WorldWideScience

Sample records for spheroidal graphite cast

  1. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    International Nuclear Information System (INIS)

    Lacaze, J; Theuwissen, K; Laffont, L; Véron, M

    2016-01-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions. (paper)

  2. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  3. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  4. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  5. On the Effect of Pouring Temperature on Spheroidal Graphite Cast Iron Solidification

    Directory of Open Access Journals (Sweden)

    Alex Escobar

    2015-04-01

    Full Text Available This work is focused on the effect of pouring temperature on the thermal-microstructural response of an eutectic spheroidal graphite cast iron (SGCI. To this end, experiments as well as numerical simulations were carried out. Solidification tests in a wedge-like part were cast at two different pouring temperatures. Five specific locations exhibiting distinct cooling rates along the sample were chosen for temperature measurements and metallographic analysis to obtain the number and size of graphite nodules at the end of the process. The numerical simulations were performed using a multinodular-based model. Reasonably good numerical-experimental agreements were obtained for both the cooling curves and the graphite nodule counts.

  6. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  7. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  8. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  9. Effect of microstructure on mechanical properties and machinability of spheroidal graphite cast iron

    International Nuclear Information System (INIS)

    Kubota, Satoru; Iio, Chinori; Yamaguchi, Shoji; Naito, Daiki; Tomota, Yo; Stefanus, Harjo

    2013-01-01

    Tensile properties, fatigue strength and machinability of spheroidal graphite cast irons with different microstructures were studied. Work-hardening and tensile strength increased with increasing pearlite volume fraction. In situ neutron diffraction during tensile deformation revealed that phase stresses and intergranular stresses are generated with deformation resulting in high work-hardening and high tensile strength with increasing pearlite volume fraction. It was found that graphite grains bear almost no stress, and strongly influence fatigue crack initiation as well as propagation. Therefore graphite refinement is very effective to realize high fatigue strength. The tool life for cutting becomes shorter with increasing pearlite volume fraction. The balance of mechanical properties and machinability was considered. (author)

  10. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  11. A 2-D nucleation-growth model of spheroidal graphite

    International Nuclear Information System (INIS)

    Lacaze, Jacques; Bourdie, Jacques; Castro-Román, Manuel Jesus

    2017-01-01

    Analysis of recent experimental investigations, in particular by transmission electron microscopy, suggests spheroidal graphite grows by 2-D nucleation of new graphite layers at the outer surface of the nodules. These layers spread over the surface along the prismatic direction of graphite which is the energetically preferred growth direction of graphite when the apparent growth direction of the nodules is along the basal direction of graphite. 2-D nucleation-growth models first developed for precipitation of pure substances are then adapted to graphite growth from the liquid in spheroidal graphite cast irons. Lateral extension of the new graphite layers is controlled by carbon diffusion in the liquid. This allows describing quantitatively previous experimental results giving strong support to this approach.

  12. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  13. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Application of Different Heat Treatment to Spheroidal Graphite Cast Iron and its Effect for Damping and Mode Shapes

    OpenAIRE

    Dahil, Lutfiye; Karabulut, Abdurrahman

    2017-01-01

    In this study, damping and mode shapes were investigated after boriding and austempering the spheroidal graphite cast iron (SGCI). The samples were boronised and austempered at 900℃ for 2 hours by employing the pack cementation method. The samples were cooled and tempered in a salt bath at 250℃ and 375℃ for 1 hour. Once the boriding and austempering processes were completed, the samples were cooled at room temperature and washed with plenty of water. The modal frequencies, damping ratios and ...

  15. Thermodynamic Analysis of Cast Irons Solidification With Various Types of Graphite

    Directory of Open Access Journals (Sweden)

    Elbel T.

    2012-12-01

    Full Text Available The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1 /T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

  16. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    solidification and growth continues throughout solid state cooling and the eutectoid transformation. Years of research have greatly improved the understanding of the basic mechanisms that control graphite growth as well as the ability to control graphite morphology during industrial production of cast components......, the solidification of cast iron is studied with focus on formation and growth of spheroidal graphite. To this end, an experiment is conducted at the Diamond Light Source synchrotron facility in Harwell, UK: Employing an environmental cell devel-oped at the Manchester X-ray Imaging Facility at the University...... state growth presented in the present thesis. From the analysis it is clear that the presented data is of an unprecedented quality and that it represents a solid basis for validation of future models. Solidification simulations of a ductile cast iron component highlights the importance of the nucleation...

  17. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  18. Microstructure and Wear Behavior of TiC Coating Deposited on Spheroidized Graphite Cast Iron Using Laser Surfacing

    Directory of Open Access Journals (Sweden)

    E. R. I. Mahmoud

    2014-10-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with TiC powder using a YAG fiber laser at powers of 700, 1000, 1500 and 2000 W. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. Sound cladding and fusion zones were observed at 700, 1000 and 1500 W powers. However, at 2000 W, cracking was observed in the fusion zone. At 700 W, a build-up zone consisted of fine TiC dendrites inside a matrix composed of martensite, cementite (Fe3C, and some blocks of retained austenite was observed. In this zone, all graphite nodules were totally melted. In the fusion zone, some undissolved and partially dissolved graphite nodules appeared in a matrix containing bainite, ferrite, martensite and retained austenite. At 1500 W, the fusion zone had more iron carbides and ferrite, and the HAZ consisted of martensitic structure. At 2000 W, the build-up zone was consisted of TiC particles precipitated in a matrix of eutectic carbides, martensite plus an inter-lamellar retained austenite. The hardness of the cladded area was remarkably improved (1330 HV in case of 700 W: 5.5 times of the hardness of substrate

  19. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel

    International Nuclear Information System (INIS)

    Gao, J.X.; Wei, B.Q.; Li, D.D.; He, K.

    2016-01-01

    The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite can produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.

  20. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  1. Control of cast iron and casts manufacturing by Inmold method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  2. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  3. Redistribution and Effect of Various Elements on the Morphology of Primary Graphite in Cast Iron

    Directory of Open Access Journals (Sweden)

    J. Lacaze

    2013-01-01

    Full Text Available It has been shown repeatedly that many elements present as traces or at low level can affect graphite shape in cast irons. As part of a long term project aimed at clarifying the growth and the alteration of spheroidal graphite, a study on the effect of a few elements (Cu, Sn, Sb, and Ti on primary graphite growth was undertaken and analysed with reference to an alloy without any such additions. This work was performed by remelting alloys in graphite crucibles thus saturating the melt in carbon and enabling primary graphite to grow by controlled cooling of the melt above the eutectic temperature. Primary graphite growth in the reference alloy was observed to be lamellar, while the added elements were found to affect bulk graphite and to modify its outer shape, with Sb leading eventually to rounded agglomerates together with wavy lamellae. Secondary ion mass spectrometry was used to analyze the distribution of elements, and no build-up of trace elements at the graphite surface could be observed. Instead, it is established that the perturbation of bulk graphite is associated with inhomogeneous distribution of metallic elements inside graphite precipitates.

  4. Microstructures and mechanical properties of the Ce containing cast iron super-rapidly melted. Chokosoku yokaishita gan seriumu chutetsu no soshiki to kikaiteki seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Kowata, T.; Hiratsuka, S.; Horie, H. (Iwate Univ., Iwate (Japan). Faculty of Engineering); Matsumoto, T. (Taiyo Steel Co. Ltd., Tokyo (Japan))

    1994-04-25

    Spheroidal graphite cast iron and CV graphite cast iron were prepared by super-rapid remelting of parent alloys containing definite amounts of cerium (Ce) in a high frequency and super-rapid induction smelting furnace. Their graphite structure, amounts of Ce remained and mechanical properties were investigated by comparing with those prepared by ordinary remelting. Further, super-rapid remelting of parent alloys added with aluminum (Al) or titanium (Ti) was investigated to make certain whether it stabilizes the CV graphite structure. The results obtained are summarized as follows. Mere remelting of Ce-added parent alloys is sufficient to yield CV and spheroidal graphite structures. Whereas the yield of Ce melted remains at 28% in ordinary remelting, that in the super-rapid remelting reaches 63%. Whereas the Ce amount needed in parent alloys to get CV graphite structures is 0.08% in ordinary remelting, that in super-rapid remelting is 0.025%. The addition of Al shows no inhibitory effect on graphite spheroidation. On the contrary, it raises the degree of spheroidization. The addition of Ti inhibits the spheroidization, whereby the amount range of Ce remaining to be embedded in the graphite structure can be extended, thus ensuring stable production of CV graphite cast iron. 5 refs., 11 figs., 2 tabs.

  5. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  6. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  7. Nano-scale orientation mapping of graphite in cast irons

    International Nuclear Information System (INIS)

    Theuwissen, Koenraad; Lacaze, Jacques; Véron, Muriel; Laffont, Lydia

    2014-01-01

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  8. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  9. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    Science.gov (United States)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  10. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  11. http://www.afe.polsl.pl/index.php/pl/733/homogeneity-of-particle-size-in-the-space-of-composite-suspension-casting.pdf

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-01-01

    Full Text Available The study presents the results of microstructural examinations of the Ni-Al-C alloy forming a natural Ni3Al/C composite, in which the precipitates of graphite are acting as a lubricating, slip phase. Different forms of graphite were described, starting with the fibrous shapes and ending in spheroidal forms, identical with the spheroidal graphite present in cast iron. The morphologies of graphite precipitates in the Ni3Al phase were compared to similar precipitates observed in ferrous alloys with high carbon content.

  12. COMPUTER PROCESSING OF MICROSTRUCTURES OF IRON WITH DIFFERENT INCLUSIONS AMOUNTS OF LAMELLAR AND SPHERICAL GRAPHITE

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available Based on cast iron microstructures with different amounts of impurities of plastic and nodular graphite given in CCITT 3443-87 “Cast iron with various forms of graphite. Methods for determining the structure “shows the possibilities of automated quantitative analysis of microstructures SG2, PG4, PG6, PG10, PG12 (Plastic Box and SHG2, SHG4, SHG6, SHG10, SHG12 (spheroidal graphite, which allows the development of methods for the determination of impurities of plastic and spherical graphite according to the microstructures image under the light microscope.

  13. Effect of various dopant elements on primary graphite growth

    International Nuclear Information System (INIS)

    Valle, N; Theuwissen, K; Lacaze, J; Sertucha, J

    2012-01-01

    Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates.

  14. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  15. Fatigue properties of ductile cast iron containing chunky graphite

    International Nuclear Information System (INIS)

    Ferro, P.; Lazzarin, P.; Berto, F.

    2012-01-01

    Highlights: ► Experimental determination of high cycle fatigue properties of EN-GJS-400. ► Evaluation of the influence of chunky graphite morphology on fatigue life. ► Metallurgical analysis and microstructural parameters determination. ► Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  16. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  17. Compacted graphite iron: Cast iron makes a comeback

    Science.gov (United States)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  18. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  19. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  20. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  1. Fractomechanical Properties of As-Cast and Austempered SG Cast Iron Between -40 °C and +20 °C

    Directory of Open Access Journals (Sweden)

    V.E. Fierro

    2002-06-01

    Full Text Available The spheroidal graphite (SG cast iron fractomechanical response varies with the test temperature and with the microstructure parameters. In the present paper, we analyze this variation performing fractomechanical tests in a temperature range from -40°C to +20°C, doing also Charpy and tensile tests for material characterization. The tests were carried out on as-cast samples and heat treated samples to obtain an ADI grade 1. In both cases, we studied samples taken from two well differentiated "Y" block sizes. The results obtained show that, for the chemical composition analyzed, both castings have a fractomechanical response decrease as the temperature diminishes. Besides, the block size enlargement produce a deterioration of the mechanical properties (the fracture toughness, mainly, for both castings.

  2. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...

  3. Influence of electromagnetic field parameters on the morphology of graphite in grey cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-01-01

    Full Text Available One way to improve the unification of the casting structure may be the application of forced convection of liquid metal during thecrystallization in the form or continuous casting mould. This paper presents the results describing the influence of selected parameters of rotating electromagnetic field enforcing the movement of liquid metal in the form on the morphology of graphite in grey cast iron. The results were fragmented graphite flakes in conditions of regulating the rate of cooling in the range of temperature TZAL

  4. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  5. The evaluation of dynamic cracking resistance of chosen casting alloys in the aspect of the impact bending test

    Directory of Open Access Journals (Sweden)

    J.Sadowski

    2008-10-01

    Full Text Available The increase of quality and durability of produced casting alloys can be evaluated on the base of material tests performed on a high level. One of such modern test methods are tests of the dynamic damage process of materials and the evaluation on the base of obtained courses F(f, F(t of parameters of dynamic cracking resistance KId, JId, performed with the usage of instrumented Charpy pendulums. In the paper there was presented the evaluation of dynamic cracking resistance parameters of casting alloys such as: AK12 aluminum alloy, L20G cast steel and spheroid cast iron. The methodology of the evaluation of that parameters was described and their change as well, for the AK12 alloy with the cold work different level, L20G cast steel cooled from different temperatures in the range +20oC -60oC, and for the spheroid cast iron in different stages of treatment i.e. raw state, after normalization, spheroid annealing and graphitizing annealing.Obtained parameters of dynamic cracking resistance KId, JId of tested casting alloys enabled to define the critical value of the ad defect that can be tolerated by tested castings in different work conditions with impact loadings.

  6. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  7. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni

  8. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  9. Electroactive cytochrome P450BM3 cast polyion films on graphite electrodes

    International Nuclear Information System (INIS)

    Pardo-Jacques, Aurelie; Basseguy, Regine; Bergel, Alain

    2006-01-01

    Films of electrochemically active cytochrome P450 BM 3 were constructed on graphite electrodes using alternate assembly with polyethyleneimine (PEI). The original layer-by-layer adsorption method was slightly modified here to form so-called 'cast polyion' films. The cast polyion films were elaborated by immobilizing two successive layers of PEI and protein in very large excess with respect to a monolayer, without any intermediate washing step. Following the immobilization steps by SEM showed that uniform films of a few micrometers were deposited on the graphite surface. The electrochemically activity of the immobilized cytP450 was tested with regard to the reduction of oxygen and the one-electron reduction of the heme. Cyclic voltammetry indicated surface concentration of electrochemically active cytP450 around 0.6nmol/cm 2 , which corresponded to 5% of the total amount of protein that was consumed by the immobilisation process. Adapting the procedure to a graphite felt electrode with the view of scaling up porous electrodes for large scale synthesis increased the concentration to 0.9nmol/cm 2 . Cast polyion films may represent a simple technique to immobilize high amount of electrochemically active protein, keeping the advantage of the electrostatic interactions of the regular layer-by-layer method

  10. A reliable and consistent production technology for high volume compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    Liu Jincheng

    2014-07-01

    Full Text Available The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual challenge for engine designers. The use of Compacted Graphite Iron (CGI has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globally. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of flake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  11. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... inside the nodules, their orientation in relation to the graphite and the chemistry of the inclusions is analysed and described. Formation of the structures during solidification and subsequent cooling to room temperature is discussed....

  12. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey [Pryazovskyi State Technical Univ., Mariupol (Ukraine); Shimizu, Kazumichi; Kusumoto, Kenta [Muroran Institute of Technology, Hokkaido (Japan); Brykov, Michail [Zaporozhye National Technical Univ., Zaporozhye (Ukraine)

    2018-02-15

    The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M{sub 7}C{sub 3} carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.

  13. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  14. Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings

    Directory of Open Access Journals (Sweden)

    Péter Svidró

    2017-07-01

    Full Text Available Shrinkage porosity and metal expansion penetration are two casting defects that appear frequently during the production of complex-shaped lamellar graphite iron components. These casting defects are formed during the solidification and usually form in the part of the casting which solidifies last. The position of the area that solidifies last is dependent on the thermal conditions. Test castings with thermal conditions like those existing in a complex-shaped casting were successfully applied to provoke a shrinkage porosity defect and a metal expansion penetration defect. The investigation of the primary dendrite morphology in the defected positions indicates a maximum intradendritic space, where the shrinkage porosity and metal expansion penetration defects appear. Moving away from the defect formation area, the intradendritic space decreases. A comparison of the intradendritic space with the simulated local solidification times indicates a strong relationship, which can be explained by the dynamic coarsening process. More specifically, long local solidification times facilitates the formation of a locally coarsened austenite morphology. This, in turn, enables the formation of a shrinkage porosity or a metal expansion penetration.

  15. Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Horie, T.; Nishigaki, K.

    2007-01-01

    Fracture toughness and fatigue crack propagation (FCP) have been studied using compact tension (CT) specimens of as-cast and subzero-treated materials in a cast iron with spheroidal vanadium carbides (VCs) dispersed in the martensitic matrix microstructure. X-ray diffraction (XRD) analysis revealed that retained austenite was transformed to martensite by subzero treatment. Vickers hardness was increased from 738 for the as-cast material to 782 for the subzero-treated material, which could be attributed to retained austenite to martensite transformation. The subzero-treated material exhibited lower fracture toughness than the as-cast material because soft and ductile retained austenite which possesses high fracture toughness was transformed to martensite in the subzero-treated material. Intrinsic FCP resistance after taking account of crack closure was decreased by the subzero treatment, which was attributed to the predominant crack propagation through the interface between VCs and the matrix and the straight crack path in the matrix microstructure

  16. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  17. Detection of fatigue fracture in pearlitic flake graphite cast iron with the help of scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Dunger, B.; Hunger, J.

    1976-01-01

    To prove the existence of the characteristic features of fatigue fracture in a pearlitic flake graphite cast iron, its fracture surface topography revealed by scanning electron microscopy has been compared with that of a pearlitic steel, the fractures having been caused by static tensile and by cyclic bending tests. The characteristic features of fatigue fracture were visible in the pearlitic matrix of the steel and of the flake graphite cast iron as well. These features differ characteristically from the lamellar structure of the pearlite, particularly after etching the surface area of the fractures. The graphite structures as viewed on the electron scanning and the electron transmission microscope are described. (orig.) [de

  18. Roughness analysis of graphite surfaces of casting elements

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper profilometric measurements of graphite casting elements were described. Basic topics necessary to assess roughness of their surfaces and influence of asperities on various properties related to manufacturing and use were discussed. Stylus profilometer technique of surface irregularities measurements including its limits resulting from pickup geometry and its contact with measured object were ana-lyzed. Working principle of tactile profilometer and phenomena taking place during movement of a probe on a measured surface were shown. One of the important aspects is a flight phenomenon, which means movement of a pickup without contact with a surface during inspection resulting from too high scanning speed. results of comparison research for graphite elements of new and used mould and pin composing a set were presented. Using some surface roughness, waviness and primary profile parameters (arithmetical mean of roughness profile heights Ra, biggest roughness profile height Rz, maximum primary profile height Pt as well as maximum waviness profile height Wt a possibility of using surface asperities parameters as a measure of wear of chill graphite elements was proved. The most often applied parameter is Ra, but with a help of parameters from W and P family it was shown, that big changes occur not only for roughness but also for other components of surface irregularities.

  19. Repairs of Damaged Castings Made of Graphitic Cast Iron by Means of Brazing

    Directory of Open Access Journals (Sweden)

    Mičian M.

    2017-09-01

    Full Text Available The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy. The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1 or aluminium bronze (CuAl10Fe. TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.

  20. The influence of microstructure on fatigue crack initiation in spheroidal graphite cast irons

    International Nuclear Information System (INIS)

    Starkey, M.S.; Irving, P.E.

    1979-01-01

    This paper reports the first stage of this work which concentrates on fatigue crack initiation with particular emphasis on the influence of microstructure. The fatigue lives of three fully ferritic and two fully pearlitic irons, each with different graphite nodule size distributions, have been determined at two strain amplitudes, 0.005 and 0.00018. The tests were carried out in fully reversed strain control on smooth cylindrical specimens in a servohydraulic testing machine. The effects of matrix structure and strength were clearly seen in that the pearlitic irons were superior at both strain levels. Nodule size on the other hand appeared to have no significant effect. The crack initiation sites in the specimens were located by interrupting the tests on detection of a 5% tensile load drop and heat tinting, before continuing. After failure, which was defined as complete separation, the fracture faces were examined on the scanning electron microscope. In the majority of the specimens the major crack origin was found to be a surface micropore with depths ranging from 50 to 250 μm. It is suggested that these micropores and not the graphite modules strongly influence the crack initiation behaviour in SG iron. These findings were confirmed by monitoring the initiation and growth of surface cracks from micropores using surface replica techniques. The influence of microstructure on the percentage of life spent in initiating and propagating a crack was thus determined. Hence the factors contributing to the fatigue behaviour of SG irons can be quantified. Their influence on predictions of cycles to crack initiation using the local approach is discussed. (orig.) 891 RW/orig. 892 RKD [de

  1. The forty years of vermicular graphite cast iron development in China (PartⅠ

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-05-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  2. Sixty Years of Casting Research

    Science.gov (United States)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  3. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Effect of Hydrogen on the Mechanical Properties of Cast Irons and ADI with Various Carbon Equivalent and Graphite Morphology

    International Nuclear Information System (INIS)

    Cho, Yong Gi; Lee, Kyung Sub

    1989-01-01

    The effect of hydrogen on the mechanical properties of cast irons, flake, CV graphite cast iron ductile iron and ADI have been investigated. The effects of various carbon equivalent, graphite morphology and matrix have been analyzed to determine the predominant factor which influences on the hydrogen embrittlement. The effect of various carbon equivalent on the embrittlement was little in the similar graphite morphology. The embrittlement of ferrite matrix changed by heat treatment was less than that of pearlite matrix. In the case of ADI, the tendency of hydrogen embrittlement of lower bainite matrix was less remarkable than that of upper banite matrix. As the result of hydrogen charging, the tendency of interface decohesion between matrix-graphite was increased in flake G.C.I., and the trend from ductile fracture mode to brittle fracture mode was observed in CV G.C.I and ductile iron. Lower bainite in ADI showed the ductile fracture mode. Hydrogen solubility of lower bainite was higher than that of upper bainite

  5. Contribution to the influence of selected alloy elements on the strain cycling and creep behaviour of cast iron with spheroidal graphite at temperatures above 450 C; Beitrag zum Einfluss ausgewaehlter Legierungselemente auf das Dehnwechsel- und Zeitstandverhalten von Gusseisen mit Kugelgraphit bei Temperaturen oberhalb 450 C

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Susanne

    2012-02-15

    In this report for the first time an all-embracing databases was raised about the correlation of microstructure and high temperature mechanical properties concerning spheroidal cast iron at temperatures above 450 C. Its basic concept is a systematic variation of alloying elements and benchmarking fatigue and creep behavior of all created heats as a function of microstructure and alloys.

  6. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of cast iron...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  7. Production of spheroidal graphite cast iron (S. G. Iron) for an automobile brake drum

    International Nuclear Information System (INIS)

    Butt, M.T.Z.; Aziz, S.

    2005-01-01

    The role of automobile industry for any country has a great importance. Break drum is one of the essential parts of automobile car and its local casting is required in order to achieve the target for automobile industry because it has special significance. Break drum being the important constituent of the system of an automobile requires a great degree of accuracy and reliability. S. G. Iron is preferred because of its mechanical properties i.e., higher strength modulus, impact resistance and ductility along with excellent machinability and manufacturing ease. (author)

  8. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  9. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  10. Probing the structure and mechanical properties of the graphite nodules in ductile cast irons via nano-indentation

    DEFF Research Database (Denmark)

    Andriollo, Tito; Fæster, Søren; Winther, Grethe

    2018-01-01

    Little is known today about the mechanical properties of the graphite nodules, despite the key influence these particles have on the performance of ductile cast irons. To address this issue, nano-indentation tests were performed on the cross-section of a nodule whose sub-surface morphology...

  11. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    Science.gov (United States)

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  12. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  13. Effects of HIP and forging on fracture behaviour in cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Nishigaki, K.; Okajima, D.; Ogasawara, M.

    2010-01-01

    The cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure was developed as a die material due to its high hardness. In order to achieve high performances of dies, not only the hardness but also the mechanical properties such as fracture toughness and fatigue crack propagation (FCP) resistance should be improved. In this paper, hot isostatic pressing (HIP) or forging was applied to the cast iron to improve mechanical properties, and the fracture behaviour, such as flexural strength, fracture toughness and FCP, was studied. The average flexural strength was reduced by forging because of the enhanced notch sensitivity due to the increase in the hardness. The fracture toughness was not affected by HIP nor forging while its scatter was significantly reduced by both post-treatments. The intrinsic FCP resistance taking account of crack closure was the same regardless of the application of HIP or forging, indicating that a slight change in the microstructure resulting from both treatments and the presence of casting defects exerted little influence on FCP behaviour. It could be concluded that both HIP and forging could improve the hardness of the material, while fracture toughness and FCP resistance were maintained.

  14. Spall behavior of cast iron with varying microstructures

    International Nuclear Information System (INIS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-01-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  15. Spall behavior of cast iron with varying microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Plume, Gifford; Rousseau, Carl-Ernst, E-mail: rousseau@uri.edu [Mechanical Engineering, University of Rhode Island, 92 Upper College Rd., Kingston, Rhode Island 02881 (United States)

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  16. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  17. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  18. Research on the transformation mechanism of graphite phase and microstructure in the heated region of gray cast iron by laser cladding

    Science.gov (United States)

    Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong

    2018-03-01

    A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.

  19. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  20. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    International Nuclear Information System (INIS)

    Pustal, B; Schelnberger, B; Bührig-Polaczek, A

    2016-01-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content. (paper)

  1. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  2. A study on wear behaviour of Al/6101/graphite composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2017-03-01

    Full Text Available The current research work scrutinizes aluminium alloy 6101-graphite composites for their mechanical and tribological behaviour in dry sliding environments. The orthodox liquid casting technique had been used for the manufacturing of composite materials and imperilled to T6 heat treatment. The content of reinforcement particles was taken as 0, 4, 8, 12 and 16 wt.% of graphite to ascertain it is prospective as self-lubricating reinforcement in sliding wear environments. Hardness, tensile strength and flexural strength of cast Al6101 metal matrix and manufactured composites were evaluated. Hardness, tensile strength and flexural strength decreases with increasing volume fraction of graphite reinforcement as compared to cast Al6101 metal matrix. Wear tests were performed on pin on disc apparatus to assess the tribological behaviour of composites and to determine the optimum volume fraction of graphite for its minimum wear rate. Wear rate reduces with increase in graphite volume fraction and minimum wear rate was attained at 4 wt.% graphite. The wear was found to decrease with increase in sliding distance. The average co-efficient of friction also reduces with graphite addition and its minimum value was found to be at 4 wt.% graphite. The worn surfaces of wear specimens were studied through scanning electron microscopy. The occurrence of 4 wt.% of graphite reinforcement in the composites can reveal loftier wear possessions as compared to cast Al6101 metal matrix.

  3. Interface Structure and Elements Diffusion of As-Cast and Annealed Ductile Iron/Stainless Steel Bimetal Castings

    Directory of Open Access Journals (Sweden)

    M. Ramadan

    2018-04-01

    Full Text Available Bimetal casting is considered to a promising technique for the production of high performance function materials. Heat treatment process for bimetal castings became an essential tool for improving interface structure and metallurgical diffusion bond. Molten iron alloy with carbon equivalent of 4.40 is poured into sand mold cavities containing solid 304 stainless steel strips insert. Specimens are heated to 7200C in an electrical heating furnace and holded at 720 0C for 60min and 180min. For as-cast specimens, a good coherent interface structure of ductile cast iron/304 stainless bimetal with four layers interfacial microstructure are obtained. Low temperature annealing at 720oC has a significat effect on the interface layers structure, where, three layers of interface structure are obtained after 180min annealing time because of the complete dissolving of thin layer of ferrite and multi carbides (Layer 2. Low temperature annealing shows a significant effect on the diffusion of C and otherwise shows slightly effect on the diffusion of Cr and Ni. Plearlite phase of Layer 3 is trsformed to spheroidal shape instead of lamallar shape in as-cast bimetals by low tempeature annealing at 720oC. The percent of the performed spheroidal cementit increases by increasing anneaaling time. Hardness of interface layers is changed by low temperauture annealing due to the significant carbon deffussion.

