WorldWideScience

Sample records for spherical nuclei studies

  1. Nuclear structure investigations on spherical nuclei

    International Nuclear Information System (INIS)

    Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.

    1989-09-01

    This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model

  2. Stability of the spherical form of nuclei

    International Nuclear Information System (INIS)

    Sabry, A.A.

    1976-08-01

    An extension of the mass formula for a spherical nucleus in the drop model to include a largely deformed nucleus of different forms is investigated. It is found that although the spherical form is stable under small deformations from equilibrium, there exists for heavier nuclei another more favourable stable form, which can be approximated by two, or three touching prolate ellipsoids of revolution

  3. Nuclear moments of nuclei near sphericity

    International Nuclear Information System (INIS)

    El Hajjaji, O.

    1987-05-01

    Magnetic and electric hyperfine interactions are studied by means of low temperature nuclear orientation. The magnetic moment of the 149 Gd isotope and that of 151 Gd are determined. The values follow the same trend as literature values of neighbouring nuclei. The calculated moments of the 7/2 - states using the Mottelson-Nilsson model without configuration mixing are nearly independent of deformation. Thus we assign the decrease of the magnetic moment versus neutron number to many particle coupling in the f shell. The Moessbauer effect detection of nuclear orientation is discussed. Two series of experiences are performed with different finalities. In the first one we determined the electric quadrupole moments of 125m Te and 129 Te. The quadrupole moments confirm the nearly spherical shape of these nuclei. In the second series we describe the Moessbauer effect of the radiation emitted by the daigleter nucleus of 125 I, implanted in two semiconductor matrices, locally oriented at low temperature by the electric field gradient of impurity-vacancy coupling. Despite the difficulty of the cooling down of Te nuclei to lattice temperature, we have shown the existence of the electric field gradient of implanted I into Si and α-Sn and determined their signs. The level mixing resonance is applied on oriented nuclei technique to determine the weak prolate deformation of silver nuclei. Studying the Δm = 3 resonance of 107 Ag m , we etablished the quadrupole moment of this state, which is in good agreement with the theoretical estimations of Moeller and Nix [fr

  4. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  5. Realistic microscopic level densities for spherical nuclei

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented

  6. Non-spherical boson basis for near-O(6) nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1984-01-01

    A non-spherical boson basis is suggested for the description of near-O(6) nuclei. The structure of intrinsic states in such nuclei is studied and analytic expressions for the bandheads and E2 transitions are given, accompanied by a comparison with the experimental data. (orig.)

  7. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    Science.gov (United States)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  8. Influence of the two-phonon admixture on the M1-resonance in spherical nuclei

    International Nuclear Information System (INIS)

    Ponomarev, V.Ju.; Stoyanov, Ch.; Vdovin, A.I.; Voronov, V.V.

    1979-01-01

    The influence of the two-phonon admixtures on the M1-resonance is spherical nuclei with mass numbers 60 <= A <= 140 is studied. The calculations are performed within the quasiparticle phonon nuclear model with factorized multipole and spin-multipole forces. In nuclei with the number of neutrons 50,82 the role of the two-phonon admixtures is insignificant whereas in other nuclei especially in those with strong pairing in the proton and neutron schemes it is significant. The radiative strength functions are calculated at the neutron binding energy. The results are compared with the experimental data and calculations of other authors

  9. Phases of dense matter with non-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pethick, C.J. [NORDITA, Copenhagen (Denmark)]|[Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)

  10. Gamma transitions between compound states in spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons

  11. The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2007-04-15

    We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall

  12. Relativistic continuum random phase approximation in spherical nuclei

    International Nuclear Information System (INIS)

    Daoutidis, Ioannis

    2009-01-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  13. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  14. Shell and pairing effects in spherical nuclei close to the nucleon drip lines

    International Nuclear Information System (INIS)

    Beiner, M.; Lombard, R.J.

    1975-01-01

    The unstability against nucleon emission of light and medium exotic spherical nuclei is investigated systematically using an extended version of the energy density formalism which reproduces correctly shell and pairing effects in stable nuclei. The reliability of the predictions of this microscopic, self-consistent and weakly parametrized model should not decrease significantly with the distance of the nuclei from the β-stability line, what is not the case for conventional mass formulae or mass tables [fr

  15. Cluster aspects of alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Furman, V.I.; Kholan, S.; Khlebostroev, V.G.

    1975-01-01

    On the basis of the non-R-Matrix approach to the α-decay theory the surface α-cluster model of α-decay is introduced. In the frame of this model evidence is obtained about an important contribution of the peripherical region of parent nuclei for the absolute α-decay widths. A classification of the α-transitions following the values of experimental probabilities for the existence of α-particles at the nuclear surface is performed

  16. Basic equations for odd spherical nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Dao Tien Khoa; Vdovin, A.I.; Voronov, V.V.

    1984-01-01

    The system of basic equations in the general form is obtained for odd spherical nuclei within the quasiparticle-model. The anharmonics of vibrations of even-even core and Pauli principle corrections are included into these equations. It has been shown that the derived system of equations contains all versions of approximate equations used in the calculation within the quasiparticle-phonon model

  17. The investigation of 0+ ↔ 0− β decay in some spherical nuclei

    Indian Academy of Sciences (India)

    some spherical nuclei. The theoretical framework is based on a proton–neutron quasipar- ticle random phase approximation (pnQRPA). The Woods–Saxon potential basis has been used in our calculations. The transition probabilities have been calculated within the ξ approximation. The relativistic β moment matrix element ...

  18. The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei

    International Nuclear Information System (INIS)

    Khuong, C.Z.; Soloviev, V.G.; Voronov, V.V.

    1981-01-01

    The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states, the fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle roughly into account. (author)

  19. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  20. Spreading widths of giant resonances in spherical nuclei: Damped transient response

    Science.gov (United States)

    Severyukhin, A. P.; Åberg, S.; Arsenyev, N. N.; Nazmitdinov, R. G.

    2017-06-01

    We propose a general approach to describe spreading widths of monopole, dipole, and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the random-phase approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to analyze excited states of the doubly magic nuclei 132Sn, 208Pb, and 310126. Our results demonstrate that the approach enables to us to describe a gross structure of the spreading widths of the giant resonances considered.

  1. Semimicroscopic description of basic properties of isoscalar monopole and dipole excitations in medium-mass spherical nuclei

    NARCIS (Netherlands)

    Gorelik, ML; Urin, MH

    2003-01-01

    A description of basic properties (strength function, transition density, probabilities of direct nucleonic decays) of isoscalar giant monopole (including an overtone) and dipole resonances in medium-mass spherical nuclei is proposed within a semimicroscopic approach. The approach relies on

  2. Giant resonances: a comparison between TDHF and fluid dynamics in small amplitude vibrations of spherical nuclei

    International Nuclear Information System (INIS)

    Sagawa, Hiroyuki; Holzwarth, G.

    1978-01-01

    Small amplitude vibrations of spherical nuclei are considered in microscopic (RPA) and fluid-dynamical description. Assuming the concentration of transition strength into one collective state, the microscopic result can be brought into close analogy to constrained fluid-dynamical motion. The decisive difference occurs in the contribution of the microscopic kinetic energy to the collective potential energy. It is shown that extension of fluid dynamics to include dynamical distortions of the local Fermi surface is sufficient to reproduce the microscopic results. Numerical examples are given for L=0 and L=2 isoscalar modes for a Skyrme-type nucleon-nucleon force. (auth.)

  3. Study of strange nuclei

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    A brief history of the discovery of hypernuclei is given and some recent hypernuclei studies are described. Topics include the study of p-shell hypernuclei, 12 C (K - , π - ) experiment, and hypernuclear gamma rays. 13 references

  4. Damping of isovector giant dipole resonances in hot even-even spherical nuclei

    International Nuclear Information System (INIS)

    Dang, N.D.

    1989-01-01

    An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)

  5. Progress in octahedral spherical hohlraum study

    Directory of Open Access Journals (Sweden)

    Ke Lan

    2016-01-01

    Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.

