information System (INIS)
Cummings, A W; Akis, R; Ferry, D K
2011-01-01
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)
The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho
International Nuclear Information System (INIS)
Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.
1978-01-01
The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)
Goal-oriented rectification of camera-based document images.
Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J
2011-04-01
Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.
Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z
2016-08-01
Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.
Energy-Saving in Brew-Rectification
Directory of Open Access Journals (Sweden)
N. I. Ulyanau
2008-01-01
Full Text Available The paper investigates dynamics of rectification process on one plate of a column. The basic channels controlling brew-rectification process are described in the paper.The paper also considers problems pertaining to synthesis of an adaptive system that controls non-stationary objects with delay. Synthesis of adaptive systems that automatically control product quality and saving on power resources and productivity with the help of the second method of Lyapunov has been carried out in the paper.Industrial introduction of the given automatic control system of technological process shall permit to increase productivity of a rectification (10–15 %, to decrease specific power consumption by (5–10 % while preserving the specified quality of rectified ethyl alcohol and decrease alcohol losses with luting water and malt-residue.
Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields
Yu, Zhao-xian; Jiao, Zhi-yong
2003-01-01
In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...
Spin-dependent Peltier effect in 3D topological insulators
Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard
2013-03-01
The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.
Coherence and spin effects in quantum dots
International Nuclear Information System (INIS)
Katsumoto, S
2007-01-01
This review focuses on experiments on coherent transport through quantum dot systems. The most important quantity obtained in coherent transport is the phase shift through the dots, which gives complementary information to the scattering amplitude (i.e. the conductance). However, two-terminal devices have a particular difficulty, called 'phase rigidity', in obtaining the phase shift. There are two representative ways to avoid this problem: one is to adopt a multi-terminal configuration and another is to use resonance in the interferometer. This review mainly reviews the latter approaches. Such resonance in the whole interferometer often joins with local resonance inside the interferometer and appears as the Fano effect, which is a powerful tool for investigating the phase shift problem with the aid of theories. In addition to such resonances of single-electron states, electron spin causes a kind of many-body resonance, that is, the Kondo effect. Combination of these resonances is the Fano-Kondo effect. Experiments on the Fano-Kondo effect, which unveil the nature of the Kondo resonance, are also reviewed. (topical review)
Nontrivial ac spin response in the effective Luttinger model
International Nuclear Information System (INIS)
Hu Liangbin; Zhong Jiansong; Hu Kaige
2006-01-01
Based on the three-dimensional effective Luttinger Hamiltonian and the exact Heisenberg equations of motion and within a self-consistent semiclassical approximation, we present a theoretical investigation on the nontrivial ac spin responses due to the intrinsic spin-orbit coupling of holes in p-doped bulk semiconductors. We show that the nontrivial ac spin responses induced by the combined action of an ac external electric field and the intrinsic spin-orbit coupling of holes may lead to the generation of a nonvanishing ac spin Hall current in a p-doped bulk semiconductor, which shares some similarities with the dissipationless dc spin Hall current conceived previously and also exhibits some interesting new features that was not found before
Spin-accumulation effect in magnetic nano-bridge
International Nuclear Information System (INIS)
Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.
2004-01-01
Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained
International Nuclear Information System (INIS)
Bazaliy, Y. B.; Jones, B. A.
2002-01-01
''Spin-transfer'' torque is created when electric current is passed through metallic ferromagnets and may have interesting applications in spintronics. So far it was experimentally studied in ''collinear'' geometries, where it is difficult to predict whether magnetization will coherently rotate or spin-waves will be generated. Here we propose an easy modification of existing experiment in which the spin-polarization of incoming current will no longer be collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with the magnetization rotation theory will be achieved. That can be an important step in reconciling alternative points of view on the effect of spin-transfer torque
Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya
2018-06-01
We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.
Energy Technology Data Exchange (ETDEWEB)
Zhang, X.; Wan, C.H., E-mail: wancaihua@iphy.ac.cn; Yuan, Z.H.; Fang, C.; Kong, W.J.; Wu, H.; Zhang, Q.T.; Tao, B.S.; Han, X.F., E-mail: xfhan@iphy.ac.cn
2017-04-15
Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices. - Highlights: • Experimental demonstration of spin logic cell based on spin Hall effect. • Five logic functions are realized in a single logic cell. • The logic cell is reprogrammable. • Information in the cell is symmetry-protected. • The logic cell can be easily expanded to logic gate array.
Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator.
Chen, Haoqi; Li, Bin; Yang, Jinlong
2017-11-08
Black phosphorus is a promising candidate for future nanoelectronics with a moderate electronic band gap and a high carrier mobility. Introducing the magnetism into black phosphorus will widely expand its application scope and may present a bright prospect in spintronic nanodevices. Here, we report our first-principles calculations of spin-polarized electronic structure of monolayer black phosphorus (phosphorene) adsorbed on a magnetic europium oxide (EuO) substrate. Effective spin injection into the phosphorene is realized by means of interaction with the nearby EuO(111) surface, i.e., proximity effect, which results in spin-polarized electrons in the 3p orbitals of phosphorene, with the spin polarization at Fermi level beyond 30%, together with an exchange-splitting energy of ∼0.184 eV for conduction-band minimum of the adsorbed phosphorene corresponding to an energy region where only one spin channel is conductive. The energy region of these exchange-splitting and spin-polarized band gaps of the adsorbed phosphorene can be effectively modulated by in-plane strain. Intrinsically high and anisotropic carrier mobilities at the conduction-band minimum of the phosphorene also become spin-polarized mainly due to spin polarization of deformation potentials and are not depressed significantly after the adsorption. These extraordinary properties would endow black phosphorus with great potentials in the future spintronic nanodevices.
Radiative thermal rectification using superconducting materials
Energy Technology Data Exchange (ETDEWEB)
Nefzaoui, Elyes, E-mail: elyes.nefzaoui@univ-poitiers.fr; Joulain, Karl, E-mail: karl.joulain@univ-poitiers.fr; Drevillon, Jérémie; Ezzahri, Younès [Institut Pprime, Université de Poitiers-CNRS-ENSMA, 2, Rue Pierre Brousse, Bâtiment B25, TSA 41105, 86073 Poitiers Cedex 9 (France)
2014-03-10
Thermal rectification can be defined as an asymmetry in the heat flux when the temperature difference between two interacting thermal reservoirs is reversed. In this Letter, we present a far-field radiative thermal rectifier based on high-temperature superconducting materials with a rectification ratio up to 80%. This value is among the highest reported in literature. Two configurations are examined: a superconductor (Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}) exchanging heat with (1) a black body and (2) another superconductor, YBa{sub 2}Cu{sub 3}O{sub 7} in this case. The first configuration shows a higher maximal rectification ratio. Besides, we show that the two-superconductor rectifier exhibits different rectification regimes depending on the choice of the reference temperature, i.e., the temperature of the thermostat. Presented results might be useful for energy conversion devices, efficient cryogenic radiative insulators engineering, and thermal logical circuits’ development.
Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect
Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo
2018-05-01
We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.
Resonant spin Hall effect in two dimensional electron gas
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Aging effect of spin accumulation in non-local spin valves
International Nuclear Information System (INIS)
Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng; Wang, Le; Xu, Xiaoguang; Jiang, Yong
2017-01-01
Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.
Aging effect of spin accumulation in non-local spin valves
Energy Technology Data Exchange (ETDEWEB)
Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Le, E-mail: wangle@ruc.edu.cn [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, Xiaoguang, E-mail: xgxu@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiang, Yong [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)
2017-06-15
Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.
International Nuclear Information System (INIS)
Zhu Zhengang; Su Gang; Jin Biao; Zheng Qingrong
2003-01-01
We have investigated the current-induced spin transfer torque of a ferromagnet-insulator-ferromagnet tunnel junction by taking the spin-flip scatterings into account. It is found that the spin-flip scattering can induce an additional spin torque, enhancing the maximum of the spin torque and giving rise to an angular shift compared to the case when the spin-flip scatterings are neglected. The effects of the molecular fields of the left and right ferromagnets on the spin torque are also studied. It is found that τ Rx /I e (τ Rx is the spin-transfer torque acting on the right ferromagnet and I e is the tunneling electrical current) does vary with the molecular fields. At two certain angles, τ Rx /I e is independent of the molecular field of the right ferromagnet, resulting in two crossing points in the curve of τ Rx /I e versus the relevant orientation for different molecular fields
Effects of Confinement on Conventional Spin Problems
DEFF Research Database (Denmark)
Marchukov, Oleksandr
2015-01-01
In recent years quantum simulations in cold-atom set-ups has attracted a lot of interest both from experimental and theoretical research groups around the world. Unprecedented level of control over physical systems allowed one to investigate rather peculiar models, such as artificial gauge fields...... to the quantum signa- tures of chaos are discussed. The second part of the dissertation is concerned with quantum state transfer in one-dimensional spin chains. The properties required to achieve conditional state transfer, i.e. “allowing” or “blocking” of state transfer depending on the parameters of the spin...... chain, are discussed....
Collective effects in spin polarized plasmas
International Nuclear Information System (INIS)
Coppi, B.; Cowley, S.; Detragiache, P.; Kulsrud, R.; Pegoraro, F.
1984-10-01
A fusing plasma with coherently polarized spin nuclei can be subject to instabilities due to the anisotropy of the reaction product distributions in velocity space, which is a result of their polarization. The characteristics of these instabilities depend strongly on the plasma spatial inhomogeneities and a significant rate of spin depolarization can be produced by them if adequate fluctuation amplitudes are reached. The results of the relevant analysis are, in addition, of interest for plasma heating processes with frequencies in the range of the cyclotron frequencies of the considered nuclei
Partons and the EMC spin effect
International Nuclear Information System (INIS)
Bass, S.D.
1992-03-01
We focus on the patron model and the role of the axial anomaly in polarised deep inelastic scattering. We show that the axial anomaly is relevant to each of the higher moments of the spin dependent structure function g 1 (x) and not just the first moment. This result implies that the factorisation of mass singularities is not sufficient to define the parton model in spin dependent quantum chromodynamics (QCD). (It is certainly a necessary condition.) We also need to consider the locality of the photon parton interaction. The anomaly is observed over all x in the (EMC)g 1 (x) data. (author)
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen
2013-08-06
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen; Wang, Xuhui; Manchon, Aurelien
2013-01-01
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
International Nuclear Information System (INIS)
Eslami, L.; Faizabadi, E.
2014-01-01
The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.
Effective Floquet Hamiltonian for spin I = 1 in magic angle spinning ...
Indian Academy of Sciences (India)
WINTEC
Floquet Hamiltonians; contact transformations in NMR; Spin-1 MAS NMR; effective Ham- iltonians. 1. Introduction. Solid state nuclear magnetic resonance spectroscopy is an important technique to study structures, dyna- mics and electric charge distribution around nuclei in solids. It is also more difficult to perform and ana-.
Rectification of aerial images using piecewise linear transformation
International Nuclear Information System (INIS)
Liew, L H; Lee, B Y; Wang, Y C; Cheah, W S
2014-01-01
Aerial images are widely used in various activities by providing visual records. This type of remotely sensed image is helpful in generating digital maps, managing ecology, monitoring crop growth and region surveying. Such images could provide insight into areas of interest that have lower altitude, particularly in regions where optical satellite imaging is prevented due to cloudiness. Aerial images captured using a non-metric cameras contain real details of the images as well as unexpected distortions. Distortions would affect the actual length, direction and shape of objects in the images. There are many sources that could cause distortions such as lens, earth curvature, topographic relief and the attitude of the aircraft that is used to carry the camera. These distortions occur differently, collectively and irregularly in the entire image. Image rectification is an essential image pre-processing step to eliminate or at least reduce the effect of distortions. In this paper, a non-parametric approach with piecewise linear transformation is investigated in rectifying distorted aerial images. The non-parametric approach requires a set of corresponding control points obtained from a reference image and a distorted image. The corresponding control points are then applied with piecewise linear transformation as geometric transformation. Piecewise linear transformation divides the image into regions by triangulation. Different linear transformations are employed separately to triangular regions instead of using a single transformation as the rectification model for the entire image. The result of rectification is evaluated using total root mean square error (RMSE). Experiments show that piecewise linear transformation could assist in improving the limitation of using global transformation to rectify images
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
Enhancement of the spin Peltier effect in multilayers
Uchida, K.; Iguchi, R.; Daimon, S.; Ramos, R.; Anadón, A.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Aguirre, M. H.; Ibarra, M. R.; Saitoh, E.
2017-05-01
The spin Peltier effect (SPE), heat-current generation as a result of spin-current injection, has been investigated in alternately stacked Pt/Fe3O4 multilayer films. The temperature modulation induced by the SPE in the [Pt/Fe3O4]×n films was found to be significantly enhanced with increasing the number of Pt/Fe3O4 bilayers n . This SPE enhancement is much greater than that expected for a simple stack of independent Pt/Fe3O4 bilayers. The observed n dependence of the SPE can be explained by introducing spin-current redistribution in the multilayer films in the thickness direction, in a manner similar to the enhancement of the spin Seebeck effect in multilayers.
Theory of the Spin Galvanic Effect at Oxide Interfaces
Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto
2017-12-01
The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.
Neutron beam effects on spin-exchange-polarized 3He.
Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S
2008-08-22
We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.
Surface effects in quantum spin chains
International Nuclear Information System (INIS)
Parkinson, J B
2004-01-01
Chains of quantum spins with open ends and isotropic Heisenberg exchange are studied. By diagonalizing the Hamiltonian for chains of finite length N and obtaining all the energy eigenvalues, the magnetic susceptibility χ, the specific heat C v , and the partition function Z can be calculated exactly for these chains. The high-temperature series expansions of these are then evaluated. For χ and C v it is found that the terms in the series consist of three parts. One is the normal high-T series already known in great detail for the N → infinity ring(chain with periodic boundary conditions). The other two consist of a 'surface' term and a correction term of order (1/T) N . The surface term is found as a series up to and including (1/T) 8 for spin S = 1/2 and 1. Simple Pade approximant formulae are given to extend the range of validity below T = 1
Magnon Spin Nernst Effect in Antiferromagnets
Zyuzin, Vladimir A.; Kovalev, Alexey A.
2016-11-01
We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.
Magnon Spin Nernst Effect in Antiferromagnets.
Zyuzin, Vladimir A; Kovalev, Alexey A
2016-11-18
We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.
Spin valve effect in single-atom contacts
International Nuclear Information System (INIS)
Ziegler, M; Neel, N; Berndt, R; Lazo, C; Ferriani, P; Heinze, S; Kroeger, J
2011-01-01
Magnetic single-atom contacts have been controllably fabricated with a scanning tunnelling microscope. A voltage-dependent spin valve effect with conductance variations of ∼40% is reproducibly observed from contacts comprising a Cr-covered tip and Co and Cr atoms on ferromagnetic nanoscale islands on W(110) with opposite magnetization. The spin-dependent conductances are interpreted from first-principles calculations in terms of the orbital character of the relevant electronic states of the junction.
Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image
Liu, Dia; Liu, Hui-tong; Dong, Hao; Liu, Xiao-bo
2015-08-01
To solve the geometric distortion problem of large FOV linear array whiskbroom image, a model of multi center central projection collinearity equation was founded considering its whiskbroom and linear CCD imaging feature, and the principle of distortion was analyzed. Based on the rectification method with POS, we introduced the angular position sensor data of the servo system, and restored the geometric imaging process exactly. An indirect rectification scheme aiming at linear array imaging with best scanline searching method was adopted, matrixes for calculating the exterior orientation elements was redesigned. We improved two iterative algorithms for this device, and did comparison and analysis. The rectification for the images of airborne imaging experiment showed ideal effect.
Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals
International Nuclear Information System (INIS)
Takeuchi, Tsunehiro
2014-01-01
The bulk thermal rectifiers usable at a high temperature above 300 K were developed by making full use of the unusual electron thermal conductivity of icosahedral quasicrystals. The unusual electron thermal conductivity was caused by a synergy effect of quasiperiodicity and by a narrow pseudogap at the Fermi level. The rectification ratio, defined by TRR = |J large |/|J small |, reached vary large values exceeding 2.0. This significant thermal rectification would lead to new practical applications for the heat management. (paper)
Quark loops and spin-flip effects in pomeron exchange
International Nuclear Information System (INIS)
Goloskokov, S.V.
1991-01-01
On the basis of QCD at large distances with taking account of some nonperturbative properties of the theory, the possibility of spin-flip effects in high energy hadron processes at fixed momenta transfer is investigated. It is shown that the diagrams with the quark loops in QCD at large distances may lead to the spin-flip amplitude growing as s for s→∞, t-fixed. The confirmation of this result is obtained by calculations of the nonleading contributions from quark loops in t-channel exchange in QED up to the end. Physical mechanisms leading to that behaviour of the spin-flip amplitude is discussed. So we conclude that the pomeron has a complicated spin structure. (orig.)
Spin nutation effects in molecular nanomagnet–superconductor tunnel junctions
International Nuclear Information System (INIS)
Abouie, J; Abdollahipour, B; Rostami, A A
2013-01-01
We study the spin nutation effects of a molecular nanomagnet on the Josephson current through a superconductor|molecular nanomagnet|superconductor tunnel junction. We explicitly demonstrate that, due to the spin nutation of the molecular nanomagnet, two oscillatory terms emerge in the ac Josephson current in addition to the conventional ac Josephson current. Some resonances occur in the junction due to the interactions of the transported quasiparticles with the bias voltage and molecular nanomagnet spin dynamics. Their appearance indicates that the energy exchanged during these interactions is in the range of the superconducting energy gap. We also show that the spin nutation is able to convert the ac Josephson current to a dc current, which is interesting for applications. (paper)
Asteroid collisional history - Effects on sizes and spins
International Nuclear Information System (INIS)
Davis, D.R.; Weidenschilling, S.J.; Farinella, P.; Paolicchi, P.; Binzel, R.P.
1989-01-01
The effects of asteroid collisional history on sizes and spins of present-day objects are discussed. Collisional evolution studies indicate that collisions have altered the spin-rates of small bodies, but that the largest asteroids may have retained their primordial rotation rates. Most asteroids larger than 100 km diam have probably been shattered, but have gravitationally recaptured their fragments to form a rubble-pile structure. Large angular momentum asteroids appear to have Maclaurian spheroidal or Jacobi-ellipsoid-like shapes; some of them may have fissioned into binaries. An integrated size and spin collisional evolution model is presented, with two critical parameters: one which determines the spin rates for small fragments resulting from a shattering collision, and the other determines the fraction of impact angular momentum that is retained by the target. 36 refs
Vector spin modeling for magnetic tunnel junctions with voltage dependent effects
International Nuclear Information System (INIS)
Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.