  4. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  5. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  6. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  7. Cast iron for reactor technology - special structural and mechanical properties

    International Nuclear Information System (INIS)

    Janakiev, N.

    The graphitic phase, its formation and the effect on the mechanical properties of cast iron used for reactor shielding are described. Tensile strength, bending strength and Brinell hardness were studied. With the specimen wall thickness of 400 mm the average measured tensile strength was 180 N/mm 2 , which satisfies the given requirements as do the values of bending strength and material hardness. As against materials 200 mm in thickness, graphite was found by metallographic tests to be of a significantly coarser structure, which may be explained by slower cooling. Tensile strength was also tested for nodular cast irons and lamellar graphite cast irons. It was shown that compression increased with decreasing specimen diameter at constant pressure, at a constant diameter compression increased nearly in proportion to compressive stress. No significant differences were found if compressive stress was 80% of fracture stress. The modulus of elasticity was found to decrease with increasing graphite content while it was found to increase with fine graphite lamellae at the same carbon concentration. It also decreased with increasing straining. A Mo-alloyed cast iron was found to show slower creep rates at a compressive stress of up to 90 N/mm 2 (calculated to the same initial strengths) than Cu-alloyed cast iron. Upon increasing compressive stress to 140 N/mm 2 and creep time to more than 2000 hours, the creep behaviour of Cu-alloyed cast iron was better. Coarser perlite is likely to be more creep resistant than fine perlite. In neutron irradiation of cast iron a clear trend towards hardening was found due to the effect of neutrons on the cast iron structure. (J.B.)

  8. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  9. The influence of the graphite mechanical properties on the constitutive response of a ferritic ductile cast iron – A micromechanical FE analysis

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2015-01-01

    as well as on the material surface. The effects of residual stresses arising during the manufacturing process are also accounted for. It is shown that the constitutive response of the equivalent composite medium can match ductile cast iron only if the graphite Young’s modulus value lies within a certain...

  10. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  11. Corrosion behaviour of the AlSi6Cu4 alloy and cast AlSi6Cu4-graphite particles composite

    Directory of Open Access Journals (Sweden)

    S. Holecek

    2009-04-01

    Full Text Available The corrosion behaviour of the AlSi6Cu4 alloy as a composite matrix and of composites with 8% vol. of graphite particles was investigated. The corrosion experiments were performed over a range of elevated temperatures and were carried out in sea water (3.5%NaCl solution. We have focused our attention to the determination of the mode of corrosion attack and to the determination of the rate ofcorrosion and other corrosion characteristics. Both as-cast and annealed matrix and composite specimens were tested, as well as the99.9% as-cast aluminium for comparison. Corrosion behaviour of the materials was assessed by the corrosion potential (Ec and bypotentiodynamic (polarization curves. As expected, composite is less corrosion resistant than the matrix alloy. In addition to pitting,a severe galvanic corrosion occurs as a result of galvanic couple aluminium/graphite formation. Corrosion potentials imply that examinedmaterials would be sufficiently resistant in non or slightly oxidizing solutions without dissolved oxygen. All studied materials corrode very slowly at potentials negative to corrosion potential, while at potentials positive to corrosion potential the corrosion rate goes up by 1 or 2 orders.

  12. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  13. A TEM Study on the Microstructure of Fine Flaky Graphite

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Horsewell, Andy

    In this investigation the microstructure of the graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. Based on this information, growth models for the platelets in the fine graphite flakes in cast iron are considered. Detailed crystallographic analysis...... of the defects observed such as multiple twin boundaries and possible spiral growth configurations are required...

  14. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  15. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    Maj M.

    2013-03-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

  16. On the stable eutectic solidification of iron–carbon–silicon alloys

    International Nuclear Information System (INIS)

    Stefanescu, Doru M.; Alonso, Gorka; Larrañaga, Pello; Suarez, Ramon

    2016-01-01

    Extensive effort was expanded to elucidate the growth and morphology of the stable eutectic grains during early solidification of continuous cooled Fe–C–Si alloys. To this purpose, quenching experiments at successive stages during solidification have been carried out on five cast irons with various magnesium and titanium levels designed to produce graphite morphologies ranging from lamellar to mixed compacted–spheroidal. The graphite shape factors were measured on the metallographic samples, and their evolution as a function of the chemical composition and the solid fraction was analyzed. Extensive scanning electron microscopy was carried on to evaluate the change in graphite shape during early solidification, to establish the fraction of solid at which the transition from spheroidal-to-compacted-to-lamellar graphite occurs, and to outline the early morphology of the eutectic grains. It was confirmed that solidification of Mg containing irons started with the development of spheroidal graphite even at Mg levels as low as 0.013 mass%. Then, as solidification proceeds, when some spheroids developed one or more tails (tadpole graphite), the spheroidal-to-compacted graphite transition occurs. The new findings were then integrated in previous knowledge to produce an understanding of the eutectic solidification of these materials. It was concluded that in hypoeutectic lamellar graphite iron austenite/graphite eutectic grains can nucleate at the austenite/liquid interface or in the bulk of the liquid, depending on the sulfur content and on the cooling rate. When graphite nucleation occurs on the primary austenite, several eutectic grains can nucleate and grow on the same dendrite. The primary austenite continues growing as eutectic austenite and therefore the two have the same crystallographic orientation. Thus, a final austenite grain may include several eutectic grains. In eutectic irons the eutectic grains nucleate and grow mostly in the liquid. The eutectic

  17. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  18. Influence of microscopic casting defects on fatigue endurance of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Nový František

    2018-01-01

    Full Text Available In this work, there are published results about fatigue endurance of ductile cast iron obtained at high-frequency sinusoidal cyclic push-pull loading in the ultra-high cycle fatigue region. The main attention was focused on the fatigue lifetime data scatter caused by the influence of microscopic casting defects (microshrinkages, microbubbles, microcracks, non-metallic inclusions and local clusters of big graphitic nodules.

  19. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra......Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  20. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  1. Microstructural study of the mechanical response of compacted graphite iron : An experimental and numerical approach

    NARCIS (Netherlands)

    Pina, J.C.; Kouznetsova, V.; Shafqat, S.; Hoefnagels, J.P.M.; Geers, M.G.D.

    2016-01-01

    Graphite is an important microstructural constituent in cast irons, which plays a key role in determining the material performance. This work aims at understanding the microstructural phenomena taking place in compacted graphite cast iron (CGI), and in particular the effect of the anisotropy of

  2. Fatigue behaviour of synthetic nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2015-01-01

    Full Text Available The paper shows the influence of charge composition on microstructure, fatigue properties and failure micromechanisms of nodular cast irons. The additive of metallurgical silicon carbide (SiC in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved. The best fatigue properties (fatigue strength were reached in the melt which was created by 60 % of steel scrap and 40 % of pig iron in the basic charge with SiC additive.

  3. Translation and rotation of a porous spheroid in a spheroidal container

    International Nuclear Information System (INIS)

    Saad, E.I.

    2010-01-01

    The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous spheroid in a concentric spheroidal container are studied analytically. The same small departure from a sphere is considered for each spheroidal surface. In the limit of small Reynolds number, the Brinkman equation for the flow inside the porous region and the Stokes equation for the outside region in their stream functions formulations and velocity components, which are proportional to the translational and angular velocities, respectively, are used. Explicit expressions are obtained for both inside and outside flow fields to the first order in a small parameter characterizing the deformation of the spheroidal surface from the spherical shape. The hydrodynamic drag force and couple exerted on the porous spheroid are obtained for the special cases of prolate and oblate spheroids in closed forms. The dependence of the normalized wall-corrected translational and rotational mobilities on permeability for a porous spheroid in an unbounded medium and for a solid spheroid in a cell on the particle volume fraction is discussed numerically and graphically for various values of the deformation parameter. In the limiting cases, the analytical solutions describing the drag force and torque or mobilities for a porous spheroid in the spheroidal vessel reduce to those for a solid sphere and for a porous sphere in a spherical cell. (author)

  4. A reliability based stress-life evaluation of aluminium-graphite particulate composites

    International Nuclear Information System (INIS)

    Achutha, M.V.; Sridhara, B.K.; Abdul Budan, D.

    2008-01-01

    Fatigue tests were conducted on sand cast aluminium-graphite composite specimens on Rotating Beam Fatigue Testing Machine with three different stress levels. Aluminium-graphite (LM 25-5% graphite) composite was processed by closed mould sand casting method. Three-stress level fatigue test program was planned for carrying out fatigue experiments. Three different stress levels selected for fatigue experiments were a fraction of ultimate tensile strength. Statistical design of fatigue experiments was carried out to determine the sample size at each stress level. Experimental results are presented in the form of stress-life (S-N) curves and reliability-stress-life (R-S-N) curves, which are helpful for designers. The S-N curve of the aluminium-graphite composite was compared with its matrix alloy LM 25. Comparison revealed that the fatigue behaviour of the aluminium-graphite composite is superior to that of the matrix alloy

  5. Performance of heavy ductile iron castings for windmills

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2010-05-01

    Full Text Available The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron (DI castings, typically applied in windmills industry, such as hubs and rotor housings. The requirements for high impact properties in DI at low temperatures are part of the EN-GJS-400-18U-LT (SRN 1563 commonly referred to as GGG 40.3 (DIN 1693. Pearlitic influence factor (Px and antinodularising action factor (K1 were found to have an important influence on the structure and mechanical properties, as did Mn and P content, rare earth (RE addition and inoculation power. The presence of high purity pig iron in the charge is extremely beneficial, not only to control the complex factors Px and K1, but also to improve the ‘metallurgical quality’ of the iron melt. A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation. Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings. The paper concluded on the optimum iron chemistry and melting procedure, Mg-alloys and inoculants peculiar systems, as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity, typically for this field.

  6. The influence of selected elements upon mechanical properties of ductile iron EN-GJS-500-7

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-10-01

    Full Text Available On the basis of chemical composition and mechanical properties analyses of EN-GJS-500-7 spheroidal graphite cast iron (as per PN-EN1563 standard, an attempt to determine the relations between the changes in the contents of elements included in alloy (such as: C, Si, Mn, P, S, Cr, Ni, Mo, Cu, Mg, and its tensile strength (Rm, proof stress (Rp0,2, elongation (A5 and hardness (HB, has been made. Cast iron subjected to the tests came from 291 heats, conducted in one of the domestic foundries. Cast iron was melted in medium-frequency induction furnace, spheroidized with bell method and modified with “in-stream” method.It results from conducted calculations that in a number of cases even small changes of the elements contents lead to statistically significant increases or decreases in examined mechanical properties of cast iron.

  7. Shrinkages in heavy-sized cast components of nodular cast iron – NDT and fatigue

    Directory of Open Access Journals (Sweden)

    Bleicher Christoph

    2014-06-01

    Full Text Available Material defects like shrinkages, dross, pores and chunky graphite are likely to occur in thick-walled castings and are a challenge for the foundries and their customers. These defects are mostly detected with handheld ultrasonic testing (UT or X-ray analysis. Within a research project done at the Fraunhofer Institute for Structural Durability and System Reliability LBF, the fatigue of Dross, shrinkages and chunky graphite in thick-walled cast material GGG-40 was estimated based on X-ray and fatigue tests on bending specimens. High fatigue reductions were received for the different material imperfections. Based on these impressions a further research project was executed at the Fraunhofer LBF to get an estimation of the informational value of UT in relation to fatigue of shrinkages in thick-walled castings of the material EN-GJS-400-18U-LT, EN-GJS-450-18 and EN-GJS-700-2. With the help of X-ray analysis and the UT technique Sampling Phased Array (SPA information about geometry and density were derived for a numerical analysis of shrinkages in thick-walled castings concerning fatigue. The following text summarizes the fatigue results achieved in the two research projects with the help of the X-ray and UT analysis.

  8. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  9. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.; Chen, D.; Zhang, X.B. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Z., E-mail: zhe.chen@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong, S.Y.; Wu, Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Ji, G. [Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d' Ascq 59655 (France); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-20

    Various graphite fillers, such as graphite particles, graphite fibers, graphite flakes and porous graphite blocks, have been successfully incorporated into an Al alloy by squeeze casting in order to fabricate graphite/Al composites with enhanced thermal conductivity (TC). Microstructural characterization by X-ray diffraction and scanning electron microscopy has revealed a tightly-adhered, clean and Al{sub 4}C{sub 3}-free interface between the graphite fillers and the Al matrix in all the as-fabricated composites. Taking the microstructural features into account, we generalized the corresponding predictive models for the TCs of these composites with the effective medium approximation and the Maxwell mean-field scheme, which both show good agreement with the experimental data. The roles of geometry and topology structures of graphite fillers on the TCs of the composites were further discussed. - Highlights: • The thermal enhancement of various graphite fillers with different topology structures. • Predictive models for the thermal conductivity of different topology structures. • Oriented flakes alignment has the high potentials for thermal enhancement.

  10. Evaluation of ac conductivity behaviour of graphite filled

    Indian Academy of Sciences (India)

    Composites of epoxy resin having different amounts of graphite particles have been prepared by solution casting method. Temperature dependence of dielectric constant, tan and a.c. conductivity was measured in the frequency range, 1–20 kHz, temperature range, 40–180°C for 0.99, 1.96 and 2.91 wt% graphite filled ...

  11. Změny koncentračního pole uhlíku, manganu a mědi v eutektické buňce tvárné litiny

    Czech Academy of Sciences Publication Activity Database

    Musilová, I.; Šenberger, J.; Stránský, K.; Levíček, P.; Doležal, P.; Million, Bořivoj

    2004-01-01

    Roč. 52, č. 9 (2004), s. 366-368 ISSN 0037-6825 R&D Projects: GA ČR GA106/04/1006; GA ČR GA106/04/0949 Institutional research plan: CEZ:AV0Z2041904 Keywords : spheroidal graphite cast iron * C, Mn, Cu * thermodynamic model Subject RIV: JG - Metallurgy

  12. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  13. Colour Metallography of Cast Iron - Chapter 1: Introduction (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper...... the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the vis- coplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain...

  15. Surface hardening of two cast irons by friction stir processing

    International Nuclear Information System (INIS)

    Fujii, Hidetoshi; Kikuchi, Toshifumi; Nogi, Kiyoshi; Yamaguchi, Yasufumi; Kiguchi, Shoji

    2009-01-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  16. Influence of Cast Iron Structure on the Glassmold Equipment Operational Defects

    Directory of Open Access Journals (Sweden)

    I. O. Leushin

    2015-01-01

    Full Text Available The growing demand for glass packaging contributes to the increase in production capacity of glass-container plants. Their equipment (cast iron glass-forming sets operates in continuous mode under complex cyclic thermal loads, which lead to the formation of operational defects on the working surfaces of details: graphite falling, cracks, oxidation, etc. Particular influence on the formation of these defects renders the microstructure of the material at the time of installation of details on the line.The article identifies the causes for formation of operational defects, formulates the ways to remedy them and prevent their occurrence.The authors studied details made from grey cast iron with flake and spherical forms of graphite. It is found that in the process of exploitation of the material is greatly reducing its hardness, strength, resistance to oxidation through of graphitization processes, chemical interaction of glass and iron, shock loads working edges. It is proved that the choice of initial microstructure of cast iron (the metal base, the graphite form, the presence of structural-free cementite exercises a determining influence on the durability of the mold tooling. The article proposes differential (layered arrangement of the graphite phase of cast iron in the alloy matrix (ferrite. This arrangement of high-carbon phase can simultaneously increase the thermal and oxidation resistance of the material. The formation of a layered structure of iron is produced by the intensification of the processes of alloying, modifying and directional freezing the melt.These data can be used to select the material of details by manufacturers glass-molds tooling.

  17. Friction and wear characteristics of Al-Cu/C composites synthesized using partial liquid phase casting process

    International Nuclear Information System (INIS)

    Ng, W.B.; Gupta, M.; Lim, S.C.

    1997-01-01

    During the sliding of aluminium alloys dispersed with graphite particulates, a layer of graphite is usually present at the sliding interface. This tribo-layer significantly reduces the amount of direct metal-to-metal contact, giving rise to low friction and a low rate of wear, making these composites useful candidate materials for anti-friction applications. Such self-lubricating composites are commonly fabricated via the squeeze casting, slurry casting or powder metallurgy route. These processes are expensive while the less-expensive conventional casting route is limited by the agglomeration of graphite particles in the composites, giving rise to poor mechanical properties. In this work, graphite particulate-reinforced Al-4.5 wt.% Cu composites with two effective graphite contents (Al-4.5 Cu/4.2 wt.% C and Al-4.5 Cu/6.8 wt.% C) were synthesized through an innovative partial liquid phase casting (rheocasting) technique, which is a modification of the conventional casting process. Unlubricated (without the use of conventional liquid lubrication) friction and wear performance of these composites as well as the un-reinforced aluminium alloy was determined using a pin-on-disk tester. The results revealed that the graphite-reinforced composites have a higher wear rate than the un-reinforced matrix alloy while their frictional characteristics are very similar within the range of testing conditions. Combining these with the information gathered from worn-surface examinations and wear-debris analysis, it is suggested that there exists a certain threshold for the amount and size of graphite particulates in these composites to enable them to have improved tribological properties. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  19. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  20. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary. - Mechanical properties under compressive stresses. - Material properties at elevated temperatures. - Influence of irradiation on mechanical and physical properties. - Production standards and quality control. The state of the research and the available data of the material testing program are reported. (Auth.)

  1. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary: mechanical properties under compressive stresses; material properties at elevated temperatures; influence of irradiation on mechanical and physical properties; production standards and quality control. The state of the research and the available data of the material testing program are reported

  2. A study on the effects of artifacts on fatigue limit of ductile cast iron with ferritic structure

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and Austempered Ductile cast Iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes (diameter≤0.4mm) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the √areas of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness develops through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron

  3. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  5. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  6. GRAPHITIZED STEELS IN MACHINE-BUILDING

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2010-01-01

    Full Text Available It is shown that graphitized steels in some cases due to its intermediate disposition by structure and characteristics among low-carbon steels and cast irons, can provide the necessary combination of characteristics of construction material and consequently to increase safety and durability of details of metallurgical and machinebuilding industry machines.

  7. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  8. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  9. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...

  10. Seal welded cast iron nuclear waste container

    International Nuclear Information System (INIS)

    Filippi, A.M.; Sprecace, R.P.

    1987-01-01

    An article of manufacture is described comprising a cast iron container having an opening at one end and a cast iron plug; a first nickel-carbon alloy fusion weldable insert surrounding the opening and metallurgically bonded to the cast iron container at the one end of the container; a second nickel-carbon alloy insert metallurgically bonded to the cast iron plug located within the opening and surrounded by the first insert the inserts being jointed by a fusion bond in the opening without heating the cast iron container to an austenite formation temperature thereby sealing the interior of the container from the exterior ambient outside the opening; the nickel-carbon alloy containing about 2 to 5 w% carbon; and both the nickel-carbon alloy insert and the cast iron container have a microstructure containing a graphite phase

  11. FINITE-ELEMENT MODELING OF HOT FORMING OF BUSHES MADE FROM HIGH-STRENGTH CAST IRON WITH A GRADIENT DISTRIBUTION OF GRAPHITE INCLUSIONS OVER CROSS-SECTION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2016-01-01

    Full Text Available Imitation modeling of direct hot extrusion of bushes made from high-strength cast iron is performed using finite-element method. The evolution of stress and strain fields during processing and the probability of crack formation are evaluated. The specific feature of the work is that during hot forming a special technique was used which permitted obtaining a gradient distribution of graphite inclusions over the cross-section of bushes. The results of modeling are used in certain technologies which are implemented in industrial practice.

  12. Advanced rotary engine components utilizing fiber reinforced Mg castings

    Science.gov (United States)

    Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.

    1986-01-01

    Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.

  13. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yanhui Liu

    2016-09-01

    Full Text Available In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM, X-ray diffractometer (XRD, and energy dispersive X-ray spectroscopy (EDS confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991 and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  14. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    Science.gov (United States)

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  15. On some perculiarities of microstructure formation and the mechanical properties in thick-walled pieces of cast iron and their application as reactor structural materials

    International Nuclear Information System (INIS)

    Janakiev, N.

    1975-01-01

    The following problems are dealt with in the present work: Microstructure formation and mechanical properties of thick-walled cast pieces, influence of neutron irradiation on the mechanical properties, manufacture of thick-walled castings for reactor construction, application of cast iron as reactor structural material. It is shown that graphite formation plays an extremely important role regarding the mechanical properties. A new construction for vertically stressed pressure vessels is given. These vessels can be fabricated mainly of cast iron with graphite spheres, cast steel, or a combination of both depending on the operational pressure. (GSCH) [de

  16. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  17. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  18. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Choi, J.O.; Kim, J.Y.; Choi, C.O.; Kim, J.K.; Rohatgi, P.K.

    2004-01-01

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  19. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  20. Differential thermo-resistance of multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Khoei, S.; Goliaei, B.; Neshasteh-Rize, A.

    2004-01-01

    Many cell lines, when cultured under proper conditions, can form three dimensional structures called multicellular spheroids. These spheroids resemble in vivo tumor models in several aspects. Therefore, studying growth characteristics and behavior of spheroids is beneficial in understanding the behavior of tumors under various experimental conditions. In this work, we have studied the growth properties, along with the thermal characteristics of spheroids of Du 145 human prostate carcinoma cell lines and compared the results to monolayer cultures of these cells. For this purpose, The Du 145 cells were cultured either as monolayer or spheroids. At various times after initiation of cultures, the growth properties of spheroids as a function of seeding cell number was determined. To evaluate the thermal characteristics of spheroids, they were heated at various stages of growth at 43 d ig c for various periods. The thermal response was judged by the survival fraction of colony forming cells in spheroids or monolayer culture following heat treatment. The results showed spheroids were more resistant to heat than monolayer cultures at all stages of development. However, the extent of this thermal resistant was dependent on the age, and consequently, the size of the spheroid. The result suggests that the differential thermal resistance of the spheroid cultures develop gradually during the growth of spheroid cultures of Du 145 cell line

  1. Theory and computation of spheroidal wavefunctions

    International Nuclear Information System (INIS)

    Falloon, P E; Abbott, P C; Wang, J B

    2003-01-01

    In this paper we report on a package, written in the Mathematica computer algebra system, which has been developed to compute the spheroidal wavefunctions of Meixner and Schaefke (1954 Mathieusche Funktionen und Sphaeroidfunktionen) and is available online (physics.uwa.edu.au/~falloon/spheroidal/spheroidal.html). This package represents a substantial contribution to the existing software, since it computes the spheroidal wavefunctions to arbitrary precision for general complex parameters μ, ν, γ and argument z; existing software can only handle integer μ, ν and does not give arbitrary precision. The package also incorporates various special cases and computes analytic power series and asymptotic expansions in the parameter γ. The spheroidal wavefunctions of Flammer (1957 Spheroidal Wave functions) are included as a special case of Meixner's more general functions. This paper presents a concise review of the general theory of spheroidal wavefunctions and a description of the formulae and algorithms used in their computation, and gives high precision numerical examples

  2. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  3. Plasma sprayed coatings on mild steel split moulds for uranium casting

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Padmanaban, P.V.A.; Venkatramani, N.; Singh, S.P.; Saha, D.P.; Date, V.G.

    2002-01-01

    High velocity high temperature plasma jets are used to deposit metals and ceramics on metallic substrates for oxidation and corrosion protection applications. Plasma sprayed ceramic coatings on metallic substrates are also used to prevent its reaction with molten metals. Metal-alumina duplex coatings on mild steel split moulds have been developed and successfully used for casting of uranium. Techno-economics of the coated moulds against the conventional graphite moulds are a major advantage. Mild steel moulds of 600 mm long and 75 mm in diameter have been plasma spray coated with alumina over a bond coat of molybdenum. In-plant tests showed an increase in number of castings per mould compared to the commonly used graphite moulds. (author)

  4. RF induction plasma spheroidization of tungsten powders

    International Nuclear Information System (INIS)

    Gu Zhogntao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2009-01-01

    Irregularly-shaped tungsten powders (average granular sizes of 512 μm) have been spheroidized by radio frequency (RF)induction plasma. The effects of feed rate, mode of material dispersion, particle size on spheroidization efficiency are investigated. Experimental results show that the spheroidization efficiency decreases rapidly when the feed rate increases to more than 95 g/min. Only 30% spheroidization efficiency is gained at the feed rate of 135.75 g/min. The spheroidization efficiency is also affected by the flow rate of carrier gas. When the flow rate of carrier gas is 0.12 m 3 /h, the dispersion effect is the best, and the spheroidization efficiency is almost 100%. The apparent density of tungsten powders increases a bit with the increase of spheroidization efficiency. And the particle size uniformity of spheroidized tungsten powders is in accordance with that of original powders. (authors)

  5. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Akdemir, Ahmet [Department of Mechanical Engineering, Selcuk University, Konya (Turkey); Kus, Recai [Department of Mechanical Education, Selcuk University, Konya (Turkey); Simsir, Mehmet, E-mail: msimsir@cumhuriyet.edu.tr [Department of Metallurgical and Materials Engineering, Cumhuriyet University, Kayseri Yolu 7. Km, 58140 Sivas (Turkey)

    2011-04-25

    Research highlights: {yields} Metal matrix composite (MMC) is an important structural material. {yields} Gray cast irons as a matrix material in MMC have more advantages than other cast irons. {yields} Interface greatly determines the mechanical properties of MMC. {yields} Interface formed by diffusion of carbon atoms. {yields} While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  6. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Akdemir, Ahmet; Kus, Recai; Simsir, Mehmet

    2011-01-01

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  7. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2013-02-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  8. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2012-01-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  9. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Matteo Benedetti

    2017-03-01

    Full Text Available In this paper, we explore the effect of a long solidification time (12 h on the mechanical properties of an EN-GJS-400-type ferritic ductile cast iron (DCI. For this purpose, static tensile, rotating bending fatigue, fatigue crack growth and fracture toughness tests are carried out on specimens extracted from the same casting. The obtained results are compared with those of similar materials published in the technical literature. Moreover, the discussion is complemented with metallurgical and fractographic analyses. It has been found that the long solidification time, representative of conditions arising in heavy-section castings, leads to an overgrowth of the graphite nodules and a partial degeneration into chunky graphite. With respect to minimum values prescribed for thick-walled (t > 60 mm EN-GJS-400-15, the reduction in tensile strength and total elongation is equal to 20% and 75%, respectively. The rotating bending fatigue limit is reduced by 30% with respect to the standard EN-1563, reporting the results of fatigue tests employing laboratory samples extracted from thin-walled castings. Conversely, the resistance to fatigue crack growth is even superior and the fracture toughness comparable to that of conventional DCI.