  6. Study of 148-152Sm nuclei employing γ - derived from B(E2) values and level energies

    International Nuclear Information System (INIS)

    Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, Mani

    2011-01-01

    The study of samarium nuclei has been a challenging theoretical problem, since they lie in the range from near spherical to well deformed shapes. 148 Sm was believed to be basically spherical while 154 Sm is thought to be well deformed nucleus and 150-15 '2Sm are transitional nuclei

  7. A C-code for the double folding interaction potential of two spherical nuclei

    Science.gov (United States)

    Gontchar, I. I.; Chushnyakova, M. V.

    2010-01-01

    We present a C-code designed to obtain the nucleus-nucleus potential by using the double folding model (DFM) and in particular to find the Coulomb barrier. The program calculates the nucleus-nucleus potential as a function of the distance between the centers of mass of colliding nuclei. The most important output parameters are the Coulomb barrier energy and the radius. Since many researchers use a Woods-Saxon profile for the nuclear term of the potential we provide an option in our code for fitting the DFM potential by such a profile. Program summaryProgram title: DFMSPH Catalogue identifier: AEFH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5929 No. of bytes in distributed program, including test data, etc.: 115 740 Distribution format: tar.gz Programming language: C Computer: PC Operating system: Windows XP (with the GCC-compiler version 2) RAM: Below 10 Mbyte Classification: 17.9 Nature of problem: The code calculates in a semimicroscopic way the bare interaction potential between two colliding spherical nuclei as a function of the center of mass distance. The height and the position of the Coulomb barrier are found. The calculated potential is approximated by a conventional Woods-Saxon profile near the barrier. Dependence of the barrier parameters upon the characteristics of the effective NN forces (like, e.g. the range of the exchange part of the nuclear term) can be investigated. Solution method: The nucleus-nucleus potential is calculated using the double folding model with the Coulomb and the effective M3Y NN interactions. For the direct parts of the Coulomb and the nuclear terms, the Fourier transform method is used. In order to calculate the exchange parts the density matrix expansion method

  8. DFMSPH14: A C-code for the double folding interaction potential of two spherical nuclei

    Science.gov (United States)

    Gontchar, I. I.; Chushnyakova, M. V.

    2016-09-01

    This is a new version of the DFMSPH code designed to obtain the nucleus-nucleus potential by using the double folding model (DFM) and in particular to find the Coulomb barrier. The new version uses the charge, proton, and neutron density distributions provided by the user. Also we added an option for fitting the DFM potential by the Gross-Kalinowski profile. The main functionalities of the original code (e.g. the nucleus-nucleus potential as a function of the distance between the centers of mass of colliding nuclei, the Coulomb barrier characteristics, etc.) have not been modified. Catalog identifier: AEFH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 114404 Distribution format: tar.gz Programming language: C Computer: PC and Mac Operation system: Windows XP and higher, MacOS, Unix/Linux Memory required to execute with typical data: below 10 Mbyte Classification: 17.9 Catalog identifier of previous version: AEFH_v1_0 Journal reference of previous version: Comp. Phys. Comm. 181 (2010) 168 Does the new version supersede the previous version?: Yes Nature of physical problem: The code calculates in a semimicroscopic way the bare interaction potential between two colliding spherical nuclei as a function of the center of mass distance. The height and the position of the Coulomb barrier are found. The calculated potential is approximated by an analytical profile (Woods-Saxon or Gross-Kalinowski) near the barrier. Dependence of the barrier parameters upon the characteristics of the effective NN forces (like, e.g. the range of the exchange part of the nuclear term) can be investigated. Method of solution: The nucleus-nucleus potential is calculated using the double

  9. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  10. Lifetime of spherical and deformed states in 1f7/2 nuclei

    International Nuclear Information System (INIS)

    Medina, N.H.; Ribas, R.V.; Oliveira, J.R.B.; Brandolini, F.; Lenzi, S.M.; Ur, C.A.; Bazzacco, D.; Menegazzo, R.; Pavan, P.; Rossi A, C.; Napoli, D.R.; Marginean, N.; Angelis, G. De; Poli, M. De; Martinez, T.; Algora P, A.; Gadea, A.; Farnea, E.; Bucurescu, D.; Ionescu B, M.; Iordachescu, A.; Cameron, J.A.; Kasemann, S.; Schneider, I.; Espino, J.M.; Poves, A.; Sanchez S, J.

    2001-01-01

    Full text: An extensive experimental study of the structure of the N ≅ Z 1f 7/2 shell nuclei is going on at LNL, using the GASP gamma-spectrometer. An essential part of this program is aimed at the determination of good quality electromagnetic moments for monitoring rotational collectivity and single particle properties. For this purpose precise DSAM lifetimes were deduced for many levels with the new procedure named Narrow Gate on Transition Below, which avoids the influence of side feeding. In this contribution we report, in particular, lifetime measurements in the N ≅ Z nuclei 46 48 V, and 46 Ti. The data were obtained from the reactions: 28 Si on 28 Si, and 28 Si on 24 Mg at 115 MeV. The targets consisted of a layer of about 0.8 mg/cm 2 backed with Au or Pb. The experimental results for levels with natural parity agree very well with Shell Model (SM) calculations in the full f p configuration space with respect to energies B(E2) and B(E1) values of all observed levels. Big efforts have been made to interpret SM in terms of collective models, developing new tools and approaches. Another well described feature is the loss of collectivity when approaching band termination in the 1f 7/2 shell. The N=Z 46 V nuclei is very peculiar because of the coexistence at low excitation energy of natural parity T=1 states with T=0 and unnatural parity states. Some new transitions have been observed, and lifetime values could be obtained for about 15 transitions. The yrast structure for the 48 V nucleus can be classified as a K = 4 + band, obtained by a parallel coupling of the π[321]3/2 - and υ[312]5/2 - . The strong variation in signature splitting in this band may indicate a change of triaxiality. The low lying negative parity levels can be grouped in two strongly coupled rotational bands with K = 4 - and K = 1 - , which are given by parallel and antiparallel coupling of π [203]3/2 - and υ [312]5/2 - orbitals, respectively. Life times have been determined for 24

  11. Spherical time dependent Thomas-Fermi calculation of the dynamical evolution of hot and compressed nuclei

    International Nuclear Information System (INIS)

    Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.

    1985-01-01

    We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)

  12. New estimates of quadrupole deformation β of some nearly spherical even Mo nuclei

    International Nuclear Information System (INIS)

    Singh, Y.; Gupta, K.K.; Singh, M.; Bihari, Chhail; Varshney, A.K.; Gupta, D.K.

    2013-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters (β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei and Hf, W, Os, Pt and Hg nuclei using rigid triaxial rotor model of Davydov – Filippov

  13. Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei

    International Nuclear Information System (INIS)

    Dupuis, M.

    2006-01-01

    When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)

  14. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia

    2002-01-01

    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  15. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  16. Studies of isovector excitations in nuclei by neutron-induced reactions

    International Nuclear Information System (INIS)

    Nilsson, L.

    1987-01-01

    In this paper isovector excitations in nuclei, in particular the giant isovector quadrupole resonance in spherical nuclei, will be discussed. Several methods to investigate this excitation have been used, e.g. inelastic electron scattering and charge-exchange reactions. An alternative method to study isovector E2 resonances in nuclei, based on the radiative capture of fast neutrons, will be presented. Results from such experiments performed at the tandem accelerator laboratories in Los Alamos and Uppsala will be presented and discussed in terms of the direct-semidirect capture model. As a separate issue, the preparations being undertaken at Uppsala for studies of isovector excitations in nuclei by means of the (n,p) reaction will be described. A schematic lay-out of the experiment will be presented together with some relevant neutron beam parameters. Among isovector excitations to be studied by this method are the isovector monopole resonance and the Gamow-Teller resonance. 54 references, 6 figures, 1 table

  17. Theoretical Study of a Spherical Plasma Focus

    Science.gov (United States)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  18. Feasibility study for the Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.

    1985-10-01

    The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs

  19. Nuclei at extreme conditions. A relativistic study

    Energy Technology Data Exchange (ETDEWEB)

    Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  20. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics

    2000-07-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)

  1. Coexistence of spherical and deformed states in nuclei in the Z = 50 region; and the interaction of nuclei with electromagnetic fields in crystals

    International Nuclear Information System (INIS)

    Shroy, R.E. Jr.