2014-01-01
Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
Effect of spin disorder on resistivity; Effet du desordre de spin sur la resistivite
Energy Technology Data Exchange (ETDEWEB)
Gennes, P.G. de [Commissariat a l' Energie Atomique, Saclay (France); Friedel, J [Faculte des Sciences de Paris, 75 (France)
1959-07-01
The resistivity of magnetic metals is studied in the case where the spin carriers are bound to the atoms (ex.: rare earths). The effect of short-range order is shown to be generally small even at the critical point. The inelasticity of the magnetic collisions between electrons and lattice can also be neglected, but this approximation becomes bad at low temperatures. In this region a spin-wave approximation is used. (author) [French] On etudie l'influence des phenomenes magnetiques sur la resistivite des metaux ou les porteurs de spin sont lies aux atomes (ex.: Terres rares). Une bonne approximation a temperature suffisamment elevee consiste a negliger l'ordre a courte distance et l'inelasticite des collisions magnetiques electrons-reseau. On montre que l'effet de l'ordre a courte distance est en general negligeable meme a la temperature critique. L'approximation devient fausse a basse temperature et doit alors etre remplacee par l'approximation des ondes de spin. (auteur)
Tuning the effective spin-orbit coupling in molecular semiconductors
Schott, Sam
2017-05-11
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
Tuning the effective spin-orbit coupling in molecular semiconductors
Schott, Sam; McNellis, Erik R.; Nielsen, Christian B.; Chen, Hung-Yang; Watanabe, Shun; Tanaka, Hisaaki; McCulloch, Iain; Takimiya, Kazuo; Sinova, Jairo; Sirringhaus, Henning
2017-01-01
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
Environmental Effects on Quantum Reversal of Mesoscopic Spins
Giraud, R.; Chiorescu, I.; Wernsdorfer, W.; Barbara, B.; Jansen, A. G. M.; Caneschi, A.; Mueller, A.; Tkachuk, A. M.
2002-10-01
We describe what we learnt these last years on quantum reversal of large magnetic moments, using mainly conventional SQUID or micro-SQUID magnetometry. Beside the case of ferromagnetic nanoparticles with 103 - 105 atoms (e.g. Co, Ni, Fe, Ferrites), most fruitful systems appeared to be ensembles of magnetic molecules. These molecules, generally arranged in single crystals, carry relatively small magnetic moments (S = 10 in Mn12-ac and Fe8). They are sufficiently apart from each other not to be coupled by exchange interactions. The ground multiplet is split over an energy barrier of tens of kelvin (≈ 67 K for Mn12) by a strong local crystal field, leading to an Ising-type ground-state. Only weak inter-molecular dipolar interactions are present, as well as intra-molecular interactions, such as hyperfine interactions. Quantum properties of molecule spins are crucially dependent on their magnetic environment of electronic and nuclear spins (the spin bath). Energy fluctuations of the spin bath of about 0.1 K are important, especially at very low temperatures. In particular, they are much larger than the ground-state tunnel splitting of large-spin molecules in low applied fields, of about 10-8 K or even less (such a low value is due to the presence of large energy barriers). Theoretical predictions are experimentally checked for tunneling effects in the presence of non-equilibrated or equilibrated spin-energy distribution. It is also shown that the phonon-bath plays no role in low field, except when the temperature approaches the cross-over temperature to the thermal activation regime. In fact, spin-phonon transitions can play a role only if the tunnel splitting is not too small in comparison with kBT. This is the case both for large-spin molecules in a large magnetic field (e.g. Mn12-ac in a few tesla) and for low-spin molecules, as shown with the study of the molecule V15 (Hilbert space dimension as large as 215 and spin 1/2). We also give our latest results on the
Jang, Hyuk-Jae; Richter, Curt A
2017-01-01
Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Datta-Das-type spin-field-effect transistor in the nonballistic regime
Ohno, Munekazu; Yoh, Kanji
2008-01-01
We analyzed the applicability of original Datta-Das proposal for spin-field-effect transistor (spin-FET) to nonballistic regime based on semiempirical Monte Carlo simulation for spin transport. It is demonstrated that the spin helix state in two-dimensional electron gas system is sufficiently robust against D'yakonov-Perel' spin relaxation to allow an operation of Datta-Das-type spin-FET in the nonballistic transport regime. It is also shown that the spin diffusion length of the spin helix st...
Topological Hall and spin Hall effects in disordered skyrmionic textures
Ndiaye, Papa Birame; Akosa, Collins Ashu; Manchon, Aurelien
2017-01-01
We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.
Topological Hall and spin Hall effects in disordered skyrmionic textures
Ndiaye, Papa Birame
2017-02-24
We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.
Quantum dust magnetosonic waves with spin and exchange correlation effects
Energy Technology Data Exchange (ETDEWEB)
Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)
2016-01-15
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)
Quantum dust magnetosonic waves with spin and exchange correlation effects
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
International Nuclear Information System (INIS)
Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand
2014-01-01
The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3 O 4 with the ferromagnetic metal Co 0.2 Fe 0.6 B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3 O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.
Proximity effect in semiconductor films with spin-splitting and spin-orbit interaction
Energy Technology Data Exchange (ETDEWEB)
Michelsen, Jens; Grein, Roland [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)
2012-07-01
Superconducting heterostructures with spin-active materials have emerged as promising platforms for engineering topological superconductors featuring Majorana bound states at surfaces, edges and vortices. Here we present a method for evaluating, from a microscopic model, the band structure of a semiconductor film of finite thickness deposited on top of a conventional superconductor. Analytical expressions for the proximity induced gap openings are presented in terms of microscopic parameters and the proximity effect in presence of spin-orbit and exchange splitting is visualized in terms of Andreev reflection processes. An expression for the topological invariant, associated with the existence of Majorana bound states, is shown to depend only on parameters of the semiconductor film. The finite thickness of the film leads to resonant states in the film giving rise to a complex band structure with the topological phase alternating between trivial and non-trivial as the parameters are tuned of the film are tuned.
Spin analysis and new effects in reflectivity measurements
International Nuclear Information System (INIS)
Fermon, C.
1996-01-01
We present two new effects in polarized neutron reflectivity. We show that we have a non symmetric spin-flip signal in reflectivity measurements on magnetic films when the external field is not negligible. This phenomenon is due to different Larmor precessions for the two spin states and has to be taken into account in some experiments. The second effect is still not understood but we present results indicating that the specular reflection on a non magnetic surface can induce a neutron beam depolarization or rotation. (authors)
Spin effect on parametric interactions of waves in magnetoplasmas
International Nuclear Information System (INIS)
Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.
2012-01-01
The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfvén wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfvén wave even in classical regime.
Microwave power engineering generation, transmission, rectification
Okress, Ernest C
1968-01-01
Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third
Screening, Aharonov - Bohm effect, and linking number in spin systems
International Nuclear Information System (INIS)
Borisenko, O.; Petrov, K.; Faber, M.
2000-01-01
Screening mechanisms and related effects are studied in a variety of spin systems coupled to an external magnetic field. We use a special order parameter which can distinguish between screening due to the kinetic energy of spin excitations and screening due to the magnetic field. The action of this order parameter is based on an analog of the Aharonov - Bohm (AB) effect. The order parameter may test the realization of discrete symmetries embedded into the group symmetry of the theory via probing a nontrivial discrete charge. As simple examples, we study the Gaussian and Ising models. For the latter, we performed also Monte-Carlo simulations for a constant magnetic field. We then apply our results to spin systems with abelian and nonabelian global symmetries in two dimensions and argue that the order parameter proposed could serve as a tool to detect the Berezinskii - Kosterlitz - Thouless (BKT) phase transition
Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers
Energy Technology Data Exchange (ETDEWEB)
Skinner, T. D., E-mail: tds32@cam.ac.uk; Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Wang, M.; Hindmarch, A. T.; Rushforth, A. W. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)
2014-02-10
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.
Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O
DEFF Research Database (Denmark)
Thrane, N.; Trumpy, Georg
1970-01-01
. Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...
Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve
Majidi, Leyla; Asgari, Reza
2014-10-01
We propose a hole-doped molybdenum disulfide (MoS2) superconducting spin valve (F/S/F) hybrid structure in which the Andreev reflection process is suppressed for all incoming waves with a determined range of the chemical potential in ferromagnetic (F) region and the cross-conductance in the right F region depends crucially on the configuration of magnetizations in the two F regions. Using the scattering formalism, we find that the transport is mediated purely by elastic electron cotunneling (CT) process in a parallel configuration and changes to the pure crossed Andreev reflection (CAR) process in the low-energy regime, without fixing of a unique parameter, by reversing the direction of magnetization in the right F region. This suggests both valley- and spin-switch effects between the perfect elastic CT and perfect CAR processes and makes the nonlocal charge current to be fully valley- and spin-polarized inside the right F region where the type of the polarizations can be changed by reversing the magnetization direction in the right F region. We further demonstrate that the presence of the strong spin-orbit interaction λ and an additional topological term (β ) in the Hamiltonian of MoS2 result in an enhancement of the charge conductance of the CT and CAR processes and make them to be present for long lengths of the superconducting region. Besides, we find that the thermal conductance of the structure with a small length of the highly doped superconducting region exhibits linear dependence on the temperature at low temperatures, whereas it enhances exponentially at higher temperatures. In particular, we demonstrate that the thermal conductance versus the strength of the exchange field (h ) in F region displays a maximum value at h <λ , which moves towards larger exchange fields by increasing the temperature.
Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state
International Nuclear Information System (INIS)
Yoshii, Ryosuke; Tsuchiya, Shunji; Marmorini, Giacomo; Nitta, Muneto
2011-01-01
We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
Quantum revivals and magnetization tunneling in effective spin systems
International Nuclear Information System (INIS)
Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R
2016-01-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)
Surface-environment effects in spin crossover solids
Energy Technology Data Exchange (ETDEWEB)
Gudyma, Iu., E-mail: yugudyma@gmail.com; Maksymov, A.
2017-06-15
Highlights: • The spin-crossover nanocrystals were described by modified Ising-like model. • The ligand field on the surface is a function of external fluctuations. • The thermal hysteresis with surface and bulk interactions of the lattice was studied. • The system behavior with fluctuating ligand field on the surface was examined. • The fluctuations enlarge the hysteresis, but smaller surface interaction narrows it. - Abstract: The impact of surface effects on thermal induced spin crossover phenomenon is a subject of a broad and current interest. Using the modified Ising-like model of spin crossover solids with the ligand field as function of the molecule’ positions and random component on surface by means of Metropolis Monte Carlo algorithm the thermal spin transition curves were calculated. The analysis of spin configuration during transition gives a general idea about contribution of molecules from the surface and inside the lattice into resulting magnetization of the systems. The behavior of hysteresis loop for various surface coupling and fluctuations strength has been described.
Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques
Kovalev, Alexey A.
2014-06-01
We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.
Generation of pure spin currents via spin Seebeck effect in self-biased hexagonal ferrite thin films
Energy Technology Data Exchange (ETDEWEB)
Li, Peng; Ellsworth, David; Chang, Houchen; Janantha, Praveen; Richardson, Daniel; Phillips, Preston; Vijayasarathy, Tarah; Wu, Mingzhong, E-mail: mwu@lamar.colostate.edu [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Shah, Faisal [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2014-12-15
Light-induced generation of pure spin currents in a Pt(2.5 nm)/BaFe{sub 12}O{sub 19}(1.2 μm)/sapphire(0.5 mm) structure is reported. The BaFe{sub 12}O{sub 19} film had strong in-plane uniaxial anisotropy and was therefore self-biased. Upon exposure to light, a temperature difference (ΔT) was established across the BaFe{sub 12}O{sub 19} thickness that gave rise to a pure spin current in the Pt via the spin Seebeck effect. Via the inverse spin Hall effect, the spin current produced an electric voltage across one of the Pt lateral dimensions. The voltage varied with time in the same manner as ΔT and flipped its sign when the magnetization in BaFe{sub 12}O{sub 19} was reversed.
Construction of cost effective homebuilt spin coater for coating ...
African Journals Online (AJOL)
We report the construction of a cost effective and low power consumption spin coater from a direct current (DC) brushless motor. The DC mechanical component is widdely available in the central processing unit (CPU) cooler. This set up permits simple operation where the DC voltage can be controlled manually in order to ...
Effect of Spinning Cycling Training on Body Composition in Women
Kaya, Fatih; Nar, Dilek; Erzeybek, Mustafa Said
2018-01-01
In this study the effects of a 6 week spinning cycling training on the body composition of women were investigated. Twelve sedentary women (32-47 years old) voluntarily participated in this study. The 6-week training program consisted of exercise sessions on 3 days per week. The intensity of the training program that was kept low in the beginning…
High rectification ratios of Fe-porphyrin molecules on Au facets
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoyu; Wang, Gwo-Ching [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States); Lewis, Kim M., E-mail: lewisk2@rpi.edu [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States)
2012-09-14
We report room temperature measurements of current vs. voltage (I-V) from self-assembled Fe porphyrin [Fe(III) 5,15-di[4-(s-acetylthio)phenyl]-10,20-diphenyl porphine] molecular layers formed on annealed gold crystal facets on glass substrates. I-V curves were measured using an atomic force microscope with a conductive platinum tip. We observed a rectifier effect that shows asymmetric I-V curves from a monolayer of molecules. The majority rectification ratios at {+-}1 V obtained from hundreds of I-V lie in between 20 and 200, with the highest up to 9000. This is in contrast to the symmetric I-V curves measured from a few nm thick multilayer molecular islands. We contribute the observed rectification in ultrathin FeP molecular layers from asymmetric Schottky barriers that result from molecules in different bonding strengths to electrodes of gold and platinum. -- Highlights: Black-Right-Pointing-Pointer FeP molecular layers or islands of different thickness were self-assembled on Au. Black-Right-Pointing-Pointer High rectification ratios up to 9000 observed in sub-nm thick FeP molecular layers. Black-Right-Pointing-Pointer Measured current vs. voltage using a conductive AFM tip as one electrode. Black-Right-Pointing-Pointer Observed rectification of symmetric molecules using two different electrodes.
International Nuclear Information System (INIS)
Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui
2016-01-01
By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 10"4 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios. - Highlights: • The rectification properties of triangular Graphene nanoflakes are investigated. • The rectifying performance can be optimized by changing the width of the right arm-chaired GNR electrode. • The rectifying performance can also be tuned by varying the number of anchoring carbon atomic chains.
Effects on spin asymmetries of special effects at 900
International Nuclear Information System (INIS)
Lipkin, H.J.
1986-01-01
Hadron and quark exchange contributions to spin symmetries at 90 0 in hadron elastic scattering are investigated. The angular distribution of scattering cross sections is considered for incident protons with contributions from nonflip and double-flip amplitudes for states of parallel and antiparallel spins. 5 refs
Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact
Directory of Open Access Journals (Sweden)
Mohammad Koleini
2012-08-01
Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.
Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact
DEFF Research Database (Denmark)
Koleini, Mohammad; Brandbyge, Mads
2012-01-01
Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....
Enhanced thermo-spin effects in iron-oxide/metal multilayers
Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Uchida, K.; Saitoh, E.; Ibarra, M. R.
2018-06-01
Since the discovery of the spin Seebeck effect (SSE), much attention has been devoted to the study of the interaction between heat, spin, and charge in magnetic systems. The SSE refers to the generation of a spin current upon the application of a thermal gradient and detected by means of the inverse spin Hall effect. Conversely, the spin Peltier effect (SPE) refers to the generation of a heat current as a result of a spin current induced by the spin Hall effect. Here we report a strong enhancement of both the SSE and SPE in Fe3O4/Pt multilayered thin films at room temperature as a result of an increased thermo-spin conversion efficiency in the multilayers. These results open the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics.
Large-Signal DG-MOSFET Modelling for RFID Rectification
Directory of Open Access Journals (Sweden)
R. Rodríguez
2016-01-01
Full Text Available This paper analyses the undoped DG-MOSFETs capability for the operation of rectifiers for RFIDs and Wireless Power Transmission (WPT at microwave frequencies. For this purpose, a large-signal compact model has been developed and implemented in Verilog-A. The model has been numerically validated with a device simulator (Sentaurus. It is found that the number of stages to achieve the optimal rectifier performance is inferior to that required with conventional MOSFETs. In addition, the DC output voltage could be incremented with the use of appropriate mid-gap metals for the gate, as TiN. Minor impact of short channel effects (SCEs on rectification is also pointed out.
Thermal conductivity and thermal rectification in unzipped carbon nanotubes
International Nuclear Information System (INIS)
Ni Xiaoxi; Li Baowen; Zhang Gang
2011-01-01
We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.
Magnus Effect on a Spinning Satellite in Low Earth Orbit
Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai
2016-01-01
A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.
An edge index for the quantum spin-Hall effect
International Nuclear Information System (INIS)
Prodan, Emil
2009-01-01
Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)
Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector
Directory of Open Access Journals (Sweden)
S. Menshawy
2017-05-01
Full Text Available Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs. In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.
International Nuclear Information System (INIS)
Babaev, Z.R.; Shchelkachev, A.V.
1991-01-01
Prospects of decribing polarization effects within the framework of quark-parton models (QPM) using a density matrix in order to describe the parton spin states in hadrons are discussed. Such an approach allows one to get rid of contradictions occuring when describing the QPM of reactions of hadrons polarized in perpendicular to the scattering plane in case of applying spin distribution functions. Different model predictions for the observed one- and two-spin correlations in elastic nucleon-nucleon scattering are analyzed. 12 refs., 2 tabs
Microscopic origin of subthermal magnons and the spin Seebeck effect
International Nuclear Information System (INIS)
Diniz, I; Costa, A T
2016-01-01
Recent experimental evidence points to low-energy magnons as the primary contributors to the spin Seebeck effect. This spectral dependence is puzzling since it is not observed on other thermocurrents in the same material. Here, we argue that the physical origin of this behavior is the magnon–magnon scattering mediated by phonons, in a process which conserves the number of magnons. To assess the importance and features of this kind of scattering, we derive the effective magnon–phonon interaction from a microscopic model, including band energy, a screened electron–electron interaction and the electron–phonon interaction. Unlike higher order magnon-only scattering, we find that the coupling with phonons induce a scattering which is very small for low-energy (or subthermal ) magnons but increases sharply above a certain energy—rendering magnons above this energy poor spin-current transporters. (fast track communication)
Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs
Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki
2018-03-01
We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.
Energy Technology Data Exchange (ETDEWEB)
Liang, Qi, E-mail: alfred_02030210@163.com; Wei, Yuan
2014-03-15
Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model.