  10. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    and in practice—to be effective in most cases. But it has the disadvantage that the nucleation effect fades away over time. In particular, in heavy castings (slow cooling) this effect may cause non-uniform and unacceptable material properties in some parts of the casting. Nitrogen is also known to influence grey...... iron microstructure. Both graphite flake formation and matrix formation are influenced. However, the obtained effects differ considerably between different reported investigations. This investigation deals with the combined effect of nitrogen and boron and how it is possible to utilize this effect...... to enhance material properties in heavy grey iron castings. It is shown that the controlled additions of nitrogen and boron can be used to control the microstructure of thick section grey iron castings. A plausible theory for the formation of boron nitride nuclei effective for graphite growth is presented....

  11. Solution of diffusion equation in deformable spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Ayyoubzadeh, Seyed Mohsen [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Safari, Mohammad Javad, E-mail: iFluka@gmail.com [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vosoughi, Naser [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: > Developing an explicit solution for the diffusion equation in spheroidal geometry. > Proving an orthogonality relation for spheroidal eigenfunctions. > Developing a relation for the extrapolation distance in spheroidal geometry. > Considering the sphere and slab as limiting cases for a spheroid. > Cross-validation of the analytical solution with Monte Carlo simulations. - Abstract: The time-dependent diffusion of neutrons in a spheroid as a function of the focal distance has been studied. The solution is based on an orthogonal basis and an extrapolation distanced related boundary condition for the spheroidal geometry. It has been shown that spheres and disks are two limiting cases for the spheroids, for which there is a smooth transition for the systems properties between these two limits. Furthermore, it is demonstrated that a slight deformation from a sphere does not affect the fundamental mode properties, to the first order. The calculations for both multiplying and non-multiplying media have been undertaken, showing good agreement with direct Monte Carlo simulations.

  12. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...

  13. Flake graphite cast iron investigated by a magnetic method

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2014-01-01

    Roč. 50, č. 4 (2014), s. 6200404 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : cast iron * magnetic adaptive testing (MAT) * magnetic nondestructive evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  14. Změny koncentračního pole uhlíku, manganu a mědi v eutektické buňce litiny s kuličkovým grafitem

    Czech Academy of Sciences Publication Activity Database

    Musilová, I.; Šenberger, J.; Stránský, K.; Levíček, P.; Doležal, P.; Million, Bořivoj

    2005-01-01

    Roč. 53, 7-8 (2005), s. 313-318 ISSN 0037-6825 R&D Projects: GA ČR(CZ) GA106/05/0446; GA ČR(CZ) GA106/04/1006; GA ČR(CZ) GA106/04/0949; GA ČR(CZ) GA106/05/0446 Institutional research plan: CEZ:AV0Z20410507 Keywords : spheroidal graphite cast iron * effect of other elements on the iron * thermodynamics Subject RIV: JG - Metallurgy

  15. Influence of New Sol-gel Refractory Coating on the Casting Properties of Cold Box and Furan Cores for Grey Cast iron

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Bischoff, C

    2010-01-01

    New Sol-Gel coated sand cores made from coldbox and furan binder systems were investigated. The idea of the coating was to improve the surface quality of castings. Grey iron was cast on the cores in a sand casting process. The effect of the high temperature of the melt on the cores was assessed...... by measuring the heating curves. The viscosity of the coating, moisture content and the permeability of the cores were evaluated. The surface quality of the castings was investigated using SEM and OM. The results show that the moisture content of the cores affected the permeability. In furan cores the vapour...... transport zone (VTZ) when in contact with the melt is larger than it is in a coldbox which means the furan cores have higher moisture content. The new sol-gel coating has the potential for improving the surface quality of castings without negative effects on the graphite distribution. The surface...

  16. Acoustic scattering on spheroidal shapes near boundaries

    Science.gov (United States)

    Miloh, Touvia

    2016-11-01

    A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.

  17. Evaluation of metal matrix composite to replace spheroidal graphite iron for a critical component, steering knuckle

    International Nuclear Information System (INIS)

    Vijayarangan, S.; Rajamanickam, N.; Sivananth, V.

    2013-01-01

    Highlights: ► A FE model is developed to study the suitability of MMC for steering knuckle. ► Structural analysis of steering knuckle is carried out for 12 load cases. ► The cross section of the critical region is optimized using genetic algorithm. ► The life of the MMC (Al-10 wt.% TiC) knuckle is compared before and after optimization. ► MMC material could replace SG iron for automotive steering knuckle. -- Abstract: Steering knuckle is considered as one of the critical component in automotive suspension system. It is subjected to time varying loads during its service life, leading to fatigue failure. Therefore, its design is an important aspect in the product development cycle. Currently, spheroidal graphite (SG) iron is widely used to manufacture steering knuckle in the commercial automobile sector. It has been observed from the knuckle manufacturers that advanced materials and weight reduction are the real need for the current automobile industry. Due to their high strength to weight ratio, Metal Matrix Composites (MMCs) have the potential to meet the demanded design requirements of the automotive industry, compared to conventional materials. In this work, an aluminum alloy reinforced with titanium carbide particulate is suggested as an alternate material in place of existing SG iron. Structural analysis of steering knuckle made of alternate material Al-10 wt.% TiC was performed using commercial code ANSYS. The results of steering knuckle made of MMC (Al-10 wt.% TiC) were compared with that of aluminum alloy and SG iron steering knuckles for its performance based on real time load cases. It is found from this analysis, the knuckle strut region has maximum stress and deflection during its life time. The critical strut region cross section area of knuckle was analyzed and geometrically optimized for minimum bending stress and deflection using genetic algorithm available in MatLab. Since, the knuckle experiences time varying loads, fatigue analysis also

  18. Sputtering and emission intensity of cast irons with different metallurgical structures in a Grimm glow lamp

    International Nuclear Information System (INIS)

    Fujita, M.; Kashima, J.; Naganuma, K.

    1981-01-01

    The cathodic sputtering and emission intensities for the white, gray and malleable cast irons in the Grimm glow lamp are discussed. The intensities of the Fe 247.98-nm line for the samples of the three types depend linearly on the electrical power but the slopes of the plots differ. The intensity of the carbon line at 247.86 nm for malleable cast iron is weaker than those for the others. Sputtering is influenced by the form of the graphite, which can lead to distortion of the electrical field. Graphite on malleable cast iron is sputtered not only as atomic carbon but also as moieties containing several carbon atoms. The higher the supplied voltage, the shorter the time for the intensities of the Fe I and C I lines to reach constant values. (Auth.)

  19. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  20. Bar-spheroid interaction in galaxies

    Science.gov (United States)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  1. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  2. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    Science.gov (United States)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  3. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  4. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  5. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  6. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to determine the three-dimensional morphologies and inner structures of non-metallic inclusions in Al-killed steel, Si-killed steel, and ductile cast iron. The inclusions were first extracted without any damage to the inclusions, and then the collected inclusions were wrapped and cut through Cu ion deposition. The results revealed that the inclusions in Al-killed steel had an irregular morphology, that those in the Si-killed steel were mainly spherical, and that almost all the spheroidal graphite in the ductile cast iron featured a uniform globular morphology. In addition, nucleation was not observed in the inner structures of the inclusions in the Al-killed steel, while some dendritic or rod-like MnS phase precipitates appeared on the silicate inclusion surfaces, and some silicate-rich phases were detected in their inner matrix. For spheroidal graphite, rare-earth oxides (one particle or more were observed as nuclei in the center of almost every graphite particle. The formation and evolution of inclusions in these types of metals can be better understood by means of the two developed methods.

  7. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  8. Effect of Sr on the graphitisation of white cast iron

    International Nuclear Information System (INIS)

    Taran, Y.N.; Chernovol, A.; Kurepina, V.

    2001-01-01

    Graphitising annealing is the basis of the production of malleable cast iron. In this case, hypoeutectic low-silicon cast iron with a wide structure I use. A significant role in the precipitation of graphite may be played by the micropores of shrinkage energy and which usually formalism result of insufficient supply and feeding between the dendrite arms of the primary austenite and the eutectic component. The formation of additional graphitisation centres is strongly affected also by the preliminary low-temperature holding (or slow heating)

  9. The Tendencies of Piece Casting from Modified Irons

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2010-10-01

    Full Text Available In this paper we have presented the metalographic studies made on the grey cast irons treated with complex modifying substances, type FeSiMgRE (Mg alloy and their influence on the compactness degree of graphite separations. For research and experiments, a melt of grey iron was produced in an induction furnace of a capacity of 5to, starting with a metallic charge made from 100% synthetic pig iron. We realized eight practical charge made modification, by using different combinations of modifying substance and in different concentrations. The addition of carbon to the melt was performed using electrode graphite powder in the metallic charge.

  10. Cast Steel Filtration Trials Using Ceramic-Carbon Filters

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2014-12-01

    Full Text Available Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000°C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds.

  11. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    associated 3-spaces obtained as hypersurfaces t = constant, 3-spheroids, are suit- ... pressure. Considering the Vaidya–Tikekar [12] spheroidal geometry, ... a relativistic star in hydrostatic equilibrium having the spheroidal geometry of the .... K = 1, the spheroidal 3-space degenerates into a flat 3-space and when K = 0 it.

  12. Effect of Cu on the microstructural and mechanical properties of as-cast ductile iron

    International Nuclear Information System (INIS)

    Tiwari, Siddhartha; Das, J.; Ray, K.K.; Kumar, Hemant; Bhaduri, A.

    2012-01-01

    The application of ductile cast iron in the heavy engineering components like, cask for the storage and transportation of radioactive materials, demands high strength with improved fracture toughness in as cast condition. The mechanical properties and fracture toughness of as-cast ductile iron (DI) is directly related to its structure property which can be controlled by proper inoculation, alloying elements and cooling rate during solidification. The aim of the present investigation is to study the effect of varying amount of Cu (0.07%, 0.11%, and 0.16%) with 1% Ni in the microstructural development of as-cast ductile iron with emphasis on its mechanical properties and fracture toughness. Three different ductile irons have been prepared using induction furnace in batches of 300 kg following industrial practice. Microstructural features (amount of phases, morphology, size and count of graphite nodules) and mechanical properties (tensile strength and hardness) of prepared DI were determined using standard methods. Dynamic fracture toughness was measured using instrumented Charpy impact test on pre-cracked specimens following the standard ISO-FDIS-26843. Additionally, fracture surfaces of broken tensile and pre-cracked specimens were observed by SEM to study the micro-mechanism of fracture. The pearlite fraction and the nodule count are found to increase with increasing amount of copper in ferritic-pearlitic matrix. The hardness and strength values are found to increase with increasing amount of pearlite whereas fracture toughness decreases. Fractographs of broken specimens exhibited decohesion of graphite, crack propagation from graphite interface and transgranular fracture of ferrite. (author)

  13. SIZE AND SHAPE FACTOR EXTREMES OF SPHEROIDS

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the paper we consider random prolate (oblate spheroids and their random profiles. The limiting distribution of the extremal characteristics of the spheroids is related to the limiting distribution of the corresponding extremal characteristics of the profiles. The difference between the analysis of the prolate and oblate spheroids is discussed. We propose the possible application of the theoretical results.

  14. Analytical study of spheroidal dust grains in plasma

    International Nuclear Information System (INIS)

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-01-01

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain

  15. Technology for producing synthetic cast iron for nuclear power station parts

    International Nuclear Information System (INIS)

    Blozhko, N.K.; Kurochkin, V.S.; Narkevich, E.A.; Nikitin, L.A.; Petrov, L.A.

    1984-01-01

    A technology was developed and implemented for producing grades SCh-30 through SCh-40 synthetic cast iron in industrial-frequency induction melting furnaces. Alternative innoculations with ferrosilicon and silicocalcium and alloying with chrome and nickel were studied. The mechanical properties and structure of cast irons produced by various technological methods were studied. The research showed that the sector's plants, equipped with industrial-frequency induction furnaces, can produce high-quality synthetic cast irons containing flake graphite for nuclear-power-station casting, without the use of expensive innoculants. Careful observance of the melting and innoculating technologies makes it possible to produce SCh 40 cast iron, without cementite inclusions, by innoculating with FS 75 ferrosilicon in the amount of 0.7% of the total melt weight. Using an innoculant mixture of 0.2% FS 75 and 0.5% SK 30 and low alloying with nickel and chromium, the cast-iron strength can be increased to 440-450 MPa, although the danger of cementite inclusions increase

  16. Unsuccessful mitosis in multicellular tumour spheroids.

    Science.gov (United States)

    Molla, Annie; Couvet, Morgane; Coll, Jean-Luc

    2017-04-25

    Multicellular spheroids are very attractive models in oncology because they mimic the 3D organization of the tumour cells with their microenvironment. We show here using 3 different cell types (mammary TSA/pc, embryonic kidney Hek293 and cervical cancer HeLa), that when the cells are growing as spheroids the frequency of binucleated cells is augmented as occurs in some human tumours.We therefore describe mitosis in multicellular spheroids by following mitotic markers and by time-lapse experiments. Chromosomes alignment appears to be correct on the metaphasic plate and the passenger complex is well localized on centromere. Moreover aurora kinases are fully active and histone H3 is phosphorylated on Ser 10. Consequently, the mitotic spindle checkpoint is satisfied and, anaphase proceeds as illustrated by the transfer of survivin on the spindle and by the segregation of the two lots of chromosomes. However, the segregation plane is not well defined and oscillations of the dividing cells are observed. Finally, cytokinesis fails and the absence of separation of the two daughter cells gives rise to binucleated cells.Division orientation is specified during interphase and persists throughout mitosis. Our data indicate that the cancer cells, in multicellular spheroids, lose their ability to regulate their orientation, a feature commonly encountered in tumours.Moreover, multicellular spheroid expansion is still sensitive to mitotic drugs as pactlitaxel and aurora kinase inhibitors. The spheroids thus represent a highly relevant model for studying drug efficiency in tumours.

  17. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  18. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  19. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  20. Immobilization of individual nanotubes in graphitic layers for electrical characterization

    International Nuclear Information System (INIS)

    Roy, Debmalya; Tiwari, Neeru; Mukhopadhyay, K; Saxena, A K

    2014-01-01

    A simple route is followed to produce an abundance of individual carbon nanotubes (CNTs) immobilized in graphitic layers to counter the challenge of locating individual CNTs and restrict the lateral displacement of CNTs due to the high electrostatic force exerted by a scanning tunnelling microscope tip for electrical characterization. Graphitic layers are selected for the embedding matrix as graphite and the nanotubes have a similar work function and hence would not perturb the electrical configuration of the nanotube. Solvent mediated exfoliation of graphite layers to insert the nanotubes was preferred over oxidative expansion, as oxidation could perturb the electrical configuration of graphite. During the exfoliation of graphite the optimized amount of nanotubes was introduced into the medium such that an individual nanotube could be immobilized in few-layer graphene followed by precipitation and centrifugation. The dose and the time of sonication were optimized to ensure that damage to the walls of the nanotubes is minimized, although the ultrasonication causes scissoring of the nanotube length. This procedure for immobilizing nanotubes in graphitic layers would be equally applicable for functionalized CNTs as well. The capability of embedding individual nanotubes into a similar work function material in an organic solvent, which could then be transferred onto a substrate by simple drop casting or spin coating methods, has an added advantage in sample preparation for the STM characterization of CNTs. (paper)

  1. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  2. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  3. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  4. Radiobiological investigations of multicellular spheroids as an in vitro tumor model. 4

    International Nuclear Information System (INIS)

    Kopp, J.

    1978-01-01

    Multicellular spheroids of various size were irradiated with a single dose of X-rays or fast neutrons, incubated after irradiation in roller tubes for long time, and observed light-microscopically. The observed effects were found independent of the radiation used and dependent on dose (considering the RBE) and size of spheroids. After irradiation the spheroid surface showed a loosening phenomenon and the spheroid structure changed depending on dose in three various types. Up to the 10% survival fraction the spheroids recovered within some days to the structure of non-irradiated spheroids by the growth of the surviving cells. After higher doses single surviving cells inside the dead spheroid material seemed to migrate from the inner hypoxic into the rim zone. They can start proliferation many days after irradiation leading to repopulation of irradiated spheroids. The volume changes of irradiated spheroids were also dose-dependent, but the measurement of spheroid volume seems to be of limited value for predicting the effectiveness of irradiation because the spheroid volume of irradiated spheroids is not proportional to the number of cells per spheroid. (author)

  5. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  6. Casting traceability with direct part marking using reconfigurable pin-type tooling based on paraffin–graphite actuators

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Lenau, Torben Anker

    2012-01-01

    Green sand moulding machines for cast iron foundries are presently unable to uniquely identify individual castings. An insert tool concept is developed and tested via incremental mock-up development. The tool is part of the pattern plate and changes shape between each moulding, thus giving each...... mould a unique ID by embossing a Data Matrix symbol into the sand. In the process of producing the mould, each casting can be given a unique (DPM), enabling part tracking throughout the casting's life cycle. Sand embossing is achieved with paraffin-actuated reconfigurable pin-type tooling under...... simulated processing conditions. The marker geometry limitations have been tested using static symbol patterns, both for sand embossing and actual casting marking. The marked castings have successfully been identified with decoding software. The study shows that the function of each element...

  7. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  8. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  9. Cellular automaton modelling of ductile iron microstructure in the thin wall casting

    International Nuclear Information System (INIS)

    Burbelko, A A; Gurgul, D; Kapturkiewicz, W; Górny, M

    2012-01-01

    The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration.

  10. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-01-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...

  11. Digital microfluidics for automated hanging drop cell spheroid culture.

    Science.gov (United States)

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  12. Development of controlled release spheroids using Buchananiacochinchinesis gum

    Directory of Open Access Journals (Sweden)

    Narayan Babulal Gaikwad

    2013-03-01

    Full Text Available Chirauli nut gum was isolated from the bark of Buchanania cochinchinesis (fam. Anacadiacea and was used as a release modifier for the preparation of Diclofenac sodium spheroids using the extrusion spheronization technique. The process was studied for the effects on variables when making spheroids with satisfactory particle shape, size and size distribution. The prepared spheroids were characterized for surface morphology, qualitative surface porosity, friability, bulk density and flow properties. In vitro studies demonstrated that the release exhibited Fickian diffusion kinetics which was confirmed by the Higuchi and the Korsmeyer-Peppas models. The physico-chemical parameters of the gum could be correlated to the in vitro dissolution profile of the spheroids. The spheroids were not able to sustain the drug releases over 12 hours. A greater concentration of Chirauli nut gum and a process that can accommodate such greater concentrations may produce a formulation capable of significant sustained release.

  13. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    International Nuclear Information System (INIS)

    Guo Qingchun; Zhou Hong; Wang Chengtao; Zhang Wei; Lin Pengyu; Sun Na; Ren Luquan

    2009-01-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  14. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    Science.gov (United States)

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  15. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  16. Cell shedding from X-irradiated multicellular spheroids of human lung carcinomas

    International Nuclear Information System (INIS)

    Sakata, K.; Okada, S.; Suzuki, N.; Majima, H.

    1991-01-01

    We studied the effect of radiation on cell shedding from the surface of multicellular spheroids. Spheroids were produced from two human lung cell lines, one adenocarcinoma (LCT1) and the other small cell carcinoma (LCT2), by using a liquid overlay culture technique. The number of cells shed from both kinds of spheroids did not change significantly when they were irradiated. The number of clonogenic cells shed from both kinds of irradiated spheroids decreased sharply as the dose of irradiation increases. There were no significant differences in clonogenic cell shedding per spheroid between LCT1 and LCT2 spheroids. 400 μm spheroids were more radioresistant to inhibition of clonogenic cell shedding than 250 μm spheroids. Shed cells were more radiosensitive than speroid cells. In these experiments, we did not obtain any results indicating that radiation enchances metastasis. (orig.) [de

  17. Implications of the dwarfs spheroidal galaxy mass-metallicity relation

    International Nuclear Information System (INIS)

    Smith, G.H.

    1985-01-01

    The properties of the mass-metallicity relation among dwarf spheroidal galaxies are discussed in terms of a model which assumes that the internal chemical evolution of the dwarf spheroidals was promoted by supernova activity. The model can be used to explain the observed dwarf spheroidal mass-metallicity relation assuming the present mass of these systems M sub s is proportional to their initial masses M as M sub s varies according to a power-law index of exp 7/4. It is inferred from the power-law dependence of M on the proto-cloud radius that the most massive dwarf spheroids were formed from the densest clouds. The observed slope of the mass-metallicity relation for dwarf spheroidal galaxies is found to be significantly different from theoretical estimates of this slope for elliptical galaxies. It is suggested that the difference may imply that spheroidal dwarfs and elliptical galaxies had different formation histories, confirming Kormendy's (1985) observations of differences in the brightness and luminosity trends. 54 references

  18. Repair during multifraction exposures: spheroids versus monolayers

    International Nuclear Information System (INIS)

    Durand, R.E.

    1984-01-01

    Many type of mammalian cells, when grown in culture as multicell spheroids, display an increased ability to accumulate and repair sublethal radiation damage which has been called the ''contact effect''. Since this effect has the potential to markedly modify the multifraction radiation response of cells in V79 spheroids relative to cells in monolayer cultures, an investigation was made of regimens ranging from 1 to 100 fractions. Effective dose rates were chosen near 1 Gy h -1 to inhibit cell progression and thus simplify analysis of the results. As expected, larger doses per fraction produced more net cell killing in both systems than lower doses per fraction. Additionally, less killing of spheroid cells was observed in all regimens, in accord with their greater potential for repair. However, when the data were expressed as isoeffect curves, the spheroid and monolayer curves converged as the number of fractions increased. Thus, quite similar inherent sensitivity and repair capabilities would be predicted for ultra-low doses per fraction. High precision techniques for defining survival after doses of radiation from 0.2 to 1 Gy were, however, still able to demonstrate a survival advantage for cells grown as spheroids. (author)

  19. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  20. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  1. Magnetohydrodynamic equilibrium with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Chiyoda, Katsuji; Hirota, Isao.

    1983-01-01

    The Grad-Shafranov equations for an oblate and a prolate spheroidal plasmas are solved analytically under the assumptions, Bsub(phi) = 0 and dp/dpsi = constant. Here Bsub(phi) is the toroidal magnetic field, p is the kinetic pressure, and psi is the magnetic flux function. The plasmas in magnetohydrodynamic equilibrium are shown to be toroidal. The equilibrium magnetic-field configurations outside the spheroidal plasmas are considerably different from that of a spherical plasma. A line cusp or two point cusps appear outside the oblate or the prolate spheroidal plasma, respectively. (author)

  2. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    Science.gov (United States)

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. © 2015 The Authors. Anatomia, Histologia, Embryologia Published by Blackwell Verlag GmbH.

  3. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L

    1999-01-01

    , and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level...... in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....

  4. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  5. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  6. Self-assembly of tissue spheroids on polymeric membranes.

    Science.gov (United States)

    Messina, Antonietta; Morelli, Sabrina; Forgacs, Gabor; Barbieri, Giuseppe; Drioli, Enrico; De Bartolo, Loredana

    2017-07-01

    In this study, multicellular tissue spheroids were fabricated on polymeric membranes in order to accelerate the fusion process and tissue formation. To this purpose, tissue spheroids composed of three different cell types, myoblasts, fibroblasts and neural cells, were formed and cultured on agarose and membranes of polycaprolactone (PCL) and chitosan (CHT). Membranes prepared by a phase-inversion technique display different physicochemical, mechanical and transport properties, which can affect the fusion process. The membranes accelerated the fusion process of a pair of spheroids with respect to the inert substrate. In this process, a critical role is played by the membrane properties, especially by their mechanical characteristics and oxygen and carbon dioxide mass transfer. The rate of fusion was quantified and found to be similar for fibroblast, myoblast and neural tissue spheroids on membranes, which completed the fusion within 3 days. These spheroids underwent faster fusion and maturation on PCL membrane than on agarose, the rate of fusion being proportional to the value of oxygen and carbon dioxide permeances and elastic characteristics. Consequently, tissue spheroids on the membranes expressed high biological activity in terms of oxygen uptake, making them more suitable as building blocks in the fabrication of tissues and organs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. The EC CAST project (carbon-14 source term)

    International Nuclear Information System (INIS)

    Williams, S. J.

    2015-01-01

    Carbon-14 is a key radionuclide in the assessment of the safety of underground geological disposal facilities for radioactive wastes. It is possible for carbon-14 to be released from waste packages in a variety of chemical forms, both organic and inorganic, and as dissolved or gaseous species The EC CAST (CArbon-14 Source Term) project aims to develop understanding of the generation and release of carbon-14 from radioactive waste materials under conditions relevant to packaging and disposal. It focuses on the release of carbon-14 from irradiated metals (steels and zirconium alloys), from irradiated graphite and from spent ion-exchange resins. The CAST consortium brings together 33 partners. CAST commenced in October 2013 and this paper describes progress to March 2015. The main activities during this period were reviews of the current status of knowledge, the identification and acquisition of suitable samples and the design of experiments and analytical procedures. (authors)

  8. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Directory of Open Access Journals (Sweden)

    J. Dočekal

    2008-07-01

    Full Text Available The contribution is focused on mapping of mechanical properties using methods of non-destructive structuroscopy of cast irons, which are a result of research at TU of Liberec and Institute of Physics of ASCR. Investigated samples become from melts of FOCAM s.r.o Olomouc Foundry shop. It compares data of mechanical properties obtained using ultrasound method with data from magnetic spot method and MAT. These are interpreted by mathematic models applicable in practice. In the following it concerns to derivation of loading tensile curve method, which can be used to obtain yield and fatigue strength limits even for cast irons with flake graphite. In spite of promising results reported by literature the experiments are bothered with error. This method can be applied to structure checking both before casting and at vendor inspection of castings.

  9. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 ..mu..m to over 900 ..mu..m in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables.

  10. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    International Nuclear Information System (INIS)

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 μm to over 900 μm in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables

  11. Media additives to promote spheroid circularity and compactness in hanging drop platform.

    Science.gov (United States)

    Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi

    2015-02-01

    Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.

  12. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.

    Directory of Open Access Journals (Sweden)

    Francesca Oltolina

    Full Text Available A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM. We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.

  13. Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets

    KAUST Repository

    Ansari, Seema; Kelarakis, Antonios; Estevez, Luis; Giannelis, Emmanuel P.

    2010-01-01

    Graphite oxide-Nafion hybrids with a high degree of alignment are cast from aqueous solution in the absence of any external field and reduced in situ by exposure to hydrazine to produce graphene-Nafion hybrids. Dramatic enhancement of electrical

  14. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  15. The Andromeda Dwarf Spheroidal Galaxies

    OpenAIRE

    Armandroff, Taft E.; Da Costa, Gary S.

    1998-01-01

    Our current knowledge of M31's dwarf spheroidal companions is reviewed. Two topics of recent interest constitute the bulk of this review. First, color-magnitude diagrams reaching below the horizontal branch have been constructed for two M31 dwarf spheroidals based on images from HST/WFPC2. The horizontal branches are predominantly red in both galaxies, redder than expected for their metallicity based on Galactic globular clusters. Thus, the second parameter effect is seen in the M31 halo. Sec...

  16. Effect of graphite loading on the electrical and mechanical properties of Poly (Ethylene Oxide)/Poly (Vinyl Chloride) polymer films

    Science.gov (United States)

    Hajar, M. D. S.; Supri, A. G.; Hanif, M. P. M.; Yazid, M. I. M.