    1976-01-01

    By applying the techniques of γ ray spectroscopy to γ rays produced in the decay of nuclear states populated in heavy-ion reactions, the following studies were performed: (1) High-spin states in 113 115 117 119 Sb and 125 127 I were investigated. The states were populated via the ( 6 Li,3n) reaction. Information on the energies, spins, decay modes, lifetimes, and electromagnetic moments was obtained for states up to a typical maximum spin of 25/2. The states in the Sb (Z = 51) and I (Z = 53) nuclei are of interest because of the nearness of the Z = 50 closed proton shell. (2) Experiments were performed to investigate the possibility of using the time differential perturbed angular distribution method to measure quadrupole moments of isomers populated in heavy-ion reactions. First, the previously known quadrupole interaction frequency of the 9/2 1 + state of 69 Ge in Zn was measured, with the state populated via the (α,n) and ( 7 Li,pn) reactions. Next, the quadrupole interaction frequency of the 9/2 1 + state of 73 As was measured in Zn using the ( 7 Li,2n) reaction. A value e 2 Qq/h = 20.2 +- 0.4 MHz was obtained. (3) The destruction of nuclear alignment by lattice defects was also studied for Sb nuclei in a Cd lattice by measuring the anisotropy of γ rays emitted in the decay of an isomer in 115 Sb as a function of temperature. The states were initially aligned when produced in a heavy-ion reaction. As the temperature of the target was increased from approximately 420 0 K to approximately 470 0 K, the anisotrophy was found to increase from zero to the maximum value expected. This can be interpreted in terms of trapping and detrapping of defects by the Sb impurities

  2. Studies of nuclei using radioactive beams

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden

  3. HFE and Spherical Cryostats MC Study

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Jason P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-26

    The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat’s inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO’s background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.

  4. Study of nuclear level densities for exotic nuclei

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Sepiani, M.

    2012-01-01

    Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.

  5. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K.

    2013-08-20

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  6. Shape Deformations in Atomic Nuclei

    OpenAIRE

    Hamamoto, Ikuko; Mottelson, Ben R.

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  7. Study of Triaxial deformation variable γ in even - even nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.

    2011-01-01

    The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly

  8. Spherical hohlraum energetics studies on the SG series laser facility

    Science.gov (United States)

    Huo, Wenyi; Li, Zhichao; Xie, Xufei; Chen, Yaohua; Ren, Guoli; Liu, Jie; Lan, Ke

    2017-10-01

    The integrated experiments at the National Ignition Facility indicates that the radiation asymmetry control in the cylindrical hohlraums is an extremely challenging problem in achieving ignition by using indirect drive. Recently, Lan et al. proposed the octahedral spherical hohlraum which has the natural superiority in providing high radiation symmetry. As new and promising hohlraums, the performance of spherical hohlraum attracts much research interests. Hohlraum energetics is one of the fundamental problems in indirect drive inertial confinement study. We report on the spherical hohlraum experiments performed at the SG series laser facility. At the SGIII-prototype laser facility, we performed the first spherical energetics experiment. The radiation temperature is measured by using an array of flat-response x-ray detectors through a laser entrance hole at different angles. The radiation temperature and M-ban fraction inside the hohlraum are determined by the shock wave technique. At the SGIII laser facility, we performed the first octahedral spherical hohlraum energetics experiment. The 32 of 48 laser beams enter the hohlraum through six laser entrance holes. The radiation flux is measured by 5 FXRDs at different angles. And the radiation temperature inside the hohlraum is determined by the shock wave technique. The repetition of the experimental results is excellent.

  9. Laser Methods in the Study of Nuclei, Atoms and Molecules

    Science.gov (United States)

    Inamura, Takashi T.

    2005-01-01

    The VIth International Workshop on Application of Lasers in Atomic Nuclei Research was held at Adam Mickiewicz University, Poznan in Poland from May 24 to 27, 2004. Its title this year was "Laser methods in the study of nuclei, atoms and molecules". Some topics are reviewed from a viewpoint of the atomic physics contribution to nuclear physics and its applications. It is suggested how this meeting should be organized in the future by taking the new geopolitics into account.

  10. Nucleation of wetting films on cylindrical and spherical substrates: A numerical study by the string method

    KAUST Repository

    Qiu, Chunyin

    2009-09-25

    Using the mean-field diffuse-interface model for liquid-vapor system and employing the numerical string method, we study the critical nuclei involved in the prewetting transitions on curved substrates. We first introduce three distinct kinds of critical nuclei, namely, the disklike, bandlike, and layerlike ones, which respectively correspond to three possible growth modes of wettingfilms. We show the disklike growth mode to be the only mode for infinite planar substrates. We then turn to cylindrical and spherical substrates, the two simplest but most important geometries in the real world. We focus on the critical nuclei of finite size, through which the wettingfilms may be formed with finite thermodynamic probabilities. It is shown that the disklike growth mode is always the most probable for wettingfilmnucleation and growth as long as a disklike critical nucleus exists. It is also shown that on a cylindrical substrate, the disklike critical nucleus can no longer exist if the substrate radius is smaller than some critical value, comparable to the radius of the disklike critical nucleus on planar substrate. We find that on a cylindrical substrate whose radius is below the critical value, the nucleation and growth of a wettingfilm can only occur through the bandlike critical nucleus. It is worth emphasizing that the results concerning the bandlike and layerlike growth modes can only be obtained from the diffuse-interface model, beyond the macroscopic description based on the line and surface tensions.

  11. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    In this work, we study the optical properties of spherical quantum dots by using Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numerically solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived ...

  12. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we study the optical properties of spherical quantum dots by using. Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numeri- cally solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived ...

  13. Experimental study of synthesis of heavy nuclei at JAERI

    International Nuclear Information System (INIS)

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Satou, K.

    2001-01-01

    Evaporation residue (ER) cross sections for 82 Se+ nat Ce and 76 Ge+ 150 Nd were measured in the vicinity of the Coulomb barrier, and the fusion probability was obtained with the aid of calculated survival probability. The former system represents fusion of two spherical nuclei, the latter fusion involving the pro-lately deformed target 150 Nd. The collision of 76 Ge with the side of 150 Nd is more compact in configuration at touching. The system 82 Se+ nat Ce showed fusion hindrance in form of extra-extra-push energy of 27 ± 5 MeV, whereas the system 76 Ge+ 150 Nd does not show fusion hindrance at and above the Coulomb barrier energy, suggesting that the reaction starting from the compact touching point results in a higher fusion probability. (author)

  14. Neutrino studies in nuclei and intense neutrino sources

    International Nuclear Information System (INIS)

    Ejiri, H.

    2003-01-01

    Nuclei are used as micro laboratories for studying fundamental properties of neutrinos and weak interactions. Nuclear responses for neutrinos are crucial for neutrino studies in nuclei. The responses, which are mainly nuclear spin isospin responses, are studied indirectly by charge exchange hadronic reactions for charged current responses, and photo nuclear reactions for neutral current responses. Intense neutrino sources provided by stopped pions from intense proton beams are very promising probes for studying directly nuclear weak responses. SNS/ORLaND and JHP combined with large neutrino detectors such as MOON are of potential interest for nuclear response studies with intense neutrino beams

  15. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  16. Longitudinal study of spherical refractive error in infantile nystagmus syndrome.