International Nuclear Information System (INIS)
Liang, Qi; Wei, Yuan
2014-01-01
Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model
Superconducting spin valve effect in Fe/In based heterostructures
Energy Technology Data Exchange (ETDEWEB)
Leksin, Pavel; Schumann, Joachim; Kataev, Vladislav; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences (Russian Federation)
2015-07-01
We report on magnetic and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. The Superconducting Spin Valve Effect (SSVE) assumes the T{sub c} difference between parallel (P) and antiparallel (AP) orientations of the Fe1 and Fe2 layers' magnetizations. The SSVE value oscillates and changes its sign when the Fe2 layer thickness d{sub Fe2} is varied from 0 to 5 nm. The SSVE value is positive, as expected, in the range 0.4 nm ≤ d{sub Fe2} ≤ 0.8 nm. For a rather broad range of thicknesses 1 nm ≤ d{sub Fe2} ≤ 2.6 nm the SSVE has negative sign assuming the inverse SSVE. Moreover, the magnitude of the inverse effect is larger than that of the positive direct effect. We attribute these oscillations to a quantum interference of the cooper pair wave functions in the magnetic part of the system. For most of the spin-valve samples from this set we experimentally realized the full switching between normal and superconducting states due to direct and inverse SSVE. The analysis of the experimental data has enabled the determination of all microscopic parameters of the studied system.
Spin-dependent transport and functional design in organic ferromagnetic devices
Directory of Open Access Journals (Sweden)
Guichao Hu
2017-09-01
Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.
Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2015-12-02
As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.
Rectification of light refraction in curved waveguide arrays.
Longhi, Stefano
2009-02-15
An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.
Rectification of light refraction in curved waveguide arrays
Longhi, S.
2010-01-01
An 'optical ratchet' for discretized light in photonic lattices, which enables to observe rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically-curved zigzag waveguide arrays is proposed.
On the Josephson effect between superconductors in singlet and triplet spin-pairing states
International Nuclear Information System (INIS)
Pals, J.A.; Haeringen, W. van
1977-01-01
An expression is derived for the Josephson current between two weakly coupled superconductors of which one or both have pairs in a spin-triplet state. It is shown that there can be no Josephson effect up to second order in the transition matrix elements between a superconductor with spin-triplet pairs and one with spin-singlet pairs if the coupling between the two superconductors can be described with a spin-conserving tunnel hamiltonian. This is shown to offer a possibility to investigate experimentally whether a particular superconductor has spin-triplet pairs by coupling it weakly to a well-known spin-singlet pairing superconductor. (Auth.)
A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures
Mandal, Sumit; Saha, Shyamal K.
2014-10-01
Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.
Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements
Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun
2014-01-01
Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043
Observation of spin Hall effect in photon tunneling via weak measurements.
Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun
2014-12-09
Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications.
One-loop effective actions and higher spins. Part II
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.
2018-01-01
In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.
Ballistic Spin Field Effect Transistor Based on Silicon Nanowires
Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried
2011-03-01
We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.
Rectification of pulsatile stress on soft tissues: a mechanism for normal-pressure hydrocephalus
Jalikop, Shreyas; Hilgenfeldt, Sascha
2011-11-01
Hydrocephalus is a pathological condition of the brain that occurs when cerebrospinal fluid (CSF) accumulates excessively in the brain cavities, resulting in compression of the brain parenchyma. Counter-intuitively, normal-pressure hydrocephalus (NPH) does not show elevated pressure differences across the compressed parenchyma. We investigate the effects of nonlinear tissue mechanics and periodic driving in this system. The latter is due to the cardiac cycle, which provides significant intracranial pressure and volume flow rate fluctuations. Nonlinear rectification of the periodic driving within a model of fluid flow in poroelastic material can lead to compression or expansion of the parenchyma, and this effect does not rely on changes in the mean intracranial pressure. The rectification effects can occur gradually over several days, in agreement with clinical studies of NPH.
Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons
Directory of Open Access Journals (Sweden)
G. A. Nemnes
2012-01-01
Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.
Lee, Myoung-Jae; Jung, Young-Dae
2018-04-01
The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.
Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles
Silenko, A. J.
2014-01-01
Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.
Analytical theory and possible detection of the ac quantum spin Hall effect.
Deng, W Y; Ren, Y J; Lin, Z X; Shen, R; Sheng, L; Sheng, D N; Xing, D Y
2017-07-11
We develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
Effective suppression of thermoelectric voltage in nonlocal spin-valve measurement
Ariki, Taisei; Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi
2017-06-01
We demonstrate that the background signal in the nonlocal spin-valve measurement can be sufficiently suppressed by optimizing the electrode design of the lateral spin valve. A relatively long length scale of heat propagation produces spin-independent thermoelectric signals under the combination of the Peltier and Seebeck effects. These unfavorable signals can be reduced by mixing the Peltier effects in two transparent ferromagnetic/nonmagnetic junctions. Proper understanding of the contribution from the heat current in no spin-current area is a key for effective reduction of the spin-independent background signal.
Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations
Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Bayer, M.
2013-01-01
The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified with cha...
McAneny, M.; Freericks, J. K.
2014-11-01
The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01 % due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01 % for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.
International Nuclear Information System (INIS)
Hassan, M.Y.; Ramadan, S.
1978-01-01
The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)
Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers
Czeschka, F. D.; Dreher, L.; Brandt, M. S.; Weiler, M.; Althammer, M.; Imort, I.-M.; Reiss, G.; Thomas, A.; Schoch, W.; Limmer, W.; Huebl, H.; Gross, R.; Goennenwein, S. T. B.
2011-07-01
We systematically measured the dc voltage VISH induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, VISH invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.
Analysis of spin depolarizing effects in electron storage rings
International Nuclear Information System (INIS)
Boege, M.
1994-05-01
In this thesis spin depolarizing effects in electron storage rings are analyzed and the depolarizing effects in the HERA electron storage ring are studied in detail. At high beam energies the equilibrium polarization is limited by nonlinear effects. This will be particularly true in the case of HERA, when the socalled ''spin rotators'' are inserted which are designed to provide longitudinal electron polarization for the HERMES experiment in 1994 and later for the H1 and ZEUS experiment. It is very important to quantify the influence of these effects theoretically by a proper modelling of HERA, so that ways can be found to get a high degree of polarization in the real machine. In this thesis HERA is modelled by the Monte-Carlo tracking program SITROS which was originally written by J. Kewisch in 1982 to study the polarization in PETRA. The first part of the thesis is devoted to a detailed description of the fundamental theoretical concepts on which the program is based. Then the approximations which are needed to overcome computing time limitations are explained and their influence on the simulation result is discussed. The systematic and statistical errors are studied in detail. Extensions of the program which allow a comparison of SITROS with the results given by ''linear'' theory are explained. (orig.)
Spin-injection Hall effect in a planar photovoltaic cell
Czech Academy of Sciences Publication Activity Database
Wunderlich, J.; Irvine, A.C.; Sinova, J.; Park, B.G.; Zarbo, L.P.; Xu, X.L.; Kaestner, B.; Novák, Vít; Jungwirth, Tomáš
2009-01-01
Roč. 5, č. 9 (2009), s. 675-681 ISSN 1745-2473 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002; GA ČR GEFON/06/E001 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : extraordinary Hall effects * spintronics * photvoltaics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 15.491, year: 2009
Interfacial spin cluster effects in exchange bias systems
Energy Technology Data Exchange (ETDEWEB)
Carpenter, R., E-mail: rc548@york.ac.uk; Vallejo-Fernandez, G.; O' Grady, K. [Department of Physics, The University of York, York YO10 5DD (United Kingdom)
2014-05-07
In this work, the effect of exchange bias on the hysteresis loop of CoFe is observed. The evolution of the coercivities and the shift of the hysteresis loop during the annealing process has been measured for films deposited on NiCr and Cu seed layers. Through comparison of the as deposited and field annealed loops, it is clear that for an exchange biased material, the two coercivities are due to different reversal processes. This behaviour is attributed to spin clusters at the ferromagnet/antiferromagnet interface, which behave in a similar manner to a fine particle system.
Strain effects on anisotropic magnetoresistance in a nanowire spin valve
Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.
2016-11-01
The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
Hu, Jiuning; Ruan, Xiulin; Chen, Yong P
2009-07-01
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
Transport and spin effects in homogeneous magnetic superlattice
International Nuclear Information System (INIS)
Cardoso, J.L.; Pereyra, P.; Anzaldo-Meneses, A.
2000-09-01
Homogeneous semiconductors under spacially periodic external magnetic fields exhibit spin-band splitting and displacements, more clearly defined than in diluted magnetic semiconductor superlattices. We study the influence of the geometrical parameters and the spin-field interaction on the electronic transport properties. We show that by varying the external magnetic field, one can easily block the transmission of either the spin-up or the spin-down electrons. (author)
Yagmur, A.; Iguchi, R.; Geprägs, S.; Erb, A.; Daimon, S.; Saitoh, E.; Gross, R.; Uchida, K.
2018-05-01
The spin Peltier effect (SPE) in a junction comprising a gadolinium-iron-garnet (GdIG) slab and a Pt film has been investigated around the magnetization compensation temperature of GdIG by means of the lock-in thermography method. When a charge current is applied to the Pt layer, a spin current is generated across the Pt/GdIG interface via the spin Hall effect in Pt. This spin current induces a heat current and a measurable temperature change near the Pt/GdIG interface due to the SPE. The SPE signal in the Pt/GdIG junction shows a sign change around the magnetization compensation temperature, demonstrating the similar temperature dependence of the SPE and the spin Seebeck effect for the Pt/GdIG hybrid system.
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-08-21
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).
Spin Start Line Effects on the J2X Gas Generator Chamber Acoustics
Kenny, R. Jeremy
2011-01-01
The J2X Gas Generator engine design has a spin start line connected near to the turbine inlet vanes. This line provides helium during engine startup to begin turbomachinery operation. The spin start line also acts as an acoustic side branch which alters the chamber's acoustic modes. The side branch effectively creates 'split modes' in the chamber longitudinal modes, in particular below the first longitudinal mode and within the frequency range associated with the injection-coupled response of the Gas Generator. Interaction between the spin start-modified chamber acoustics and the injection-driven response can create a higher system response than without the spin start attached to the chamber. This work reviews the acoustic effects of the spin start line as seen throughout the workhorse gas generator test program. A simple impedance model of the spin start line is reviewed. Tests were run with no initial spin start gas existing in the line, as well as being initially filled with nitrogen gas. Tests were also run with varying spin start line lengths from 0" to 40". Acoustic impedance changes due to different spin start gas constituents and line lengths are shown. Collected thermocouple and static pressure data in the spin start line was used to help estimate the fluid properties along the line length. The side branch impedance model was coupled to a chamber impedance model to show the effects on the overall chamber response. Predictions of the spin start acoustic behavior for helium operation are shown and compared against available data.
Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs
Directory of Open Access Journals (Sweden)
Anil Kumar Singh
2017-08-01
Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.
Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.
Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G
2013-01-04
We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.
Zhang, Zu-Quan; Lü, Jing-Tao
2017-09-01
Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.
Theory of spin Hall effect: extension of the Drude model.
Chudnovsky, Eugene M
2007-11-16
An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field, and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall conductivity sigma s and charge conductivity sigma c are related through sigma s=[2pi variant /(3mc2)]sigma2c with m being the bare electron mass. The theoretically computed value is in agreement with experiment.
Directory of Open Access Journals (Sweden)
G. C. Fouokeng
2014-01-01
Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.
Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si
Lou, Paul C.; Kumar, Sandeep
2018-04-01
Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.
Spin effects in intermediate-energy heavy-ion collisions
International Nuclear Information System (INIS)
Xu Jun; Li Baoan; Xia Yin; Shen Wenqing
2014-01-01
In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
Prediction of giant intrinsic spin-Hall effect in strained p-GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Schindler, Christoph; Kubis, Tillmann; Vogl, Peter [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)
2009-07-01
We present a systematic study of the intrinsic spin-Hall effect and its inverse effect in various two dimensional nanostructures using the non-equilibrium Green's function technique. We include elastic impurity scattering as well as inelastic acoustical phonon scattering. The parameters for the Dresselhaus and Rashba spin-orbit coupling are obtained from an atomistic tight binding calculation. We predict exceptionally large spin polarization effects in specially band engineered and geometrically designed nanostructures. In strained p-GasAs, we find a k-linear spin splitting that is enhanced by a factor of 50 compared to the unstrained case. We propose a T shaped three-terminal device that acts as a spin polarizer without external magnetic field. Optimizing the geometry with respect to the spin-precession length results in a spin accumulation at the drain contacts of up to 25%. We also study the inverse intrinsic spin-Hall effect. In a four-terminal ''H'' shaped structure it can be used to measure the direct spin-Hall effect by simply applying a gate voltage. For such a measurement, we predict a threshold value for the spin-orbit coupling strength that cannot be met by simple n-GaAs systems.
Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers
Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.
2016-07-01
We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.
International Nuclear Information System (INIS)
Krishtopenko, S. S.
2015-01-01
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system
Energy Technology Data Exchange (ETDEWEB)
Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2015-02-15
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.
Scaling behavior of the spin pumping effect in conductive ferromagnet/platinum bilayers
Energy Technology Data Exchange (ETDEWEB)
Czeschka, Franz D.; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas; Brandt, Martin S. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Imort, Inga-Mareen; Reiss, Guenter; Thomas, Andy [Fakultaet fuer Physik, Universitaet Bielefeld (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm (Germany)
2011-07-01
Spin pumping experiments allow to measure spin currents or the spin Hall angle. We have systematically studied the spin pumping DC voltage occurring in conjunction with ferromagnetic resonance in a series of conductive ferromagnet/platinum bilayers, made from elemental 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors. In all bilayers, we invariably observe the same DC voltage polarity. Moreover, we find that the voltage magnitude scales with the magnetization precession cone angle with a universal prefactor, irrespective of the magnetic properties, the charge carrier transport mechanism, and the charge carrier type in a given ferromagnet. These findings quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect, and establish spin pumping as a generic phenomenon.
Leading order finite size effects with spins for inspiralling compact binaries
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics - Albert-Einstein-Institute,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-06-10
The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.
Intrinsic and extrinsic spin Hall effects of Dirac electrons
International Nuclear Information System (INIS)
Fukazawa, Takaaki; Kohno, Hiroshi; Fujimoto, Junji
2017-01-01
We investigate the spin Hall effect (SHE) of electrons described by the Dirac equation, which is used as an effective model near the L-points in bismuth. By considering short-range nonmagnetic impurities, we calculate the extrinsic as well as intrinsic contributions on an equal footing. The vertex corrections are taken into account within the ladder type and the so-called skew-scattering type. The intrinsic SHE which we obtain is consistent with that of Fuseya et al. It is found that the extrinsic contribution dominates the intrinsic one when the system is metallic. The extrinsic SHE due to the skew scattering is proportional to Δ/n i u, where 2Δ is the band gap, n i is the impurity concentration, and u is the strength of the impurity potential. (author)
Nuclear spin bath effects in molecular nanomagnets: Direct quantum mechanical simulations
Sinitsyn, N. A.; Dobrovitski, V. V.
2004-11-01
We investigate the influence of nuclear spins on the electronic spin tunneling in magnetic molecules such as Fe8 , focusing on the role of the spin diffusion in the nuclear spin bath. We simulate the quantum spin dynamics by numerically solving the time-dependent Schrödinger equation for the compound system (the electronic spin plus the bath spins). Our results demonstrate that the effect of the spin bath cannot always be modeled as a randomly varying magnetic field acting on the electronic spin. We consider two dynamical regimes: the spin relaxation in a constant magnetic field, and the spin tunneling in the linearly varying magnetic field passing the avoided level crossing, so-called Landau-Zener-Stückelberg (LZS) transition. For the first regime, we confirmed that the hole in the magnetization distribution has the width of the hyperfine fields distribution. For the second regime, we found that the transition probability for moderately slow sweeps deviates from the standard LZS prediction, while for the fast sweeps the deviation is negligible.
Digital image transformation and rectification of spacecraft and radar images
Wu, S. S. C.
1985-01-01
The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.
Pressure effect on hysteresis in spin-crossover solid materials
Energy Technology Data Exchange (ETDEWEB)
Gudyma, Iurii, E-mail: yugudyma@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Ivashko, Victor [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC 20059 (United States); Faculty of Electrical Engineering and Computer Science & Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control, Stefan cel Mare University, Suceava 720229 (Romania)
2016-04-01
A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.
Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects
García-Pablos, D.; García, N.; Raedt, H. De
1997-01-01
We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated
Quasiparticle-mediated spin Hall effect in a superconductor.
Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y
2015-07-01
In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.
Microscopic Stern-Gerlach effect and spin-orbit pendulum
International Nuclear Information System (INIS)
Rozmej, P.; Arvieu, R.
1996-01-01
The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs
Spin effects in medium-energy electron-3He scattering
International Nuclear Information System (INIS)
van den Brand, J.F.J.; Alarcon, R.; Bauer, T.
1998-01-01
New physics can be accessed by scattering polarized electrons from a polarized 3 He internal gas target. It is discussed how the asymmetries for the reactions 3 vector He(vector e,e'), 3 vector He(vector e,e'p), 3 vector He(vector e,e'n), 3 vector He(vector e,e'd), and 3 vector He(vector e,e'pn) may provide precise information on the S' and the D-wave parts of the 3 He ground-state wave function, the neutron form factors, and the role of spin-dependent reaction mechanism effects. The experiment uses up to 900 MeV (polarized) electrons from the AmPS storage ring in Amsterdam, Netherlands, in combination with large acceptance electron and hadron detectors. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS-UMR 7095, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2014-12-01
The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.
Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode
Saffarzadeh, Alireza; Daqiq, Reza
2009-01-01
We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...
Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature
Spin Hall effect in a 2DEG in the presence of magnetic couplings
International Nuclear Information System (INIS)
Gorini, C; Schwab, P; Dzierzawa, M; Raimondi, R; Milletari, M
2009-01-01
It is now well established that the peculiar linear-in-momentum dependence of the Rashba (and of the Dresselhaus) spin-orbit coupling leads to the vanishing of the spin Hall conductivity in the bulk of a two-dimensional electron gas (2DEG). In this paper we discuss how generic magnetic couplings change this behaviour providing then a potential handle on the spin Hall effect. In particular we examine the influence of magnetic impurities and an in-plane magnetic field. We find that in both cases there is a finite spin Hall effect and we provide explicit expressions for the spin Hall conductivity. The results can be obtained by means of the quasiclassical Green function approach, that we have recently extended to spin-orbit coupled electron systems.
Effect of resistance feedback on spin torque-induced switching of nanomagnets
International Nuclear Information System (INIS)
Garzon, Samir; Webb, Richard A.; Covington, Mark; Kaka, Shehzaad; Crawford, Thomas M.
2009-01-01
In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.
Effects of electric field and magnetic induction on spin injection into organic semiconductors
International Nuclear Information System (INIS)
Wang, Y.M.; Ren, J.F.; Yuan, X.B.; Dou, Z.T.; Hu, G.C.