    2017-10-01

    In this study, films consisting of a blend of poly (ethylene oxide)/poly (vinyl chloride) (PEO/PVC) and a conductive filler, graphite were prepared and characterized for their mechanical and electrical properties. Solid polymer blend films based on PEO/PVC (50/50 wt%/wt%) with different graphite loading were prepared by using solution casting technique. Electrical conductivity results discovered the conductivity increased with increasing of filler loading. However, increasing amount of graphite loading led to a decreased in tensile strength and young’s modulus of PEO/PVC/Graphite polymer films. The dispersion of graphite and mechanism of conductive path in the polymer films were also investigated by scanning electron microscopy (SEM). The morphology of the PEO/PVC/Graphite polymer films shows that agglomeration occurred to complete the connection of conductive path, thus improving the conductivity behavior of the polymer films.

  17. Electrical Characterization of Graphite/InP Schottky Diodes by I-V-T and C-V Methods

    Science.gov (United States)

    Tiagulskyi, Stanislav; Yatskiv, Roman; Grym, Jan

    2018-02-01

    A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I-V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current-voltage and capacitance-voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.

  18. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Wolfgang H Cerwinka

    2012-01-01

    Full Text Available To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  19. Biomaterial Substrate-Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering.

    Science.gov (United States)

    Tseng, Ting-Chen; Wong, Chui-Wei; Hsieh, Fu-Yu; Hsu, Shan-Hui

    2017-12-01

    Three-dimentional (3D) multicellular aggregates (spheroids), compared to the traditional 2D monolayer cultured cells, are physiologically more similar to the cells in vivo. So far there are various techniques to generate 3D spheroids. Spheroids obtained from different methods have already been applied to regenerative medicine or cancer research. Among the cell spheroids created by different methods, the substrate-derived spheroids and their forming mechanism are unique. This review focuses on the formation of biomaterial substrate-mediated multicellular spheroids and their applications in tissue engineering and tumor models. First, the authors will describe the special chitosan substrate-derived mesenchymal stem cell (MSC) spheroids and their greater regenerative capacities in various tissues. Second, the authors will describe tumor spheroids derived on chitosan and hyaluronan substrates, which serve as a simple in vitro platform to study 3D tumor models or to perform cancer drug screening. Finally, the authors will mention the self-assembly process for substrate-derived multiple cell spheroids (co-spheroids), which may recapitulate the heterotypic cell-cell interaction for co-cultured cells or crosstalk between different types of cells. These unique multicellular mono-spheroids or co-spheroids represent a category of 3D cell culture with advantages of biomimetic cell-cell interaction, better functionalities, and imaging possibilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A German research project about applicable graphite cutting techniques

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Bach, F.W.; Wilk, P.

    2001-01-01

    In Germany, too, quite large quantities of irradiated nuclear graphite, used in research and prototype reactors, are waiting for an environmental way of disposal. While incineration of nuclear graphite does not seem to be a publicly acceptable way, cutting and packaging into ductile cast iron containers could be a suitable way of disposal in Germany. Nevertheless, the cutting of graphite is also a very difficult technique by which a large amount of secondary waste or dust might occur. An applicable graphite cutting technique is needed. Therefore, a group of 13 German partners, consisting of one university, six research reactor operators, one technical inspection authority, three engineering companies, one industrial cutting specialist and one commercial dismantling company, decided in 1999 to start a research project to develop an applicable technique for cutting irradiated nuclear graphite. Aim of the project is to find the most suitable cutting techniques for the existing shapes of graphite blocks with a minimum of waste production rate. At the same time it will be learned how to sample the dust and collect it in a filter system. The following techniques will be tested and evaluated: thermal cutting, water jet cutting, mechanical cutting with a saw, plasma arc cutting, drilling. The subsequent evaluation will concentrate on dust production, possible irradiation of staff, time and practicability under different constraints. This research project is funded by the German Minister of Education and Research under the number 02 S 7849 for a period of two years. A brief overview about the work to be carried out in the project will be given. (author)

  1. Coulomb energy of uniformly charged spheroidal shell systems.

    Science.gov (United States)

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  2. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  3. Shaping the Microstructure of Cast Iron Automobile Cylinder Liners Aimed at Providing High Service Properties

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2015-06-01

    Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.

  4. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were

  5. EFFECT OF ALLOYING ON TEMPERATURE OF TRANSFORMATION «PEARLITE – AUSTENITE» IN COMPLEX-ALLOYED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    T. V. Pastukhova

    2014-11-01

    Full Text Available Purpose. Pearlite is not accepted in the microstructure of wear resistant steels and cast irons. To prevent the pearlite by means of appropriate selection of mode of quenching requires the knowledge of the temperature of the critical points Ac1 and Ac3 for various steels and cast irons. Purpose of work is determine the effect of V (5-10% and Cr (up to 9% on the temperature range of the phase-structural transformation "pearlite®austenite in the complex-alloyed V-Cr-Mn-Ni white cast irons with spheroidal vanadium carbides. Methodology. Nine Mg-treated cast irons smelted in laboratory furnace were used for investigation. The metallographic and optical dilatometric analysis methods as well as energy-dispersive spectroscopy were used. Findings. It is shown that in irons studied the critical point Ac1 is in a temperature range from 710-780 °C (lower limit up to 730-850 °C (upper limit. The data on the concentrations of chromium and vanadium in a matrix of iron are presented, the regression equation describing the effect of vanadium and chromium on the temperature limits of the transformation «pearlite ® austenite» are obtained. Originality. It is shown that increase the chromium content leads to growth of lower and upper limits of the temperature interval of transformation "pearlite ® austenite"; vanadium increases only the upper limit of the range. It was found that the effect of chromium on the critical point Ac1 is attributed to its solubility in the metallic matrix (concentration of Cr in the austenite reaches 7%; vanadium, due to its slight dissolution in the matrix (vanadium content does not exceed 1.75%, affects the critical point indirectly by increasing of chromium concentration in the matrix due to enhanced carbon sequestration in VC carbides. Practical value. The temperature ranges of heating for quenching of V-Cr-Mn-Ni cast irons with spheroidal vanadium carbides, which provides the formation of austenitic-martensitic matrix without

  6. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity

    Science.gov (United States)

    Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta

    2016-01-01

    Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944

  7. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    Science.gov (United States)

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model

  8. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  9. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  10. OBSERVATION OF FATIGUE CRACK PATHS IN NODULAR CAST IRON AND ADI MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2009-07-01

    Full Text Available When speaking about quality of construction materials, fatigue crack propagation resistance is one of the most important considered properties. That is essentially influenced by character of matrix. Here presented contribution deals with the fatigue crack propagation mode through the matrix of as-cast nodular cast iron (NCI and austempered ductile iron (ADI, whereas influence of microstructure has been considered and discussed. Experimental materials used in presented contribution were pearlitc-ferritic NCI and heat treated ADI 800. Pearlitic-ferritic NCI was used as the base for ADI production. Experiments were performed on mini round compact tension (RCT specimens using an Amsler vibrophore. Fatigue crack paths in both materials were investigated and compared. Light microscopy was used to analyze the microstructure, crack initiation and propagation within broken specimens. In both tested materials fatigue cracks always initiated at graphite-matrix interface, while graphite nodules remained generally unbroken, eventually only surface of nodules was damaged. Though, comparing two materials with different microstructures, the diversity of fatigue crack propagation modes at high deltaK and low deltaK was observed.

  11. Formation of microstructure and properties on hot working and heat treatment of high strength modular cast iron

    International Nuclear Information System (INIS)

    Trajno, A.I.; Yusupov, V.S.; Kugushin, A.A.

    1999-01-01

    The possibility of plastic deformation of high strength modular cast iron (HSNCI) is under study. The microstructure and mechanical properties of hot worked and heat treated cast iron are investigated for the composition, %: Fe - 2.9 C - 2.4 Si - 0.7 Ni - 0.05 Mg - 0.04 Ce. It is stated that HSNCI can withstand various types of hot working without fracturing. Graphite inclusions lose their modular shape irreversibly during plastic deformation. Subsequent heat treatment affects the metal matrix only. The heating in oxidizing environment is noted to result in cast iron surface decarbonization [ru

  12. Oxygenation and response to irradiation of organotypic multicellular spheroids of human glioma.

    Science.gov (United States)

    Sminia, Peter; Acker, Helmut; Eikesdal, Hans Petter; Kaaijk, Patricia; Enger, Per øvind; Slotman, Ben; Bjerkvig, Rolf

    2003-01-01

    Investigation of the oxygenation status of organotypic multicellular spheroids (OMS) and their response to irradiation. Tumour specimens of glioblastoma multiforme patients (n = 16) were initiated as OMS. Following 20 Gy gamma-irradiation, the cell migratory capacity was evaluated. Spheroid oxygenation was determined by micro-electrode pO2 measurements and pimonidazole immunostaining. Spheroids prepared from established human glioma cell lines were used as a reference. Irradiation inhibited spheroid outgrowth by 12 to 88% relative to the non-irradiated controls. A large interpatient variation was noticed. Oxygen measurements revealed a gradual decrease in pO2 level from the periphery to the core of the spheroids, but the pO2 values remained within an oxygenated range. However, in the cell line spheroids an intermediate layer of hypoxia surrounding the central core was observed. Cell line spheroids with a hypoxic cell fraction and well-oxygenated OMS both show high resistance to irradiation, indicating that hypoxia may not be the biological factor determining the radioresistance of glioma spheroids in vitro.

  13. Variable Stars in the M31 Dwarf Spheroidal Companion Cassiopeia

    Science.gov (United States)

    Pritzl, Barton J.; Armandroff, T. E.; Jacoby, G. H.; Da Costa, G. S.

    2007-12-01

    Dwarf spheroidal galaxies show very diverse star formation histories. For the Galactic dwarf spheroidal galaxies, a correlation exists between Galactocentric distance and the prominence of intermediate-age ( 2 - 10 Gyr) populations. To test whether this correlation exists for the M31 dwarf spheroidal galaxies, we observed the Cassiopeia (And VII) dwarf galaxy, which is one of the most distant M31 dwarf spheroidal galaxies. We will present the results of a variable star search using HST/ACS data, along with a preliminary color-magnitude diagram. From the RR Lyrae stars we can obtain an independent distance and metallicity estimate for the dwarf galaxy. These results will be compared to those found for the other M31 dwarf spheroidal galaxies.This research is supported in part by NASA through grant number GO-11081.11 from the Space Telescope Science Institute.

  14. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  15. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids.

    Science.gov (United States)

    Carlsson, J; Acker, H

    1988-11-15

    The pH gradients, oxygen partial-pressure gradients and growth curves were measured for 7 different types of spheroids. Growth curves were measured in liquid overlay culture and thereafter the spheroids were attached to cover glasses and transferred to a chamber for micro-electrode measurements. The spheroids were randomly divided for pH or pO2 measurements which then were made under conditions as identical as possible. The decreases in pO2 and pH, delta pO2 and delta pH were calculated as the difference between the values in the culture medium and the values 200 micron inside the spheroids. Each type of spheroid had a certain relation between delta pO2 and delta pH. The human colon carcinoma HT29, the mouse mammary carcinoma EMT6 and the hamster lung V79-379A spheroids had high values of the quotient delta pO2/delta pH. The human thyroid carcinoma HTh7 spheroids and the 3 types of human glioma spheroids had lower quotients. There was a tendency for fast-growing spheroids to have high quotients. Two extreme types of spheroids, HT29 (high quotient) and U-118 MG (low quotient) were analyzed for lactate production and oxygen consumption. The U-118 MG spheroids produced about 3 times more lactate and consumed about 3 times less oxygen than the HT29 spheroids. The differences in lactate production could not be explained by differences in the pyruvate Km values of lactate dehydrogenase. The results indicate that there are significant metabolic differences between the spheroid systems studied.

  16. Plasma spheroidization and cladding of powders

    Energy Technology Data Exchange (ETDEWEB)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-02-01

    With reference to experimental results for nickel and chromium alloys, it is shown that complex alloy powders can be spheroidized in plasma discharges using an argon plasma with hydrogen. The spheroidizing process is accompanied by the reduction of surface oxides, with uniform element distribution within the particles; the granulometric composition of the particles is preserved. It is also shown that plasma technology can be used for producing metal-clad oxide and carbide powders, which improve the performance of cermets and coatings.

  17. The effects of vanadium on the microstructure and wear resistance of centrifugally cast Ni-hard rolls

    International Nuclear Information System (INIS)

    Kang, Minwoo; Suh, Yongchan; Oh, Yong-Jun; Lee, Young-Kook

    2014-01-01

    Highlights: • V addition changed the pro-eutectic phase from austenite to vermicular (V,Nb)C. • Pro-eutectic (V,Nb)C particles were segregated to the inner part of the roll. • Wear loss was inversely proportional to MC fraction under the same graphite fraction. • Cementite particles acted as the initiation site and propagation path of cracks. • High-temperature wear sequence of centrifugally cast Ni-hard rolls was suggested. - Abstract: The effects of V on the microstructure and wear resistance of centrifugally cast Ni-hard rolls are investigated under a constant fraction of graphite using electron microscopes and a revolving disk-type high-temperature wear tester. The volume fraction of (V,Nb)C particles was increased at the expense of the volume fraction of cementite with an increase in the V concentration. However, the volume fraction of graphite was held nearly constant by controlling the concentration ratio of Si and Cr. As the V concentration was higher than 3 wt.%, the pro-eutectic phase was changed from austenite to (V,Nb)C carbide. The pro-eutectic vermicular (V,Nb)C particles were segregated to the inner part of the roll during centrifugal casting. The wear resistance was improved with an addition of V due to the high volume fractions of the coarse eutectic and pro-eutectic (V,Nb)C particles and the precipitation hardening of fine (V,Nb)C particles in the martensitic matrix. The worn surface showed that cementite particles acted as the initiation site and propagation route of cracks

  18. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  19. Correlation between grade of pearlite spheroidization and laser induced spectra

    Science.gov (United States)

    Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan

    2013-12-01

    Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941-289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization.

  20. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  1. CONCENTRIC MACLAURIN SPHEROID MODELS OF ROTATING LIQUID PLANETS

    International Nuclear Information System (INIS)

    Hubbard, W. B.

    2013-01-01

    I present exact expressions for the interior gravitational potential V of a system of N concentric constant-density (Maclaurin) spheroids. I demonstrate an iteration procedure to find a self-consistent solution for the shapes of the interfaces between spheroids, and for the interior gravitational potential. The external free-space potential, expressed as a multipole expansion, emerges as part of the self-consistent solution. The procedure is both simpler and more precise than perturbation methods. One can choose the distribution and mass densities of the concentric spheroids so as to reproduce a prescribed barotrope to a specified accuracy. I demonstrate the method's efficacy by comparing its results with several published test cases.

  2. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  3. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet

    International Nuclear Information System (INIS)

    Kumar, S.; Selvarajan, V.

    2008-01-01

    In this paper, the results of plasma spheroidization of iron powders using a DC non-transferred plasma spray torch are presented. The morphology of the processed powders was characterized through scanning electron microscopy (SEM) and optical microscopy (OM). The percentages of spheroidized powders were calculated by the shape factors such as the Irregularity Parameter (IP) and Roundness (RN). A maximum of 83% of spheroidization can be achieved. The spheroidization results are compared with the theoretical estimation and they are found to be in good agreement. The phase composition of the spheroidized powder was analyzed by XRD. The effect of plasma jet temperature and plasma gas flow rate on spheroidization is discussed. At low plasma gas flow rates and at high plasma jet temperatures, the percentage of spheroidization is high

  4. Short-term effects of radiation in gliolalstoma spheroids

    DEFF Research Database (Denmark)

    Petterson, Stine Asferg; Jakobsen, Ida Pind; Jensen, Stine Skov

    2016-01-01

    was to investigate the short-term effects of radiation of spheroids containing tumor-initiating stem-like cells. We used a patient-derived glioblastoma stem cell enriched culture (T76) and the standard glioblastoma cell line U87. Primary spheroids were irradiated with doses between 2 and 50 Gy and assessed after two...

  5. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  6. An injectable spheroid system with genetic modification for cell transplantation therapy.

    Science.gov (United States)

    Uchida, Satoshi; Itaka, Keiji; Nomoto, Takahiro; Endo, Taisuke; Matsumoto, Yu; Ishii, Takehiko; Kataoka, Kazunori

    2014-03-01

    The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Generating Chondromimetic Mesenchymal Stem Cell Spheroids by Regulating Media Composition and Surface Coating.

    Science.gov (United States)

    Sridharan, BanuPriya; Laflin, Amy D; Detamore, Michael S

    2018-04-01

    Spheroids of mesenchymal stem cells (MSCs) in cartilage tissue engineering have been shown to enhance regenerative potential owing to their 3D structure. In this study, we explored the possibility of priming spheroids under different media to replace the use of inductive surface coatings for chondrogenic differentiation. Rat bone marrow-derived MSCs were organized into cell spheroids by the hanging drop technique and subsequently cultured on hyaluronic acid (HA) coated or non-coated well plates under different cell media conditions. Endpoint analysis included cell viability, DNA and Glycosaminoglycan (GAG) and collagen content, gene expression and immunohistochemistry. For chondrogenic applications, MSC spheroids derived on non-coated surfaces outperformed the spheroids derived from HA-coated surfaces in matrix synthesis and collagen II gene expression. Spheroids on non-coated surfaces gave rise to the highest collagen and GAG when primed with medium containing insulin-like growth factor (IGF) for 1 week during spheroid formation. Spheroids that were grown in chondroinductive raw material-inclusive media such as aggrecan or chondroitin sulfate exhibited the highest Collagen II gene expression in the non-coated surface at 1 week. Media priming by growth factors and raw materials might be a more predictive influencer of chondrogenesis compared to inductive-surfaces. Such tailored bioactivity of the stem cell spheroids in the stage of the spheroid formation may give rise to a platform technology that may eventually produce spheroids capable of chondrogenesis achieved by mere media manipulation, skipping the need for additional culture on a modified surface, that paves the way for cost-effective technologies.

  8. Correlation between grade of pearlite spheroidization and laser induced spectra

    International Nuclear Information System (INIS)

    Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941–289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization. (paper)

  9. Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ya, Bin; Zhou, Bingwen; Yang, Hongshuo; Huang, Bingkun; Jia, Fei; Zhang, Xingguo, E-mail: zxgwj@dlut.edu.cn

    2015-07-15

    Highlights: • Adding MWCNTs in situ casting fabricating TiC/Ti6Al4V composites is first reported. • The solidification process of in situ casting TiC/Ti6Al4V composites is discussed. • Microstructure shows remarkable correlations with adding MWCNTS. • Strength and plasticity show remarkable correlations with adding MWCNTs. - Abstract: In this study, multi-walled carbon nanotubes (MWCNTs) were added as carbon sources to fabricate in situ casting TiC/Ti6Al4V (TC4) composites. The effects of MWCNTs on the microstructure and mechanical properties are studied. The composites are analyzed by X-ray diffraction, field-emission scanning electron microscope and electron probe microanalysis. The fracture behavior of TiC/TC4 composites are also studied. Smaller size of TiC particles and grain compared with TC4-graphite composites can be observed. The tensile strength of TC4-MWCNTs composites is about 1110.1 MPa, which is higher than that of TC4-graphite composites, about 1003.6 MPa. Fracture behavior also was changed by adding MWCNTs in situ casting TiC/TC4 composites.

  10. Interfacial Effects on the Thermal and Mechanical Properties of Graphite/Copper Composites. Final Contractor Report Ph.D. Thesis

    Science.gov (United States)

    Devincent, Sandra Marie

    1995-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of

  11. Development of lacrimal gland spheroids for lacrimal gland tissue regeneration.

    Science.gov (United States)

    Massie, Isobel; Spaniol, Kristina; Barbian, Andreas; Geerling, Gerd; Metzger, Marco; Schrader, Stefan

    2018-04-01

    Severe dry eye syndrome resulting from lacrimal gland (LG) dysfunction can cause blindness, yet treatments remain palliative. In vitro reconstruction of LG tissue could provide a curative treatment. We aimed to combine epithelial cells with endothelial cells and mesenchymal stem cells (MSCs) to form a 3D functional unit. Epithelial cells and MSCs were isolated from porcine LG; endothelial cells were isolated from human foreskin. MSCs were characterised (flow cytometry and differentiation potential assays). All 3 cell types were combined on Matrigel and spheroid formation observed. Spheroids were characterised [immunohistochemistry (IHC) and transmission electron microscopy] and function assessed (β-hexosaminidase assay). Spheroids were transferred to decellularised jejunum (SIS-Muc) in dynamic cultures for 1 week before further characterisation. MSCs did not express CD31 but expressed CD44 and CD105 and differentiated towards osteogenic and adipogenic lineages. Spheroids formed on Matrigel within 18 hr, contracting to ~10% of the well area (p function was increased in spheroids cf. monolayer controls (p function (p < .05), viability (p < .05), and proliferation decreased, whilst apoptosis increased. On SIS-Muc under dynamic culture, however, spheroids continued to proliferate to repopulate SIS-Muc. IHC revealed LG epithelial cells coexpressing pan-cytokeratin and lysozyme, as well as endothelial cells and MSCs and cells remained capable of responding to carbachol (p < .05). These spheroids could form the basis of a regenerative medicine treatment approach for dry eye syndrome. In vivo studies are required to evaluate this further. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Theoretic and Experimental Studies on the Casting of Large Die-Type Parts Made of Lamellar Graphite Grey Pig Irons by Using the Technology of Polystyrene Moulds Casting from Two Sprue Cups

    Directory of Open Access Journals (Sweden)

    Constantin Marta

    2012-01-01

    Full Text Available This paper presents a comparative analysis between the practical results of pig iron die-type part casting and the results reached by simulation. The insert was made of polystyrene, and the casting was downward vertical. As after the part casting and heat treatment cracks were observed in the part, it became necessary to locate and identify these fissures and to establish some measures for eliminating the casting defects and for locating them. The research method was the comparisons of defects identified through verifications, measurements, and metallographic analyses applied to the cast part with the results of some criteria specific to simulation after simulating the casting process. In order to verify the compatibility between reality and simulation, we then simulated the part casting respecting the real conditions in which it was cast. By visualising certain sections of the cast part during solidification, relevant details occur about the possible evolution of defects. The simulation software was AnyCasting, the measurements were done through nondestructive methods.

  13. Multicellular spheroids as an in vitro tumor model

    International Nuclear Information System (INIS)

    Kozubek, S.; Erzgraber, G.

    1982-01-01

    Experiments with fractionated irradiation of multicellular spheroids were performed. Our data as well as the data of other works have been evaluated by means of simple mathematical formulae on the basis of several hypothesis. The spheroids are shown to exhibit similar behaviour as in vivo carcinomas. They offer the possibility of investigation of quantitative correlations for practical purposes

  14. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  15. Effect of Graphite Nanosheets on Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate

    Directory of Open Access Journals (Sweden)

    Larissa Stieven Montagna

    2017-01-01

    Full Text Available The influence of different contents, 0.25, 0.50, and 1.00 wt%, of graphite nanosheets (GNS on the properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV nanocomposites obtained by solution casting method has been studied. GNS were prepared by three steps: intercalation (chemical exfoliation, expansion (thermal treatment, and the GNS obtainment (physical treatment by ultrasonic exfoliation. X-ray diffraction (XRD, Raman spectroscopy, and field emission gun-scanning electron microscopy (FE-SEM showed that the physical, chemical, and thermal treatments preserved the graphite sheets structure. XRD and Raman results also showed that GNS were dispersed in the PHBV matrix. The degree of crystallinity (Xc of the nanocomposites did not change when the graphite nanosheets were added. However, the GNS acted as nucleation agent for crystallization; that is, in the second heating the samples containing GNS showed two melting peaks. The addition the GNS did not change the thermal stability of the PHBV.

  16. A theoretical study of the spheroidal droplet evaporation in forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie, E-mail: leejay1986@163.com; Zhang, Jian

    2014-11-07

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet.

  17. A theoretical study of the spheroidal droplet evaporation in forced convection

    International Nuclear Information System (INIS)

    Li, Jie; Zhang, Jian

    2014-01-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet

  18. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading...... mesoscopic moduli in agreement with Young's modulus and Poisson's ratio recorded for common ferritic ductile iron grades. This suggests that graphite nodules may not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint....

  19. The sort of carburization and the quality of obtained cast iron

    Directory of Open Access Journals (Sweden)

    K. Janerka

    2008-12-01

    Full Text Available In the production of cast iron, the pig iron’s amount in charge material is more and more often limited, and replaced by steel scrap. That extorts the necessity of know-how the carburization and one is looking for carburizers, which ensure obtaining big carbon increment as quickly as possible with the high repeatability and the ones which ensure getting the adequate quality of cast iron. The object of presented research was definition of the influence of charge materials’ sort on the structure, course of solidification, and the effectiveness of process. The cast iron melts, which are presented below, are made only on the basis of steel scrap with portion of graphitoidal, coke and anthracite carburizers, which were added to the charge in solid. In the article one compared the carburizers in respect of their structure, chemical constitution and the effectiveness obtained during the carburization of liquid metal. The melting of cast iron, based on the special pig iron, was carried out as well. The course of melts, chemical constitution of obtained cast iron and its structure were presented. The comparison between quality distribution and the volume fraction of graphite in classes of size for the individual melts were achieved and the TDA curves were inserted.

  20. Investigation of Hydrogen and Nitrogen Content in Compacted Graphite Iron Production

    OpenAIRE

    Siafakas, Dimitrios

    2013-01-01

    The aim of this research, part of a wider program called SPOFIC, is to investigate how the casting procedure affects the concentration of hydrogen and nitrogen gases in Compacted Graphite Iron used for the production of truck cylinder blocks. Hydris equipment was used for the Hydrogen measurements and the Optical Emission Spectroscopy and combustion analysis methods were used for the nitrogen measurements. The experiment was performed in one of the cooperating foundries. It was found that Hyd...

  1. Degenerated graphite nodules influence on fatigue crack paths in a ferritic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-10-01

    Full Text Available ferritic to a completely pearlitic matrix, and they are widely used for many applications (e.g. wheels, gears, crankshafts in cars, exhaust manifolds, valves, flywheels, boxes bearings, hubs, shafts, valves, flanges, pipelines .... Considering the graphite elements, their morphology can be considered as degenerated when its nodularity is too low and this can be due to different causes (e.g., a partially failed nodularization process or a wrong inoculant. In this work, a ferritic DCI with degenerated nodules was obtained by means of an annealing treatment and the fatigue crack propagation resistance was investigated by means of fatigue crack propagation tests performed according to ASTM E647, focusing on the influence of degenerated graphite nodules on the fatigue crack paths. This analysis was performed both analysing the crack path profile by means of a scanning electron microscope (SEM and by means of a SEM fracture surfaces analysis

  2. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  3. Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%)Si-0.3% Mg alloys

    International Nuclear Information System (INIS)

    Shah, K.B.; Kumar, Sandeep; Dwivedi, D.K.

    2007-01-01

    In the present paper, influence of aging temperature during artificial age hardening treatment (T 6 ) of cast Al-(4, 12, 20%)Si-0.3% Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given age hardening treatment having sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 510 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 150, 170, 190, 210 and 230 deg. C for 12 h. Abrasive wear tests were conducted against of 320 grade SiC abrasive medium at 5 and 10 N normal loads. It was observed that the silicon content and aging temperature significantly affect the wear resistance. Increase in aging temperature improves the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic alloy under identical conditions. Optical microstructure study of alloys under investigation has shown that cast dendritic structure is destroyed besides the spheroidization of eutectic silicon crystals after the heat treatment. The extent of change in structure depends on aging temperature. Scanning electron microscopy (SEM) of wear surface was carried to analyze the wear mechanism

  4. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  5. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C...