    Science.gov (United States)

    Healey, Natasha; McClelland, Julie F; Saunders, Kathryn J; Jackson, A Jonathan

    2014-05-01

    To explore the onset and progression of spherical refractive error in a population with infantile nystagmus syndrome. Retrospective refractive error data were obtained from 147 medical records of children with infantile nystagmus syndrome (albinism n = 98; idiopathic infantile nystagmus n = 49), attending a low vision clinic in Northern Ireland, over a 24 year period (1986-2010). Data were categorised by age to allow for comparisons with published studies. A prospective group of participants with Infantile nystagmus syndrome (INS) [n = 22 (albinism n = 18, idiopathic infantile nystagmus n = 4)] (aged 0-4) were also recruited. Cycloplegic streak retinoscopy was performed biannually, over a 3 year period. Spherical equivalent refractive error and most ametropic meridian were analysed. The mean spherical equivalent refractive errors for albinism and idiopathic infantile nystagmus groups (across all age categories) were hypermetropic, with highest levels demonstrated by the participants with albinism aged 1 ≤ 4 years (Mann-Whitney U test, p = 0.013). Mean most ametropic meridian was highest in the albinism group aged 1 ≤ 12 years (Mann-Whitney U test, p refractive errors over time. Prospective participants were hypermetropic at all visits and those with albinism had, on average, higher refractive errors than those with idiopathic infantile nystagmus (IIN). No significant correlations were noted between visual acuity and spherical equivalent refractive errors or most ametropic meridian. Hypermetropia is the most prevalent spherical refractive error in the INS population, irrespective of level of visual acuity. Individuals with infantile nystagmus syndrome fail to demonstrate typical patterns of emmetropisation, particularly in the presence of albinism. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  17. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  18. Microscopic description of weak processes in spherical nuclei; Description microscopique des processus faibles dans les noyaux spheriques

    Energy Technology Data Exchange (ETDEWEB)

    Nowacki, F.

    1996-01-08

    We present a new generation of shell model calculation for microscopic description of nuclear structure. We have firstly developed a shell model code in the coupled basis formalism. We reached high performances by including the Quasi-spin symmetry for the reduction de matrix elements. Then we expose the problems arising with the use of realistic interactions and correct them by fit of the monopole terms of the nuclear Hamiltonian, in valence spaces (2p{sub 3/2}, 1f{sub 5/2}, 2p{sub 1/2}, 1g{sub 9/2}){sub {pi},{nu}} and (2d{sub 5/2}, 1g{sub 7/2}, 3s{sub 12} 2d{sub 3/2}, 1h{sub 11/2}){sub {pi},}{nu}. Lastly, we propose, two applications in the very core of actual interests: {beta}{sup +} / EC decay of proton rich (fp) shell nuclei. Calculated half lives are in good agreement with the experimental ones; the first ({beta}{beta}) matrix elements calculations for {sup 76}Ge, {sup 82}Se, {sup 136}Xe. We predict {sup 82}Se to be the most favorable nucleus for searching the no neutrino mode. (author).

  19. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki

    1996-01-01

    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  20. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  1. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  2. Studies of relativistic jets in active galactic nuclei with SKA

    NARCIS (Netherlands)

    Agudo, I.; Bottcher, M.; Falcke, H.; Georganopoulos, M.; Ghisellini, G.; Giovannini, G.; Giroletti, M.; Gomez, J.L.; Gurvits, L.; Laing, R.; Lister, M.; Marti, J.M.; Meyer, E.T.; Mizuno, Y.; O'Sullivan, S.; Padovani, P.; Paragi, Z.; Perucho, M.; Schleicher, D.; Stawarz, L.; Vlahakis, N.; Wardle, J.

    2014-01-01

    Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli &

  3. Systematic study of cluster radioactivity of superheavy nuclei

    Science.gov (United States)

    Zhang, Y. L.; Wang, Y. Z.

    2018-01-01

    The probable cluster radioactivity (CR) of 294118, 296120, and 298122 is studied by using the unified description (UD) formula, universal (UNIV) curve, Horoi formula, and universal decay law (UDL). The predictions by the former three models suggest that the probable emitted clusters are lighter nuclei, and the calculations within the UDL formula give a different prediction: that both the lighter clusters and heavier ones can be emitted from the parent nuclei. A further study on the competition between α decay and CR of Z =104 -124 isotopes is performed. The former three models predict that α decay is the dominant decay mode, but the UDL formula suggests that CR dominates over α decay for Z ≥118 nuclei and the isotopes of 118 292 -296 ,308 -318 , 120 , 284 -304 ,308 -324 and 122-322316 are the most likely candidates as the cluster emitters. Because the former three formulas are just preformation models, the lighter cluster emissions can be described. However, the UDL formula can predict the lighter and heavier CR owing to the inclusion of the preformation and fissionlike mechanisms. Finally, it is found that the shortest CR half-lives are always obtained when the daughter nuclei are around the double magic 208Pb within the UDL formula, which indicates that shell effect has an important influence on CR.

  4. Studies of pear-shaped nuclei using accelerated radioactive beams.

    Science.gov (United States)

    Gaffney, L P; Butler, P A; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bönig, S; Bree, N; Cederkäll, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; De Witte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kröll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-05-09

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on (220)Rn and (224)Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model.

  5. Proton drip-line nuclei studied at intermediate energies

    International Nuclear Information System (INIS)

    Blank, B.

    2001-01-01

    In experiments at the SISSI/LISE3 facility of GANIL, the doubly-magic nucleus 48 Ni has been observed for the first time and decay information was gained for very proton-rich nuclei like 42 Cr, 45 Fe, and 49 Ni, as 48 Ni possible candidates for two-proton radioactivity. In the lighter-mass region, detailed studies of 21 Mg and 25 Si were performed and complete decay schemes for allowed decays were established

  6. Study of fusion probabilities with halo nuclei using different proximity based potentials

    International Nuclear Information System (INIS)

    Kumari, Raj

    2013-01-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei

  7. Threshold photoneutron angular distribution and polarization studies of nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.J.

    1980-01-01

    The photoneutron method was applied to the study of: (1) deuteron photodisintegration; (2) giant magnetic dipole resonances in heavy nuclei; (3) mechanism of radiative capture in light nuclei; and (4) isospin splitting of the giant dipole resonance in /sup 60/Ni. These studies were performed with the pulsed bremsstrahlung beam and high-resolution spectrometer available at the Argonne high-current electron linac. A threshold photoneutron polarization method was developed in order to search for the giant M1 resonance in heavy nuclei. A surprisingly small amount of M1 strength was found in /sup 208/Pb. Furthermore, the M1 strength for the 5.08-MeV excitation in /sup 17/O, the best example of a single-particle M1 resonance in nuclei, was found to be strongly quenched. In addition, the /sup 17/O(..gamma..,n/sub 0/)/sup 16/O reaction was found to provide an ideal example of the Lane-Lynn theory of radiative capture. The interplay among the three components of the theory, internal, channel and potential capture, were evident from the data. An electron beam transport system was developed which allows the bremsstrahlung to impinge on the photoneutron target on an axis perpendicular to the usual reaction plane. This system provides an accurate method for the measurement of relative angular distributions in (..gamma..,n) reactions. This system was applied to a high-accuracy measurement of the relative angular distribution for the D(..gamma..,n)H reaction. The question of isospin-splitting of the giant dipole resonance in /sup 60/Ni was studied by using the unique pico-pulse from the accelerator and the newly installed 25-m, neutron flight paths. The results provide clear evidence for the effect of isospin splitting.

  8. Threshold photoneutron angular distribution and polarization studies of nuclei

    International Nuclear Information System (INIS)

    Holt, R.J.

    1980-01-01

    The photoneutron method was applied to the study of: (1) deuteron photodisintegration; (2) giant magnetic dipole resonances in heavy nuclei; (3) mechanism of radiative capture in light nuclei; and (4) isospin splitting of the giant dipole resonance in 60 Ni. These studies were performed with the pulsed bremsstrahlung beam and high-resolution spectrometer available at the Argonne high-current electron linac. A threshold photoneutron polarization method was developed in order to search for the giant M1 resonance in heavy nuclei. A surprisingly small amount of M1 strength was found in 208 Pb. Furthermore, the M1 strength for the 5.08-MeV excitation in 17 O, the best example of a single-particle M1 resonance in nuclei, was found to be strongly quenched. In addition, the 17 O(γ,n 0 ) 16 O reaction was found to provide an ideal example of the Lane-Lynn theory of radiative capture. The interplay among the three components of the theory, internal, channel and potential capture, were evident from the data. An electron beam transport system was developed which allows the bremsstrahlung to impinge on the photoneutron target on an axis perpendicular to the usual reaction plane. This system provides an accurate method for the measurement of relative angular distributions in (γ,n) reactions. This system was applied to a high-accuracy measurement of the relative angular distribution for the D(γ,n)H reaction. The question of isospin-splitting of the giant dipole resonance in 60 Ni was studied by using the unique pico-pulse from the accelerator and the newly installed 25-m, neutron flight paths. The results provide clear evidence for the effect of isospin splitting

  9. Seismic performance of spherical liquid storage tanks: a case study

    Science.gov (United States)

    Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo

    2018-02-01

    Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.