2011-01-01
Spin-polarized injection and transport into ferromagnetic/organic semiconductor structure are studied theoretically in the presence of the external electric field and magnetic induction. Based on the spin-drift-diffusion theory and Ohm's law, we obtain the charge current polarization, which takes into account the special carriers of organic semiconductors. From the calculation, it is found that the current spin polarization is enhanced by several orders of magnitude by tuning the magnetic induction and electric fields. To get an apparent current spin polarization, the effects of spin-depended interfacial resistances and the special carriers in the organic semiconductor, which are polarons and bipolarons, are also discussed. -- Research highlights: → Current polarization in ferromagnetic/organic semiconductor structure is obtained. → Calculations are based on spin-drift-diffusion theory and Ohm's law. → Current polarization is enhanced by tuning magnetic induction and electric fields. → Effects of interfacial resistances and the special carriers are also discussed.
Spin polarization and magnetic effects in radical reactions
International Nuclear Information System (INIS)
Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.
1984-01-01
Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)
Rectification And Revival Of Muslim World
Directory of Open Access Journals (Sweden)
M azram
2012-01-01
Full Text Available The present doldrums position and state of decadence, internal differences, external aggression (geographical and ideological, lack of self-confidence and dependence, illiteracy, political instability, economic disaster, lack of knowledge and wisdom, back benchers in science and technology, education, medicine, trade and business, banking system and defensive incapability of Muslim Ummah prompted me to write this article. Although most of the Muslim nations got their independence because of their dedicated struggle and historic events and incidents but the old masters remained active for a remote control over the Muslim Ummah. Their intellectuals and scholars, individually as well as collectively, have propagated and advised their leadership, the tactics and approaches by which Muslim Ummah can again be enslaved. Writings of S.P. Huntington and F. Fukuyama are clear examples. They are actively gearing the international institutions so cleverly that Muslim Ummah does not even realize their ill motives and objectives. They brought their leadership in a confronting position with Muslim Ummah and hence threatening the world peace. This situation prompted us to look at our principal sources of inspiration, which are, the Qur’an, Sunnah of the Prophet (SAW, and examples of the “enlightened Caliphs” and see if we could work out a seminal guidelines for our rectification and revival. We have gathered together some of these impressions; these are all tentative, nothing final about them, but these are here nonetheless. ABSTRAK: Kehadiran situasi kebelungguan dan keruntuhan, perbezaan dalaman, pencerobohan luar (geografi dan ideologi, kurang keyakinan diri dan pergantungan, buta huruf, ketidakstabilan politik, bencana ekonomi, kekurangan ilmu dan hikmah, ketinggalan dalam sains dan teknologi, pendidikan, perubatan, perdagangan dan perniagaan, sistem perbankan dan ketidakupayaan pertahanan umat Islam mendorong saya untuk menulis
Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots
Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping
2018-02-01
Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.
International Nuclear Information System (INIS)
Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi
1995-01-01
Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)
A first-principles linear response description of the spin Nernst effect
Wimmer, S.; Ködderitzsch, D.; Chadova, K.; Ebert, H.
2013-01-01
A first-principles description of the spin Nernst effect, denoting the occurrence of a transverse spin current due to a temperature gradient, is presented. The approach, based on an extension to the Kubo-Streda equation for spin transport, supplies in particular the formal basis for investigations of diluted as well as concentrated alloys. Results for corresponding applications to the alloy system Au-Cu give the intrinsic and extrinsic contributions to the relevant transport coefficients. Usi...
Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system
International Nuclear Information System (INIS)
Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de
2009-01-01
We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail
Magnetoresistance effect of heat generation in a single-molecular spin-valve
International Nuclear Information System (INIS)
Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing
2016-01-01
Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.
All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature
Dankert, André; Dash, Saroj
Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.
A Study of Environmental Effects on Galaxy Spin Using MaNGA Data
Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun
2018-03-01
We investigate environmental effects on galaxy spin using the recent public data of MaNGA integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large- (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.
A study of environmental effects on galaxy spin using MaNGA data
Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun
2018-06-01
We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.
Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E
2017-07-17
Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the
A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures
Energy Technology Data Exchange (ETDEWEB)
Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2014-10-15
Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.
Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices
Chen, Tong; Yan, Shenlang; Xu, Liang; Liu, Desheng; Li, Quan; Wang, Lingling; Long, Mengqiu
2017-07-01
Using the non-equilibrium Green's function formalism in combination with density functional theory, we performed ab initio calculations of spin-dependent electron transport in molecular devices consisting of a polyacetylene (CnHn+1) chain vertically attached to a carbon chain sandwiched between two semi-infinite zigzag-edged graphene nanoribbon electrodes. Spin-charge transport in the device could be modulated to different magnetic configurations by an external magnetic field. The results showed that single spin conduction could be obtained. Specifically, the proposed CnHn+1 devices exhibited several interesting effects, including (dual) spin filtering, spin negative differential resistance, odd-even oscillation, and magnetoresistance (MR). Marked spin polarization with a filtering efficiency of up to 100% over a large bias range was found, and the highest MR ratio for the CnHn+1 junctions reached 4.6 × 104. In addition, the physical mechanisms for these phenomena were also revealed.
Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems
Milletarı, Mirco; Offidani, Manuel; Ferreira, Aires; Raimondi, Roberto
2017-12-01
We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.
SPIN EFFECTS IN THE FRAGMENTATION OF TRANSVERSELY POLARIZED AND UNPOLARIZED QUARKS
International Nuclear Information System (INIS)
ANSELMINO, M.; BOER, D.; DALESIO, U.; MURGIA, F.
2001-01-01
We study the fragmentation of a transversely polarized quark into a non-collinear (kperpendicular ≠ 0) spinless hadron and the fragmentation of an unpolarized quark into a non collinear transversely polarized spin 1/2 baryon. These nonperturbative properties are described by spin and kperpendicular dependent fragmentation functions and are revealed in the observation of single spin asymmetries. Recent data on the production of pions in polarized semi-inclusive DIS and long known data on A polarization in unpolarized p-N processes are considered: these new fragmentation functions can describe the experimental results and the single spin effects in the quark fragmentation turn out to be surprisingly large
Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures
International Nuclear Information System (INIS)
Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin
2007-01-01
Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer
Morphology effects on spin-dependent transport and recombination in polyfluorene thin films
Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.
2016-12-01
We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled
Some remarks about large p/sub perpendicular/ spin effects
International Nuclear Information System (INIS)
Field, R.D.
1977-01-01
A discussion of the ingredients necessary to make predictions concerning single and double spin measurements in large p/sub perpendicular to/ inclusive processes is presented. Remarks are made as to what might be expected and what might be learned from such measurements. Various models for the production of large p/sub perpendicular to/ mesons have quite different spin structure and hence can be expected to give differing predictions. However, it is not possible at this time to make quantitative calculations, and it is possible (not probable) that the interesting spin observables will be negligibly small
Energy Technology Data Exchange (ETDEWEB)
Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.
2016-06-25
In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...
Spinning Earth and its Coriolis effect on the circuital light beams ...
Indian Academy of Sciences (India)
2016-10-06
Oct 6, 2016 ... spinning motion between ether and Earth at and near its surface and has reached the well-known formula of. Sagnac effect for the circuital opposing light beams on the surface of the spinning Earth as given above. But unfortunately, the same formula arises in the case of electromagnetic fields (originating ...
Scientific Team Effectiveness and the External CEO: A Study of Biotechnology University Spin-Offs
van der Steen, Marianne; Englis, Paula Danskin; Englis, Basil G.
2013-01-01
This paper presents an empirical exploration of the effectiveness of scientific teams and the role of an external CEO in the spin-off formation process. The paper contributes to the literature by focusing on the role of the experienced or "external" entrepreneur (their commercial resources and capabilities) in the early phase of spin-off…
Fragility of the fractional quantum spin Hall effect in quantum gases
International Nuclear Information System (INIS)
Fialko, O; Brand, J; Zülicke, U
2014-01-01
We consider the effect of contact interaction in a prototypical quantum spin Hall system of pseudo-spin-1/2 particles. A strong effective magnetic field with opposite directions for the two spin states restricts two-dimensional particle motion to the lowest Landau level. While interaction between same-spin particles leads to incompressible correlated states at fractional filling factors as known from the fractional quantum Hall effect, these states are destabilized by interactions between opposite spin particles. Exact results for two particles with opposite spin reveal a quasi-continuous spectrum of extended states with a large density of states at low energy. This has implications for the prospects of realizing the fractional quantum spin Hall effect in electronic or ultra-cold atom systems. Numerical diagonalization is used to extend the two-particle results to many bosonic particles and trapped systems. The interplay between an external trapping potential and spin-dependent interactions is shown to open up new possibilities for engineering exotic correlated many-particle states with ultra-cold atoms. (paper)
Spin Hall effect of a light beam in left-handed materials
International Nuclear Information System (INIS)
Luo Hailu; Wen Shuangchun; Shu Weixing; Tang Zhixiang; Zou Yanhong; Fan Dianyuan
2009-01-01
We establish a general propagation model to describe the spin Hall effect of light beam in left-handed materials (LHMs). A spin-dependent shift of the beam centroid perpendicular to the refractive index gradient for the light beam through an air-LHM interface is demonstrated. For a certain circularly polarized component, whether the transverse shift is positive or negative depends on the magnitude of the refractive index gradient. Very surprisingly, the spin Hall effect in the LHM is unreversed, although the sign of refractive index gradient is reversed. The physics underlying this counterintuitive effect is that the spin angular momentum of photons is unreversed. Further, we reveal that the angular shift in the LHM is reversed due to the negative diffraction. These findings provide alternative evidence for that the linear momentum of photons is reversed, while the spin angular momentum is unreversed in the LHM.
The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system
International Nuclear Information System (INIS)
Deviren, Bayram; Bati, Mehmet; Keskin, Mustafa
2009-01-01
An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb (δ=3) and square (δ=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the (Δ/|J|,k B T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.
The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram; Bati, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr
2009-06-15
An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb ({delta}=3) and square ({delta}=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction ({delta}) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the ({delta}/|J|,k{sub B}T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.
Intrinsic synchronization of an array of spin-torque oscillators driven by the spin-Hall effect
Energy Technology Data Exchange (ETDEWEB)
Siracusano, G., E-mail: giuliosiracusano@gmail.com; Puliafito, V.; Giordano, A.; Azzerboni, B.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Tomasello, R. [Department of Computer Science, Modelling, Electronics and System Science, University of Calabria, Via P. Bucci, I-87036 Rende (CS) (Italy); La Corte, A. [Department of Informatic Engineering and Telecommunications, University of Catania, Viale Andrea Doria 6, 95125 Catania (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy)
2015-05-07
This paper micromagnetically studies the magnetization dynamics driven by the spin-Hall effect in a Platinum/Permalloy bi-layer. For a certain field and current range, the excitation of a uniform mode, characterized by a power with a spatial distribution in the whole ferromagnetic cross section, is observed. We suggest to use the ferromagnet of the bi-layer as basis for the realization of an array of spin-torque oscillators (STOs): the Permalloy ferromagnet will act as shared free layer, whereas the spacers and the polarizers are built on top of it. Following this strategy, the frequency of the uniform mode will be the same for the whole device, creating an intrinsic synchronization. The synchronization of an array of parallely connected STOs will allow to increase the output power, as necessary for technological applications.
Intrinsic synchronization of an array of spin-torque oscillators driven by the spin-Hall effect
International Nuclear Information System (INIS)
Siracusano, G.; Puliafito, V.; Giordano, A.; Azzerboni, B.; Finocchio, G.; Tomasello, R.; La Corte, A.; Carpentieri, M.
2015-01-01
This paper micromagnetically studies the magnetization dynamics driven by the spin-Hall effect in a Platinum/Permalloy bi-layer. For a certain field and current range, the excitation of a uniform mode, characterized by a power with a spatial distribution in the whole ferromagnetic cross section, is observed. We suggest to use the ferromagnet of the bi-layer as basis for the realization of an array of spin-torque oscillators (STOs): the Permalloy ferromagnet will act as shared free layer, whereas the spacers and the polarizers are built on top of it. Following this strategy, the frequency of the uniform mode will be the same for the whole device, creating an intrinsic synchronization. The synchronization of an array of parallely connected STOs will allow to increase the output power, as necessary for technological applications
The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study
Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.
2017-10-01
A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.
Large spin Seebeck effects in zigzag-edge silicene nanoribbons
International Nuclear Information System (INIS)
Yang, Xi-Feng; Liu, Yu-Shen; Feng, Jin-Fu; Wang, Xue-Feng
2014-01-01
Using the first-principles methods, we investigate the thermospin properties of a two-probe model based on zigzag-edge silicene nanoribbons (ZSiNRs). Compared with the odd-width ZSiNRs, the spin Seebeck coefficient of the even-width ZSiNRs is obviously enhanced at room temperature. This fact is attributed to a nearly perfect symmetry of the linear conductance gap with the different spin index with respect to the Fermi level induced by the different parity of the wave functions. More interestingly, the corresponding charge Seebeck coefficient is near zero. Therefore, when a thermal bias is presented in the even-width ZSiNRs, a nearly pure spin current is achieved. Meanwhile, the spin polarization of the current approaches infinite
Spin effects in strong-field laser-electron interactions
International Nuclear Information System (INIS)
Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C
2013-01-01
The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.
Spinning gravitating objects in the effective field theory in the post-Newtonian scheme
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-09-30
We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.
International Nuclear Information System (INIS)
Mi Yilin; Zhang Ming; Yan Hui
2008-01-01
Spin injection across ferromagnet/organic semiconductor system with finite width of the layers was studied theoretically considering spin-dependent conductivity in the organic-semiconductor. It was found that the spin injection efficiency is directly dependent on the difference between the conductivity of the up-spin and down-spin polarons in the spin-injected organic system. Furthermore, the finite width of the structure, interfacial electrochemical-potential and conductivity mismatch have great influence on the spin injection process across ferromagnet/organic semiconductor interface
Spin-lattice effects in selected antiferromagnetic materials
Czech Academy of Sciences Publication Activity Database
Zherlitsyn, S.; Yasin, S.; Wosnitza, J.; Zvyagin, A.A.; Andreev, Alexander V.; Tsurkan, V.
2014-01-01
Roč. 40, č. 2 (2014), s. 123-133 ISSN 1063-777X R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Keywords : low-dimensional spin systems * frustrated chromium spinels * spin-strain interaction * uranium -based compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 2014
International Nuclear Information System (INIS)
Li Hong; Yang Wei; Yang Xinjian; Qin Minghui; Xu Yihong
2007-01-01
Taking into account the thickness of the ferromagnetic insulator (FI), the spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions are studied based on an extended Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the sub-energy gap conductance peaks and the spin polarization in the ferromagnetic insulator causes an imbalance of the peak heights. Different from the ferromagnet the spin-filtering effect of the FI cannot cause the reversion of the normalized conductance in NM/FI/NM/SC junctions
Quantum spin/valley Hall effect and topological insulator phase transitions in silicene
Tahir, M.
2013-04-26
We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.
Quantum spin/valley Hall effect and topological insulator phase transitions in silicene
Tahir, M.; Manchon, Aurelien; Sabeeh, K.; Schwingenschlö gl, Udo
2013-01-01
We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.
Klokishner, Sophia I; Roman, Marianna A; Reu, Oleg S
2011-11-21
A microscopic approach to the problem of cooperative spin crossover in the [MnL2]NO3 crystal, which contains Mn(III) ions as structural units, is elaborated on, and the main mechanisms governing this effect are revealed. The proposed model also takes into account the splitting of the low-spin 3T1 (t(2)(4)) and high-spin 5E (t(2)(3)e) terms by the low-symmetry crystal field. The low-spin → high-spin transition has been considered as a cooperative phenomenon driven by interaction of the electronic shells of the Mn(III) ions with the all-around full-symmetric deformation that is extended over the crystal lattice via the acoustic phonon field. The model well explains the observed thermal dependencies of the magnetic susceptibility and the effective magnetic moment.
The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors
International Nuclear Information System (INIS)
Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang
2012-01-01
We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Assessment of bilayer silicene to probe as quantum spin and valley Hall effect
Rehman, Majeed Ur; Qiao, Zhenhua
2018-02-01
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.
THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)
2017-01-20
A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.
How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?
Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian
2017-11-30
The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.
International Nuclear Information System (INIS)
Kotsuki, Kenji; Tanaka, Hiroshige; Obata, Seiji; Stauss, Sven; Terashima, Kazuo; Saiki, Koichiro
2014-01-01
We have investigated the film morphology and the field effect mobility of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) thin films which were formed by spin coating on the SiO 2 substrate with solution-processed graphene electrodes. The domain size and the density of aggregates in the C8-BTBT film showed the same dependence on the spinning speed. These competitive two factors (domain size and density of aggregates) give an optimum spinning speed, at which the field effect mobility of C8-BTBT transistor showed a maximum (2.6 cm 2 /V s). This result indicates the importance of spinning speed in the fabrication of solution processed organic thin film transistors by spin coating.
Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons.
Vishnevsky, D V; Flayac, H; Nalitov, A V; Solnyshkov, D D; Gippius, N A; Malpuech, G
2013-06-14
We provide a theoretical description of the polarization pattern and phase singularities experimentally evidenced recently in a condensate of indirect excitons [H. High et al., Nature 483, 584 (2012)]. We show that the averaging of the electron and hole orbital motion leads to a comparable spin-orbit interaction for both types of carriers. We demonstrate that the interplay between a radial coherent flux of bright indirect excitons and the Dresselhaus spin-orbit interaction results in the formation of spin domains and of topological defects similar to Skyrmions. We reproduce qualitatively all the features of the experimental data and obtain a polarization pattern as in the optical spin-Hall effect despite the different symmetry of the spin-orbit interactions.
Spin effects from quark and lepton substructure at future machines
International Nuclear Information System (INIS)
Rueckl, R.
1985-01-01
If quarks and leptons are composite on a distance scale Λ -1 the physics at energies larger than Λ will provide plenty of evidence for the new level of substructure. However, already at energies below Λ compositeness should become manifest in deviations from the standard model due to form factors, residual interactions and, possibly, new ''light'' states. I discuss the virtue of polarized lepton and hadron beams in searching for new interactions and exemplify the production of excited fermions and bosons focussing on spin properties. The detailed of the contact interactions and the spin of the excited fermions and bosons can give important clues on the basic preon structure and dynamics. Phenomenological studies show that polarization asymmetries and angular distributions of decay products probe most sensitively the chiral properties of contact interactions and the spin of new states. Thus, polarized beams and good angular coverage are of great advantage
Effects of finite size on spin glass dynamics
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
Spin-dependent electron many-body effects in GaAs
Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.
2005-12-01
Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .
Completely independent electrical control of spin and valley in a silicene field effect transistor
International Nuclear Information System (INIS)
Zhai, Xuechao; Jin, Guojun
2016-01-01
One-atom-thick silicene is a silicon-based hexagonal-lattice material with buckled structure, where an electron fuses multiple degrees of freedom including spin, sublattice pseudospin and valley. We here demonstrate that a valley-selective spin filter (VSSF) that supports single-valley and single-spin transport can be realized in a silicene field effect transistor constructed of an npn junction, where an antiferromagnetic exchange field and a perpendicular electric field are applied in the p -doped region. The nontrivial VSSF property benefits from an electrically controllable state of spin-polarized single-valley Dirac cone. By reversing the electric field direction, the device can operate as a spin-reversed but valley-unreversed filter due to the dependence of band gap on spin and valley. Further, we find that all the possible spin-valley configurations of VSSF can be achieved just by tuning the electric field. Our findings pave the way to the realization of completely independent electrical control of spin and valley in silicene circuits. (paper)
Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain
Sattari, Farhad; Mirershadi, Soghra
2018-01-01
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.
Proximity effects and Josephson currents in ferromagnet. Spin-triplet superconductors junctions
International Nuclear Information System (INIS)
Terrade, Damien
2015-01-01
Spin-triplet superconductivity, first attached to the description of 3 He, is now generally considered to also occur in heavy-fermions compounds and in perovskite ruthenium oxide Sr 2 RuO 4 . The latter material is especially interesting since many experiments show strong evidences for a unitary chiral spin-triplet state. Moreover, the recent fabrication of thin heterostructures made of ferromagnetic SrRuO 3 on the top of Sr 2 RuO 4 strongly encourages new theoretical studies on the interplay between spin-triplet superconductor and ferromagnet in similar fashion to spin-singlet superconductors. Using an extended tight-binding Hamiltonian to model the superconductor, we discuss in this thesis the specific proximity effects of such interface by solving self-consistently the Bogoliubov-De Gennes equations on two- and three-dimensional lattices in the ballistic limit. We obtain the spatial profile of the superconducting order parameters at the interface as well as the spin-polarisation and the current across the Josephson junctions. In contrast to heterostructures made of spin-singlet superconductor, we show that the physical properties at the interface are not only controlled by the strength of the magnetization inside the ferromagnet but also by its orientation due to the existence of a finite pair spin projection of the spin-triplet Cooper pairs. We analyse in the first part the spin-polarisation and the Gibbs free energy at the three-dimensional ferromagnet-chiral spin-triplet superconductor interface. Then, the second part of the thesis is dedicated to the study of the Josephson junctions made of a chiral spin-triplet superconductor and a ferromagnetic barrier. More precisely, we analyse the existence of 0-π state transitions in two- and three-dimensional junctions with respect to the strength and the orientation of the magnetization. Finally, we study the proximity effects at the interface of helical spin-triplet superconductors. They differ from the chiral
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas
International Nuclear Information System (INIS)
Alducin, M.; Diez Muino, R.; Juaristi, J.I.
2005-01-01
The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state
Unique spin-polarized transmission effects in a QD ring structure
Hedin, Eric; Joe, Yong
2010-10-01
Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.
International Nuclear Information System (INIS)
Granovsky, A.B.; Inoue, Mitsuteru
2004-01-01
We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling
Energy Technology Data Exchange (ETDEWEB)
Granovsky, A.B. E-mail: granov@magn.ru; Inoue, Mitsuteru
2004-05-01
We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling.
Spin-dependent relativistic effect on heavy quarkonium properties in medium
International Nuclear Information System (INIS)
Dong Yubing
1997-01-01
Spin-dependent relativistic effect on the binding and dissociation of the heavy quarkonium in a thermal environment is investigated. The result shows that the interactions could influence the heavy quarkonium properties in medium
Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys
Energy Technology Data Exchange (ETDEWEB)
Heers, Swantje
2011-09-21
bulk in the first part of the thesis. In the third part, we investigate spin-orbit induced effects on thin (001) and (111) copper and gold films with focus on spin-relaxation mechanisms. We consider both symmetric and asymmetric systems, where the asymmetry of the latter ones is created by covering one side of the film with one layer of Zn. For the symmetric films, spin-mixing parameters and momentum- and spin-relaxation times due to scattering at self-adatoms are calculated. Whereas the largest spin-mixing in (111) films has been obtained for the surface states, on the Fermi surfaces of the (001) films spin hot spots occur, which are caused by anticrossings of bands and lead to locally very high spin mixing. In the asymmetric films, the situation is qualitatively different, as the spin-orbit coupling results in a splitting of all bands and the formation of local effective magnetic fields, the so-called spin-orbit fields. The precession of the electron spin around these axes together with momentum scattering, resulting in a change of the precession axis after each scattering event, is known to lead to spin dephasing. Spin-orbit fields for (001) and (111) copper and gold films are presented. Large fields have been obtained for both surface orientations especially for bulk-like states at the outer boundaries of the Brillouin zone. Furthermore, for the (111) surface states, we find a Rashba-splitting which agrees with experiment and previous calculations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2015-12-14
We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.
International Nuclear Information System (INIS)
Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki
2015-01-01
We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale
Significance of high energy spin effects in constituent pictures
International Nuclear Information System (INIS)
Chen, C.K.
1977-01-01
The spin information about high energy hadronic reactions is important for further understanding of the nature and the behavior of hadronic constituents. The usefulness of the information is discussed in the cases of dilepton production from hadronic collisions, large P/sub T/ inclusive and elastic scatterings, and small angle elastic scattering and quantum number exchanged reactions
Preliminary Investigations of Eddy Current Effects on a Spinning Disk
International Nuclear Information System (INIS)
Piggott, W T; Walston, S; Mayhall, D
2006-01-01
The design of the positron source target for the International Linear Collider (ILC) envisions a Ti6Al4V wheel rotating in a large magnetic field (5-10 Tesla) being impacted by a photon beam to produce positrons. One of the many challenges for this system is determining how large a motor will be needed to spin the shaft. The wheel spinning in the magnetic field induces an eddy current in the wheel, which retards the spinning motion of the wheel. Earlier calculations by Mayhall [1] have shown that those eddy forces could be quite large, and resulted in the preliminary design being moved from a solid disk to a rim and spoke design, as shown in Figure 1. A series of experiments with a spinning metal disk were run at the Stanford Linear Accelerator Center (SLAC) to provide experimental validation of the Maxwell 3D simulations. This report will give a brief outline of the experimental setup and results. In addition, earlier work by Smythe [2] will be used to compare with the experimental results
Effective field renormalization group approach for Ising lattice spin systems
Fittipaldi, Ivon P.
1994-03-01
A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.
Effect of ferromagnetic exchange field on band gap and spin ...
Indian Academy of Sciences (India)
Partha Goswami
2018-02-19
Feb 19, 2018 ... of an electric-field tunable band gap, but like graphene it is a better .... ate energy dispersion of the pristine, pure graphene. ...... The rotation is known as the Faraday .... pave the way to the efficient control of spin generation.
International Nuclear Information System (INIS)
Vasconcelos Dos Santos, R.J.; Coutinho, S.
1995-01-01
The effect of a local field acting on decorating classical D-vector bond spins of an antiferromagnetic Ising model on the square lattice is studied for both the annealed isotropic and the axial decorated cases. In both models the effect on the phase diagrams of the transversal and the longitudinal components of the local field acting on the decorating spins are fully analyzed and discussed
Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect
Energy Technology Data Exchange (ETDEWEB)
Tomasello, R., E-mail: tomasello@deis.unical.it [Department of Computer Science, Modelling, Electronics, and System Science, University of Calabria, Rende, CS (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy)
2014-05-07
This paper predicts the effect of the Dzyaloshinskii-Moriya interaction (DMI) and spin Hall effect in the spin-torque diode response of a Magnetic Tunnel Junction built over a Tantalum strip. Our results indicate that, for a microwave current large enough, the DMI can change qualitatively the resonant response by splitting the ferromagnetic resonance peak. We also find out that the two modes have a non-uniform spatial distribution.
Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect
International Nuclear Information System (INIS)
Tomasello, R.; Carpentieri, M.; Finocchio, G.
2014-01-01
This paper predicts the effect of the Dzyaloshinskii-Moriya interaction (DMI) and spin Hall effect in the spin-torque diode response of a Magnetic Tunnel Junction built over a Tantalum strip. Our results indicate that, for a microwave current large enough, the DMI can change qualitatively the resonant response by splitting the ferromagnetic resonance peak. We also find out that the two modes have a non-uniform spatial distribution
Lateral spin-orbit coupling and the Kondo effect in quantum dots
Vernek, Edson; Ngo, Anh; Ulloa, Sergio
2010-03-01
We present studies of the Coulomb blockade and Kondo regimes of transport of a quantum dot connected to current leads through spin-polarizing quantum point contacts (QPCs) [1]. This configuration, arising from the effect of lateral spin-orbit fields, results in spin-polarized currents even in the absence of external magnetic fields and greatly affects the correlations in the dot. Using an equation-of-motion technique and numerical renormalization group calculations we obtain the conductance and spin polarization for this system under different parameter regimes. Our results show that both the Coulomb blockade and Kondo regimes exhibit non-zero spin-polarized conductance. We analyze the role that the spin-dependent tunneling amplitudes of the QPC play in determining the charge and net magnetic moment in the dot. We find that the Kondo regime exhibits a strongly dependent Kondo temperature on the QPC polarizability. These effects, controllable by lateral gate voltages, may provide a new approach for exploring Kondo correlations, as well as possible spin devices. Supported by NSF DMR-MWN and PIRE. [1] P. Debray et al., Nature Nanotech. 4, 759 (2009).
Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo
2010-07-27
We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT.
Spin Seebeck effect in nanometer-thick YIG micro-fabricated strips
Directory of Open Access Journals (Sweden)
Martin Collet
2017-05-01
Full Text Available We have investigated the spin Seebeck effect (SSE generated by current induced-heating in ultra-thin yttrium iron garnet film (20 nm covered by an 8 nm thick Pt layer. By passing current in the Pt layer, an out-of-plane temperature gradient is established that, in turn, generates an out-of-equilibrium magnons population. The resulting pure spin current is detected using the inverse spin Hall effect (ISHE measured in the Pt electrode. A lock-in detection scheme is used to separate the SSE signal from other magneto-galvanic effect. Indeed, the SSE signal is obtained as the second harmonic voltage response, while spin Hall magnetoresistance (SMR is measured as the first harmonic response to the ac excitation current. Interestingly, the amplitude of the SSE in such thin YIG film is comparable to what has been reported for much thicker films.
Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures
Energy Technology Data Exchange (ETDEWEB)
Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D., E-mail: gbeach@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2016-06-06
We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.
The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions
International Nuclear Information System (INIS)
Zhang Guoqiang; Cao Xiguang; Fu Yao; Ma Yugang; Cai Xiangzhou; Wang Hongwei; Fang Deqing; Tian Wendong; Chen Jingen; Guo Wei; Liu Guihua
2010-01-01
We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)
Spin transfer in an open ferromagnetic layer: from negative damping to effective temperature
Energy Technology Data Exchange (ETDEWEB)
Wegrowe, J-E; Ciornei, M C; Drouhin, H-J [Laboratoire des Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642 and CEA/DSM/DRECAM, 91128 Palaiseau Cedex (France)
2007-04-23
Spin transfer is a typical spintronics effect that allows a ferromagnetic layer to be switched by spin injection. All experimental results concerning spin transfer (quasi-static hysteresis loops or AC resonance measurements) are described on the basis of the Landau-Lifshitz-Gilbert equation of the magnetization, in which additional current dependent terms are added, like current dependent effective fields and current dependent damping factors, that can be positive or negative. The origin of these terms can be investigated further by performing stochastic experiments, like one-shot relaxation experiments under spin injection in the activation regime of the magnetization. In this regime, the Neel-Brown activation law is observed which leads to the introduction of a current dependent effective temperature. In order to define these counterintuitive parameters (effective temperature and negative damping), a detailed thermokinetic analysis of the different sub-systems involved is performed. This report presents a thermokinetic description of the different forms of energy exchanged between the electric and the ferromagnetic sub-systems at a normal/ferromagnetic junction. The derivation of the Fokker-Planck equation in the framework of the thermokinetic theory allows the transport parameters to be defined from the entropy variation and refined with the Onsager reciprocity relations and symmetry properties of the magnetic system. The contribution of the spin polarized current is introduced as an external source term in the conservation laws of the ferromagnetic layer. Due to the relaxation time separation, this contribution can be reduced to an effective damping. The flux of energy transferred between the ferromagnet and the spin polarized current can be positive or negative, depending on the spin accumulation configuration. The effective temperature is deduced in the activation (stationary) regime, provided that the relaxation time that couples the magnetization to the
DEFF Research Database (Denmark)
Kuemmeth, Ferdinand; Rashba, E I
2009-01-01
Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....
IMPROVING THE MODEL OF EMISSION FROM SPINNING DUST: EFFECTS OF GRAIN WOBBLING AND TRANSIENT SPIN-UP
International Nuclear Information System (INIS)
Hoang, Thiem; Lazarian, A.; Draine, B. T.
2010-01-01
Observations continue to support the interpretation of the anomalous microwave foreground as electric dipole radiation from spinning dust grains as proposed by Draine and Lazarian. In this paper, we present a refinement of the original model by improving the treatment of a number of physical effects. First, we consider a disk-like grain rotating with angular velocity at an arbitrary angle with respect to the grain symmetry axis (i.e., grain wobbling) and derive the rotational damping and excitation coefficients arising from infrared emission, plasma-grain interactions, and electric dipole emission. The angular velocity distribution and the electric dipole emission spectrum for disk-like grains is calculated using the Langevin equation, for cases both with and without fast internal relaxation. Our results show that for fast internal relaxation, the peak emissivity of spinning dust, compared to earlier studies, increases by a factor of ∼2 for the warm neutral medium (WNM), the warm ionized medium (WIM), the cold neutral medium (CNM), and the photodissociation region, and by a factor ∼4 for reflection nebulae. The frequency at the emission peak also increases by factors ∼1.4 to ∼2 for these media. Without internal relaxation, the increase of emissivity is comparable, but the emission spectrum is more extended to higher frequency. The increased emission results from the non-sphericity of grain shape and from the anisotropy in damping and excitation along directions parallel and perpendicular to the grain symmetry axis. Second, we provide a detailed numerical study including transient spin-up of grains by single-ion collisions. The range of grain size in which single-ion collisions are important is identified. The impulses broaden the emission spectrum and increase the peak emissivity for the CNM, WNM, and WIM, although the increases are not as large as those due to the grain wobbling. In addition, we present an improved treatment of rotational excitation and
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples
Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.
2018-04-01
A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.
Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.
Yu, T; Wu, M W
2015-07-01
The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.
Spin disorder effect in anomalous Hall effect in MnGa
Mendonça, A. P. A.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.
2017-12-01
We report on resistivity and Hall effect in MnGa thin films grown by molecular beam epitaxy on GaAs substrates. Highly (1 1 1)-textured MnGa film with L10 structure exhibits hard magnetic properties with coercivities as high as 20 kOe and spin disorder mechanisms contributing to the Hall conductivity at room temperature. Density functional theory calculations were performed to determine the intrinsic Berry curvature in the momentum space with chiral spin structure that results in an anomalous Hall conductivity of 127 (Ωcm)-1 comparable to that measured at low temperature. In addition to residual and side-jump contributions, which are enhanced by thermal activation, both anomalous Hall conductivity and Hall angle increase between 100 K and room temperature. The present results reinforce the potential of Mn-Ga system for developing Hall effect-based spintronic devices.
Garbacz, Piotr
2018-05-01
Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.
Pramanik, S.; bandyopadhyay, S.; Cahay, M.
2003-01-01
We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...
RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials
Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).
Santhanam, K S V; Chen, Xu; Gupta, S
2014-04-01
Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy.
Topological spin transport of photons: the optical Magnus effect and Berry phase
International Nuclear Information System (INIS)
Bliokh, K.Yu.; Bliokh, Yu.P.
2004-01-01
The Letter develops a modified geometrical optics (GO) of smoothly inhomogeneous isotropic medium, which takes into account two topological phenomena: Berry phase and the optical Magnus effect. Taking into account the correspondence between a quasi-classical motion of a quantum particle with a spin and GO of an electromagnetic wave in smoothly inhomogeneous media, we have introduced the standard gauge potential associated with the degeneracy in the wave momentum space. This potential corresponds to the magnetic-monopole-like field (Berry curvature), which causes the topological spin (polarization) transport of photons. The deviations of waves of right-hand and left-hand polarization occur in the opposite directions and orthogonally to the principal direction of motion. This produces a spin current directed across the principal motion. The situation is similar to the anomalous Hall effect for electrons. In addition, a simple scheme of the experiment allowing one to observe the topological spin splitting of photons has been suggested
Spin effects in nonlinear Compton scattering in a plane-wave laser pulse
International Nuclear Information System (INIS)
Boca, Madalina; Dinu, Victor; Florescu, Viorica
2012-01-01
We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.
Medium effects on spin observables of proton knockout reactions
International Nuclear Information System (INIS)
Krein, G.; Maris, T.A.J.; Rodrigues, B.B.; Veit, E.A.
1994-07-01
Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs
Effects of rolling friction on a spinning coin or disk
Cross, Rod
2018-05-01
Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.
Chiral effective-field theory of the nucleon spin structure
Pascalutsa, Vladimir
2017-01-01
I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].
Medium effects on spin observables of proton knockout reactions
Energy Technology Data Exchange (ETDEWEB)
Krein, G [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Maris, T A.J.; Rodrigues, B B; Veit, E A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica
1994-07-01
Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs.
Size and field effect on mesoscopic spin glass
Energy Technology Data Exchange (ETDEWEB)
Komatsu, K. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)]. E-mail: komatsu@az.appi.keio.ac.jp; Maki, H. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Taniyama, T. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sato, T. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)
2007-03-15
Spin glass particles were prepared as the mesoscopic system in order to examine the space scale of spin glass domain (droplet). The peak temperature T {sub peak} in the temperature-dependent magnetization is systematically reduced with decreasing average particle size. This is due to the imitation of droplet growth to the particle diameter. The magnetic field H also decreases T {sub peak}, which is caused by the reduction of the barrier height by Zeeman energy. However, there appears different tendency in the relation between H and T {sub peak} below 100 Oe. This indicates the existence of crossover between the two regimes in which the free energy and Zeeman energy govern the droplet excitation.