  6. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence

    Directory of Open Access Journals (Sweden)

    Natasha S Lewis

    2017-04-01

    Full Text Available Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies.

  7. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  8. Off-center point explosion in a spheroid

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1978-01-01

    An off-center point explosion in a spheroid with exponential or Gaussian density distribution is investigated by applying the generalized Laumbach and Probstein method. For a typical example, we calculate the explosion in a spheroid with the eccentricity e = 0.7. If the separation distance between the center of the spheroid and the explosion point is larger than three times of the density scale height, the shock wave may almost propagate toward the direction of the minor axis of symmetry, within the polar angle of 30 0 . The shock envelope elongates toward the same direction and may form a polar jet and/or a tilted jet. But, in the case of an explosion in the equatorial plane (perpendicular to the minor axis of symmetry), two plasmas with the same form may be ejected into two different directions with the angle smaller than 180 0 . Explosion models of double radio sources and related objects are suggested. (author)

  9. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  10. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  11. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  12. Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2015-09-01

    Full Text Available The microstructural characteristics, mechanical and wear behaviour of Aluminium matrix hybrid composites reinforced with alumina, rice husk ash (RHA and graphite were investigated. Alumina, RHA and graphite mixed in varied weight ratios were utilized to prepare 10 wt% hybrid reinforced Al-Mg-Si alloy based composites using two-step stir casting. Hardness, tensile properties, scanning electron microscopy, and wear tests were used to characterize the composites produced. The results show that Hardness decreases with increase in the weight ratio of RHA and graphite in the composites; and with RHA content greater than 50%, the effect of graphite on the hardness becomes less significant. The tensile strength for the composites containing o.5wt% graphite and up to 50% RHA was observed to be higher than that of the composites without graphite. The toughness values for the composites containing 0.5wt% graphite were in all cases higher than that of the composites without graphite. The % Elongation for all composites produced was within the range of 10–13% and the values were invariant to the RHA and graphite content. The tensile fracture surface morphology in all the composites produced was identical characterized with the presence of reinforcing particles housed in ductile dimples. The composites without graphite exhibited greater wear susceptibility in comparison to the composite grades containing graphite. However the wear resistance decreased with increase in the graphite content from 0.5 to 1.5 wt%.

  13. Calculation of thermal stresses in graphite fuel blocks

    International Nuclear Information System (INIS)

    Lejeail, Y.; Cabrillat, M.T.

    2005-01-01

    This paper presents a parametric study of temperature and thermal stress calculations inside a HTGR core graphite block, taking into account the effect of fluence on the thermal and mechanical properties, up to 4. 10 21 n/cm 2 . The Finite Element model, realized with Cast3M CEA code, includes the effects of irradiation creep, which tends to produce secondary stress relaxation. Then, the Weibull weakest link theory is recalled, evaluating the possible effects of volume, stress field distribution (loading factor), and multiaxiality for graphite-type materials, and giving the methodology to compare the stress to rupture for the structure to the one obtained from characterization, in the general case. The maximum of the Weibull stress in Finite Element calculations is compared to the value for tensile specimens. It is found that the maximum of the stress corresponds to the end of the irradiation cycle, after reactor shutdown, since both thermal conductivity and Young's modulus increase with time. However, this behaviour is partly counterbalanced by the increase of material strength with irradiation. (authors)

  14. Low-temperature plasma spheroidizing of polydisperse powders of refractory materials

    International Nuclear Information System (INIS)

    Tsymbalist, M.M.; Rudenskaya, N.A.; Kuz'min, B.P.; Pan'kov, V.A.

    2003-01-01

    A model is developed for heating and melting of a spherical particle, when powder processing in low temperature plasma, with the aim of estimation of the dependence of the degree of fusion on particle size for various materials. Spheroidizing of various refractory material powders close in shape and size composition is experimentally performed. Experimental and calculation estimates of spheroidizing criteria for the materials studied are in a satisfactory agreement. The influence of basic physical properties of refractory materials and plasma processing parameters on the degree of particle spheroidizing is analyzed [ru

  15. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    Science.gov (United States)

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-05

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.

  16. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  17. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids.

    Science.gov (United States)

    Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K

    2017-03-03

    Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 5 to 1 × 10 6  cells/mm 3 . Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.

  18. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.

    Science.gov (United States)

    Pettee, Krista M; Dvorak, Kaitlyn M; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2014-01-01

    Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and

  19. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.

    Directory of Open Access Journals (Sweden)

    Krista M Pettee

    Full Text Available Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer

  20. Hypoxic fraction and binding of misonidazole in EMT6/Ed multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Franko, A.J.

    1985-01-01

    Misonidazole has been shown to bind selectively to hypoxic cells in tissue culture and to cells which are presumed to be chronically hypoxic in EMT6 spheroids and tumors. Thus it has considerable potential as a marker of hypoxic cells in vivo. To further evaluate this potential EMT6/Ed spheroids were used to quantitate misonidazole binding under conditions which resulted in hypoxic fractions between 0 and 1. The patterns of binding of 14 C-labeled misonidazole determined by autoradiography were consistent with the regions of radiobiological hypoxia as predicted by oxygen diffusion theory. The overall uptake of 3 H-labeled misonidazole by spheroids correlated well with the hypoxic fraction, although binding to aerobic cells and necrotic tissue contributed appreciably to the total label in the spheroids. It is concluded that misonidazole is an excellent marker of hypoxia in EMT6/Ed spheroids at the microscopic level, and the total amount bound per spheroid provides a potentially useful measure of the hypoxic fraction

  1. COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2017-01-01

    Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products. 

  2. Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo.

    Science.gov (United States)

    Jung, Hong-Ryul; Kang, Hyun Mi; Ryu, Jea-Woon; Kim, Dae-Soo; Noh, Kyung Hee; Kim, Eun-Su; Lee, Ho-Joon; Chung, Kyung-Sook; Cho, Hyun-Soo; Kim, Nam-Soon; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2017-09-05

    We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial-mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.

  3. [Reparative and neoplastic spheroid cellular structures and their mathematical model].

    Science.gov (United States)

    Kogan, E A; Namiot, V A; Demura, T A; Faĭzullina, N M; Sukhikh, G T

    2014-01-01

    Spheroid cell structures in the cell cultures have been described and are used for studying cell-cell and cell- matrix interactions. At the same time, spheroid cell structure participation in the repair and development of cancer in vivo remains unexplored. The aim of this study was to investigate the cellular composition of spherical structures and their functional significance in the repair of squamous epithelium in human papilloma virus-associated cervical pathology--chronic cervicitis and cervical intraepithelial neoplasia 1-3 degree, and also construct a mathematical model to explain the development and behavior of such spheroid cell structure.

  4. Characterization of variants isolated from BCNU-treated 9L multicellular spheroids

    International Nuclear Information System (INIS)

    Hoff, M.H.B.; Deen, D.F.

    1984-01-01

    Multicellular spheroids of the 9L rat brain tumor cell line were treated with a single high-dose to produce cells of varying sensitivity. Treatment of 350-450 μm diameter 9L spheroids with 45 μM BCNU for 1 hr at 37 0 C produced 5 log cell kill. Some of the treated spheroids were dissociated immediately after treatment; others were dissociated after 1 wk. From these populations, twenty clones were selected and passaged as monolayers. Each clone was assayed at passage 2 for BCNU-induced damage using colony forming efficiency and sister chromatid exchange. 60% of the clones were resistant to BCNU, 15% were unchanged, and 15% appeared hypersensitive as compared with the control, which were uncloned 9L cells. All of the hypersensitive clones originated from the spheroids that remained in suspension after treatment. Three clones were studied during subsequent passage in monolayer. Two resistant clones maintained their resistance to BCNU over -- 25 passages, while one hypersensitive clone appeared to become progressively more resistant during passage. Thus, as with monolayer and in vivo 9L cells, a single high-dose treatment with BCNU produces a spectrum of sensitivities to BCNU. Some of these phenotypes are stable over many passages and have been used to initiate 9L spheroids having varying sensitivity to BCNU. These spheroids will be used to investigate drug-radiation interactions

  5. MICROSTRUCTURAL FEATURES EVALUATION OF AGE-HARDENED A 226 CAST ALLOY BY IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Lenka Kuchariková

    2018-01-01

    Full Text Available Age-hardening provides one of the most widely used mechanisms for the strengthening of aluminum alloys. The age-hardening involves three steps: solution treatment, quenching and aging. The temperature of solution treatment and aging is very important in order to reach desired properties of castings. The optimum temperature of solution treatment and aging led to formation microstructural features in form which does not lead to decreasing properties, but increasing ones. The major microstructural features in A 226 cast alloys which are responsible for increasing properties are: eutectic Si particles, Cu-rich phases, Fe-rich phases and porosity. The increase of properties depends on morphology, size and volume of microstructural features. In order to assess age-hardening influence on microstructural features in A226 cast alloys were used as possibilities of evaluation by means of image analysis. Quantitative analysis decelerate changes in microstructure includes the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu further increase in the hardness and tensile strength in the alloy. Changes of mechanical properties were measured in line with STN EN ISO.

  6. Investigation on the Effect of Sulfur and Titanium on the Microstructure of Lamellar Graphite Iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Stefanescu, Doru Michael; Tiedje, Niels Skat

    2013-01-01

    The goal of this work was to identify the inclusions in lamellar graphite cast iron in an effort to explain the nucleation of the phases of interest. Four samples of approximately the same carbon equivalent but different levels of sulfur and titanium were studied. The Ti/S ratios were from 0...... of complex Al, Ca, Mg oxide. An increased titanium level of 0.35 pct produced superfine interdendritic graphite (~10 μm) at low (0.012 wt pct) as well as at high-S contents. Ti also caused increased segregation in the microstructure of the analyzed irons and larger eutectic grains (cells). TiC did not appear...... to be a nucleation site for the primary austenite as it was found mostly at the periphery of the secondary arms of the austenite, in the last region to solidify. The effect of titanium in refining the graphite and increasing the austenite fraction can be explained through the widening of the liquidus...

  7. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  8. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    Science.gov (United States)

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids.

    Science.gov (United States)

    Cavnar, Stephen P; Salomonsson, Emma; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi

    2014-04-01

    Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated high-fidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type-dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging.

  10. Repair, redistribution and repopulation in V79 spheroids during multifraction irradiation

    International Nuclear Information System (INIS)

    Brown, R.C.; Durand, R.E.

    1994-01-01

    We used cells growing as multicell spheroids to determine whether the initial radiation response would be predictive for multifraction exposures, or whether other factors including repopulation rate should be considered. Potential problems of hypoxia and reoxygenation were avoided by using small spheroids which had not yet developed radiobiologically hypoxic regions. Repair and redistribution dominated the responses in the first two or three exposures, with repopulation playing a minor role. As the fractionation schedule was extended, however, repopulation between fractions largely determined the number of viable cells per spheroid. We conclude that the radiation response of cells from untreated spheroids provides a general indication of net sensitivity, but that repair and redistribution produces considerable variation in radiosensitivity throughout a fractionation protocol. Ultimately, repopulation effects may dominate the multifraction response. (Author)

  11. Radiobiological studies of cells in multicellular spheroids using a sequential trypsinization technique

    International Nuclear Information System (INIS)

    Giesbrecht, J.L.; Wilson, W.R.; Hill, R.P.

    1981-01-01

    The radiation response of V79 Chinese hamster cells grown as multicellular spheroids has been investigated by determining survival curves for treatment under a variety of different oxygen concentrations. Spheroids were irradiated under fully oxygenated conditions in air-equilibrated medium at 37 0 C, in medium exposed to lower oxygen tension (5% O 2 ) for times varying from 1 hr to 3 days, or under anoxic conditions. For comparison with the spheroids, using identical treatment conditions, V79 cells were grown in suspension as a subconfluent monolayer attached to Sephadex (microcarrier) beads and irradiated under fully oxygenated or anoxic conditions. The radiation response of cells at different depths within the spheroid was investigated by using a sequential trypsinization technique developed to remove eight or nine shells of cells successively from the spheroid surface. When irradiation was given under fully oxygenated conditions the outer few cell layers were more sensitive than the inner cells, a finding which is not understood. As expected the inner cells in spheroids irradiated in air (at 37 0 C) or in 5% O 2 are more resistant than the outer cells. For an acute exposure to 5% O 2 (1 hr) in the inner cells displayed full radiobiological hypoxia; however, for chronic exposures to low oxygen this was not the case. These results with the sequential trypsinization procedure suggest that the radiation response of cells in spheroids is more complex than anticipted

  12. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  13. Identification of Lgr5-Independent Spheroid-Generating Progenitors of the Mouse Fetal Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Roxana C. Mustata

    2013-10-01

    Full Text Available Immortal spheroids were generated from fetal mouse intestine using the culture system initially developed to culture organoids from adult intestinal epithelium. Spheroid proportion progressively decreases from fetal to postnatal period, with a corresponding increase in production of organoids. Like organoids, spheroids show Wnt-dependent indefinite self-renewing properties but display a poorly differentiated phenotype reminiscent of incompletely caudalized progenitors. The spheroid transcriptome is strikingly different from that of adult intestinal stem cells, with minimal overlap of Wnt target gene expression. The receptor LGR4, but not LGR5, is essential for their growth. Trop2/Tacstd2 and Cnx43/Gja1, two markers highly enriched in spheroids, are expressed throughout the embryonic-day-14 intestinal epithelium. Comparison of in utero and neonatal lineage tracing using Cnx43-CreER and Lgr5-CreERT2 mice identified spheroid-generating cells as developmental progenitors involved in generation of the prenatal intestinal epithelium. Ex vivo, spheroid cells have the potential to differentiate into organoids, qualifying as a fetal type of intestinal stem cell.

  14. Monoenergetic electron parameters in a spheroid bubble model

    Science.gov (United States)

    Sattarian, H.; Sh., Rahmatallahpur; Tohidi, T.

    2013-02-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.

  15. Spatio-temporal cell dynamics in tumour spheroid irradiation

    International Nuclear Information System (INIS)

    Kempf, H.; Bleicher, M.; Meyer-Hermann, M.; Kempf, H.; Bleicher, M.; Kempf, H.; Meyer-Hermann, M.

    2010-01-01

    Multicellular tumour spheroids are realistic in vitro systems in radiation research that integrate cell-cell interaction and cell cycle control by factors in the medium. The dynamic reaction inside a tumour spheroid triggered by radiation is not well understood. Of special interest is the amount of cell cycle synchronization which could be triggered by irradiation, since this would allow follow-up irradiations to exploit the increased sensitivity of certain cell cycle phases. In order to investigate these questions we need to support irradiation experiments with mathematical models. In this article a new model is introduced combining the dynamics of tumour growth and irradiation treatments. The tumour spheroid growth is modelled using an agent-based Delaunay/Voronoi hybrid model in which the cells are represented by weighted dynamic vertices. Cell properties like full cell cycle dynamics are included. In order to be able to distinguish between different cell reactions in response to irradiation quality we introduce a probabilistic model for damage dynamics. The overall cell survival from this model is in agreement with predictions from the linear-quadratic model. Our model can describe the growth of avascular tumour spheroids in agreement to experimental results. Using the probabilistic model for irradiation damage dynamics the classic 'four Rs' of radiotherapy can be studied in silico. We found a pronounced reactivation of the tumour spheroid in response to irradiation. A majority of the surviving cells is synchronized in their cell cycle progression after irradiation. The cell synchronization could be actively triggered and should be exploited in an advanced fractionation scheme. Thus it has been demonstrated that our model could be used to understand the dynamics of tumour growth after irradiation and to propose optimized fractionation schemes in cooperation with experimental investigations. (authors)

  16. Experimental evidence for several spheroid growth mechanisms in the liquid-phase sintered tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.; Rogers, P.S.Z.; Rogers, R.S.

    1976-01-01

    The generally accepted mechanism for spheroid growth during sintering of tungsten-base composites in the presence of a liquid phase is the dissolution of the small spheroids with simultaneous precipitation of tungsten from the molten matrix onto the larger spheroids, the process being driven by the difference in surface energy between the larger and smaller spheroids. From theoretical considerations, the slope of the straight line of log diameter versus log time should be 1 / 3 for this process. The experimental evidence for the dissolution and reprecipitation mechanism is meager, being based primarily on the spheroid growth rate during the latter stages of liquid-phase sintering. Experimental evidence is presented that shows spheroid growth taking place in systems where the tungsten and the matrix are mutually insoluble thereby making dissolution and reprecipitation impossible. Furthermore, the results from these studies and others using the usual matrix compositions indicate that spheroid growth takes place predominantly by the combination or coalescence of two or more spheroids. Deposition of tungsten from the molten matrix also occurs, although not necessarily on spheroid surfaces which have the lowest surface energy. Thus, many mechanisms, each depending on temperature and other variables, operate simultaneously. A satisfactory theoretical treatment must include them all

  17. Vacuum die casting of silicon sheet for photovoltaic applications. First quarterly report, March 16-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The obtective of this program is to develop a vacuum die-casting process for producing silicon sheet suitable for photovoltaic cells and to develop production techniques for optimization of polycrystallie silicon solar cell output. Efforts will examine process methods which are directed toward minimum cost processing of silicon into a quality suitable for producing solar cells with a terrestrial efficiency greater than 12% and having the potential to be scaled for large quantity production. In the vacuum die casting technique, silicon is melted under vacuum, and an evacuated die with a thin rectangular cavity is inserted into the melt. Liquid silicon is then injected into the die using a positive pressure of an inert gas. The major portion of the die casting work will be performed at Stanford Research Institute International under subcontract. The initial approach will follow parallel tracks: (1) obtain mechanical design parameters by using boron nitride, which has been shown to be non-wetting to silicon; (2) optimize silicon nitride material composition and coatings by sessile drop experiments; (3) test effectiveness of fluoride salt interfacial media with a graphite mold; and (4) test effect of surface finish using both boron nitride and graphite. Having established the material and mechanical boundary conditions, a finalized version of the prototype assembly will be constructed and the casting varibles determined. Polycrystalline silicon solar cells, with and without impurities, will be fabricated, characterized, and optimized at ARCCO Solar. The major activities will focus on the use of Wacker SILCO, HEM and in-house materials until vacuum die cast wafers are available. A baseline process with vacuum metallized contacts will be established and a reference mass production process with screen-printed metallization and high-throughput diffusions will also be obtained.

  18. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

    Science.gov (United States)

    Ong, Chin Siang; Fukunishi, Takuma; Nashed, Andrew; Blazeski, Adriana; Zhang, Huaitao; Hardy, Samantha; DiSilvestre, Deborah; Vricella, Luca; Conte, John; Tung, Leslie; Tomaselli, Gordon; Hibino, Narutoshi

    2017-07-02

    This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

  19. Heavy-ion radiobiology of multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Rodriguez, A.; Alpen, E.L.

    1980-01-01

    Experiments reported here were conducted with carbon ions, neon ions, and argon ions using rat brain gliosarcoma (9L) and Chinese hamster lung V79 cells grown as multicellular spheroids. Our studies were designed to evaluate high-LET radiation survival characteristics of cells grown in this relatively organized tissue-like environment. Our primary objectives were to determine the RBE values in plateau and spread Bragg peak regions of the carbon, neon, and argon beams, and evaluate with high and low LET radiation, the role of spheroid architecture in postirradiation survival of cells grown in this format

  20. In vitro characterization of self-assembled anterior cruciate ligament cell spheroids for ligament tissue engineering.

    Science.gov (United States)

    Hoyer, M; Meier, C; Breier, A; Hahner, J; Heinrich, G; Drechsel, N; Meyer, M; Rentsch, C; Garbe, L-A; Ertel, W; Lohan, A; Schulze-Tanzil, G

    2015-03-01

    Tissue engineering of an anterior cruciate ligament (ACL) implant with functional enthesis requires site-directed seeding of different cell types on the same scaffold. Therefore, we studied the suitability of self-assembled three-dimensional spheroids generated by lapine ACL ligament fibroblasts for directed scaffold colonization. The spheroids were characterized in vitro during 14 days in static and 7 days in dynamic culture. Size maintenance of self-assembled spheroids, the vitality, the morphology and the expression pattern of the cells were monitored. Additionally, we analyzed the total sulfated glycosaminoglycan, collagen contents and the expression of the ligament components type I collagen, decorin and tenascin C on protein and for COL1A1, DCN and TNMD on gene level in the spheroids. Subsequently, the cell colonization of polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) polymer scaffolds was assessed in response to a directed, spheroid-based seeding technique. ACL cells were able to self-assemble spheroids and survive over 14 days. The spheroids decreased in size but not in cellularity depending on the culture time and maintained or even increased their differentiation state. The area of P[LA-CL] scaffolds, colonized after 14 days by the cells of one spheroid, was in average 4.57 ± 2.3 mm(2). Scaffolds consisting of the polymer P[LA-CL] were more suitable for colonization by spheroids than PDS embroideries. We conclude that ACL cell spheroids are suitable as site-directed seeding strategy for scaffolds in ACL tissue engineering approaches and recommend the use of freshly assembled spheroids for scaffold colonization, due to their balanced proliferation and differentiation.

  1. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry.

    Directory of Open Access Journals (Sweden)

    Laura M Langan

    Full Text Available Advanced in vitro culture from tissues of different origin includes three-dimensional (3D organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells using Electron Paramagnetic Resonance (EPR oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid and absolute size (118±32 μm allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid cultures in biomedical and

  2. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids

    OpenAIRE

    Mueller-Klieser, W.

    1984-01-01

    A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...

  3. Use of a general-purpose heat-transfer code for casting simulation

    International Nuclear Information System (INIS)

    Erickson, W.C.

    1975-07-01

    The practical use of numerical techniques in simulating casting solidification dictate that a general purpose heat transfer code be used and that results be obtained in an easy-to-analyze format. Color film plotting routines were developed for use with NASA's CINDA-3G heat transfer code; the combination of which meet the above criteria. The subroutine LQSLTR written for SINDA, the successor to CINDA-3G, was verified by comparing calculated results obtained using LQSLTR with those obtained using the specific heat method for handling the heat of fusion. Excellent agreement existed when similar data was used. When the more restrictive requirement of a 1 0 F melting range was used, comparable results were obtained. Uranium and lead rod castings were cast in instrumented graphite molds and the solidification sequence simulated using CINDA-3G. Discrepancies attributed to initial assumptions of instantaneous mold filling, uniform melt temperature, and intimate metal/mold contact were encountered. Further calculations using a model incorporating a gap between the mold and casting showed that the intimate contact assumption could not be used; a three-dimensional model also showed that the thermocouple assemblies used with the platinum--platinum-10 percent rhodium were a significant perturbation to the system. An L-shaped steel casting was simulated and the results compared to those reported in the literature. The experimental data for this casting were reproduced within the accuracy permitted by the thermal conductivity of the sand, thus demonstrating that agreement can be obtained when the mold material does not act as a chill. (U.S.)

  4. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  5. Monoenergetic electron parameters in a spheroid bubble model

    International Nuclear Information System (INIS)

    Sattarian, H.; Rahmatallahpur, Sh.; Tohidi, T.

    2013-01-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model. (physics of gases, plasmas, and electric discharges)

  6. Promotion of malignant phenotype after disruption of the three-dimensional structure of cultured spheroids from colorectal cancer.

    Science.gov (United States)

    Piulats, Jose M; Kondo, Jumpei; Endo, Hiroko; Ono, Hiromasa; Hagihara, Takeshi; Okuyama, Hiroaki; Nishizawa, Yasuko; Tomita, Yasuhiko; Ohue, Masayuki; Okita, Kouki; Oyama, Hidejiro; Bono, Hidemasa; Masuko, Takashi; Inoue, Masahiro

    2018-03-23

    Individual and small clusters of cancer cells may detach from the edges of a main tumor and invade vessels, which can act as the origin of metastasis; however, the mechanism for this phenomenon is not well understood. Using cancer tissue-originated spheroids, we studied whether disturbing the 3D architecture of cancer spheroids can provoke the reformation process and progression of malignancy. We developed a mechanical disruption method to achieve homogenous disruption of the spheroids while maintaining cell-cell contact. After the disruption, 9 spheroid lines from 9 patient samples reformed within a few hours, and 3 of the 9 lines exhibited accelerated spheroid growth. Marker expression, spheroid forming capacity, and tumorigenesis indicated that stemness increased after spheroid disruption. In addition, the spheroid forming capacity increased in 6 of 11 spheroid lines. The disruption signature determined by gene expression profiling supported the incidence of remodeling and predicted the prognosis of patients with colorectal cancer. Furthermore, WNT and HER3 signaling were increased in the reformed spheroids, and suppression of these signaling pathways attenuated the increased proliferation and stemness after the disruption. Overall, the disruption and subsequent reformation of cancer spheroids promoted malignancy-related phenotypes through the activation of the WNT and ERBB pathways.

  7. Optimal formation of genetically modified and functional pancreatic islet spheroids by using hanging-drop strategy.

    Science.gov (United States)

    Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y

    2013-03-01

    Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The decontamination of soft-plated nickel surfaces compared to alternative surface materials used in radioactive transport and storage containers

    International Nuclear Information System (INIS)

    Zwicky, H.U.; Bedenig, D.O.; Bohringer, I.M.; Petrik, F.

    1983-01-01

    Surfaces of raw, nickel-plated, and epoxy-coated spheroidal graphite cast iron, together with stainless steel, were contaminated with a modified fission product solution then conditioned by heat treatment. This was followed by a variety of simple decontamination techniques. It was shown that the ease of removal of contaminations similar to those expected on a dry storage container surface is significantly affected by the roughness of the surface. The raw cast iron surface was virtually impossible to significantly decontaminate. Highest decontamination factors were obtained on nickel-plated and epoxy-painted surfaces using steam/detergent mixtures. Stainless steel only performed well in a polished condition. In a supplementary irradiation experiment, scanning electron microscopy indicated visible decomposition of an epoxy-painted surface at a gamma dose of 3.1 X 10 6 Gy (3.1 X 10 8 rad). A nickel-plated surface did not undergo any visible changes at the same dose

  9. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  10. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  11. Scattering of a high-order Bessel beam by a spheroidal particle

    Science.gov (United States)

    Han, Lu

    2018-05-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.

  12. Process for titanium powders spheroidization by RF induction plasma

    International Nuclear Information System (INIS)

    Gu Zhongtao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2010-01-01

    Spherical titanium (Ti) particles were obtained by the process of heating irregularly shaped Ti powders under the radio frequency induction plasma (RF induction plasma) condition. The effect of feed rate, various dispersion methods and Ti particle size on the spheroidization efficiency was studied. The efficiency of the spheroidization is evaluated through the measurements of the percentage of powder spheroidized based on the electron microscopic observations and the tap density measurement of the processed powder. During the short flight of the particles in the plasma flow, of the order of a few milliseconds, the individual titanium particles of the powder are heated and melt, forming a spherical liquid droplet which upon freezing gives rise to the formation of a perfectly dense spherical solid particle. So RF induction plasma is a promising method for the preparation of spherical titanium powders with high flow ability. (authors)

  13. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    G-S Huang

    2013-10-01

    Full Text Available Three-dimensional (3D cellular spheroids have recently emerged as a new trend to replace suspended single cells in modern cell-based therapies because of their greater regeneration capacities in vitro. They may lose the 3D structure during a change of microenvironment, which poses challenges to their translation in vivo. Besides, the conventional microporous scaffolds may have difficulty in accommodating these relatively large spheroids. Here we revealed a novel design of microenvironment for delivering and sustaining the 3D spheroids. Biodegradable scaffolds with macroporosity to accommodate mesenchymal stem cell (MSC spheroids were made by solid freeform fabrication (SFF from the solution of poly(D,L-lactide-co-glycolide. Their internal surface was modified with chitosan following air plasma treatment in order to preserve the morphology of the spheroids. It was demonstrated that human MSC spheroids loaded in SFF scaffolds produced a significantly larger amount of cartilage-associated extracellular matrix in vitro and in NOD/SCID mice compared to single cells in the same scaffolds. Implantation of MSC spheroid-loaded scaffolds into the chondral defects of rabbit knees showed superior cartilage regeneration. This study establishes new perspectives in designing the spheroid-sustaining microenvironment within a tissue engineering scaffold for in vivo applications.