  10. Neutron skin studies of medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Thiel M.

    2014-06-01

    Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.

  11. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei

    International Nuclear Information System (INIS)

    Geissel, H.

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de

  12. Studies of yrast and continuum states in A = 140 to 160 nuclei. Progress report for 1983

    International Nuclear Information System (INIS)

    Daly, P.J.

    1983-12-01

    The structure of nuclei, principally in the A-150 region, has been studied by in-beam γ-ray spectroscopy using heavy ion beams from the Argonne Tandem/Linac. New structural information was obtained for many shell model nuclei around 146 Gd, for the shape transitional nuclei 153 Dy and 154 Dy, and for the nuclei 147 Gd, 186 Hg, and 187 Hg at high-spin

  13. Properties of neutron-rich nuclei studied by fission product nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.

    1979-09-01

    A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references

  14. A CFD-DEM study of single bubble formation in gas fluidization of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Shrestha Siddhartha

    2017-01-01

    Full Text Available Bubble dynamics significantly affect the hydrodynamics of gas-solid fluidized bed since they influence the gas-solid mixing. In this study, simulations using CFD-DEM were carried out to characterize the bubble size and shape for a bubble formed at a single orifice in gas-solid fluidized bed. Impact of parameters such as jet velocity, orifice size and particle shape on bubble equivalent diameter and bubble aspect ratio were analysed and discussed. Bubble equivalent diameter was found to increase with increasing jet velocity, decreasing bed width to orifice width ratio, and particle shape deviating from spherical. The bubble shape illustrated by aspect ratio, was found to elongate more as it rise through the bed and then commence to expand horizontally after it was detached from the orifice. Aspect ratio was found to be closer to a circle for the bubble at higher jet velocity, lower orifice width to bed ratio and for non-spherical particles.

  15. A CFD-DEM study of single bubble formation in gas fluidization of spherical and non-spherical particles

    Science.gov (United States)

    Shrestha, Siddhartha; Zhou, Zongyan

    2017-06-01

    Bubble dynamics significantly affect the hydrodynamics of gas-solid fluidized bed since they influence the gas-solid mixing. In this study, simulations using CFD-DEM were carried out to characterize the bubble size and shape for a bubble formed at a single orifice in gas-solid fluidized bed. Impact of parameters such as jet velocity, orifice size and particle shape on bubble equivalent diameter and bubble aspect ratio were analysed and discussed. Bubble equivalent diameter was found to increase with increasing jet velocity, decreasing bed width to orifice width ratio, and particle shape deviating from spherical. The bubble shape illustrated by aspect ratio, was found to elongate more as it rise through the bed and then commence to expand horizontally after it was detached from the orifice. Aspect ratio was found to be closer to a circle for the bubble at higher jet velocity, lower orifice width to bed ratio and for non-spherical particles.

  16. Neutron emission study after muon capture by nuclei

    International Nuclear Information System (INIS)

    Bouyssy, Alain.

    1974-01-01

    Muon capture by nuclei, used in the beginning for checking the weak interaction, is now a method of investigation of nuclear structure. Study of spectrum, asymmetry and polarization of emitted neutrons after polarized muon capture has been done in three directions: weak coupling constants, final state interaction, nuclear wave functions. The neutron intensity and helicity are very dependent of the neutron - residual nucleus interaction, while the asymmetry is sensitive to the wave functions used for the proton. Moreover if the induced tensor coupling constant is different from zero the asymmetry is increased. Longitudinal polarization experiments, with those for neutron intensity, would be of great interest to give informations on neutron asymmetry [fr

  17. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  18. Study of drip line nuclei through two-step fragmentation

    International Nuclear Information System (INIS)

    Stanoiu, M.; Becker, F.; Lewitowicz, M.; Azaiez, F.; Bourgeois, C.; Ibrahim, F.; Belleguic, M.; Borcea, C.; Mrazek, J.; Brown, B.A.; Dlouhy, Z.; Dombradi, Z.; Fueloep, Z.; Krasznahorkay, A.; Grawe, H.; Mayet, P.; Grevy, S.; Kerek, A.; Marel, H. van der; Lukyanov, S.; Mandal, S.; Guillemaud-Mueller, D.; Negoita, F.; Penionzhkevich, Y.E.; Podolyak, Z.; Roussel-Chomaz, P.; Saint Laurent, M.G.; Savajols, H.; Sorlin, O.; Sletten, G.; Sohler, D.; Timar, J.; Timis, C.; Yamamoto, A.

    2004-01-01

    We have studied the structure of light neutron-rich nuclei around N = 16 by employing the in-beam γ-ray spectroscopy technique using the fragmentation of secondary beams of 25,26 Ne, 27,28 Na and 29,30 Mg isotopes. This secondary-beam ''cocktail'' was obtained by the fragmentation of a 36 S beam at 77.5 MeV.A by the SISSI/GANIL facility. By a second-step fragmentation, we have measured γ-ray-residue coincidences in 17-20 C and 23,24 O and described the obtained levels in the framework of the shell model. (orig.)

  19. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  20. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  1. Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.

  2. Potential capabilities at LAMPF to study nuclei far from stability

    International Nuclear Information System (INIS)

    Talbert, W.L.; Bunker, M.E.

    1985-01-01

    Feasibility studies have shown that a He-jet activity transport line, with a target chamber placed in the LAMPF main beam line, will provide access to short-lived isotopes of a number of elements that cannot be extracted efficiently for study at any other type of on-line facility. The He-jet technique requires targets thin enough to allow a large fraction of the reaction products to recoil out of the target foils; hence, a very intense incident beam current, such as that uniquely available at LAMPF, is needed to produce yields of individual radioisotopes sufficient for detailed nuclear studies. We present the results of feasibility experiments on He-jet transport efficiency and timing. We also present estimates on availability of nuclei far from stability from both fission and spallation processes. Areas of interest for study of nuclear properties far from stability will be outlined. 17 refs

  3. A Good Statistics Study of Antiproton Interactions with Nuclei

    CERN Multimedia

    2002-01-01

    This experiment extends the study of inclusive pion production and the correlation between pions which result from hadron-nucleus collisions at intermediate and high energies to the antiproton-nucleus system. It is part of a long term systematic search for exotic nuclear phenomena. The correlation data will be used to extract, via pion interferometry, the size and coherence of the annihilation source in nuclei. In addition, the reaction @* + A @A p + A* will be studied to look for structure in the proton spectra which antiproton-nucleus bound states.\\\\ \\\\ The experimental system is based on a flexible, broad range, large acceptance (1~steradian) spectrometer which consists of an 80~cm diameter dipole magnet surrounded with detector arrays. These detectors provide momentum, energy loss, Cerenkov and time of flight information for up to ten ejectiles per event. Momentum resolution varies from 1\\% to 3\\%, depending on energy.

  4. The Array for Nuclear Astrophysics Studies with Exotic Nuclei

    Science.gov (United States)

    Linhardt, L. E.; Blackmon, J. C.; Matos, M.; Mondello, L. L.; Zganjar, E. F.; Johnson, E.; Rogachev, G.; Wiedenhover, I.

    2010-11-01

    The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array that is targeted primarily towards reaction studies with radioactive ion beams at FSU and the NSCL. ANASEN consists of 40 double-sided silicon-strip detectors backed with CsI scintillators and an innovative gas counter design that allows operation in a gas target/detector mode and experiments covering a broad range of center-of-mass energies simultaneously. Electronics based on ASIC components are being implemented to achieve a high channel count at low cost. Prototypes of all the detector components have been fabricated and are currently being tested. Performance of the individual components and plans for the first experiments that aim to improve our knowledge of the nuclear reactions important in stellar explosions will be reported.