The Effects of Innovativeness on Academic Spin-offs Performance
DEFF Research Database (Denmark)
Giones, Ferran; Billström, Anders; Rasmussen, Einar
Academic Spin-Offs (ASOs) are born with the mission to bring to market science and technology innovations. Nevertheless, their relative weak financial performance has been a focus of discussion. Prior research has explored factors that explain part of the performance diversity, including aspects...... source of performance heterogeneity. Academic spin-offs transition from a research to a market context is complex. The technology novelty in ASOs generates a staged challenge for the academic entrepreneur. First, identifying a market and activating the first sale; second, generating a sustainable revenue...... stream that brings growth to the ASO. However, we have still a limited knowledge on the relationship between technology innovativeness and firm performance in the ASOs context. This study tests the relationship between innovativeness dimensions, across different industries, and the observed firm (ASOs...
Thermographic measurements of the spin Peltier effect in metal/yttrium-iron-garnet junction systems
Daimon, Shunsuke; Uchida, Ken-ichi; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji
2017-07-01
The spin Peltier effect (SPE), heat-current generation due to spin-current injection, in various metal (Pt, W, and Au single layers and Pt/Cu bilayer)/ferrimagnetic insulator [yttrium-iron-garnet (YIG)] junction systems has been investigated by means of a lock-in thermography (LIT) method. The SPE is excited by a spin current across the metal/YIG interface, which is generated by applying a charge current to the metallic layer via the spin Hall effect. The LIT method enables the thermal imaging of the SPE free from the Joule-heating contribution. Importantly, we observed spin-current-induced temperature modulation not only in the Pt/YIG and W/YIG systems, but also in the Au/YIG and Pt/Cu/YIG systems, excluding the possible contamination by anomalous Ettingshausen effects due to proximity-induced ferromagnetism near the metal/YIG interface. As demonstrated in our previous study, the SPE signals are confined only in the vicinity of the metal/YIG interface; we buttress this conclusion by reducing a spatial blur due to thermal diffusion in an infrared-emission layer on the sample surface used for the LIT measurements. We also found that the YIG-thickness dependence of the SPE is similar to that of the spin Seebeck effect measured in the same Pt/YIG sample, implying the reciprocal relation between them.
Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material
Wongjom, Poramed; Pinitsoontorn, Supree
2018-03-01
Since the discovery of the spin Seebeck effect (SSE) in 2008, it has become one of the most active topics in the spin caloritronics research field. It opened up a new way to create the spin current by a combination of magnetic fields and heat. The SSE was observed in many kinds of materials including metallic, semiconductor, or insulating magnets, as well as non-magnetic materials. On the other hand, carbon-based materials have become one of the most exciting research areas recently due to its low cost, abundance and some exceptional functionalities. In this work, we have investigated the possibility of the SSE in bulk carbon materials for the first time. Thin platinum film (Pt), coated on the smoothened surface of the bulk carbon, was used as the spin detector via the inverse spin Hall effect (ISHE). The experiment for observing longitudinal SSE in the bulk carbon was set up by applying a magnetic field up to 30 kOe to the sample with the direction perpendicular to the applied temperature gradient. The induced voltage from the SSE was extracted. However, for conductive materials, e.g. carbon, the voltage signal under this set up could be a combination of the SSE and the anomalous Nernst effect (ANE). Therefore, two measurement configurations were carried out, i.e. the in-plane magnetization (IM), and the perpendicular-to-plane magnetization (PM). For the IM configuration, the SSE + ANE signals were detected where as the only ANE signal existed in the PM configuration. The results showed that there were the differences between the voltage signals from the IM and PM configurations implying the possibility of the SSE in the bulk carbon material. Moreover, it was found that the difference in the IM and PM signals was a function of the magnetic field strength, temperature difference, and measurement temperature. Although the magnitude of the possible SSE voltage in this experiment was rather low (less than 0.5 μV at 50 K), this research showed that potential of using
Effect of Disorder on the Conductance of Spin Field Effect Transistors (SPINFET)
Cahay, M.; Bandyopadhyay, S.
2003-01-01
We show that the conductance of Spin Field Effect Transistors (SPINFET) [Datta and Das, Appl. Phys. Lett., Vol. 56, 665 (1990)] is affected by a single (non-magnetic) impurity in the transistor's channel. The extreme sensitivity of the amplitude and phase of the transistor's conductance oscillations to the location of a single impurity in the channel is reminiscent of the phenomenon of universal conductance fluctuations in mesoscopic samples and is extremely problematic as far as device imple...
Spin and energy effects in heavy quarkonium spectroscopy
International Nuclear Information System (INIS)
Gupta, Pramila; Mehrotra, I.
2016-01-01
In the present work mc =1.5GeV and mb=5.0 GeV are taken. Once the parameters of the potential are fixed it is solved numerically with reduced radial Schrodinger equation in MATHEMATICA 8.0 by software program obtained by LUCHA et al for each quantum state separately. Spin dependent mass spectra have been computed by adding Breit-Fenni correction term to the interaction (H BF )
Y Yousefi; H Fakhari; K Muminov; M R Benam
2018-01-01
Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...
Revisit the spin-FET: Multiple reflection, inelastic scattering, and lateral size effects
Xu, Luting; Li, Xin-Qi; Sun, Qing-feng
2014-01-01
We revisit the spin-injected field effect transistor (spin-FET) by simulating a lattice model based on recursive lattice Green's function approach. In the one-dimensional case and coherent regime, the simulated results reveal noticeable differences from the celebrated Datta-Das model, which motivate thus an improved treatment and lead to analytic and generalized result. The simulation also allows us to address inelastic scattering (using B\\"uttiker's fictitious reservoir approach) and lateral...
Directory of Open Access Journals (Sweden)
Can Cao
2015-01-01
Full Text Available We performed the first-principles calculations to investigate the spin-dependent electronic transport properties of zigzag-edged germanium nanoribbons (ZGeNRs. We choose of ZGeNRs with odd and even widths of 5 and 6, and the symmetry-dependent transport properties have been found, although the σ mirror plane is absent in ZGeNRs. Furthermore, even-N and odd-N ZGeNRs have very different current-voltage relationships. We find that the even 6-ZGeNR shows a dual spin-filter effect in antiparallel (AP magnetism configuration, but the odd 5-ZGeNR behaves as conventional conductors with linear current-voltage dependence. It is found that when the two electrodes are in parallel configuration, the 6-ZGeNR system is in a low resistance state, while it can switch to a much higher resistance state when the electrodes are in AP configuration, and the magnetoresistance of 270% can be observed.
Interplay of Rashba effect and spin Hall effect in perpendicular Pt/Co/MgO magnetic multilayers
Institute of Scientific and Technical Information of China (English)
赵云驰; 杨光; 董博闻; 王守国; 王超; 孙阳; 张静言; 于广华
2016-01-01
The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current, respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.
Metal–semiconductor nanojunctions and their rectification ...
Indian Academy of Sciences (India)
Using the standard equation the difference between the work functions of the metal and the semiconductor was calculated. This showed a variation with the temperature of measurement. This is explained as arising due to the effect of pressure generated as a result of thermal expansion of the metallic phases concerned ...
Valley–spin Seebeck effect in heavy group-IV monolayers
International Nuclear Information System (INIS)
Zhai, Xuechao; Wang, Shengdong; Zhang, Yan
2017-01-01
Akin to electron spin, the valley has become another highly valued degree of freedom in modern electronics, specifically after tremendous studies on monolayers of group-IV materials, i.e. graphene, silicene, germanene and stanene. Except for graphene, the other heavy group-IV monolayers have observable intrinsic spin–orbit interactions due to their buckled structures. Distinct from the usual electric or optical control of valley and spin, we here employ a temperature difference to drive electron motion in ferromagnetic heavy group-IV monolayers via designing a caloritronic device locally modulated by an interlayer electric (E z ) field. A unique valley–spin Seebeck (VSS) effect is discovered, with the current contributed only by one (the other) valley and one (the other) spin moving along one (the opposite) direction. This effect is suggested to be detected below the critical temperature about 18 K for silicene, 200 K for germanene and 400 K for stanene, arising from the characteristic valley–spin nondegenerate band structures tuned by the E z field, but cannot be driven in graphene without spin–orbit interaction. Above the critical temperature, the VSS effect is broken by overlarge temperature broadening. Besides the temperature, it is also found that the E z field can drive a transition between the VSS effect and the normal spin Seebeck effect. Further calculations indicate that the VSS effect is robust against many realistic perturbations. Our research represents a conceptually but substantially major step towards the study of the Seebeck effect. These findings provide a platform for encoding information simultaneously by the valley and spin quantum numbers of electrons in future thermal-logic circuits and energy-saving devices. (paper)
Thermoelectric performance of spin Seebeck effect in Fe3O4/Pt-based thin film heterostructures
Directory of Open Access Journals (Sweden)
R. Ramos
2016-10-01
Full Text Available We report a systematic study on the thermoelectric performance of spin Seebeck devices based on Fe3O4/Pt junction systems. We explore two types of device geometries: a spin Hall thermopile and spin Seebeck multilayer structures. The spin Hall thermopile increases the sensitivity of the spin Seebeck effect, while the increase in the sample internal resistance has a detrimental effect on the output power. We found that the spin Seebeck multilayers can overcome this limitation since the multilayers exhibit the enhancement of the thermoelectric voltage and the reduction of the internal resistance simultaneously, therefore resulting in significant power enhancement. This result demonstrates that the multilayer structures are useful for improving the thermoelectric performance of the spin Seebeck effect.
Spin-orbit effects in carbon-nanotube double quantum dots
DEFF Research Database (Denmark)
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...
International Nuclear Information System (INIS)
Nitta, Junsaku; Moulis, Sylvain; Kohda, Makoto
2011-01-01
Spin transport affected by competition between Zeeman effect and spin-orbit interaction (SOI) is investigated in order to check a proposed method to deduce the Rashba SOI α and Dresselhaus SOI β ratio. The experimentally obtained ratio α/β of the present sample is about 4 from angle dependence of magnetoconductance under in-plane magnetic field. The proposed method to detect the ratio by transport measurement is promising although further improvement of sample fabrication and measurement is required.
Synchrotron oscillation effects on an rf-solenoid spin resonance
Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.
2012-12-01
New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.
Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve
Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus
2018-03-01
Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.
Srisongmuang, B.; Pasanai, K.
2018-04-01
We theoretically studied the effect of interfacial scattering on the transport of charge and spin across the junction of a two-dimensional electron gas with Dresselhaus spin-orbit coupling and ferromagnetic material junction, via the conductance (G) and the spin-polarization of the conductance spectra (P) using the scattering method. At the interface, not only were the effects of spin-conserving (Z0) and spin-flip scattering (Zf) considered, but also the interfacial Rashba spin-orbit coupling scattering (ZRSOC) , which was caused by the asymmetry of the interface, was taken into account, and all of them were modeled by the delta potential. It was found that G was suppressed with increasing Z0 , as expected. Interestingly, a particular value of Zf can cause G and P to reach a maximum value. In particular, ZRSOC plays a crucial role to reduce G and P in the metallic limit, but its influence on the tunneling limit was quite weak. On the other hand, the effect of ZRSOC was diminished in the tunneling limit of the magnetic junction.
Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.
2018-06-01
The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.
Interannual variability in the atmospheric CO2 rectification over a boreal forest region
Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.
2005-08-01
Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.
Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators
Université de Genève
2011-01-01
Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
International Nuclear Information System (INIS)
Jin Hui; Cheng Jianping; Chen Zhiqiang; Zhang Li
2001-01-01
The author introduces a geometrical rectification algorithm of the image in mobile large container inspection system. The comparison and discussion of the image before and after the rectification have been given. Amplification algorithms of the images are discussed. With all the algorithms, the quality of the images has been improved
Halbach Effect at the Nanoscale from Chiral Spin Textures.
Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J
2018-04-11
Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.
Interfacial symmetry of Co–Alq_3–Co hybrid structures for effective spin filtering
International Nuclear Information System (INIS)
Lam, Tu-Ngoc; Lai, Yu-Ling; Chen, Chih-Han; Chen, Po-Hung; Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T.; Sheu, Jeng-Tzong; Hsu, Yao-Jane
2015-01-01
Graphical abstract: - Highlights: • The spin interface at Alq_3/Co and Co/Alq_3 contacts was examined. • An interfacial symmetry was determined at Co–Alq_3–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq_3 hybridized interface. • The spin-filter role at the top contact interface of Alq_3/Co is proved. • Effective spin-filtering at Co–Alq_3–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq_3 adsorption on Co, Co/Alq_3) and the top contact (Co atop Alq_3, Alq_3/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq_3 and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq_3/Co and Co/Alq_3 heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq_3–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq_3 at both contacts, proving Alq_3 a unique and promising organic material for spin filtering in OSV.
Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.
2018-05-01
In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.
Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering
Zhang, Steven S.-L.; Heinonen, Olle
2018-04-01
We study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does the TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004), 10.1103/PhysRevLett.93.096806]. We derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Spin-orbit coupling effects in indium antimonide quantum well structures
Dedigama, Aruna Ruwan
Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.
International Nuclear Information System (INIS)
Betthausen, Christian
2012-01-01
Within the framework of this PhD we report on the very first observation of the fractional Quantum Hall Effect (FQHE) in both, a non-magnetic CdTe and a semimagnetic Cd 1-x Mn x Te quantum well device. To our knowledge, this constitutes the first demonstration of this effect in the II-VI material family. Furthermore, our results reveal that the formation of fractional Quantum Hall states is not inhibited by the presence of magnetic impurities in a quantum structure. The second part of this thesis addresses an alternative route to realize efficient spin transistor action. Typically, spin transistor designs relying on spin-orbit interaction principally suffer from low signal levels due to limitations in spin injection efficiency and fast spin decay. Here we present an approach to realize spin transistor action in systems where spin information is protected by propagating it adiabatically. This is achieved by inducing tunable diabatic Landau-Zener transitions that lead to a backscattering of spins and hence allow controlling the transmission of spin-polarized charge carriers through the device, i.e. switching between 'on' and 'off' states. We demonstrate the validity of our approach in a Cd 1-x Mn x Te diluted magnetic semiconductor quantum well structure where efficient spin transport is observed over device distances of 50 μm. In contrast to other spin transistor designs we find that our concept is exceptionally tolerant against disorder.
Burton, J D; Tsymbal, E Y
2011-04-15
A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.
Lattice architecture effect on the cooperativity of spin transition coordination polymers
Energy Technology Data Exchange (ETDEWEB)
Chiruta, Daniel [Faculty of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Ştefan cel Mare University, Suceava 720229 (Romania); GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); LISV, Université de Versailles Saint-Quentin-en-Yvelines, 78140 Velizy (France); Jureschi, Catalin-Maricel; Rotaru, Aurelian, E-mail: jorge.linares@uvsq.fr, E-mail: rotaru@eed.usv.ro [Faculty of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Ştefan cel Mare University, Suceava 720229 (Romania); Linares, Jorge, E-mail: jorge.linares@uvsq.fr, E-mail: rotaru@eed.usv.ro [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); Garcia, Yann [Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve (Belgium)
2014-02-07
We have investigated in the framework of the Ising-like model, by means of Monte Carlo Metropolis method with open boundary condition, the architecture effect on the cooperativity of spin transition coordination polymers. We have analyzed the influence of several physical parameters (size, pressure, and edge effects) on different lattice architectures which were in good agreement with reported experimental data. We show that the cooperativity of a spin crossover system, characterized by the same number of molecules and the same short- and long-range interaction parameters, is progressively enhanced when going from a 1D chain to a 1D ladder type lattice and to a 2D square lattice.
Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism
Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu
2018-02-01
Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.
Effect of thermal fluctuations in spin-torque driven magnetization dynamics
International Nuclear Information System (INIS)
Bonin, R.; Bertotti, G.; Serpico, C.; Mayergoyz, I.D.; D'Aquino, M.
2007-01-01
Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection
Effect of thermal fluctuations in spin-torque driven magnetization dynamics
Energy Technology Data Exchange (ETDEWEB)
Bonin, R. [INRiM, I-10135 Turin (Italy)]. E-mail: bonin@inrim.it; Bertotti, G. [INRiM, I-10135 Turin (Italy); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' I-80125 Naples (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); D' Aquino, M. [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , I-80133 Naples (Italy)
2007-09-15
Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection.
Effect of high-frequency excitation on natural frequencies of spinning discs
DEFF Research Database (Denmark)
Hansen, Morten Hartvig
2000-01-01
The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...
STUDY ABOUT MAGNUS EFFECT ON SPINNING CYLINDERS AND ITS USE ON MICRO AIR VEHICLES
Stafy, Victor ,; Neto, Aristeu S
2017-01-01
Abstract. It is described in this article a Magnus Effect research done on Magnus Effect on Spinning Cylinders and how the Drag and Lift varies as the Cylinder increase or decrease its tangential velocity, as other properties, vorticity and structures of the flow as well.The final objective of this study is to use a Spinning Cylinder, with success, instead of a wing as the component responsible for lift force on a Micro Air Vehicle, with this purpose in mind, some simulations were done in ...
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
International Nuclear Information System (INIS)
Anon.
1983-01-01
The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets
EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES
Energy Technology Data Exchange (ETDEWEB)
O’ Riordan, Michael; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)
2016-11-01
Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.
What did we learn from the Aharonov-Bohm effect? Is spin 1/2 different?
International Nuclear Information System (INIS)
Peshkin, M.
1994-01-01
I review what has been learned about fundamental issues in quantum mechanics from the Aharonov-Bohm effect. Following that, I consider the Aharonov-Casher effect and the Scalar Aharonov-Bohm effect, in both of which a spin-1/2 particle interacts with a local electromagnetic field through its magnetic moment, and conclude that those effects can be described as observable effects of local torques
Rectification of harmonically oscillating magnetic fields in quarter circular Josephson junctions
International Nuclear Information System (INIS)
Shaju, P.D.; Kuriakose, V.C.
2003-01-01
A novel method for rectifying harmonically varying magnetic fields is demonstrated using fluxons in quarter circular Josephson junctions (JJs). A JJ with a quarter circular geometry terminated with a load resistor at one end is found to be capable of rectifying alternating fields when biased with a constant dc current. An external magnetic field applied parallel to the dielectric barrier of the junction interacts with the edges of the junction and make asymmetric boundary conditions. These asymmetric boundary conditions facilitate fluxon penetration under a dc bias from one end of the junction in alternate half cycles of the applied field. Thus effective rectification of the field can be achieved using quarter circular JJs. This unique phenomenon is specific to this geometry and can be exploited for making superconducting magnetic field rectifiers. This proposed device is expected to have important applications in millimeter and sub-millimeter radio wave astronomy
Transverse spin effect: A means to probe photinos
Energy Technology Data Exchange (ETDEWEB)
Mekhfi, M. (International Centre for Theoretical Physics, Trieste (Italy))
1991-12-02
We consider the e{sup +}e{sup -} system in storage rings with its natural polarization being transverse to the beam direction. We ristrict the analysis to neutrino-like events {nu} (neutrino), {nu}tilde (neutrino), {gamma}tilde (photino) and propose to measure the associated transverse spin asymmetry. We prove that for s >> 4m{sup 2} sub({nu}tilde), photino production is the unique channel which leads to non-vanishing transverse asymmetry. The {nu} ({nu}tilde) in contrast does not contribute through W{sup -} (W{sup t}ilde) exchange due to chirality while for the Z-boson exchange the {nu} and its supersymmetric partner {nu}tilde, contribute equal amounts but with opposite signs in a way similar to that encountered in SUSY-GUTS (hierarchy problem), and hence give a net vanishing result. Using recent limits on the sneutrino mass, we set up the minimum value of {radical}s above which one may expept the photino to dominate over the neutrino. Also we give a qualitative estimate of the asymmetry and find that it is within the actual precision of such experiments. In this respect transverse asymmetry measurements when restricted to the proposed class of events are a possible probe to new physics beyond the standard model. (orig.).