  14. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  16. Dwarf Spheroidal Satellite Formation in a Reionized Local Group

    OpenAIRE

    Milosavljevic, Milos; Bromm, Volker

    2013-01-01

    Dwarf spheroidal satellite galaxies have emerged a powerful probe of small-scale dark matter clustering and of cosmic reionization. They exhibit structural and chemical continuity with dwarf irregular galaxies in the field and with spheroidal galaxies in high-density environments. By combining empirical constraints derived for star formation at low gas column densities and metallicities in the local universe with a model for dark matter and baryonic mass assembly, we provide an analytical des...

  17. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  18. Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries.

    Science.gov (United States)

    Chalut, Kevin J; Giacomelli, Michael G; Wax, Adam

    2008-08-01

    Inverse light scattering analysis seeks to associate measured scattering properties with the most probable theoretical scattering distribution. Although Mie theory is a spherical scattering model, it has been used successfully for discerning the geometry of spheroidal scatterers. The goal of this study was an in-depth evaluation of the consequences of analyzing the structure of spheroidal geometries, which are relevant to cell and tissue studies in biology, by employing Mie-theory-based inverse light scattering analysis. As a basis for this study, the scattering from spheroidal geometries was modeled using T-matrix theory and used as test data. In a previous study, we used this technique to investigate the case of spheroidal scatterers aligned with the optical axis. In the present study, we look at a broader scope which includes the effects of aspect ratio, orientation, refractive index, and incident light polarization. Over this wide range of parameters, our results indicate that this method provides a good estimate of spheroidal structure.

  19. Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets

    KAUST Repository

    Ansari, Seema

    2010-01-18

    Graphite oxide-Nafion hybrids with a high degree of alignment are cast from aqueous solution in the absence of any external field and reduced in situ by exposure to hydrazine to produce graphene-Nafion hybrids. Dramatic enhancement of electrical conductivity indicates sufficient accessibility of the inorganic nanosheets to the reducing agent, through the nanochannels formed by the polymeric ionic domains. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Radiation survival of cells from spheroids grown in different oxygen concentrations

    International Nuclear Information System (INIS)

    Franko, A.J.; Sutherland, R.M.

    1979-01-01

    The position of the internal, chronically hypoxic cells in spheroids was varied by alterations in the oxygen concentration in the growth medium. Such alterations were expected to cause large changes in the size of the radiobiologically hypoxic fraction. This was tested by growing and irradiating spheroids in oxygen concentrations between 5 and 20.3%, ensuring that the irradiation and growth conditions were as similar as possible. The survival curves appeared to be linear below a surviving fraction of 3 x 10 -2 , and the slopes were intermediate between the slopes of control curves for cells from spheroids irradiated in nitrogen or when fully oxygenated. Thus direct estimates of the hypoxic fractions could not be made. Two models of oxygen diffusion might explain the data. One model assumes that a large fraction of cells was fully hypoxic (radiobiologically) and that these internal, G 1 -confined, chronically hypoxic cells had a lower inherent radioresistance than the outer proliferating cells. Evidence was presented which indicated that this model was unlikely to be correct. The other model assumes that the inherent radioresistance was equal throughout the spheroid, and that the innermost cells died before the oxygen concentration was reduced sufficiently to cause full hypoxic protection. Theoretical survival curves based on this model were generated using the measured geometries ofthe spheroids and multitarget single-hit survival theory. Acceptable agreement with the postulate that the innermost cells of spheroids die at between 0.2 and 0.4% oxygen was obtained. These data may have implications regarding the relative contributions of chronic and acute hypoxia to the fraction of hypoxic cells in tumors

  1. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    Science.gov (United States)

    Lejeune, Emma; Linder, Christian

    2018-06-01

    Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.

  2. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  3. Measuring the light scattering and orientation of a spheroidal particle using in-line holography.

    Science.gov (United States)

    Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon

    2014-07-01

    The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.

  4. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  5. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  6. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu

    2014-01-01

    Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... for the fatigue life, namely LogNormal and Weibull distributions. The statistical analyses are performed using the Maximum Likelihood Method and the statistical uncertainty is estimated. Further, stochastic models for the fatigue life obtained from the statistical analyses are used for illustration to assess...

  7. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  8. Study of human prostate spheroids treated with zinc using X-ray microfluorescence

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Lopes, Ricardo T.; Pereira, Gabriela R.; Santos, Carlos A.N.; Palumbo Junior, Antonio; Nasciutti, Luiz E.; Souza, Pedro A.V.R.; Anjos, Marcelino J.

    2013-01-01

    Spheroids cell culture is a useful technique for tissue engineering or regenerative medicine re-search, pharmacological and toxicological studies, and fundamental studies in cell biology. In this study, we investigated Zn distribution in cell spheroids in benign prostate hyperplasia (BPH) and prostate cancer (DU145) and analyzed the differences in the response to Zinc (0-150 μM) treatment. The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed non-uniform distribution of Zn in all the spheroids analyzed. The differential response to zinc of DU145 and BPH cell spheroids suggests that zinc may have an important role in prostate cancer and BPH diagnosis. (author)

  9. Study of human prostate spheroids treated with zinc using X-ray microfluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Roberta G.; Lopes, Ricardo T.; Pereira, Gabriela R., E-mail: roberta@lin.ufrj.br, E-mail: gpereira@metalmat.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Santos, Carlos A.N., E-mail: cansantos.bio@gmail.com [Instituto Nacional de Metrologia, Qualidade e Tecnologia (DIPRO/INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia; Palumbo Junior, Antonio; Nasciutti, Luiz E., E-mail: nasciutt@ufrj.br [Universidade Federal do Rio de Janeiro (ICB/CCS/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Interacoes Celulares; Souza, Pedro A.V.R., E-mail: pedroaugustoreis@uol.com.br [Hospital Federal do Andarai (HFA), Rio de Janeiro, RJ (Brazil). Servico de Urologia; Anjos, Marcelino J., E-mail: marcelin@lin.ufrj.br [Universidade Estatual do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2013-07-01

    Spheroids cell culture is a useful technique for tissue engineering or regenerative medicine re-search, pharmacological and toxicological studies, and fundamental studies in cell biology. In this study, we investigated Zn distribution in cell spheroids in benign prostate hyperplasia (BPH) and prostate cancer (DU145) and analyzed the differences in the response to Zinc (0-150 μM) treatment. The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed non-uniform distribution of Zn in all the spheroids analyzed. The differential response to zinc of DU145 and BPH cell spheroids suggests that zinc may have an important role in prostate cancer and BPH diagnosis. (author)

  10. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.

    Directory of Open Access Journals (Sweden)

    Xue Gong

    Full Text Available Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.

  11. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  12. Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration.

    Science.gov (United States)

    Dissanayaka, W L; Zhu, L; Hargreaves, K M; Jin, L; Zhang, C

    2014-12-01

    Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. © International & American Associations for Dental Research.

  13. IN VITRO INVESTIGATION OF THE TRANSPLANTATION PROSPECTS OF MULTICELLULAR SPHEROID MICROAGGREGATES OF DONOR RETINAL PIGMENT EPITHELIUM

    Directory of Open Access Journals (Sweden)

    S. A. Borzenok

    2015-01-01

    Full Text Available Aim. To study in experiment the criteria for transplantability of multicellular spheroid microaggregates of retinal pigment epithelium (RPE, prepared by the method of 3D cell culture. Materials and Methods. 11 donor eyes (6 of adrenaline index «A», 5 of index «B» were used as a source of RPE cell cultures (group «A» – 6 cultures, group «B» – 5 cultures, of which over 2000 RPE spheroids were obtained by the method of three-dimensional cell culture. 1760 spheroids of them were selected for transplantability investigation (960 – group «A», 800 – group «B». Among the selected spheroids were equal numbers of spheroids of different morphology («smooth» and «rough» and of the initial cell seeding number (500, 1000, 5000, 25 000, 125 000 cells per hanging drop. We were taking out 12 spheroids of group «A» and 10 spheroids of group «B» of the 3D culture in terms of 7, 14, 21, 28 days of 3D culture to assess their viability. We were transferring the same number of spheroids in the same terms from 3D to 2D culture conditions to assess their adhesive properties. Viability of cells within spheroids was determined using the Trypan blue exclusion. The presence or absence of adhesion was determined by microscopic observation.Results. «Smooth» spheroids of 7 and 14 days of pretransplantation cultivation and derived from hanging drops containing 500 and 1000 cells showed the highest transplantability (cell viability varied from 0.83 ± 0.38 to 0.94 ± 0.24, a 100% adhesion. «Rough» spheroids were untransplantable in all variants, despite their partial preservation of viability (in comparison to “smooth” ones p < 0.05. 21 and 28 days of pretransplantation culturing and high cell seeding numbers signifi cantly lowered transplantability of obtained spheroids (p > 0.05 for low cell numbers, p < 0.05 for the high ones. Differences in adrenaline indexes A and B of donor eyes which were the primary sources of cellular

  14. Experiments with HEU (93.14 wt.%) metal annuli with internal graphite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wehmann, Udo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, only three experimental configurations are described here. They are internal graphite reflected metal uranium assemblies with three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches). These experiments can be found in Reference 1 and in their associated logbook

  15. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli, 320 Taiwan (China); Chen, Shih-Ming; Lai, Wei-Hao [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040 Taiwan (China); Sheng, Yu-Jane [Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan (China); Tsao, Heng-Kwong [Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, 320 Taiwan (China)

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  16. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  17. Spheroidal corrections to the spherical and parabolic bases of the hydrogen atom

    International Nuclear Information System (INIS)

    Mardyan, L.G.; Pogosyan, G.S.; Sisakyan, A.N.

    1986-01-01

    This paper introduces the bases of the hydrogen atom and obtains recursion relations that determine the expansion of the spheroidal basis with respect to its parabolic basis. The leading spheroidal corrections to the spherical and parabolic bases are calculated by perturbation theory

  18. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization.

    Science.gov (United States)

    Bhang, Suk Ho; Lee, Seahyoung; Shin, Jung-Youn; Lee, Tae-Jin; Kim, Byung-Soo

    2012-10-01

    Despite promising results from the therapeutic use of stem cells for treating ischemic diseases, the poor survival of cells transplanted into ischemic regions is one of the major problems that undermine the efficacy of stem cell therapy. Cord blood mononuclear cells (CBMNCs) are an alternative source of mesenchymal stem cells (MSCs) without disadvantages, such as the painful and invasive harvesting procedure, of MSCs derived from bone marrow or adipose tissue. In the present study, we investigated whether the angiogenic efficacy of cord blood mesenchymal stem cells (CBMSCs) can be enhanced by grafting as spheroids in a mouse hindlimb ischemia model. Human CBMSC (hCBMSC) spheroids were prepared by using the hanging-drop method. Mouse hindlimb ischemia was induced by excising the femoral artery and its branches. After surgery, the animals were divided into no-treatment, dissociated hCBMSC, and spheroid hCBMSC groups (n=8 per group) and received corresponding hCBMSC treatments. After surgery, the ischemic hindlimbs were monitored for 4 weeks, and then, the ischemic hindlimb muscles were harvested for histological analysis. Apoptotic signaling, angiogenesis-related signal pathways, and blood vessel formation were investigated in vitro and/or in vivo. The transplantation of hCBMSCs as spheroids into mouse ischemic hindlimbs significantly improved the survival of the transplanted cells by suppressing apoptotic signaling while activating antiapoptotic signaling. Furthermore, the transplantation of hCBMSCs as spheroids significantly increased the number of microvessels and smooth muscle α-actin-positive vessels in the ischemic limbs of mice, and attenuated limb loss and necrosis. Human CBMNC can be considered an alternative source of MSC, and spheroid-based hCBMSC delivery can be considered a simple and effective strategy for enhancing the therapeutic efficacy of hCBMSCs.

  19. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  20. Stability of self-gravitating homogeneous spheroid with azimuthal magnetic field. I

    International Nuclear Information System (INIS)

    Antonov, V.A.; Zheleznyak, O.A.

    1988-01-01

    The influence of a frozen magnetic field on the stability of a self-gravitating homogeneous spheroid with respect to a deformation that transforms it into a triaxial ellipsoid is investigated. It is shown that an azimuthal magnetic field is a stabilizing factor, allowing the spheroid to be stable at e > e/sub cr/ = 0.95285

  1. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  2. Fabrication and characterization of tungsten and graphite based PFC for divertor target elements of ITER like tokamak application

    Energy Technology Data Exchange (ETDEWEB)

    Khirwadkar, S.S., E-mail: sameer@ipr.res.in [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Singh, K.P.; Patil, Y.; Khan, M.S.; Buch, J.J.U.; Patel, Alpesh; Tripathi, Sudhir [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Jaman, P.M.; Rangaraj, L.; Divakar, C. [Materials Science Division, National Aerospace Laboratories, CSIR, Bangalore, Karnataka (India)

    2011-10-15

    The development of the fabrication technology of macro-brush configuration of tungsten (W) and carbon (graphite and CFC) plasma facing components (PFCs) for ITER like tokamak application is presented. The fabrication of qualified joint of PFC is a requirement for fusion tokamak. Vacuum brazing method has been employed for joining of W/CuCrZr and C/CuCrZr. Oxygen free high conductivity (OFHC) copper casting on W tiles was performed followed by machining, polishing and ultrasonic cleaning of the samples prior to vacuum brazing. The W/CuCrZr and graphite/CuCrZr based test mockups were vacuum brazed using silver free alloys. The mechanical shear and tensile strengths were evaluated for the W/CuCrZr and graphite/CuCrZr brazed joint samples. The micro-structural examination of the joints showed smooth interface. The details of fabrication and characterization procedure for macro-brush tungsten and carbon based PFC test mockups are presented.

  3. Proteomic approach toward molecular backgrounds of drug resistance of osteosarcoma cells in spheroid culture system.

    Science.gov (United States)

    Arai, Kazuya; Sakamoto, Ruriko; Kubota, Daisuke; Kondo, Tadashi

    2013-08-01

    Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D-DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid-formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Stevens, Elizabeth Munkebjerg; Larsen, Lars Allan

    2017-01-01

    BACKGROUND: Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical...... surface facing the outside and accessible for analysis of ciliary function. METHODS: We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls...... in the investigation of pathophysiological aspects and drug effects in human nasal airway epithelium....

  5. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.

  6. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration

    NARCIS (Netherlands)

    Fehlauer, Fabian; Muench, Martina; Rades, Dirk; Stalpers, Lukas J. A.; Leenstra, Sieger; van der Valk, Paul; Slotman, Ben; Smid, Ernst J.; Sminia, Peter

    2005-01-01

    Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the

  7. Design of Online Spheroidization Process for 1.0C-1.5Cr Bearing Steel and Microstructure Analysis

    Science.gov (United States)

    Li, Zhen-Xing; Li, Chang-Sheng; Ren, Jin-Yi; Li, Bin-Zhou; Suh, Dong-Woo

    2018-02-01

    Using thermo-mechanical control process, the online spheroidization annealing process of 1.0C-1.5Cr bearing steel was designed. Apart from intercritical online spheroidization (IS), a novel subcritical online spheroidization (SS) process was proposed, which is characterized by water-cooling to around 773 K (500 °C) after the final rolling pass, and then directly reheating to 973 K (700 °C) for isothermal holding. Compared with the results from the traditional offline spheroidization (TS) process, the size of spheroidized carbides is similar in both the TS and IS processes, whereas it is much smaller in the SS process. After spheroidization annealing, microstructure evolution during austenitization and quenching treatment was examined. It is shown that the refining of spheroidized carbides accelerates the dissolution of carbides during the austenitizing process, and decreases the size of undissolved carbides. In addition, the SS process can obtain finer prior austenite grain after quenching, which contributes to the enhancement of final hardness.

  8. Expansion of a zero-order Bessel beam in spheroidal coordinates by generalized Lorenz–Mie theory

    International Nuclear Information System (INIS)

    Han, L.; Han, Y.P.; Cui, Z.W.; Wang, J.J.

    2014-01-01

    An analytic solution to the scattering of the zero-order Bessel beam by a spheroidal particle is constructed on the basis of the generalized Lorenz–Mie theory (GLMT). The spheroidal beam shape coefficients (BSCs) of the zero-order Bessel beam are directly expressed in spheroidal coordinates and computed conveniently using an intrinsic method. Utilizing the tangential continuity of the electromagnetic fields, the expression coefficients of scattered and internal fields are determined. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident electromagnetic beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by spheroidal particles and particle manipulation applications using Bessel beams. - Highlights: • The scattering of zero-order Bessel beam by dielectric spheroid is investigated. • The analytic solution is constructed within the framework of the GLMT. • The spheroidal beam shape coefficients of the zero-order Bessel beam are computed by use an intrinsic method. • Numerical results concerning scattered field are displayed for various parameters

  9. The effect of graphite precipitates in Ni3Al/C composite on tribological properties

    Directory of Open Access Journals (Sweden)

    A. Janas

    2010-01-01

    Full Text Available The study shows the results of investigations of the tribological properties of cast Ni3Al/C composite and compares them with the properties of pure intermetallic phases of the Ni3Al type. An inspiration to these studies was a surprising similarity observed between the microstructure of iron-carbon alloys, and specifically of different cast iron grades, and the microstructure of, absolutely different in terms of the chemical composition, nickel-aluminium alloy. Because of carbon present in the alloy, an attempt was made to determine what effect the presence of graphite (acting as a lubricant might have on the abrasive wear behaviour of alloy during lubricated friction test. Tests were made on a Miller apparatus, used for active testing of the abrasive wear resistance. The specimen loss of mass was determined in function of time.

  10. Merging and Splitting of Plasma Spheroids in a Dusty Plasma

    Science.gov (United States)

    Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas

    2012-12-01

    Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.

  11. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr

    International Nuclear Information System (INIS)

    Fedrigo, Carlos A; Rocha, Adriana B da; Grivicich, Ivana; Schunemann, Daniel P; Chemale, Ivan M; Santos, Daiane dos; Jacovas, Thais; Boschetti, Patryck S; Jotz, Geraldo P; Filho, Aroldo Braga

    2011-01-01

    Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM) cell radioresistance. Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1) were irradiated (5, 10 and 20 Gy), their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059) and Akt (wortmannin). At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059) and Akt (wortmannin) leads to radiosensitization of MO59J spheroids. These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance

  12. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up.

    Science.gov (United States)

    Chimenti, Isotta; Massai, Diana; Morbiducci, Umberto; Beltrami, Antonio Paolo; Pesce, Maurizio; Messina, Elisa

    2017-04-01

    Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.

  13. Halo carbon stars associated with dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Bergh, S.; Lafontaine, A.

    1984-11-01

    Star counts have been performed for rings centered on the carbon star at 1 69 degrees, b + 55 degrees at a distance of 60 kpc. The counts were performed in order to determine whether halo carbon stars might be situated in dwarf spheroidal galaxies which are too star-poor to have been recognized as galaxies. The counts were made on a IIIa-J plate baked in forming gas that was exposed for 40 minutes through a 2C filter with the Palomar 1.2-m Schmidt telescope. It is shown that the carbon star is not situated in a dwarf spheroidal galaxy brighter than M(V) 5.7.

  14. Reparative Spheroids in HPV-Associated Chronic Cervicitis

    Directory of Open Access Journals (Sweden)

    Gennadiy T. Sukhikh

    2013-09-01

    Full Text Available Background: Spheroid cell structures (SCS described in cell culture are used to study cell-cell and cell-matrix interactions. However, the role of the SCS in the repair process in vivo remains unexplored. The aim of the study was to examine the cellular composition of the spherical structures and their functional significance in the repair of the squamous epithelium in human papilloma virus-associated chronic cervicitis (HPV-CC. Methods and Results: The cytology and biopsy materials from 223 patients with HPV-CC were subjected to molecular testing for HPV DNA by Real-Time Polymerase Chain Reaction (Real-Time PCR with genotyping and chromogenic in situ hybridization (CISH, as well as immunocytological and immunohistochemical analyses of p16INK4A, Ki67, SMA, Vimentin, CD34, E-cadherin, Oct4, CD44, CKW markers. In the stem cell niche zone, these spheroid structures were discovered having proliferative activity and showing signs of producing stem cells involved in the repair of the cervical mucosa in HPV-CC. Conclusion: The persistence of the HPV in the stem cell niche zone cells in the cervix determines the chronization of inflammation in this area, with the ability to perform pathological repair. The immunophenotype of the spheroid cell structures in the HPV-CC includes cells with signs of stem cells (‘stemness’ and the mesenchymal-epithelial transition.

  15. Die-cast heterophase composites with AlSi13Mg1CuNi matrix

    Directory of Open Access Journals (Sweden)

    M. Dyzia

    2010-01-01

    Full Text Available On the basis of the performed tests, an advantageous interaction of glassy carbon particles in a couple consisting of a heterophase composite and a spheroidal cast iron has been corroborated. It was found that, the presence of glassy carbon in the heterophase composite (SiC+C affects the stabilization of the friction coefficient value as a function of the friction distance and reduces the intensity of the wearing-in stage of the interacting surfaces. Both a decrease of the friction coefficient and the wear of the heterophase composites may be connected with the carbon particles' chipping effect and the deposition of its fragments on the surface of the interacting components of the friction couple, which forms a kind of a solid lubricating agent in the system. This should allow applying of this material to the composite piston - cylinder sleeve system in piston air-compressors. Further works will concern the selection of the matrix alloy composition with the purpose of reducing the phenomenon of particles chipping during machining. It seems that one of the possibilities is the application of a more plastic matrix and optimizing the fraction of reinforcing phases and their gradient distribution in the casting.

  16. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  17. Effect of copper addition and section thickness on the mechanical and physical properties of grey cast iron

    International Nuclear Information System (INIS)

    Malik, F.A.; Zahid, M.; Hassan, M.A.; Sheikh, M.A.; Alam, S.; Qazi, M.A.

    1995-01-01

    Copper is a graphitizer at the stage of solidification and it acts as antiferritizer during transformation cooling range. Due to this, copper additions to grey cast iron prevent at formation of free ferrite in heavy sections. It also reduces the chilling in thin sections, therefore uniform structure is imparted to grey iron by the copper addition. This gives the appropriate strength and hardness properties to grey iron. Thus copper addition gives certain advantages in relation to the machinability and wear resistance which are important for many engineering properties requires by high duty cast iron. The application of copper as allying element is acceptable due to its price and availability as compared to other alloying elements. (author)

  18. Targeted radiotherapy of multicell neuroblastoma spheroids with high specific activity [125I]meta-iodobenzylguanidine

    International Nuclear Information System (INIS)

    Roa, Wilson H.Y.; Miller, Gerald G.; McEwan, Alexander J.B.; McQuarrie, Steve A.; Tse, Jeanie; Wu, Jonn; Wiebe, Leonard I.

    1998-01-01

    Purpose: Iodine-125 induces cell death by a mechanism similar to that of high linear energy transfer (high-LET) radiation. This study investigates the cytotoxicity of high-specific-activity [ 125 I]meta-iodobenzylguanidine ( 125 I-mIBG) in human SK-N-MC neuroblastoma cells grown as three-dimensional multicellular spheroids. Materials and Methods: Spheroids were incubated with high-specific-activity 125 I-mIBG (6 mCi/μg, 1000 times that of the conventional specific activity used for autoradiography). Cytotoxicity was assessed by fluorescence viability markers and confocal microscopy for intact spheroids, fluorescence-activated cell sorting and clonogenic assay, and clonogenic assays for dispersed whole spheroids. Distribution of radioactive mIBG was determined by quantitative light-microscope autoradiography of spheroid cryostat sections. Dose estimation was based on temporal knowledge of the retained radioactivity inside spheroids, and of the radiolabel's emission characteristics. Findings were compared with those of spheroids treated under the same conditions with 131 I-mIBG, cold mIBG, and free iodine-125. Results: 125 I-mIBG exerted significant cell killing. Complete spheroids were eradicated when they were treated with 500 μCi of 125 I-mIBG, while those treated with 500 μCi or 1000 μCi of 131 I-mIBG were not. The observed difference in cytotoxicity between treatments with 125 I- and 131 I-mIBG could not be accounted for by the absorbed dose of spheroid alone. The peripheral, proliferating cell layer of the spheroids remained viable at the moderate radioactivity of 100 μCi for both isotopes. Cytotoxicity induced by 125 I-mIBG was quantitatively comparable by the peripheral rim thickness to that of 131 I-mIBG at the dose of 100 μCi. The peripheral rim thickness decreased most significantly in the first 17 hours after initial treatment. There was no statistical decrease in the rim thickness identified afterwards for the second, third, and fourth days of

  19. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Directory of Open Access Journals (Sweden)

    Amir Eshghinejadfard

    2017-09-01

    Full Text Available Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ=2 or 4 or spherical (λ=1. Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM. In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling. Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  20. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Science.gov (United States)

    Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique

    2017-09-01

    Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  1. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.

    Science.gov (United States)

    Sakai, Yusuke; Hattori, Koji; Yanagawa, Fumiki; Sugiura, Shinji; Kanamori, Toshiyuki; Nakazawa, Kohji

    2014-07-01

    Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. ON THE REACTIONS IN ILMENITE, ALUMINUM AND GRAPHITE SYSTEM

    Directory of Open Access Journals (Sweden)

    R. Khoshhal

    2016-03-01

    Full Text Available Al2O3/TiC composites are used as cutting tools for machining gray cast iron and steels. The addition of iron improves the toughness of Al2O3/TiC composites. Ilmenite, aluminum and graphite can be used to produce in-situ Al2O3/TiC–Fe composites. However, the formation mechanism and reaction sequences of this system are not clear enough. Therefore, the present research is designed to determine the reactions mechanism of the first step of reactions that may be occurred between raw materials. In this research, pure ilmenite was synthesized to eliminate the effects of impurities available in the natural ilmenite in the system. The milled and pressed samples, prepared from the synthesized ilmenite, aluminum and graphite mixture with a molar ratio of 1:2:1, were heat treated at 720°C for 48h. In addition, two samples one containing ilmenite and aluminum with a molar ratio of 1:2 and ilmenite and graphite with a molar ratio of 1:1 were heat treated at 720°C for 48h. The final products were analyzed with XRD. It was found that at 720°C, aluminum reacts with FeTiO3, forming Fe, TiO2 and Al2O3. Since the aluminum content used in the mixture was more than the stoichiometry for reaction of ilmenite and aluminum, some unreacted aluminum remains. Therefore, the residual aluminum reacts with the reduced Fe to form Fe2Al5.

  3. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.