  5. Study of cosmic ray nuclei detection by an image calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany)

    1995-09-01

    It is shown that a cosmic gamma-ray telescope made of a multilayer silicon tracker and a imaging CsI calorimeter, is capable of identifying cosmic ray nuclei. The telescope charge resolution is estimated around 4% independently of charge. Simulation methods are used to determine the telescope properties for nuclei detection.

  6. Hot nuclei studied with high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Galin, J.

    1990-01-01

    We have shown the invaluable benefit that a high efficiency 4π neutron detector can bring to the study of reaction mechanisms following collisions of heavy nuclei at intermediate energy. Analysis requires Monte-Carlo simulations for comparison between experimental data and any emission model. In systematic measurements with projectiles of velocity corresponding to energies between 27 and 77 MeV/u, where both the influence of beam velocity and mass have been investigated separately, it has been shown that the projectile-target mass asymmetry, much more than velocity, has a decisive influence on energy dissipation. The closer the projectile mass to the target mass, the more energy is dissipated per unit mass of the considered projectile plus target system. The latter presents all the characteristics of a thermalized system, evaporating a copious number of light particles: up to about 40 neutrons (after efficiency correction) and 11 light charged particles in the most dissipative collisions between Kr+Au, and 90 neutrons for Pb+U with a yet unknown number of l.c.p. In the Kr experiment, these particles are isotropically emitted in the frame of a fused system, excited with 1.2 GeV. Moreover, l.c.p. exhibit Maxwellian energy distributions as in any standard evaporation process. We are now eager to better characterize the properties of the Pb+Au (U) systems for which about 1/3 of the neutrons are freed in a rather large fraction of all collisions. The thermalized energy should then approach very closely the total binding energy of the two interacting nuclei

  7. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  8. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei; Spectroscopie de noyaux tres lourds en vue de l'etude des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Khalfallah, F

    2007-08-15

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  9. Optical model parametrization between 10keV and 20MeV. Application to the spherical nuclei 89Y and 93Nb

    International Nuclear Information System (INIS)

    Lagrange, C.

    1975-01-01

    Fast neutron cross sections for 89 Y and 93 Nb were calculated in the energy range 10keV-20MeV with the spherical optical model. The optical potential parameters used were obtained from a comparison theory-experiment using strength functions, potential scattering radius, total cross sections and differential elastic scattering data [fr

  10. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope

  11. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  12. Normal range of facial asymmetry in spherical coordinates: a CBCT study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Ja [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Wang, Rui Feng [Research Laboratory Specialist Intermediate, Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI (United States); Na, Hee Ja [Dept. ofDental Hygiene, Honam University, Gwangju (Korea, Republic of); Palomo, Juan Matin [Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (United States)

    2013-03-15

    This study aimed to measure the bilateral differences of facial lines in spherical coordinates from faces within a normal range of asymmetry utilizing cone-beam computed tomography (CBCT). CBCT scans from 22 females with normal symmetric-looking faces (mean age 24 years and 8 months) were selected for the study. The average menton deviation was 1.01{+-}0.66 mm. The spherical coordinates, length, and midsagittal and coronal inclination angles of the ramal and mandibular lines were calculated from CBCT. The bilateral differences in the facial lines were determined. All of the study subjects had minimal bilateral differences of facial lines. The normal range of facial asymmetry of the ramal and mandibular lines was obtained in spherical coordinates. The normal range of facial asymmetry in the spherical coordinate system in this study should be useful as a reference for diagnosing facial asymmetry.

  13. Experimental studies of unbound neutron-rich nuclei

    International Nuclear Information System (INIS)

    Lecouey, J.L.

    2003-10-01

    The three-body description of two-neutron halo nuclei relies on the two-body interactions between the constituents. In order to provide constraints on calculations devoted to 14 Be and 17 B, the neutron unbound states of 13 Be and 16 B have been investigated by one-proton knockout. The experimental techniques and results are discussed here. (author)

  14. Monte Carlo studies of nuclei and quantum liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.

  15. Monte Carlo studies of nuclei and quantum liquid drops

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs

  16. Unified studies of structure and reactions in light unstable nuclei

    Directory of Open Access Journals (Sweden)

    Ito Makoto

    2016-01-01

    Full Text Available The generalized two-center cluster model (GTCM, which can treat covalent, ionic and atomic configurations in general systems with two inert cores plus valence nucleons, is formulated in the basis of the microscopic cluster model. In this model, the covalent configurations constructed by the molecular orbital (MO method and the atomic (or ionic configuration obtained by the valence bonding (VB method can be described in a consistent manner. GTCM is applied to the light neutron-rich system, 10,12Be = α + α + XN (X = 2,4, and the unified studies of the structural changes and the reaction problem are performed. In the structure study, the calculated energy levels are characterized in terms of the chemical bonding like structures, such as the covalent MO or ionic VB structures. The chemical bonding structures changes from level to level within a small energy interval. In the unbound region, the structure problem with the total system of α + α + XN and the reaction problem, induced by the collision of an asymptotic VB state of α+6,8He, are combined by GTCM. The properties of unbound resonant states are discussed in a close connection to the reaction mechanism, and some enhancement factors originated from the properties of the intrinsic states are predicted in the reaction observables. The unified calculation of the structures and the reactions is applied to the Coulomb shift problem in the mirror system, such the 10Be and 10C nuclei. The Coulomb displacement energy of the mirror systems are discussed.

  17. Study of halo nuclei breakup on light targets at intermediate and high energies

    CERN Document Server

    Parfenova, Ioulia

    2002-01-01

    The study of exotic nuclei is one of the most important topics in modern nuclear physics. It allows general understanding of the structure and nature of light nuclear systems in the vicinity of the driplines. Most of the leading facilities in the world, CERN, GANIL, GSI in Europe, RIKEN in Japan, and NSCL(MSU) in USA, are involved in these investigations. Recently, new experimental data on the properties of light halo nuclei such as extremely large interaction cross sections, huge electromagnetic dissociation cross sections, narrow momentum distribution of fragments from breakup reactions, unusual modes of the beta-decay of these nuclei on the borders of the stability, were obtained. This Thesis is based on a series of articles devoted to theoretical investigations of nuclear breakup reactions with light halo nuclei at intermediate energies impinging on light target nuclei. Special attention is paid to the question of sensitivity of the calculated breakup cross sections and longitudinal momentum distributions...

  18. Experimental Studies of Acoustics in a Spherical Couette Flow

    Science.gov (United States)

    Gowen, Savannah; Adams, Matthew; Stone, Douglas; Lathrop, Daniel

    2016-11-01

    The Earth, like many other astrophysical bodies, contains turbulent flows of conducting fluid which are able to sustain magnetic field. To investigate the hydromagnetic flow in the Earth's outer core, we have created an experiment which generates flows in liquid sodium. However, measuring these flows remains a challenge because liquid sodium is opaque. One possible solution is the use of acoustic waves. Our group has previously used acoustic wave measurements in air to infer azimuthal velocity profiles, but measurements attempted in liquid sodium remain challenging. In the current experiments we measure acoustic modes and their mode splittings in both air and water in a spherical Couette device. The device is comprised of a hollow 30-cm outer sphere which contains a smaller 10-cm rotating inner sphere to drive flow in the fluid in between. We use water because it has material properties that are similar to those of sodium, but is more convenient and less hazardous. Modes are excited and measured using a speaker and microphones. Measured acoustic modes and their mode splittings correspond well with the predicted frequencies in air. However, water modes are more challenging. Further investigation is needed to understand acoustic measurements in the higher density media.

  19. Unified model studies of N = 84 and N = 80 nuclei

    International Nuclear Information System (INIS)

    Corrigan, T.M.