International Nuclear Information System (INIS)
Kavitha, L.; Daniel, M.
2002-07-01
The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)
Giant magnetostriction effect near onset of spin reorientation in MnBi
Choi, Y.; Ryan, P. J.; McGuire, M. A.; Sales, B. C.; Kim, J.-W.
2018-05-01
In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity of TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. This work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.
Effect of deformation and orientation on spin orbit density dependent nuclear potential
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Effect of the anisotropy of the electron g-factor in spin polarization
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)
2010-02-15
Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.
Effects of doping on spin correlations in the periodic Anderson model
International Nuclear Information System (INIS)
Bonca, J.; Gubernatis, J.E.
1998-01-01
We studied the effects of hole doping on spin correlations in the two-dimensional periodic Anderson model, mainly at the full and three-quarters-full lower bands cases. In the full lower band case, strong antiferromagnetic correlations develop when the on-site repulsive interaction strength U becomes comparable to the quasiparticle bandwidth. In the three-quarters full case, a kind of spin correlation develops that is consistent with the resonance between a (π,0) and a (0,π) spin-density wave. In this state the spins on different sublattices appear uncorrelated. Hole doping away from the completely full case rapidly destroys the long-range antiferromagnetic correlations, in a manner reminiscent of the destruction of antiferromagnetism in the Hubbard model. In contrast to the Hubbard model, the doping does not shift the peak in the magnetic structure factor from the (π,π) position. At dopings intermediate to the full and three-quarters full cases, only weak spin correlations exist. copyright 1998 The American Physical Society
Localized persistent spin currents in defect-free quasiperiodic rings with Aharonov–Casher effect
International Nuclear Information System (INIS)
Qiu, R.Z.; Chen, C.H.; Cheng, Y.H.; Hsueh, W.J.
2015-01-01
We propose strongly localized persistent spin current in one-dimensional defect-free quasiperiodic Thue–Morse rings with Aharonov–Casher effect. The results show that the characteristics of these localized persistent currents depend not only on the radius filling factor, but also on the strength of the spin–orbit interaction. The maximum persistent spin currents in systems always appear in the ring near the middle position of the system array whether or not the Thue–Morse rings array is symmetrical. The magnitude of the persistent currents is proportional to the sharpness of the resonance peak, which is dependent on the bandwidth of the allowed band in the band structure. The maximum persistent spin currents also increase exponentially as the generation order of the system increases. - Highlights: • Strongly localized persistent spin current in quasiperiodic AC rings is proposed. • Localized persistent spin currents are much larger than those produced by traditional mesoscopic rings. • Characteristics of the localized persistent currents depend on the radius filling factor and SOI strength. • The maximum persistent current increases exponentially with the system order. • The magnitude of the persistent currents is related to the sharpness of the resonance
Spin Singlet Quantum Hall Effect and nonabelian Landau-Ginzburg theory
International Nuclear Information System (INIS)
Balatsky, A.
1991-01-01
In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a wave function for charged semions in a magnetic field and a wave function for the Chiral Spin Liquid of neutral spin-1/2 semions. We introduce field-theoretic model in which the electron operators are factorized in terms of charged spinless semions (holons) and neutral spin-1/2 semions (spinons). Broken time reversal symmetry and short ranged spin correlations lead to Su(2) κ=1 Chern-Simons term in Landau-Ginzburg action for SQHE phase. We construct appropriate coherent states for SQHE phase and show the existence of SU(2) valued gauge potential. This potential appears as a result of ''spin rigidity'' of the ground state against any displacements of nodes of wave function from positions of the particles and reflects the nontrivial monodromy in the presence of these displacenmants. We argue that topological structure of Su(2) κ=1 Chern-Simons theory unambiguously dictates semion statistics of spinons. 19 refs
International Nuclear Information System (INIS)
Li, M; Zhao, Z B; Fan, L B
2015-01-01
The effect of the Rashba and Dresselhaus spin–orbit coupling (SOC) on the transmission of electrons through the GaN/AlGaN/GaN heterostructure is studied. It is found that the Dresselhaus SOC causes the evident dependence of the transmission probability on the spin polarization and the in-plane wave vector of electrons, and also induces evident spin splitting of the resonant peaks in the (E z -k) plane. Because the magnitude of the Rashba SOC is relatively small, its effect on the transmission of electrons is much less. As k increases, the peaks of transmission probability for spin-up electrons (T + ) shift to a higher energy region and increase in magnitude, while the peaks of transmission probability for spin-down electrons (T − ) shift to a lower energy region and decrease in magnitude. The polarization efficiency (P) is found to peak at the resonant energies and increases with the in-plane wave vector. Moreover, the built-in electric field caused by the spontaneous and piezoelectric polarization can increase the amplitude of P. Results obtained here are helpful for the efficient spin injection into the III-nitride heterostructures by nonmagnetic means from the device point of view. (paper)
Isotopic and spin-nuclear effects in solid hydrogens (Review Article)
Freiman, Yuri A.; Crespo, Yanier
2017-12-01
The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Spin-flip effects on the supercurrent through mesoscopic superconducting junctions
International Nuclear Information System (INIS)
Pan Hui; Lin Tsunghan
2005-01-01
We investigate the spin-flip effects on the Andreev bound states and the supercurrent in a superconductor/quantum-dot/superconductor system, theoretically. The spin-flip scattering in the quantum dot can reverse the supercurrent flowing through the system, which results in a π-junction transition. By controlling the energy level of the quantum dot, the π-junction transition can be caused to occur again. The two mechanisms of the π-junction transitions are interpreted within the picture of Andreev bound states
Memory effect and super-spin-glass ordering in an aggregated nanoparticle sample
International Nuclear Information System (INIS)
Cador, O.; Grasset, F.; Haneda, H.; Etourneau, J.
2004-01-01
A system consisting of aggregated nonstoichiometric zinc ferrite nanoparticles has been studied using AC and DC magnetization measurements. A superparamagnetic-super-spin-glass phase transition at T g has been identified. The relaxation time diverges at T g and the nonlinear susceptibility shows an abrupt increase. The critical behavior vanishes when the nanoparticles are not in close contact. The observation of the memory effect identical to that which has been already discovered in canonical spin-glass supports the existence of a true thermodynamic transition in agglomerated magnetic nanoparticles
Spin-driven ferroelectricity and magneto-electric effects in frustrated magnetic systems
International Nuclear Information System (INIS)
Arima, Taka-hisa
2011-01-01
The interplay between magnetism and electricity in matter has become a central issue of condensed-matter physics. This review focuses on the ferroelectricity induced by magnetic order mostly in frustrated magnets, which is nowadays referred to as magneto-electric (ME) multiferroic, or often only as multiferroic. Some distinct types of microscopic origins relevant to the spin-driven ferroelectricity are discussed in detail. Then one sees that the frustration-based spin-driven ferroelectrics can exhibit nonlinear and giant ME responses of phase-transition type and of domain-control type, in contrast to the conventional magnetoelectrics hosting linear ME effects. (author)
Ion current rectification, limiting and overlimiting conductances in nanopores.
Directory of Open Access Journals (Sweden)
Liesbeth van Oeffelen
Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.
Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.
Felderhof, B U
2012-04-28
The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.
Effects of spin-polarized current on pulse field-induced precessional magnetization reversal
Directory of Open Access Journals (Sweden)
Guang-fu Zhang
2012-12-01
Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.
Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices
Directory of Open Access Journals (Sweden)
Leilei Xu
2017-01-01
Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.
Spin-wave resonance in magnetic films in conditions of skin effect
International Nuclear Information System (INIS)
Nosov, R.N.; Sementsov, D.I.
2002-01-01
The effect of the finite depth of the high-frequency field penetration into the ferromagnetic metal on the spin-wave resonance spectrum perpendicular to the magnetized layer with different types of the spins surface fixation and by availability of attenuation in the spin system is studied. The exact numerical solution of the magnetization motion equation with an account of the skin-layer finite thickness is obtained. The change in the form of the resonance curve on the frequencies close to the frequency of the ferromagnetic resonance is identified in the case of essentially nonuniform high-frequency field distribution by the layer thickness along with widening and decreasing in the amplitude of all resonance peaks [ru
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.
Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng
2011-03-28
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve
Directory of Open Access Journals (Sweden)
Ma Jing-Min
2011-01-01
Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:
Unusual Thermal Hall Effect in a Kitaev Spin Liquid Candidate α -RuCl3
Kasahara, Y.; Sugii, K.; Ohnishi, T.; Shimozawa, M.; Yamashita, M.; Kurita, N.; Tanaka, H.; Nasu, J.; Motome, Y.; Shibauchi, T.; Matsuda, Y.
2018-05-01
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity κx y measurements in α -RuCl3 , a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction JK/kB˜80 K , positive κx y develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at TN=7 K , the sign, magnitude, and T dependence of κx y/T at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.
Enhanced room-temperature spin Seebeck effect in a YIG/C60/Pt layered heterostructure
Das, R.; Kalappattil, V.; Geng, R.; Luong, H.; Pham, M.; Nguyen, T.; Liu, Tao; Wu, Mingzhong; Phan, M. H.; Srikanth, H.
2018-05-01
We report on large enhancement of the longitudinal spin Seebeck effect (LSSE) in the Y3Fe5O12 (YIG)/Pt system at room temperature due to the addition of a thin layer of organic semiconductor (C60) in between the YIG and the Pt. LSSE measurements show that the LSSE voltage increases significantly, from the initial value of 150 nV for the YIG/Pt structure to 240 nV for the YIG/C60(5nm)/Pt structure. Radio-frequency transverse susceptibility experiments reveal a significant decrease in the surface perpendicular magnetic anisotropy (PMA) of the YIG film when C60 is deposited on it. These results suggest that the LSSE enhancement may be attributed to increased spin mixing conductance, the decreased PMA, and the large spin diffusion length of C60.
Temperature dependence of the spin Seebeck effect in [Fe3O4/Pt]n multilayers
Directory of Open Access Journals (Sweden)
R. Ramos
2017-05-01
Full Text Available We report temperature dependent measurements of the spin Seebeck effect (SSE in multilayers formed by repeated growth of a Fe3O4/Pt bilayer junction. The magnitude of the observed enhancement of the SSE, relative to the SSE in the single bilayer, shows a monotonic increase with decreasing the temperature. This result can be understood by an increase of the characteristic length for spin current transport in the system, in qualitative agreement with the recently observed increase in the magnon diffusion length in Fe3O4 at lower temperatures. Our result suggests that the thermoelectric performance of the SSE in multilayer structures can be further improved by careful choice of materials with suitable spin transport properties.
The single-ion anisotropy effects in the mixed-spin ternary-alloy
Albayrak, Erhan
2018-04-01
The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.
The Effect of Spin Squeezing on the Entanglement Entropy of Kicked Tops
Directory of Open Access Journals (Sweden)
Ernest Teng Siang Ong
2016-04-01
Full Text Available In this paper, we investigate the effects of spin squeezing on two-coupled quantum kicked tops, which have been previously shown to exhibit a quantum signature of chaos in terms of entanglement dynamics. Our results show that initial spin squeezing can lead to an enhancement in both the entanglement rate and the asymptotic entanglement for kicked tops when the initial state resides in the regular islands within a mixed classical phase space. On the other hand, we found a reduction in these two quantities if we were to choose the initial state deep inside the chaotic sea. More importantly, we have uncovered that an application of periodic spin squeezing can yield the maximum attainable entanglement entropy, albeit this is achieved at a reduced entanglement rate.
Absence of hyperfine effects in 13C-graphene spin-valve devices
Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van
2014-01-01
The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of
Long-wavelength spin-effective actions for the infinite U Hubbard model
Braghin, Fábio L.
2013-04-01
The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.
Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.
1998-01-01
Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.
Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves
Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.
2010-01-01
We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third
The Effect of Executive Migration and Spin-offs on Incumbent Firms
DEFF Research Database (Denmark)
Gjerløv-Juel, Pernille; Dahl, Michael S.
If spin-offs are founded on intellectual capital accumulated at the parent firms, they could be potentially harmful to those firms. However, similar effects on parent firms’ performance could be expected for executive migration to rivals. Exploiting a comprehensive Danish linked employer-employee...
Effect of anisotropy on the entanglement of quantum states in a spin chain
Kartsev, PF; Kashurnikov, VA
2004-01-01
The effect of the anisotropy of the interaction of a spin chain in the XXZ Heisenberg model on the concurrence of the states of neighboring sites is studied. When anisotropy increases, the maximum concurrence in a magnetic field increases above the value reached in the absence of the field. The
Shan, Juan; Cornelissen, Ludo Johannes; Liu, Jing; Ben Youssef, J.; Liang, Lei; van Wees, Bart
2017-01-01
The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
DEFF Research Database (Denmark)
Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang
2017-01-01
The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...
Spin-orbit and spin-lattice coupling
International Nuclear Information System (INIS)
Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu
2014-01-01
We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Conduction and rectification in NbO{sub x}- and NiO-based metal-insulator-metal diodes
Energy Technology Data Exchange (ETDEWEB)
Osgood, Richard M., E-mail: richard.m.osgood.civ@mail.mil; Giardini, Stephen; Carlson, Joel [US Army Natick Soldier Research Development and Engineering Center (NSRDEC), 15 General Greene Ave., Natick, Massachusetts 01760 (United States); Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Chin, Matthew; Nichols, Barbara; Dubey, Madan [RF and Electronics Division, US Army Research Laboratory, Adelphi, Maryland 20783 (United States); Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy [Division of Engineering, Brown University, Box D, Providence, Rhode Island 02912 (United States); Parilla, Philip; Berry, Joseph; Ginley, David [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)
2016-09-15
Conduction and rectification in nanoantenna-coupled NbO{sub x}- and NiO-based metal-insulator-metal (MIM) diodes (“nanorectennas”) are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current–voltage (I–V) curves, over 10 orders of magnitude in current density, from [NbO{sub x}(native)-Nb{sub 2}O{sub 5}]- and NiO-based samples with oxide thicknesses in the range of 5–36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I–V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I–V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I–V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I–V curves with our model, the barrier heights in Nb-(NbO{sub x}(native)-Nb{sub 2}O{sub 5})-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbO{sub x} (native)-Nb{sub 2}O{sub 5} dielectric properties improve, and the effective Pt-Nb{sub 2}O{sub 5} barrier height increases as the oxide thickness increases. An observation of direct current of ∼4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports
Effect of the magnetic dipole interaction on a spin-1 system
Hu, Fangqi; Jia, Wei; Zhao, Qing
2018-05-01
We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.
Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction
Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.
2018-05-01
This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.
Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M
2014-05-14
Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system.
The role of geometry in nanoscale rectennas for rectification and energy conversion
Miskovsky, N. M.; Cutler, P. H.; Mayer, A.; Willis, B. G.; Zimmerman, D. T.; Weisel, G. J.; Chen, James M.; Sullivan, T. E.; Lerner, P. B.
2013-09-01
We have previously presented a method for optical rectification that has been demonstrated both theoretically and experimentally and can be used for the development of a practical rectification and energy conversion device for the electromagnetic spectrum including the visible portion. This technique for optical frequency rectification is based, not on conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a purely geometric property of the antenna tip or other sharp edges that may be incorporated on patch antennas. This "tip" or edge in conjunction with a collector anode providing connection to the external circuit constitutes a tunnel junction. Because such devices act as both the absorber of the incident radiation and the rectifier, they are referred to as "rectennas." Using current nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum (see Section 2).
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
Experimental observation of the spin-Hall effect in a spin–orbit coupled two-dimensional hole gas
Czech Academy of Sciences Publication Activity Database
Kaestner, B.; Wunderlich, J.; Jungwirth, Tomáš; Sinova, J.; Nomura, K.; MacDonald, A. H.
2006-01-01
Roč. 34, - (2006), s. 47-52 ISSN 1386-9477 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin-orbit interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.084, year: 2006
Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei
2017-05-01
The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.
Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.
Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha
2012-05-14
Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).
International Nuclear Information System (INIS)
Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.
2012-01-01
The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.
Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing
Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min
2018-03-01
In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.
Effect of spin reorientation on magnetocaloric and transport properties of NdAl{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Souza, M.V. de, E-mail: marcos_vinicios@hotmail.com [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, J.A. da [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, L.S. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Instituto Federal de Tocantins, IFTO – Campus Colinas do Tocantins, AV. Bernardo Sayao S/N, Chácara Raio de Sol, Setor Santa Maria, CEP 77760-000 Colinas do Tocantins, TO (Brazil)
2017-01-01
We report the magneto-thermal and resistive properties of rare-earth dialuminide NdAl{sub 2}, including spin reorientation transition. To this purpose, we used a theoretical model that considers the interactions of exchange and Zeeman, besides the anisotropy due to the electrical crystal field. The theoretical results obtained were compared to experimental data of the NdAl{sub 2} in single crystal and bulk forms. Explicitly, we have calculated the anisotropic variation of magnetic entropy with the magnetic field oriented along the three principal crystallographic directions: [100], [110], and [111] of NdAl{sub 2} single crystal, where a signature of the spin reorientation is observed in the [110] and [111] directions. Moreover, of magnetoresistivity we consider the applied magnetic field along the crystallographic directions [100] and [110]. In turn, for the polycrystalline form, the good agreement between theory and experiment confirms the presence of spin reorientation, which was predicted theoretically in magnetization curves. - Highlights: • Modeling of the thermodynamics quantities in NdAl{sub 2} single crystal and policrystal. • Modeling of the transport properties in NdAl{sub 2} single crystal. • Effect of reorientation of spin on caloric and transport properties.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
International Nuclear Information System (INIS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
Polarization reversal of proton spins in solid-state targets by superradiance effects
International Nuclear Information System (INIS)
Reichertz, L.A.