    Science.gov (United States)

    Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta

    2015-07-01

    Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  5. Production of nuclear graphite in France; Production de graphite nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, P; Mondet, L [Societe Pechiney, 74 - Chedde (France); Arragon, Ph; Cornuault, P; Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [French] Le graphite destine a la construction des reacteurs est obtenu par le procede usuel: confection d'une pate a partir de coke de petrole et de brai, cuisson de cette pate (au four electrique) puis graphitation du produit cuit, egalement par chauffage electrique. L'usage du transport pneumatique et le controle des conditions cuisson et de graphitation ont permit d'augmenter la production de graphite nucleaire ainsi que de mieux controler ses proprietes physiques et mecaniques et de reduire au minimum les souillures accidentelles. (M.B.)

  6. SMIFH2-mediated mDia formin functional inhibition potentiates chemotherapeutic targeting of human ovarian cancer spheroids.

    Science.gov (United States)

    Ziske, Megan A; Pettee, Krista M; Khaing, MaNada; Rubinic, Kaitlin; Eisenmann, Kathryn M

    2016-03-25

    Due to a lack of effective screening or prevention protocol for epithelial ovarian cancer (EOC), there is a critical unmet need to develop therapeutic interventions for EOC treatment. EOC metastasis is unique. Initial dissemination is not primarily hematogenous, yet is facilitated through shedding of primary tumor cells into the peritoneal fluid and accumulating ascites. Increasingly, isolated patient spheroids point to a clinical role for spheroids in EOC metastasis. EOC spheroids are highly invasive structures that disseminate upon peritoneal mesothelium, and visceral tissues including liver and omentum. Selection for this subset of chemoresistant EOC cells could influence disease progression and/or recurrence. Thus, targeting spheroid integrity/structure may improve the chemotherapeutic responsiveness of EOC. We discovered a critical role for mammalian Diaphanous (mDia)-related formin-2 in maintaining EOC spheroid structure. Both mDia2 and the related mDia1 regulate F-actin networks critical to maintain cell-cell contacts and the integrity of multi-cellular epithelial sheets. We investigated if mDia2 functional inhibition via a small molecule inhibitor SMIFH2 combined with chemotherapeutics, such as taxol and cisplatin, inhibits the viability of EOC monolayers and clinically relevant spheroids. SMIFH2-mediated mDia formin inhibition significantly reduced both ES2 and Skov3 EOC monolayer viability while spheroid viability was minimally impacted only at the highest concentrations. Combining either cisplatin or taxol with SMIFH2 did not significantly enhance the effects of either drug alone in ES2 monolayers, while Skov3 monolayers treated with taxol or cisplatin and SMIFH2 showed significant additive inhibition of viability. ES2 spheroids were highly responsive with clear additive anti-viability effects with dual taxol or cisplatin when combined with SMIFH2 treatments. While combined taxol with SMIFH2 in spheroids showed an additive effect relative to single

  7. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  8. A study on the spheroidization by palsma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-01-01

    Spheroidization of a powder in thermal plasma is a plausible method for powder morphology treatment. In this experiment, the spheroidization fraction was decreased with increasing the particle size. The higher fraction of H2 gas and higher probe position resulted in a higher spheroidization fraction. From this study, it follows that the good result could be attained from smaller size particle with higher hydrogen gas fraction and higher probe position. Through the statistical assessment, the results concluded that the effect of hydrogen gas content has more influence than particle size, and the probe position affects lower than the others. The interaction between the probe position and hydrogen gas fraction affects more than the other interactions. This alluded that the result largely depended on the particle size and hydrogen gas fraction, and there was an interaction between probe position and hydrogen gas fraction. Therefore, when altering the H2 gas fraction is considered, altering the probe position should also be considered. The fractions of each effect were roughly 25% by particle size, 9% by probe position and 35% by H2 gas fraction. At the results of X-ray diffraction patterns of the spheroidized particles, the large particle exhibited higher content of tetragonal phase, while smaller particle showed nearly cubic phase. This seemed to be the quenching rate; larger particle might have more time to phase separation upon cooling that smaller one. X-ray analysis results confirmed a relation between the particle size and tetragonal phase content, when the particles were sprayed at the same conditions. When particles were the same size but sprayed at different conditions, different content of tetragonal phase exhibited according to the experienced temperatures of particles. A particle wasting longer time for cooling to room temperature showed much tetragonal content which phase is stable at low temperatures

  9. A study on the spheroidization by palsma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-01-01

    Spheroidization of a powder in thermal plasma is a plausible method for powder morphology treatment. In this experiment, the spheroidization fraction was decreased with increasing the particle size. The higher fraction of H2 gas and higher probe position resulted in a higher spheroidization fraction. From this study, it follows that the good result could be attained from smaller size particle with higher hydrogen gas fraction and higher probe position. Through the statistical assessment, the results concluded that the effect of hydrogen gas content has more influence than particle size, and the probe position affects lower than the others. The interaction between the probe position and hydrogen gas fraction affects more than the other interactions. This alluded that the result largely depended on the particle size and hydrogen gas fraction, and there was an interaction between probe position and hydrogen gas fraction. Therefore, when altering the H2 gas fraction is considered, altering the probe position should also be considered. The fractions of each effect were roughly 25% by particle size, 9% by probe position and 35% by H2 gas fraction. At the results of X-ray diffraction patterns of the spheroidized particles, the large particle exhibited higher content of tetragonal phase, while smaller particle showed nearly cubic phase. This seemed to be the quenching rate; larger particle might have more time to phase separation upon cooling that smaller one. X-ray analysis results confirmed a relation between the particle size and tetragonal phase content, when the particles were sprayed at the same conditions. When particles were the same size but sprayed at different conditions, different content of tetragonal phase exhibited according to the experienced temperatures of particles. A particle wasting longer time for cooling to room temperature showed much tetragonal content which phase is stable at low temperatures.

  10. Modeling photopolarimetric characteristics of comet dust as a polydisperse mixture of polyshaped rough spheroids

    Science.gov (United States)

    Kolokolova, L.; Das, H.; Dubovik, O.; Lapyonok, T.

    2013-12-01

    It is widely recognized now that the main component of comet dust is aggregated particles that consist of submicron grains. It is also well known that cometary dust obey a rather wide size distribution with abundant particles whose size reaches dozens of microns. However, numerous attempts of computer simulation of light scattering by comet dust using aggregated particles have not succeeded to consider particles larger than a couple of microns due to limitations in the memory and speed of available computers. Attempts to substitute aggregates by polydisperse solid particles (spheres, spheroids, cylinders) could not consistently reproduce observed angular and spectral characteristics of comet brightness and polarization even in such a general case as polyshaped (i.e. containing particles of a variety of aspect ratios) mixture of spheroids (Kolokolova et al., In: Photopolarimetry in Remote Sensing, Kluwer Acad. Publ., 431, 2004). In this study we are checking how well cometary dust can be modeled using modeling tools for rough spheroids. With this purpose we use the software package described in Dubovik et al. (J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) that allows for a substantial reduction of computer time in calculating scattering properties of spheroid mixtures by means of using pre-calculated kernels - quadrature coefficients employed in the numerical integration of spheroid optical properties over size and shape. The kernels were pre-calculated for spheroids of 25 axis ratios, ranging from 0.3 to 3, and 42 size bins within the size parameter range 0.01 - 625. This software package has been recently expanded with the possibility of simulating not only smooth but also rough spheroids that is used in present study. We consider refractive indexes of the materials typical for comet dust: silicate, carbon, organics, and their mixtures. We also consider porous particles accounting on voids in the spheroids through effective medium approach. The

  11. Casting Technology.

    Science.gov (United States)

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  12. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  13. The effect of spheroidizing by thermal cycling in low concentration Cr-Mo alloy steel

    International Nuclear Information System (INIS)

    Yun, H.S.; Kang, C.Y.

    1979-01-01

    An intensive study was carried out on spheroidizing of pearlite (Sph) and number of spherical carbide in proeutectoid ferrite (No/100) of low concentration Cr-Mo steel with thermal cycling. Physical and mechanical properties of steel containing 0.33 % C with thermal cycling were compared with those of low concentration Cr-Mo steel with thermal cycling. The effect of normal heat treatment and cooling rate on spheroidizing of pearlite and precipitation of fine spherical carbide in the steels were investigated. The results obtained were as follows: 1) Thermal cycling of low concentration Cr-Mo steel promoted the spheroidizing of pearlite compared with that of steel without Cr and Mo to steel had significant effect on spheroidizing of pearlite. 2) Number of fine spherical carbides of low concentration Cr-Mo steel with thermal cycling was over 5 times to that of fine spherical carbides of hypoeutectoid steel with thermal cycling. 3) Spheroidizing of pearlite and number of fine spherical carbide in proeutectoid ferrite of low concentration Cr-Mo steel with increasing thermal cycle and cooling rate. 4) Hardness of steel with thermal cycling was decreased. However, low concentration Cr-Mo steel had little decreasing rate in hardness with increasing thermal cycle on the basis of 100 times in thermal cycle. Therefore, toughness was considered to be increased with increasing spheroidizing of pearlite without changing mechanical properties. (author)

  14. Supermassive Black Holes and their Host Spheroids III. The Mbh-nsph Correlation

    Science.gov (United States)

    Savorgnan, Giulia A. D.

    2016-04-01

    The Sérsic {R}1/n model is the best approximation known to date for describing the light distribution of stellar spheroidal and disk components, with the Sérsic index n providing a direct measure of the central radial concentration of stars. The Sérsic index of a galaxy’s spheroidal component, nsph, has been shown to tightly correlate with the mass of the central supermassive black hole, MBH. The {M}{BH}{--}{n}{sph} correlation is also expected from other two well known scaling relations involving the spheroid luminosity, Lsph: the {L}{sph}{--}{n}{sph} and the {M}{BH}{--}{L}{sph}. Obtaining an accurate estimate of the spheroid Sérsic index requires a careful modeling of a galaxy’s light distribution and some studies have failed to recover a statistically significant {M}{BH}{--}{n}{sph} correlation. With the aim of re-investigating the {M}{BH}{--}{n}{sph} and other black hole mass scaling relations, we performed a detailed (I.e., bulge, disks, bars, spiral arms, rings, halo, nucleus, etc.) decomposition of 66 galaxies, with directly measured black hole masses, that had been imaged at 3.6 μm with Spitzer. In this paper, the third of this series, we present an analysis of the {L}{sph}{--}{n}{sph} and {M}{BH}{--}{n}{sph} diagrams. While early-type (elliptical+lenticular) and late-type (spiral) galaxies split into two separate relations in the {L}{sph}{--}{n}{sph} and {M}{BH}{--}{L}{sph} diagrams, they reunite into a single {M}{BH}\\propto {n}{sph}3.39+/- 0.15 sequence with relatively small intrinsic scatter (ɛ ≃ 0.25 {dex}). The black hole mass appears to be closely related to the spheroid central concentration of stars, which mirrors the inner gradient of the spheroid gravitational potential.

  15. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  16. Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach

    International Nuclear Information System (INIS)

    Tang, Hong; Lin, Jian-Zhong

    2013-01-01

    An improved anomalous diffraction approximation (ADA) method is presented for calculating the extinction efficiency of spheroids firstly. In this approach, the extinction efficiency of spheroid particles can be calculated with good accuracy and high efficiency in a wider size range by combining the Latimer method and the ADA theory, and this method can present a more general expression for calculating the extinction efficiency of spheroid particles with various complex refractive indices and aspect ratios. Meanwhile, the visible spectral extinction with varied spheroid particle size distributions and complex refractive indices is surveyed. Furthermore, a selection principle about the spectral extinction data is developed based on PCA (principle component analysis) of first derivative spectral extinction. By calculating the contribution rate of first derivative spectral extinction, the spectral extinction with more significant features can be selected as the input data, and those with less features is removed from the inversion data. In addition, we propose an improved Tikhonov iteration method to retrieve the spheroid particle size distributions in the independent mode. Simulation experiments indicate that the spheroid particle size distributions obtained with the proposed method coincide fairly well with the given distributions, and this inversion method provides a simple, reliable and efficient method to retrieve the spheroid particle size distributions from the spectral extinction data. -- Highlights: ► Improved ADA is presented for calculating the extinction efficiency of spheroids. ► Selection principle about spectral extinction data is developed based on PCA. ► Improved Tikhonov iteration method is proposed to retrieve the spheroid PSD.

  17. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    Science.gov (United States)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  18. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour.

    Directory of Open Access Journals (Sweden)

    Silvia Blacher

    Full Text Available The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph angiogenesis and test pro- and anti-(lymph angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.

  19. EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses

    International Nuclear Information System (INIS)

    Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V

    2006-01-01

    Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite

  20. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  1. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    Directory of Open Access Journals (Sweden)

    Christine Kaestle

    2011-05-01

    Full Text Available Vectors derived from herpes simplex virus type 1 (HSV-1 have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP. After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector–mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application—injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  2. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid

    Science.gov (United States)

    Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim

    Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.

  3. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  4. THE EFFECT OF APPLIED STRESS ON THE GRAPHITIZATION OF PYROLYTIC GRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, R H; Crooks, D D; Fenn, Jr, R W; Hammond, M L

    1963-06-15

    Metallographic and x-ray diffraction studies were made of the effect of applied stress at high temperature on the structure of pyrolytic graphite (PG). The dominant factor was whether the PG was above or below its graphitization temperature, which, in turn, was not strongly dependent on applied stress. Below the graphitization temperature, the PG showed a high proportion of disordered layers (0.9), a fairly large mean tilt angle (20 deg ) and a small crystailite size (La --150 A). Fracture occurred at low stress and strain and the materiai exhibited a high apparent Young's modulus ( approximates 4 x 10/sup 6/ psi). Above the graphitization temperature, graphitization was considerably enhanced by strain up to about 8%. The disorder parameter was decreased from a zero strain value of 0.3 to 0.l5 with strain, the mean tilt angle was decreased to 4 deg , and a fivefold increase in crystallite size occurred. When the strainenhanced graphitization was complete, the material exhibited a low apparent modulus ( approximates 0.5 x 10/sup 6/ psi) and large plastic strains (>100%) for a constant stress ( approximates 55 ksi). Graphitization was shown to be a spontaneous process that is promoted by breaking cross-links thermally, and the process is furthered by chemical attack and plastic strain. (auth)

  5. Zero-point energy in spheroidal geometries

    OpenAIRE

    Kitson, A. R.; Signal, A. I.

    2005-01-01

    We study the zero-point energy of a massless scalar field subject to spheroidal boundary conditions. Using the zeta-function method, the zero-point energy is evaluated for small ellipticity. Axially symmetric vector fields are also considered. The results are interpreted within the context of QCD flux tubes and the MIT bag model.

  6. Influencia de los tratamientos térmicos en el comportamiento frente al desgaste por abrasión de una fundición de grafito esferoidal obtenida mediante adición de boro

    Directory of Open Access Journals (Sweden)

    Varela, A.

    2008-08-01

    Full Text Available By adding boron to the liquid metal, it is possible to obtain spheroidal graphite cast iron without any need for special inoculants. The boron may be in metallic form; alternatively, borax, ferroboron, boron carbonate or borocalcium can be used. These alloys as cast present a pearlite matrix with more or less spheroidal graphite, which is usually edged in ferrite that has markings in the shape of bull’s eye. With normalising, the ferrite edges are eliminated. Thus, a pearlite matrix is achieved. Annealing results in an entirely ferrite matrix; quenching and tempering produce a tempered martensite matrix.This study measures the behaviour under wear of this alloy as cast, normalised, annealed, quenched and tempered . A “pin on disk” test is employed; load and speed conditions, as well as the pin type, are kept constant. Moreover, wear is calculated through weighing, and the variation for the friction coefficient is determined in each case.

    Mediante la adición de boro al metal líquido, bien en forma metálica o en forma de bórax, ferroboro, carburo de boro o boruro cálcico, se pueden obtener fundiciones de grafito esferoidal sin necesidad de inoculantes especiales. Estas fundiciones en estado bruto de colada presentan una matriz perlítica con grafito más o menos esferoidal que suele estar orlado de ferrita formando ojos de buey. Por tratamiento térmico de normalizado, se consigue eliminar la orla ferrítica y tener una matriz enteramente perlítica. Por recocido, se puede obtener una matriz enteramente ferrítica y por temple y revenido una matriz de martensita revenida. En el presente trabajo se mide el comportamiento frente al desgaste abrasivo de la aleación indicada, en estado bruto de colada, normalizado, recocido y bonificado, utilizando el ensayo pin on disk, manteniendo fijas las condiciones de ensayo en cuanto a carga, velocidad y tipo de pin, calculando el desgaste producido por pesada. También, se

  7. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T.

    2012-01-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  8. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T. [Laboratorio de Instrumentacao Nuclear, PEN/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941-972, Rio de Janeiro, RJ (Brazil); Laboratorio de Biotecnologia - Bioengenharia - DIPRO, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial, Xerem. 25250-020, Duque de Caxias, RJ (Brazil); Laboratorio de Interacoes Celulares, ICB-CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941- 590, Rio de Janeiro, RJ (Brazil); Laboratorio de Instrumentacao Nuclear, PEN/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941-972, Rio de Janeiro, RJ (Brazil); Laboratorio de Interacoes Celulares, ICB-CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941- 590, Rio de Janeiro, RJ (Brazil); Laboratorio de Instrumentacao Nuclear, PEN/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941-972, Rio de Janeiro, RJ (Brazil)

    2012-05-17

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  9. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  10. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  11. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers.

    Directory of Open Access Journals (Sweden)

    Patrícia M R Pereira

    Full Text Available Photodynamic Therapy (PDT relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4 in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.

  12. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  13. Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion

    International Nuclear Information System (INIS)

    Zhang Huayong; Liao Tongqing

    2011-01-01

    A generalized Lorenz-Mie theory framework (GLMT) is applied to the study of Gaussian beam scattering by a spherical particle with an embedded spheroid at the center. By virtue of a transformation between the spherical and spheroidal vector wave functions, a theoretical procedure is developed to deal with the boundary conditions. Numerical results of the normalized differential scattering cross section are presented.

  14. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  15. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  16. Stability of force-free spheromak plasma in spheroidal flux conserver

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Tsutsui, Hiroaki

    1988-01-01

    The Woltjer-Taylor method is applied to spheromak plasmas in spheroidal flux conservers. As models of the flux conserver, both oblate and prolate spheroidal vessels with a center conductor are used. The plasma is not assumed to be nearly spherical, and the Rayleigh-Ritz method and the finite element method are used to evaluate the eigenvalues. The oblate spheromak is shown to be stable irrespective of the shape of the flux conserver. Though the prolate spheromak is unstable if there is no center conductor, it can be stable if the center conductor is installed. (author)

  17. Synergistic interaction between cisplatin and gemcitabine in neuroblastoma cell lines and multicellular tumor spheroids

    NARCIS (Netherlands)

    Besançon, Odette G.; Tytgat, Godelieve A. M.; Meinsma, Rutger; Leen, René; Hoebink, Jerry; Kalayda, Ganna V.; Jaehde, Ulrich; Caron, Huib N.; van Kuilenburg, André B. P.

    2012-01-01

    The efficacy and mechanism of action of cisplatin and gemcitabine were investigated in a panel of neuroblastoma cell lines and multicellular tumor spheroids. In neuroblastoma spheroids, the combination of cisplatin and gemcitabine induced a complete cytostasis at clinical relevant concentrations. A

  18. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    Science.gov (United States)

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  19. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part I – Moulding technologies vs. zinc coating

    Directory of Open Access Journals (Sweden)

    Szczęsny A.

    2017-03-01

    Full Text Available Studies have demonstrated that in the process of hot dip galvanizing the decisive influence on the mechanism of zinc coating formation and properties has the quality of the mechanically untreated (raw surface layer of the galvanized product. The terms “casting surface layer” denote various parameters of the microstructure, including the type of metal matrix, the number of grains and the size of graphite nodules, possible presence of hard spots (the precipitates of eutectic cementite and parameters of the surface condition. The completed research has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing.

  20. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas

    Science.gov (United States)

    Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito

    2010-11-01

    The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.

  2. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    Science.gov (United States)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  3. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Canellas, Catarine G.L.; Anjos, Marcelino J.; Lopes, Ricardo T.; Santos, Carlos Antonio N.; Palumbo Junior, Antonio; Souza, Pedro A.V.R.; Nasciutti, Luiz E.

    2011-01-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed. (author)

  4. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Roberta G.; Canellas, Catarine G.L.; Anjos, Marcelino J.; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear; Santos, Carlos Antonio N. [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia - Bioengenharia; Palumbo Junior, Antonio; Souza, Pedro A.V.R.; Nasciutti, Luiz E., E-mail: nasciutt@ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Interacoes Celulares

    2011-07-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed. (author)

  5. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  6. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  7. Microstructure and erosion characteristic of nodular cast iron surface modified by tungsten inert gas

    International Nuclear Information System (INIS)

    Abboud, Jaafar Hadi

    2012-01-01

    Highlights: ► Local surface melting. ► Significant improvement in erosion resistance. ► The ductile behaviour was found. -- Abstract: The surface of nodular cast iron has been melted and rapidly solidified by Tungsten Inert Gas (TIG) process to produce a chilled structure of high hardness and better erosion resistance. Welding currents of magnitude 100, 150, and 200 A at a constant voltage of 72 have been used to melt the surface of nodular cast iron. Microstructural characterization, hardness measurements, and erosion wear tests have been performed on these modified surfaces as well as on the untreated material. Microstructural characterization has shown that surface melting resulted in complete or partial dissolution of the graphite nodules and resolidification of primary austenite dendrites, which undergo further decomposition into ferrite and cementite, and interdendritic of acicular eutectic; their microhardness measured across the melted depth ranged between 600 and 800 Hv. The scale of the dendrites and the interdendritic eutectic became coarser when a higher current is used. The results also indicated that remelting process by TIG improved erosion resistance by three to four times. Eroded surface observations of the as-received and TIG melted samples showed a ductile behavior with a maximum erosion rate at 30°. The fine microstructures obtained by the rapid cooling and the formation of a large amount of eutectic cementite instead of the graphite have contributed greatly to the plastic flow and consequently to the better erosion resistance of the TIG surface melted samples.

  8. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice

    Directory of Open Access Journals (Sweden)

    Jong-il Park

    2016-02-01

    Full Text Available The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs and normal colonic fibroblasts (NCFs and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.

  9. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  10. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  11. Partial discharges in spheroidal voids: Void orientation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1997-01-01

    Partial discharge transients can be described in terms of the charge induced on the detecting electrode. The influence of the void parameters upon the induced charge is examined and discussed for spheroidal voids. It is shown that a quantitative interpretation of the induced charge requires...

  12. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

    Science.gov (United States)

    Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2018-01-01

    The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Human adipose-derived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia.

    Science.gov (United States)

    Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul; Leproux, Anais

    2017-11-01

    Skin flap grafting is a form of transplantation widely used in plastic surgery. However, ischemia/reperfusion injury is the main factor which reduces the survival rate of flaps following grafting. We investigated whether photobiomodulation (PBM) precondition prior to human adipose-derived stromal cell (hASC) spheroid (PBM-spheroid) transplantation improved skin tissue functional recovery by the stimulation of angiogenesis and tissue regeneration in skin flap of mice. The LED had an emission wavelength peaked at 660 ± 20 nm (6 J/cm 2 , 10 mW/cm 2 ). The expression of angiogenic growth factors in PBM-spheroid hASCs was much greater than that of not-PBM-treated spheroid or monolayer-cultured hASCs. From immunochemical staining analysis, the hASCs of PBM-spheroid were CD31 + , KDR + , and CD34 + , whereas monolayer-cultured hASCs were negative for these markers. To evaluate the therapeutic effect of hASC PBM-spheroid in vivo, PBS, monolayer-cultured hASCs, and not-PBM-spheroid were transplanted into a skin flap model. The animals were observed for 14 days. The PBM-spheroid hASCs transplanted into the skin flap ischemia differentiated into endothelial cells and remained differentiated. Transplantation of PBM-spheroid hASCs into the skin flap ischemia significantly elevated the density of vascular formations through angiogenic factors released by the skin flap ischemia and enhanced tissue regeneration at the lesion site. Consistent with these results, the transplantation of PBM-spheroid hASCs significantly improved functional recovery compared with PBS, monolayer-cultured hASCs, and not-PBM-spheroid treatment. These findings suggest that transplantation of PBM-spheroid hASCs may be an effective stem cell therapy for the treatment of skin flap ischemia.

  14. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time

    Directory of Open Access Journals (Sweden)

    Baek N

    2016-11-01

    Full Text Available NamHuk Baek,1,* Ok Won Seo,1,* MinSung Kim,1 John Hulme,2 Seong Soo A An2 1Department of R & D, NanoEntek Inc., Seoul, Republic of Korea; 2Department of BioNano Technology Gachon University, Gyeonggi-do, Republic of Korea *These authors contributed equally to this work Abstract: Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549, muscle (C2C12, prostate (DU145, testis (F9, pituitary epithelial-like (GH3, cervical cancer (HeLa, HeLa contaminant (HEp2, embryo (NIH3T3, embryo (PA317, neuroblastoma (SH-SY5Y, osteosarcoma U2OS, and embryonic kidney cells (293T, were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were

  15. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  16. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  17. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    Science.gov (United States)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  18. Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangru, E-mail: cxr16@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, Jie, E-mail: shuxujie@163.com [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Hu, Henry, E-mail: huh@uwindsor.ca [Department of Mechanical, Automotive and Materials Engineering University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4 (Canada); Mohrbacher, Hardy, E-mail: hm@niobelcon.net [NiobelCon bvba, Swaenebeecklaan, 2970 Schilde (Belgium); Kang, Ming, E-mail: kangming@dfcv.com.cn [Dongfeng Commercial Vehicle Co., Ltd., Wuhan 430056 (China); Zhang, Wei, E-mail: zhangwei3@citic.com [CITIC Metal Co., Ltd., Beijing 100004 (China); Guo, Aimin, E-mail: guoam@citic.com [CITIC Metal Co., Ltd., Beijing 100004 (China); Zhai, Qijie, E-mail: qjzhai@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2017-03-14

    The effects of niobium addition up to 0.11 wt% on the microstructure and tensile properties of as-cast ductile iron (ACDI) were investigated. Metallographic analyses by both optical microscopy (OM) and scanning electron microscopy (SEM) indicated that niobium (Nb) promoted the formation of pearlite, reduced pearlite lamellar spacing and decreased the extent of graphitization taking place in the Nb-alloyed ACDI. The nodularity and nodule counts of graphite changed insignificantly when the Nb content was less than 0.08 wt% in the ACDI. The analysis of precipitates by transmission electron microscopy (TEM) revealed that nano and micro sized (Nb, Ti)C carbides acted as nucleation site for graphites, and promoted the formation of large graphite nodules with low roundnesses as Nb content rose above 0.08 wt%. The results of tensile testing showed that the yield strength, ultimate tensile strength and elongation of the ACDI with 0.08 wt% Nb increased by 12.1%, 11.2% and 14.3% over those of the Nb-free ACDI, respectively. The optimum values of the yield strength, tensile strength and elongation of the Nb-alloyed ACDI were found to be 418 MPa, 746.0 MPa and 8.0%, respectively, at the Nb content of 0.08 wt%. The high strain hardening rates of the Nb-containing ACDIs implied that they were capable of spontaneously strengthening itself increasingly to a large extent, in response to a slight plastic deformation after yielding.

  19. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.

    Science.gov (United States)

    Barbera, Vincenzina; Guerra, Silvia; Brambilla, Luigi; Maggio, Mario; Serafini, Andrea; Conzatti, Lucia; Vitale, Alessandra; Galimberti, Maurizio

    2017-12-11

    In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp 2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.