    1977-12-01

    The unified model which couples two valence nucleons to collective quadrupole surface vibrations is applied to the N = 84 and N = 80 nuclei which have respectively two neutrons and two neutron holes outside the closed N = 82 core. Two different interactions between these valence nucleons are considered. The first is a simple pairing interaction, and the second used matrix elements determined in a bare G matrix calculation. The simple pairing force gives much better results. A two step diagonalization is employed to treat the core and valence nucleons consistently. Up to four phonons are retained in the collective basis and the diagonalized (coupled) valence nucleon space is truncated at approximately the same energy. The experimental spectra and electromagnetic properties are well reproduced for both types of nuclei, and in the N = 84 nuclei the four phonon contribution was found to be nonnegligible. In addition, a closed form, multiplicity resolved expression for matrix elements of α (the collective surface coordinate) is presented, and a table of these values for N less than or equal to 6 is given

  20. Unified Model Studies of N = 84 and N = 80 Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Corrigan, Thomas Michael [Iowa State Univ., Ames, IA (United States)

    1977-12-31

    The unified model which couples two valence nucleons to collective quadrupole surface vibrations is applied to the N= 84.and N = 80 nuclei which have respectively two neutrons and two neutron holes outside the closed N = 82 core. Two different interactions between these valence nucleons are considered. The first is a simple pairing interaction, and the second used matrix elements determined in a bare G matrix calculation. The simple pairing force gives much better results. A two step diagonlization is employed to treat the core and -valence nucleons consistently. Up to four phonons are retained in the collective basis and the diagonalized (coupled) valence nucleon space is truncated at approximately the same energy. The experimental spectra and electromagnetic properties are well-reproduced for both types of nuclei, and in the N 84.nuclei the four phonon contribution was found to be non-negligible. In addition, a closed form, multiplicity resolved expression for matrix elements of (αthe collective surface coordinate) is presented, and a table of these values for N < 6 is given.

  1. Superheavy nuclei: a relativistic mean field outlook

    International Nuclear Information System (INIS)

    Afanasjev, A.V.

    2006-01-01

    The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP

  2. Automatic track following system to study double strangeness nuclei in nuclear emulsion exposed to the observable limit

    International Nuclear Information System (INIS)

    Myint Kyaw Soe; Goto, Ryosuke; Mishina, Akihiro; Nakanisi, Yoshiaki; Nakashima, Daisuke; Yoshida, Junya; Nakazawa, Kazuma

    2017-01-01

    An automatic track following system has been successfully developed to follow tracks in nuclear emulsion sheets exposed with beam up to the limit to be observed for the first time. The track followed rate of the system is 99.5% with the assistance of the new techniques. The working speed for a track is less than 1 min through one thick emulsion sheet, whereas it is 15 times faster than that of semiautomatic system with human. The system working for 24 h is applied for the E07 experiment at J-PARC and makes it possible to detect ~10 2 nuclei with double strangeness (S=−2 nuclei) within one year. Regarding analyses to identify nuclear species of S=−2 nuclei, the system shows quite decent job for significant steps such as following tracks emitted to spherical directions from S=−2 nuclei, measurement of lengths of followed tracks, and so on.

  3. Isovector pairing and quartet condensation in N=Z nuclei

    International Nuclear Information System (INIS)

    Sandulescu, N.; Negrea, D.; Dukelsky, J.; Johnson, C. W.

    2012-01-01

    We introduce and study a quartet condensate model (QCM) to treat the isovector pairing correlations in N=Z nuclei, by conserving the particle number and the total spin and isospin in the ground state of such nuclei. For the calculations we choose different isovector pairing forces acting on spherical and axially deformed single particle states. The results show that the QCM model describes very well the isovector pairing correlations for nuclear systems with N=Z.

  4. Studies of short-lived nuclei in the proximity of closed shells

    Energy Technology Data Exchange (ETDEWEB)

    Omtvedt, J.P.

    1995-12-31

    In this work the structure of {sup 84,85}Se at the closed N=50 neutron shell, and the {sup 132}Sb, {sup 132}Sn, and {sup 134}Te nuclei, at the doubly closed N=82,Z=50 shells, was studied. The experiments were performed at the OSIRIS fission product mass separator at Studsvik, Sweden. The excited levels of the studied nuclei were populated in {beta} decay. The sources were produced in fission of {sup 235}U in the OSIRIS combined target and ion source. The nuclei were studied by standard nuclear spectroscopy measuring techniques: Singles {gamma} spectra and {gamma}{gamma}-coincidence data were obtained. In addition {gamma}{gamma}({theta}) angular correlation and {beta}{gamma}{gamma}(t) triple coincidence ``fast-timing`` ,measurements were performed on the nuclei in the {sup 132}Sn (N=82,Z=50) region. Detailed level schemes for the {sup 84,85}Se, {sup 132}Sb,{sup 132}Sn, {sup 132}Te nuclei were built, greatly improvi our knowledge of the structure of these nuclei. The experimentally deduced transition rates and multipole mixing ratios of the studied {sup 132}Sn region nuclei were compared to theoretical calculations within the random phase approximation framework and related models. Particular attention was paid to the collective properties of nuclei in the {sup 132}Sn region, parametrized by the electrical octupole effective charge. A range of general software spectroscopic tools were developed for the purpose of analysing the experimental data. This included a program, Yggdrasil, which for the first time allowed a complete two-dimensional {gamma}{gamma}-coincidence matrix to be analysed on ordinary ``small`` personal computers (PCs). 49 refs., 10 figs., 2 tabs.

  5. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Directory of Open Access Journals (Sweden)

    S M A Aftab

    Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  6. Study of the production of nuclei and anti-nuclei at the LHC with the ALICE experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00508690; Bufalino, Stefania

    In the ultra-relativistic lead-lead collisions at the CERN Large Hadron Collider (LHC), a state of matter called Quark Gluon Plasma (QGP) is created. A typical signature of a heavy ion collision (HIC) correlated to the production of the QGP is the large number of particles produced ($\\mathrm{d} N_{\\mathrm{ch}}/\\mathrm{d}\\eta$ up to 2000 in Pb-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV). This high multiplicity environment poses a tremendous experimental challenge on the experiments that have to cope with the high density of signals in their sensitive volume. A Large Ion Collider Experiment (ALICE) has been designed to deal with the harsh environment of a HIC and to study in details the characteristics of the QGP. Among the particles produced in a HIC, light nuclei and their anti-matter companions are of special interest since the production mechanism of such loosely bound states is not clear in high energy collisions. The production rate at the LHC for the lightest of these objects, the deuteron, is a...

  7. Spectroscopical study of the yrast and yrare structure in far-from-stability nuclei

    International Nuclear Information System (INIS)

    Hoellinger Fabien

    1999-01-01

    The nuclear structure study of neutron-rich nuclei was realized with the EUROGAM II array in two different experiments. The first study consisted in the analysis of the product of spontaneous fission of 248 Cm. Three neutron-rich cerium isotopes 147,149,151 Ce were analyzed. A level scheme for 151 Ce is presented for the first time. The yrast structure of the three nuclei does not show alternative parity bands as expected in this region of octupole deformations. We studied the rotational structure of the bands and this leads to suggest Nilsson configurations to some of them. The aim of this second experiment was the study of the nuclei 99 Mo, 101 Tc, 103 Ru. The three nuclei are situated on the neutron-rich side of the nuclear chart and are produced as fission fragments of a heavy-ion induced reaction. Some bands are extended to higher spins and some new bands are observed. The structure of the rotational bands is interpreted by means of the Hartree-Fock-Bogolyubov model. A last experiment intended to study the structure of the proton-rich nucleus 223 Pa has been achieved with the JURO+RITU array located at Jyvaeskylae (Finland). In this proton-rich actinide region, the nuclei develop octupole features around Z≅88, N≅132. The analysis of this experiment leads to the first assignment of gamma transitions to the 223 Pa. (author)

  8. Studies of neutron-rich nuclei far from stability at TRISTAN

    International Nuclear Information System (INIS)

    Gill, R.L.