1991-02-01
Scattering experiments with polarized targets are prepared at the Bonn accelerator ELSA. The new Bonn frozen spin target (BOFROST) developed for real photon experiments at the PHOENICS detector has been tested in the laboratory. Proton polarization values of -99% and +94% in ammonia, -96% and +90% in butanol have been achieved at a magnetic field of 3.5 Tesla. At a temperature of 70 mK and a magnetic field of 0.35 Tesla a very fast spontaneous polarization reversal has been observed. This effect occured at negative polarization only and has been identified as a self-induced superradiance effect in the proton spin system. This work describes the polarization and relaxation measurements at BOFROST and detailed experiments concerning the superradiance effect. (orig.) [de
Effect of some radiosensitising drugs on human erythrocyte membrane - - spin label study
Energy Technology Data Exchange (ETDEWEB)
Mishra, K P [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.
1982-02-01
Electron spin resonance and spin label techniques have been employed to study the effects of local anaesthetic drugs, procaine and tetracaine, on human erythrocyte membrane. Both the drugs altered the protein and lipid arrangements in the membrane and these changes were reversible. Procaine had greater effect on the labels attached to proteins while tetracaine fluidized interior of lipid bilayer to a greater extent. The differential effects of these drugs on the protein and lipid labels have been interpreted in terms of their relative penetrability in the membrane. Present results have explained that radiation induced enhanced killing of cells in the presence of these drugs might be due to the alterations in membrane, particularly proteins both structural and enzymatic. In addition, these results indicate a possible relationship between drug-induced structural changes in membrane and their anaesthetic potency.
Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron
Directory of Open Access Journals (Sweden)
C. P. Chui
2014-03-01
Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.
Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal
International Nuclear Information System (INIS)
Yin, L. H.; Yang, J.; Dai, J. M.; Song, W. H.; Zhu, X. B.; Zou, Y. M.; Sun, Y. P.
2016-01-01
We have investigated the detailed magnetic, magnetoelectric (ME), magnetodielectric (MD) and thermal expansion properties in Co 4 Nb 2 O 9 crystal. A magnetic-field-induced spin flop was observed below antiferromagnetic (AFM) transition temperature T N . Dielectric constant at applied magnetic field nearly diverges around the AFM transition, giving rise to a colossal MD effect as high as ∼138% around T N . Theoretical analysis of the ME and MD data revealed a major contribution of critical spin fluctuation to the colossal MD effect in Co 4 Nb 2 O 9 . These results suggest that linear ME materials with large ME coupling might be potentially used to realize large MD effect for future application.
International Nuclear Information System (INIS)
Sergeenkov, S.; Moraes, F.; Furtado, C.; Araujo-Moreira, F.M.
2010-01-01
By mapping a Hubbard-like model describing a two-component polymer in the presence of strong enough electron-phonon interactions (κ) onto the system of two coupled nonlinear Schroedinger equations with U(2) symmetry group, some nontrivial correlations between topological solitons mediated charge Q and spin S degrees of freedom are obtained. Namely, in addition to a charge fractionalization and reentrant like behavior of both Q(κ) and S(κ), the model also predicts a decrease of soliton velocity with κ as well as spin-charge conversion effects which manifest themselves through an explicit S(Q,Ω) dependence (with Ω being a mixing angle between spin-up and spin-down electron amplitudes). A possibility to observe the predicted effects in low-dimensional systems with charge and spin soliton carriers is discussed.
A study on the improvement of spin-off effectiveness of national nuclear R and D activities
International Nuclear Information System (INIS)
Yang, Maeng Ho; Lee, T. J.
1997-02-01
This study consists of two parts. One is to identify factors affecting technological effectiveness of the spin-off process that is defined as the technology transfer process from government sponsored research institutes (GRI's) to the civilian sector. The other is to analyze the environment of the spin-off process and to suggest guidelines for addition, this study also examines spin-off effectiveness with technology transfer types. To validate the conceptual model and hypotheses of the spin-off process, data are collected from 12 cases through in-depth interviews and questionnaires. Spearman correlation analysis is employed in order to test the hypotheses on the spin-off process. (author). 50 refs., 17 tabs., 12 figs
Nuclear effects in electron spin resonance of crystalline solids
International Nuclear Information System (INIS)
Ursu, I.; Nistor, S.V.
1976-01-01
A survey on the theory of paramagnetic ions in crystals is given. Some recent applications in which nuclear properties are studied by means of the ESR method are presented against this background. Finer effects in the hyperfine structure of ESR spectra, temperature dependance of the hyperfine coupling of S-state ions, observation of nuclear isotopic shift in ESR represent the applications discussed
Direct observation of the spin-dependent Peltier effect
Flipse, J.; Bakker, F. L.; Slachter, A.; Dejene, F. K.; van Wees, B. J.
The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material(1). When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from
Spin-singlet hierarchy in the fractional quantum Hall effect
Ino, Kazusumi
1999-01-01
We show that the so-called permanent quantum Hall states are formed by the integer quantum Hall effects on the Haldane-Rezayi quantum Hall state. Novel conformal field theory description along with this picture is deduced. The odd denominator plateaux observed around $\
International Nuclear Information System (INIS)
Deviren, Bayram; Polat, Yasin; Keskin, Mustafa
2011-01-01
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second- and first-order phase transitions besides triple point (TP), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in Néel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions. (general)
Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2
Tahir, M.
2014-09-22
We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.
Influence of Shape Anisotropy on Magnetization Dynamics Driven by Spin Hall Effect
Directory of Open Access Journals (Sweden)
X. G. Li
2016-01-01
Full Text Available As the lateral dimension of spin Hall effect based magnetic random-access memory (SHE-RAM devices is scaled down, shape anisotropy has varied influence on both the magnetic field and the current-driven switching characteristics. In this paper, we study such influences on elliptic film nanomagnets and theoretically investigate the switching characteristics for SHE-RAM element with in-plane magnetization. The analytical expressions for critical current density are presented and the results are compared with those obtained from macrospin and micromagnetic simulation. It is found that the key performance indicators for in-plane SHE-RAM, including thermal stability and spin torque efficiency, are highly geometry dependent and can be effectively improved by geometric design.
Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2
Tahir, M.; Manchon, Aurelien; Schwingenschlö gl, Udo
2014-01-01
We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.
Transverse spin effects in polarized semi inclusive deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Pappalardo, Luciano Libero
2008-10-15
The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)
Transverse spin effects in polarized semi inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Pappalardo, Luciano Libero
2008-03-01
The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)
Role of antisymmetric spin-orbit component in effective interactions in the sd-shell
International Nuclear Information System (INIS)
Yoshinada, K.
1981-10-01
The antisymmetric spin-orbit interaction (ALS) proposed for sd-shell nuclei is investigated. It is shown that the centroid energy of the d sub(5/2) - d sub(3/2) interactions plays a crucial role in reproducing the excited band spectra of A = 18 - 24 nuclei. An empirical effective interaction without ALS component is proposed to reproduce the observed spectra of light sd-shell nuclei. (author)
Analysis of the two dimensional Datta-Das Spin Field Effect Transistor
Bandyopadhyay, S.
2010-01-01
An analytical expression is derived for the conductance modulation of a ballistic two dimensional Datta-Das Spin Field Effect Transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.
Analysis of the two-dimensional Datta-Das spin field effect transistor
Agnihotri, P.; Bandyopadhyay, S.
2010-03-01
An analytical expression is derived for the conductance modulation of a ballistic two-dimensional Datta-das spin field effect transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.
Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold
Czech Academy of Sciences Publication Activity Database
Shick, Alexander; Kolorenč, Jindřich; Janiš, Václav; Lichtenstein, A.I.
2011-01-01
Roč. 84, č. 11 (2011), "113112-1"-"113112-4" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : spin Hall effect * XMCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://prb.aps.org/abstract/PRB/v84/i11/e113112
Spin-polarized neutron matter at different orders of chiral effective field theory
Sammarruca, F.; Machleidt, R.; Kaiser, N.
2015-01-01
Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.
2017-12-08
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.
2017-01-01
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings
International Nuclear Information System (INIS)
Karna, S.P.
1997-01-01
A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society
Strain and spin-orbit effects in self-assembled quantum dots
International Nuclear Information System (INIS)
Zielinski, M.; Jaskolski, W.; Aizpurua, J.; Bryant, G.W.
2005-01-01
The Effects of strain and spin-orbit interaction in self-assembled lien-shaped InAs/GaAs quantum dots are investigated. Calculations are performed with empirical tight-binding theory supplemented by the valence force field method to account for effects of strain caused by lattice mismatch at the InAs-GaAs interface. It is shown that both effects influence strongly the electron and hole energy structure: splitting of the energy levels, the number of bound states, density distributions, and transition rates. We show that piezoelectric effects are almost negligible in quantum dots of the size investigated. (author)
International Nuclear Information System (INIS)
Panek, P.; Kaminski, J.Z.; Ehlotzky, F.
2002-01-01
We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
Spin physics in semiconductors
2017-01-01
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
Spin Hall and Nernst effects of Weyl magnons
Zyuzin, Vladimir A.; Kovalev, Alexey A.
2018-05-01
In this paper, we present a simple model of a three-dimensional insulating magnetic structure which represents a magnonic analog of the layered electronic system described by A. A. Burkov and L. Balents [Phys. Rev. Lett. 107, 127205 (2011), 10.1103/PhysRevLett.107.127205]. In particular, our model realizes Weyl magnons as well as surface states with a Dirac spectrum. In this model, the Dzyaloshinskii-Moriya interaction is responsible for the separation of opposite Weyl points in momentum space. We calculate the intrinsic (due to the Berry curvature) transport properties of Weyl and so-called anomalous Hall effect magnons. The results are compared with fermionic analogs.
Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory
Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.
2010-01-01
Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar
Spin measurements for 147Sm+n resonances: Further evidence for nonstatistical effects
International Nuclear Information System (INIS)
Koehler, P. E.; Ullmann, J. L.; Bredeweg, T. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.
2007-01-01
We have determined the spins J of resonances in the 147 Sm(n,γ) reaction by measuring multiplicities of γ-ray cascades following neutron capture. Using this technique, we were able to determine J values for all but 14 of the 141 known resonances below E n =1 keV, including 41 firm J assignments for resonances whose spins previously were either unknown or tentative. These new spin assignments, together with previously determined resonance parameters, allowed us to extract level spacings (D 0,3 =11.76±0.93 and D 0,4 =11.21±0.85 eV) and neutron strength functions (10 4 S 0,3 =4.70±0.91 and 10 4 S 0,4 =4.93±0.92) for J=3 and 4 resonances, respectively. Furthermore, cumulative numbers of resonances and cumulative reduced neutron widths as functions of resonance energy indicate that very few resonances of either spin have been missed below E n =700 eV. This conclusion is strengthened by the facts that, over this energy range, Wigner distributions calculated using these D 0 values agree with the measured nearest-neighbor level spacings to within the experimental uncertainties, and that the Δ 3 values calculated from the data also agree with the expected values. Because a nonstatistical effect recently was reported near E n =350 eV from an analysis of 147 Sm(n,α) data, we divided the data into two regions; 0 n n n 0 distribution for resonances below 350 eV is consistent with the expected Porter-Thomas distribution. However, we found that Γ n 0 data in the 350 n 2 distribution having ν≥2 We discuss possible explanations for these observed nonstatistical effects and their possible relation to similar effects previously observed in other nuclides
Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun
2018-03-01
Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.
Directory of Open Access Journals (Sweden)
Y Yousefi
2018-02-01
Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.
Review of COMPASS results on transverse-spin effects in SIDIS
Makke, Nour
2014-01-01
The transversity parton distribution remains a poorly known cornerstone in the nucleon spin structure. While the Collins effect in spin asymmetries in Semi-Inclusive DIS (SIDIS) is one crucial tool to address the transversity function, the most promising alternative is the azimuthal asymmetry in SIDIS when a hadron pair is detected in the final state. In this case, the chiral-odd transversity function is coupled to another chiral-odd function, i.e. the hadron-pair interference fragmentation function (IFF). The measurement of azimuthal asymmetries in hadron-pair production on a transversely polarised nucleon target has been performed at COMPASS using a 160 GeV/c muon beam of CERN's M2 beam line. Results from the 2007 and 2010 recent measurements will be presented and compared to model predictions.
Random crystal field effects on the integer and half-integer mixed-spin system
Yigit, Ali; Albayrak, Erhan
2018-05-01
In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.
Effect of pressure on spin fluctuations and superconductivity in heavy-fermion UPt3
International Nuclear Information System (INIS)
Willis, J.O.; Thompson, J.D.; Fisk, Z.; de Visser, A.; Franse, J.J.M.; Menovsky, A.
1985-01-01
We have determined the effect of hydrostatic pressure on the susceptibility, on the T 2 temperature dependence of the spin-fluctuation resistivity, and on superconductivity in UPt 3 . The spin-fluctuation temperature T/sub s/, derived from the slope of resistivity versus T 2 , is used within a Fermi-liquid picture to calculate the susceptibility chi at T = 0 K. The depression of this calculated chi with pressure agrees with the directly measured value partial lnchi/partialP = -24 Mbar -1 . Both the superconducting transition temperature T/sub c/ and the initial slope of the upper critical field also decrease under pressure. We find that partial lnT/sub c//partialP = -25 Mbar -1 and speculate upon correlations between chi and T/sub c/
Spin Seebeck effect in insulating epitaxial γ−Fe2O3 thin films
Directory of Open Access Journals (Sweden)
P. Jiménez-Cavero
2017-02-01
Full Text Available We report the fabrication of high crystal quality epitaxial thin films of maghemite (γ−Fe2O3, a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE measurements in γ−Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1 μV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4, establishing the relevance of spin currents of magnonic origin in magnetic iron oxides.
Enhancing or suppressing the spin Hall effect of light in layered nanostructures
Energy Technology Data Exchange (ETDEWEB)
Luo Hailu; Ling Xiaohui; Zhou Xinxing; Shu Weixing; Wen Shuangchun; Fan Dianyuan [Key Laboratory for Micro/Nano Opto-Electronic Devices of Ministry of Education, College of Information Science and Engineering, Hunan University, Changsha 410082 (China)
2011-09-15
The spin Hall effect (SHE) of light in layered nanostructures is investigated theoretically in this paper. A general propagation model describing the spin-dependent transverse splitting of wave packets in the SHE of light is established from the viewpoint of classical electrodynamics. We show that the transverse displacement of the wave-packet centroid can be tuned to either a negative or a positive value, or even zero, by just adjusting the structure parameters, suggesting that the SHE of light in layered nanostructures can be enhanced or suppressed in a desired way. The inherent physics behind this interesting phenomenon is attributed to the optical Fabry-Perot resonance. We believe that these findings will open the possibility for developing new nanophotonic devices.
Liu, Haoliang; McLaughlin, Ryan; Sun, Dali; Valy Vardeny, Z.
2018-04-01
Coupling of spins and phonons in ferromagnets (FM) may persist up to mm length scale, thus generating macroscopic spatially distributed spin accumulation along the direction of an applied thermal gradient to an FM slab. This typical feature of transverse spin Seebeck effect (TSSE) has been demonstrated so far using electrical detection methods in FM films, in particular in a patterned structure, in which FM stripes grown onto a substrate perpendicular to the applied thermal gradient direction are electrically and magnetically isolated. Here we report optically detected TSSE response in isolated FM stripes based on permalloy deposited on SiN substrate, upon the application of a thermal gradient. For these measurements we used the magneto-optic Kerr effect measured by an ultrasensitive Sagnac interferometer microscope that is immune to thermo-electrics artefacts. We found that the optical TSSE coefficient in the NiFe stripes geometry is about one order of magnitude smaller than that in the continuous NiFe film, which is due to the limited phonons path in the FM stripes along the thermal gradient direction. Our results further confirm the existence of TSSE response in conducting FM compounds.
Isotopic spin effect in three-pion Bose-Einstein correlations
International Nuclear Information System (INIS)
Suzuki, N.
1998-01-01
Bose-Einstein (BE) correlations of identical particles in multiple production processes are extensively studied last years because they give an information on the space-time region of interaction. The basic effect is analogous to Hanbury-Brown - Twiss (HBT) interferometry in optics and suggests statistical production of the particles (mainly π mesons). The possible presence of coherent pionic component (for example, in the case of disoriented chiral condensate formation) modifies the HBT effect. On the other hand, the pions (contrary to photons) are subject to isotopic spin (and electric charge) conservation and so they can not be emitted independently. While the corresponding change of the statistical part is not essential for large multiplicities, the coherent part changes substantially when isotopic spin conservation is taken into account. BE correlations of the pions in the presence of both statistical and coherent components are reconsidered taking into account isotopic spin conservation in the coherent part. That will result in appearance of additional contribution to pionic correlation function. (author)
The impacts of the quantum-dot confining potential on the spin-orbit effect.
Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S
2018-05-09
For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.
EFFECTS OF CIRCUMNUCLEAR DISK GAS EVOLUTION ON THE SPIN OF CENTRAL BLACK HOLES
International Nuclear Information System (INIS)
Maio, Umberto; Dotti, Massimo; Petkova, Margarita; Perego, Albino; Volonteri, Marta
2013-01-01
Mass and spin are the only two parameters needed to completely characterize black holes (BHs) in general relativity. However, the interaction between BHs and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of supermassive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such a fiery environment influences the angular momentum of the gas accreted onto SMBHs, and, hence, BH spins, is uncertain. We explore the interaction between SMBHs and their environment via first three-dimensional sub-parsec resolution simulations (ranging from ∼0.1 pc to ∼1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial in investigating the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter of a ≅ 0.6-0.9, corresponding to radiative efficiencies ε ≅ 9%-15%. These results suggest that star formation feedback taking place in the circumnuclear disk during the infall alone cannot induce very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.
Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei
2016-01-01
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378
International Nuclear Information System (INIS)
Kurian, P.; Verzegnassi, C.
2016-01-01
We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.
Effective S =2 antiferromagnetic spin chain in the salt (o -MePy-V)FeCl4
Iwasaki, Y.; Kida, T.; Hagiwara, M.; Kawakami, T.; Hosokoshi, Y.; Tamekuni, Y.; Yamaguchi, H.
2018-02-01
We present a model compound for the S =2 antiferromagnetic (AF) spin chain composed of the salt (o -MePy-V ) FeCl4 . Ab initio molecular-orbital calculations indicate the formation of a partially stacked two-dimensional (2D) spin model comprising five types of exchange interactions between S =1 /2 and S =5 /2 spins, which locate on verdazyl radical and Fe ion, respectively. The magnetic properties of the synthesized crystals indicate that the dominant interaction between the S =1 /2 and S =5 /2 spins stabilizes an S =2 spin in the low-temperature region, and an effective S =2 AF chain is formed for T ≪10 K and H chain. At higher fields above quantitatively 4 T, the magnetization curve assumes two-thirds of the full saturation value for fields between 4 and 20 T, and approaches saturation at ˜40 T. The spin model in the high-field region can be considered as a quasi-2D S =1 /2 honeycomb lattice under an effective internal field caused by the fully polarized S =5 /2 spin.