  20. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  1. Study on Damage Mechanism of Ductile Cast Iron Cooling Stave

    Science.gov (United States)

    Wang, Cui; Zhang, Jianliang; Zuo, Haibin; Dai, Bing

    The damage mechanism of ductile cast iron cooling stave applied to No.4 blast furnace of Guofeng steel was analyzed through damage investigation in details, the damage causes: high-temperature gas flow erosion, wear of burden, high-temperature ablation, carburizing damage, improper operation on blast furnace, etc. were given out both in macroscopic and microscopic views. It can be obtained from metallographic diagrams that the diameter of graphite nodules increases, the number per unit area reduces, and roundness declines, successively, from cold to hot surface, which are not conducive to stave longevity. In summary, the material for staves manufacture should be better in comprehensive mechanical properties to prolong the service life, thus making blast furnace long campaign.

  2. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers

    OpenAIRE

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung-Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-01-01

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed ...

  3. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  4. Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio.

    1985-05-01

    The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is larger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi=const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)

  5. Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio

    1985-01-01

    The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is stronger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi = const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)

  6. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  7. Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio

    Science.gov (United States)

    Gong, Zhixiong; Li, Wei; Mitri, Farid G.; Chai, Yingbin; Zhao, Yao

    2016-11-01

    In this paper, the T-matrix (null-field) method is applied to investigate the acoustic scattering by a large-aspect-ratio rigid spheroid immersed in a non-viscous fluid under the illumination of an unbounded zeroth-order Bessel beam with arbitrary orientation. Based on the proposed method, a MATLAB software package is constructed accordingly, and then verified and validated to compute the acoustic scattering by a rigid oblate or prolate spheroid in the Bessel beam. Several numerical examples are carried out to investigate the novel phenomenon of acoustic scattering by spheroids in Bessel beams with arbitrary incidence, with particular emphasis on the aspect ratio (i.e. the ratio of the polar radius over the equatorial radius of the spheroid), the half-cone angle of Bessel beam, the dimensionless frequency, as well as the angle of incidence. The quasi-periodic oscillations are observed in the plots of the far-field backscattering form function modulus versus the dimensionless frequency, owing to the interference between the specular reflection and the Franz wave circumnavigating the spheroid in the surrounding fluid. Furthermore, the 3D far-field scattering directivity patterns at end-on incidence and 2D polar plots at arbitrary angles of incidence are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by flat or elongated spheroid. This research work may provide an impetus for the application of acoustic Bessel beam in engineering practices.

  8. Non-existence of separable spheroidal beams

    International Nuclear Information System (INIS)

    Boyack, Rufus; Lekner, John

    2011-01-01

    We show that ψ = R(ξ)S(η) e imφ , a product of radial and angular oblate spheroidal functions and an azimuthal factor, cannot represent physical free-space scalar beams. The reason lies in the discontinuity in the longitudinal derivative of ψ in the focal plane, where ψ is not a solution of the Helmholtz equation on the disc ξ = 0

  9. Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells.

    Science.gov (United States)

    Yamamoto, Mioko; Kawashima, Nobuyuki; Takashino, Nami; Koizumi, Yu; Takimoto, Koyo; Suzuki, Noriyuki; Saito, Masahiro; Suda, Hideaki

    2014-03-01

    Three-dimensional (3D) spheroid culture is a method for creating 3D aggregations of cells and their extracellular matrix without a scaffold mimicking the actual tissues. The aim of this study was to evaluate the effects of 3D spheroid culture on the phenotype of immortalized mouse dental papilla cells (MDPs) that have the ability to differentiate into odontoblasts. We cultured MDPs for 1, 3, 7, and 14 days in 96-well low-attachment culture plates for 3D spheroid culture or flat-bottomed plates for two-dimensional (2D) monolayer culture. Cell proliferation and apoptosis were detected by immunohistochemical staining of Ki67 and cleaved caspase-3, respectively. Hypoxia was measured by the hypoxia probe LOX-1. Odonto/osteoblastic differentiation marker gene expression was evaluated by quantitative PCR. We also determined mineralized nodule formation, alkaline phosphatase (ALP) activity, and dentine matrix protein-1 (DMP1) expression. Vinculin and integrin signalling-related proteins were detected immunohistochemically. Odonto/osteoblastic marker gene expression and mineralized nodule formation were significantly up-regulated in 3D spheroid-cultured MDPs compared with those in 2D monolayer-cultured MDPs (podonto/osteoblastic differentiation of MDPs, which may be mediated by integrin signalling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB

    International Nuclear Information System (INIS)

    Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.; Martínez-Serrano, F. J.; Serna, A.; Stinson, G.

    2015-01-01

    Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explained in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics

  11. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model.

    Science.gov (United States)

    Zhang, Wenli; Li, Caibin; Baguley, Bruce C; Zhou, Fang; Zhou, Weisai; Shaw, John P; Wang, Zhen; Wu, Zimei; Liu, Jianping

    2016-12-15

    To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.

    Science.gov (United States)

    Kessel, Sarah; Cribbes, Scott; Bonasu, Surekha; Rice, William; Qiu, Jean; Chan, Leo Li-Ying

    2017-09-01

    The development of three-dimensional (3D) multicellular tumor spheroid models for cancer drug discovery research has increased in the recent years. The use of 3D tumor spheroid models may be more representative of the complex in vivo tumor microenvironments in comparison to two-dimensional (2D) assays. Currently, viability of 3D multicellular tumor spheroids has been commonly measured on standard plate-readers using metabolic reagents such as CellTiter-Glo® for end point analysis. Alternatively, high content image cytometers have been used to measure drug effects on spheroid size and viability. Previously, we have demonstrated a novel end point drug screening method for 3D multicellular tumor spheroids using the Celigo Image Cytometer. To better characterize the cancer drug effects, it is important to also measure the kinetic cytotoxic and apoptotic effects on 3D multicellular tumor spheroids. In this work, we demonstrate the use of PI and caspase 3/7 stains to measure viability and apoptosis for 3D multicellular tumor spheroids in real-time. The method was first validated by staining different types of tumor spheroids with PI and caspase 3/7 and monitoring the fluorescent intensities for 16 and 21 days. Next, PI-stained and nonstained control tumor spheroids were digested into single cell suspension to directly measure viability in a 2D assay to determine the potential toxicity of PI. Finally, extensive data analysis was performed on correlating the time-dependent PI and caspase 3/7 fluorescent intensities to the spheroid size and necrotic core formation to determine an optimal starting time point for cancer drug testing. The ability to measure real-time viability and apoptosis is highly important for developing a proper 3D model for screening tumor spheroids, which can allow researchers to determine time-dependent drug effects that usually are not captured by end point assays. This would improve the current tumor spheroid analysis method to potentially better

  13. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  14. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  15. Formation and field-driven dynamics of nematic spheroids.

    Science.gov (United States)

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  16. Theory of electrostatic fluid modes in a cold spheroidal non-neutral plasma

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1991-01-01

    The normal modes of a magnetized spheroidally shaped pure ion plasma have recently been measured. Here the theory of these modes is presented. Although one might expect that a numerical solution is required (because the plasma dielectric is anisotropic and the plasma is inhomogeneous), the problem is actually separable in an unusual coordinate system. The result is a simple electrostatic fluid dispersion relation for modes in a cloud of any spheroidal shape

  17. Molecular and functional assessment of multicellular cancer spheroids produced in double emulsions enabled by efficient airway resistance based selective surface treatment

    Science.gov (United States)

    Ma, Xiao; Leth Jepsen, Morten; Ivarsen, Anne Kathrine R.; Knudsen, Birgitta R.; Ho, Yi-Ping

    2017-09-01

    Multicellular spheroids have garnered significant attention as an in vitro three-dimensional cancer model which can mimick the in vivo microenvironmental features. While microfluidics generated double emulsions have become a potential method to generate spheroids, challenges remain on the tedious procedures. Enabled by a novel ‘airway resistance’ based selective surface treatment, this study presents an easy and facile generation of double emulsions for the initiation and cultivation of multicellular spheroids in a scaffold-free format. Combining with our previously developed DNA nanosensors, intestinal spheroids produced in the double emulsions have shown an elevated activities of an essential DNA modifying enzyme, the topoisomerase I. The observed molecular and functional characteristics of spheroids produced in double emulsions are similar to the counterparts produced by the commercially available ultra-low attachment plates. However, the double emulsions excel for their improved uniformity, and the consistency of the results obtained by subsequent analysis of the spheroids. The presented technique is expected to ease the burden of producing spheroids and to promote the spheroids model for cancer or stem cell study.

  18. Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids

    Science.gov (United States)

    Beaumont, Kimberley A.; Anfosso, Andrea; Ahmed, Farzana

    2015-01-01

    Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions. PMID:26779761

  19. Improving Quality and Occupational Safety on Automated Casting Lines

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2017-09-01

    Full Text Available The paper presents a practical example of improving quality and occupational safety on automated casting lines. Working conditions on the line of box moulding with horizontal mould split were analysed due to low degree of automation at the stage of cores or filters installation as well as spheroidizing mortar dosing. A simulation analysis was carried out, which was related to the grounds of introducing an automatic mortar dispenser to the mould. To carry out the research, a simulation model of a line in universal Arena software for modelling and simulation of manufacturing systems by Rockwell Software Inc. was created. A simulation experiment was carried out on a model in order to determine basic parameters of the working system. Organization and working conditions in other sections of the line were also analysed, paying particular attention to quality, ergonomics and occupational safety. Ergonomics analysis was carried out on manual cores installation workplace and filters installation workplace, and changes to these workplaces were suggested in order to eliminate actions being unnecessary and onerous for employees.

  20. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  1. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  2. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  3. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  4. Stability of spheroidal spheromak plasma by use of force-free approximation

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Tsutsui, Hiroaki.

    1987-09-01

    The Woltjer-Taylor method is applied to spheromak plasmas in spheroidal flux conservers. As models of the flux conserver, both oblate and prolate spheroidal vessels with a center conductor are used. The plasma is not assumed to be nearly spherical, and the Rayleigh-Ritz method and the finite element method are used to evaluate the eigenvalues. The oblate spheromak is shown to be stable irrespective of the shape of the flux conserver. Though the prolate spheromak is unstable if there is no center conductor, it can be stable if the center conductor is installed. (author)

  5. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  6. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  7. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  8. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  9. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment

    Science.gov (United States)

    Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable

  10. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    Science.gov (United States)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  11. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting.

    Science.gov (United States)

    Moldovan, Nicanor I; Hibino, Narutoshi; Nakayama, Koichi

    2017-06-01

    Bioprinting is a technology with the prospect to change the way many diseases are treated, by replacing the damaged tissues with live de novo created biosimilar constructs. However, after more than a decade of incubation and many proofs of concept, the field is still in its infancy. The current stagnation is the consequence of its early success: the first bioprinters, and most of those that followed, were modified versions of the three-dimensional printers used in additive manufacturing, redesigned for layer-by-layer dispersion of biomaterials. In all variants (inkjet, microextrusion, or laser assisted), this approach is material ("scaffold") dependent and energy intensive, making it hardly compatible with some of the intended biological applications. Instead, the future of bioprinting may benefit from the use of gentler scaffold-free bioassembling methods. A substantial body of evidence has accumulated, indicating this is possible by use of preformed cell spheroids, which have been assembled in cartilage, bone, and cardiac muscle-like constructs. However, a commercial instrument capable to directly and precisely "print" spheroids has not been available until the invention of the microneedles-based ("Kenzan") spheroid assembling and the launching in Japan of a bioprinter based on this method. This robotic platform laces spheroids into predesigned contiguous structures with micron-level precision, using stainless steel microneedles ("kenzans") as temporary support. These constructs are further cultivated until the spheroids fuse into cellular aggregates and synthesize their own extracellular matrix, thus attaining the needed structural organization and robustness. This novel technology opens wide opportunities for bioengineering of tissues and organs.

  12. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  13. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  14. The increase in radioresistance of Chinese hamster cells cultured as spheroids is correlated to changes in nuclear morphology

    International Nuclear Information System (INIS)

    Gordon, D.J.; Milner, A.E.; Beaney, R.P.; Grdina, D.J.; Vaughan, A.T.

    1990-01-01

    Chinese hamster V79 cells grown as spheroids in roller culture are more radioresistant than those grown as monolayers. The supercoiled structure of chromatin, as salt-extracted nucleoids, has been examined using flow cytometry. Irradiated viable cells from spheroid culture contain restraints to supercoil relaxation that are absent in monolayer cells. Further analysis of the chromatin organization from each growth form shows that the radioresistant spheroid cells contain a DNA-protein matrix that is more resistant to detergent-induced degradation. The increase in structural integrity may be due to the retention of a 55-60 kDa protein that is apparent in the nucleoids of spheroid, but not monolayer cells. The increase in structural integrity of the spheroid cells may explain their greater radioresistance by providing a more stable platform for high-fidelity DNA damage repair

  15. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  16. Global Landslides on Rapidly Spinning Spheroids

    Science.gov (United States)

    Scheeres, Daniel J.; Sanchez, P.

    2013-10-01

    The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous

  17. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid

    OpenAIRE

    Mitri, F. G.

    2015-01-01

    Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (\\theta = \\pi) in the near-field an...

  18. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  19. Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology

    Science.gov (United States)

    Barekar, N.; Tzamtzis, S.; Dhindaw, B. K.; Patel, J.; Hari Babu, N.; Fan, Z.

    2009-12-01

    To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (ɛ) is obtained compared with composites produced by conventional processes.

  20. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    Science.gov (United States)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  1. Examination of Electrical Resistance of Carburizers Used for Cast Iron Production

    Directory of Open Access Journals (Sweden)

    Książek D.

    2016-12-01

    Full Text Available The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar, each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.

  2. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  3. A proposal of parameter determination method in the residual strength degradation model for the prediction of fatigue life (I)

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Jang, Seong Soo

    2001-01-01

    The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique

  4. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  5. Design of a uranium-dioxide powder spheroidization system by plasma processing

    Science.gov (United States)

    Cavender, Daniel

    The plasma spheroidization system (PSS) is the first process in the development of a tungsten-uranium dioxide (W-UO2) ceramic-metallic (cermet) fuel for nuclear thermal rocket (NTR) propulsion. For the purposes of fissile fuel retention, UO2 spheroids ranging in size from 50 - 100 micrometers (μm) in diameter will be encapsulated in a tungsten shell. The PSS produces spherical particles by melting angular stock particles in an argon-hydrogen plasma jet where they become spherical due to surface tension. Surrogate CeO 2 powder was used in place of UO2 for system and process parameter development. Stock and spheroidized powders were micrographed using optical and scanning electron microscopy and evaluated by statistical methods to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders showed a statistically significant improvement in spherocity, with greater that 60% of the examined particles having an irregularity parameter of equal to or lower than 1.2, compared to stock powder.

  6. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  7. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.

    Science.gov (United States)

    Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu

    2017-06-29

    Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.

  8. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  9. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids.

    Science.gov (United States)

    Murphy, Kaitlin C; Whitehead, Jacklyn; Zhou, Dejie; Ho, Steve S; Leach, J Kent

    2017-12-01

    Mesenchymal stem cells (MSCs) secrete endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE 2 ) that promote angiogenesis, modulate the inflammatory microenvironment, and stimulate wound repair, and MSC spheroids secrete more trophic factors than dissociated, individual MSCs. Compared to injection of cells alone, transplantation of MSCs in a biomaterial can enhance their wound healing potential by localizing cells at the defect site and upregulating trophic factor secretion. To capitalize on the therapeutic potential of spheroids, we engineered a fibrin gel delivery vehicle to simultaneously enhance the proangiogenic and anti-inflammatory potential of entrapped human MSC spheroids. We used multifactorial statistical analysis to determine the interaction between four input variables derived from fibrin gel synthesis on four output variables (gel stiffness, gel contraction, and secretion of VEGF and PGE 2 ). Manipulation of the four input variables tuned fibrin gel biophysical properties to promote the simultaneous secretion of VEGF and PGE 2 by entrapped MSC spheroids while maintaining overall gel integrity. MSC spheroids in stiffer gels secreted the most VEGF, while PGE 2 secretion was highest in more compliant gels. Simultaneous VEGF and PGE 2 secretion was greatest using hydrogels with intermediate mechanical properties, as small increases in stiffness increased VEGF secretion while maintaining PGE 2 secretion by entrapped spheroids. The fibrin gel formulation predicted to simultaneously increase VEGF and PGE 2 secretion stimulated endothelial cell proliferation, enhanced macrophage polarization, and promoted angiogenesis when used to treat a wounded three-dimensional human skin equivalent. These data demonstrate that a statistical approach is an effective strategy to formulate fibrin gel formulations that enhance the wound healing potential of human MSCs. Mesenchymal stem cells (MSCs) are under investigation for wound

  10. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.

    Science.gov (United States)

    Ong, Louis Jun Ye; Islam, Anik; DasGupta, Ramanuj; Iyer, Narayanan Gopalakkrishna; Leo, Hwa Liang; Toh, Yi-Chin

    2017-09-11

    The advent of 3D printing technologies promises to make microfluidic organ-on-chip technologies more accessible for the biological research community. To date, hydrogel-encapsulated cells have been successfully incorporated into 3D printed microfluidic devices. However, there is currently no 3D printed microfluidic device that can support multicellular spheroid culture, which facilitates extensive cell-cell contacts important for recapitulating many multicellular functional biological structures. Here, we report a first instance of fabricating a 3D printed microfluidic cell culture device capable of directly immobilizing and maintaining the viability and functionality of 3D multicellular spheroids. We evaluated the feasibility of two common 3D printing technologies i.e. stereolithography (SLA) and PolyJet printing, and found that SLA could prototype a device comprising of cell immobilizing micro-structures that were housed within a microfluidic network with higher fidelity. We have also implemented a pump-free perfusion system, relying on gravity-driven flow to perform medium perfusion in order to reduce the complexity and footprint of the device setup, thereby improving its adaptability into a standard biological laboratory. Finally, we demonstrated the biological performance of the 3D printed device by performing pump-free perfusion cultures of patient-derived parental and metastatic oral squamous cell carcinoma tumor and liver cell (HepG2) spheroids with good cell viability and functionality. This paper presents a proof-of-concept in simplifying and integrating the prototyping and operation of a microfluidic spheroid culture device, which will facilitate its applications in various drug efficacy, metabolism and toxicity studies.

  11. Photometric analyses of abundances in dwarf spheroidal galaxies and globular clusters

    International Nuclear Information System (INIS)

    Light, R.M.

    1988-01-01

    This study investigated the abundance characteristics of several dwarf spheroidal galaxies. The chemical properties of stars in these galaxies are tracers of the origin and evolution of their stellar populations, and thus can provide constraints on the theories of their formation. To derive this abundance information, photometric observations of stars in a sample of globular clusters, covering a large range in metallicity, were analyzed. Parameters describing the position of the red giant branch were found to correlate very well with cluster metallicity over a large range in abundance. These measurements, made in the Thuan-Gunn photometry system, provide ranking schemes which are, with accurate photometry, more sensitive to changes in metallicity than similar broadband BV parameters. The relations were used to derive an improved estimate of the metallicity of cluster NGC 5053. These metallicity relations were used to analyze the Thuan-Gunn system photometry produced for the Sculptor, Ursa Minor, and Carina galaxies. The excellent agreement between their metallicities and those from other previous studies indicates that globular cluster red giant branch parameters are very useful in ranking dwarf spheroidal populations by metallicity. Together with other galaxian data, strong correlations can be seen between the mean metallicities and dispersions in metallicity and the luminosities of the dwarf spheroidal galaxies. These trends also seem to apply to members of the dwarf elliptical class of galaxies. The ramifications that these correlations and the existence of a metallicity gradient in Sculptor have on the formation of the dwarf spheroidals are discussed

  12. Spheroidization of transition metal carbides in low temperature plasma

    International Nuclear Information System (INIS)

    Klinskaya, N.A.; Koroleva, E.B.; Petrunichev, V.A.; Rybalko, O.F.; Solov'ev, P.V.; Ugol'nikova, T.A.

    1986-01-01

    Plasma process of preparation of titanium, tungsten and chromium carbide spherical powders with the main particle size 40-80 μm is considered. Spheroidization degree, granulometric and phase composition of the product are investigated

  13. Cryopreservation of organotypic multicellular spheroids from human gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; van den Berg, F.; van Amstel, P.; Troost, D.

    1996-01-01

    Fresh human glioma tissue can be cultured on agarose to form organotypic multicellular spheroids (OMS). The major advantage of OMS is the preservation of the cellular heterogeneity and the tumour architecture, which is lost in conventional monolayer cultures. The present study was undertaken to

  14. The casting of western sculpture during the XIXth century: sand casting versus lost wax casting

    NARCIS (Netherlands)

    Beentjes, T.P.C.

    2014-01-01

    This paper will discuss research into bronze casting techniques as practiced during the XIXth and early XXth century. Both natural sand casting (fonte au sable naturel) and lost wax casting (fonte à la cire perdue) were employed during this period and sometimes rivalled for commissions. Before the

  15. Magnetohydrodynamic stability of spheromak plasma in spheroidal flux conserver

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi.

    1985-11-01

    The MHD equilibrium configurations of spheromak plasmas in a spheroidal flux conserver are determined by use of a pressure distribution whose derivative dp/dψ vanishes on the magnetic axis, and by use of an optimized distribution. Here p is the pressure and ψ is the flux function. These equilibria are shown to be stable for symmetric modes. The stability for localized modes is investigated by the Mercier criterion. The values of the maximum beta ratio β max are evaluated for both pressure distributions and are shown to become about two times larger by optimization. If the condition, q axis max are found to be less than 30 %. The oblate spheroidal flux conserver is shown to be better than the toroidal conserver with a rectangular cross section from the standpoint of stability. (author)

  16. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  17. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  18. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  19. Effect of combined treatment of x-rays and ACNU on rat glioma cells in monolayer and multicellular spheroids

    International Nuclear Information System (INIS)

    Sugiyama, Satoru; Mori, Teruaki; Suzuki, Jiro; Sasaki, Takehito

    1985-01-01

    Spheroids of rat glioma clone-6 cells having a central necrosis were used to determine the effect of combined treatment of x-rays and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), where the optimum time intervals and doses in the combination were analyzed. The treatment with ACNU 2 to 6 hours prior to x-ray irradiation was most effective for cells in both monolayers and in spheroids. The dose survival curves with x-ray irradiation indicated that the hypoxic cell fraction in spheroids disappeared with a prior treatment by ACNU. The enhancement ratio in spheroids was thus larger for larger x-ray doses, and was always larger than that in monolayer cells. The survival curves versus concentration of ACNU indicated that the enhancement ratio in spheroids was more than 1.2 in all concentrations with the combined x-ray irradiation, and exceeded that in monolayer cells with a surviving fraction of less than 0.4. (author)

  20. Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R.G.; Anjos, M.J.; Lopes, R.T., E-mail: roberta@lin.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear; Santos, C.A.N. [Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia; Palumbo Junior, A.; Souza, P.A.V.R.; Nasciutti, L.E. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Pereira, G.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Ensaios Nao Destrutivos, Corrosao e Soldagem

    2013-08-15

    Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary. (author)

  1. Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

    International Nuclear Information System (INIS)

    Leitao, R.G.; Anjos, M.J.; Lopes, R.T.; Santos, C.A.N.; Palumbo Junior, A.; Souza, P.A.V.R.; Nasciutti, L.E.; Pereira, G.R.

    2013-01-01

    Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary. (author)

  2. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2016-01-01

    strains are measured with a maximum strain of ∼6.5–8 × 10−4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found...... but with a significant overprediction of the maximum strain. This is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell...

  3. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  4. Penetration and binding of monoclonal antibody in human osteosarcoma multicell spheroids. Comparison of confocal laser scanning microscopy and autoadiography

    International Nuclear Information System (INIS)

    Hjelstuen, M.H.; Rasch-Halvorsen, K.; Brekken, C.; Bruland, Oe.; Davies, C. de L.

    1996-01-01

    Penetration and binding of monoclonal antibody (MAb) in multicell osteosarcoma spheroids have been studied by autoradiography and confocal laser scanning microscopy (CLSM). Optical sectioning of the 3-dimensional spheroids was performed by CLSM. Owing to attenuation of fluorescence intensity, FITC-labelled MAb could not be detected at depths greater than 60 μm within the spheroids. The antibody uptake seen in autoradiographs and CLSM images 60 μm within the spheroids were essentially identical. MAb had reached all parts of the spheroids within 6 h. Quantitative measurements of the fluorescence intensity of FITC-labelled MAb seen in confocal images and measurements of MAb bound per cell using flow cytometry, showed that maximum uptake was reached after 6 h. The possibility to perform both quantatitive and qualitative measurements makes CLSM a promising method for studying antibody uptake in thick tissue samples. (orig.)

  5. Neutron diffusion in spheroidal, bispherical, and toroidal systems

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1986-01-01

    The neutron flux has been studied around absorbing bodies of spheroidal, bispherical, and toroidal shapes in an infinite nonabsorbing medium. Exact solutions have been obtained by using effective boundary conditions at the surfaces of the absorbing bodies. The problems considered are as follows: 1. Neutron flux and current distributions around prolate and oblate spheroids. It is shown that an equivalent sphere approximation can lead to accurate values for the rate of absorption. 2. Neutron flux and current in a bispherical system of unequal spheres. Three separate situations arise here: (a) two absorbing spheres, (b) two spherical sources, and (c) one spherical source and one absorbing sphere. It is shown how the absorption rate in the two spheres depends on their separation. 3. Neutron flux and current in a toroidal system: (a) an absorbing toroid and (b) a toroidal source. The latter case simulates the flux distribution from a thermonuclear reactor vessel. Finally, a brief description of how these techniques can be extended to multiregion problems is given

  6. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  7. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  8. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  9. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  10. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    Directory of Open Access Journals (Sweden)

    ZHU Langping

    2017-06-01

    Full Text Available A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickly. The motion trajectory of particles with different sizes in the lower end of the cooling tube is different obviously, small particles tend to enter the air outlet,while the larger particles are easy to fall down to the bottom of the cooling tube to be collected. Increasing air flow rate can improve the velocity of air flow in the spheroidizing system, causing larger particles to be taken away by the air, resulting in yield reduction. The simulation results of TiAl alloy powder spheroidization are close to the experimental results refer to parameters such as powder size distribution, average particle size and powder yield, and the model is in good accordance with the actual process of the spheroidization.

  11. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    Science.gov (United States)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  12. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  13. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  14. Effect of microstructure and surface features on wetting angle of a Fe-3.2 wt%C.E. cast iron with water

    Science.gov (United States)

    Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.

    2018-05-01

    In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.

  15. The dwarf spheroidal galaxies around the milky way

    NARCIS (Netherlands)

    Tolstoy, E.; Battaglia, G.; Helmi, A.; Irwin, M. J.; Hill, V.; Vallenari, A; Tantalo, R; Portinari, L; Moretti, A

    2007-01-01

    We review the progress of ESO/WFI Imaging and VLT/FLAMES spectroscopy of large numbers of individual stars in nearby dwarf spheroidal galaxies by the Dwarf Abundances and Radial-velocities Team (DART). These observations have allowed us to show that neither the kinematics nor the abundance nor the

  16. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  17. A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ2

    Directory of Open Access Journals (Sweden)

    Dorothy I. Wallace

    2016-01-01

    Full Text Available Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1,S,G2/M as well as quiescent (Q and necrotic (N cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment.

  18. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  19. Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields

    Science.gov (United States)

    Wischnewski, Christian; Kierfeld, Jan

    2018-04-01

    We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.

  20. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.