    1984-01-01

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of 235 U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available

  9. Study of the de-excitation of the 44Ti nuclei light charged particles

    International Nuclear Information System (INIS)

    Papka, Paul

    2003-01-01

    The deexcitation process of the 44 Ti compound nuclei, produced by fusion-evaporation reactions, has been studied at bombarding energies E lab 44 Ti has been populated through two reactions: 16 O + 28 Si at bombarding energies E lab ( 16 O) = 76, 96 and 112 MeV, and 32 S + 12 C at E lab ( 32 S) = 180 and 225 MeV. The exclusive experimental data, angular and energy distributions, have been analysed with the statistical code CACARIZO. The well identified evaporation channels have been precisely studied to determine the energy distributions of the residual nuclei. The calculations reproduce the sequential emission of α particles in the deexcitation chains, however, the emission of nucleons is partially misunderstood. In both reactions, the energy distribution of the protons indicates a temperature in residual nuclei lower than predicted. The dynamical deformation induced for the highest angular momenta has been quantified with an axis ratio of 2:1. (author) [fr

  10. Production and study of new neutron rich heavy nuclei in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Zagrebaev V.I.

    2013-12-01

    Full Text Available Problems of production and study of new neutron-enriched heavy nuclei are discussed. Low-energy multinucleon transfer reactions are shown to be quite appropriate for this purpose. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N = 126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei look very promising for planning such experiments at currently available accelerators. These experiments, however, are rather expensive and difficult to perform because of low intensities of the massive projectile beams and problems of separating and detecting the heavy reaction products. Thus, realistic predictions of the corresponding cross sections for different projectile-target combinations are definitely required. Some uncertainty still remains in the values of several parameters used for describing the low-energy nuclear dynamics. This uncertainty does not allow one to perform very accurate predictions for the productions of new heavier-than-target (trans-target nuclei in multinucle on transfer reactions. Nevertheless these predictions are rather promising (large cross sections to start such experiments at available accelerators if the problem of separation of heavy transfer reaction products would be solved.

  11. Selected properties of nuclei at the magic shell closures from the studies of E1, M1 and E2 transition rates

    International Nuclear Information System (INIS)

    Mach, H.; Baluyut, A.-M.; Smith, D.; Ruchowska, E.; Koester, U.; Fraile, L. M.; Penttilae, H.; Aeystoe, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Ronkainen, J.; Ronkanen, P.; Saastamoinen, A.

    2009-01-01

    Using the Advanced Time-Delayed method we have studied transition rates in several neutron-rich nuclei at the magic shell closures. These include the heavy Co and Fe nuclei just below the Z = 28 shell closure at the point of transition from spherical to collective structures. Of particular interest is 63 Fe located exactly at the point of transition at N = 37. A substantial increase in the information on this nucleus was obtained from a brief fast timing study conducted at ISOLDE. The new results indicate that 63 Fe seems to depart from a simple shell model structure observed for heavier N = 37 isotones of 65 Ni and 67 Zn.Another region of interest are the heavy Cd and Sn nuclei at N = 72, 74 and the properties of negative parity quasi-particle excitations. These experiments, performed at the IGISOL separator at Jyvaeskylae, revealed interesting properties of the E2 rates in the sequence of E2 transitions connecting the 10 + , 8 + , 6 + , 4 + , 2 + and 0 + members of the multiplet of levels in 122 Sn due to neutrons in the h 11/2 orbit.

  12. Nuclear structure studies of medium-mass nuclei using large Ge arrays

    International Nuclear Information System (INIS)

    Baktash, C.

    1996-01-01

    The advent of large Ge arrays and their ancillary detectors has greatly advanced spectroscopic studies of the medium-mass nuclei. These nuclei undergo rapid shape changes as a function of spin, excitation energy and particle number and, thus, provide a unique laboratory to test and refine a variety of theoretical models. Following a brief review of the physics motivation, some of the highlights of the experimental results obtained with the help of these powerful detector systems will be discussed. Among results presented here are the newly-discovered island of superdeformation in the A∼80 mass region, and the high-spin band structures in the N∼Z nuclei. These band structures may be understood in the framework of the conventional cranking models, without the introduction of additional T=0 neutron-proton pairing correlations

  13. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J

    1973-01-01

    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  14. Studies of yrast and continuum states in A=140-160 nuclei. Progress report, January 1, 1980-December 31, 1980

    International Nuclear Information System (INIS)

    Daly, P.J.

    1981-01-01

    The structure of nuclei in the A approx. 150 region was investigated by in-beam γ-ray spectroscopy using heavy-ion beams, mostly from the Argonne Tandem-Linac. Results for the nuclei 148 Dy, 149 Dy, 153 Dy, 154 Dy, 149 Ho, and 150 Ho are summarized. The feeding of yrast states in these nuclei and the link between the highest known yrast states and the continuum region were also studied. 6 figures

  15. Further Study on Strain Growth in Spherical Containment Vessels Subjected to Internal Blast Loading

    OpenAIRE

    2009-01-01

    Abstract Strain growth is a phenomenon observed in the elastic response of containment vessels subjected to internal blast loading, which is featured by the increased vibration amplitude of the vessel in a later stage. Previous studies attributed the strain growth in spherical containment vessels to the beating between two close vibration modes, the interactions between the vessel vibration and the reflected shock waves and the structural perturbation. In this paper, it is shown th...

  16. Spectroscopy of few-particle nuclei around magic 132Sn from fission product γ-ray studies

    International Nuclear Information System (INIS)

    Zhang, C. T.

    1998-01-01

    We are studying the yrast structure of very neutron-rich nuclei around doubly magic 132 Sn by analyzing fission product γ-ray data from a 248 Cm source at Eurogam II. Yrast cascades in several few-valence-particle nuclei have been identified through γγ cross coincidences with their complementary fission partners. Results for two-valence-particle nuclei 132 Sb, 134 Te, 134 Sb and 134 Sn provide empirical nucleon-nucleon interactions which, combined with single-particle energies already known in the one-particle nuclei, are essential for shell-model analysis in this region. Findings for the N = 82 nuclei 134 Te and 135 I have now been extended to the four-proton nucleus 136 Xe. Results for the two-neutron nucleus 134 Sn and the N = 83 isotones 134 Sb, 135 Te and 135 I open up the spectroscopy of nuclei in the northeast quadrant above 132 Sn

  17. Studies of yrast and continuum states in A = 140-160 nuclei: Progress report for 1987

    International Nuclear Information System (INIS)

    Daly, P.J.

    1988-02-01

    High-spin nuclear phenomena in the mass region around A-150 have been studied by in-beam γ-ray and electron spectroscopy. Recent results for the nuclei 148 Gd, 149 Er, 152 Dy and 154 Dy are summarized. The first in-beam experiments at ATLAS using the Purdue superconducting electron spectrometer are also described. 11 refs., 2 figs

  18. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.

    Science.gov (United States)

    Kohale, Swapnil C; Khare, Rajesh

    2010-06-21

    Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.

  19. The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants

    International Nuclear Information System (INIS)

    Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.

    2001-01-01

    Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)

  20. Introduction to the nuclear structure studies of exotic nuclei by using antisymmetrized molecular dynamics method

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Dote, Akinobu; Ohnishi, Akira; Matsumiya, Hiroshi

    2009-01-01

    This article is originally prepared as the course text for the practice of the AMD course of 'studies of the strangeness nuclei by using the antisymmetrized molecular dynamics (AMD) method' in the Summer School held at KEK and IPCR in 2006-8 for postgraduate as well as undergraduate students and to foster young physicists in the titled area. The fundamental principle and the formalism of the AMD method which have been commonly used in the nuclear physics are explained at first, and it is described how to extend the AMD method to the studies of exotic nuclei especially to hypernuclei. Then calculation procedure is explained in detail so that the readers can understand the structure of exotic nuclei as they follow the process by themselves. It is intended here that they will be able not only to become familiar with the research by using the AMD method but also to visually enjoy the structure of exotic nuclei and will have further interest in this field. (S. Funahashi)

  1. Dorsal and median Raphe nuclei projection to MD of Thalamus in rat: A retrograde tracer study

    Directory of Open Access Journals (Sweden)

    Pas Bakhsh P

    2000-06-01

    Full Text Available In order to understand the function of mammalians serotonin system, we have to know the anatomical structure, because physiological changes are influenced through the anatomical changes. A number of thalamic nuclei are associated with functions known to be influenced by serotonergic input in brainstem, among them mediodorsal thalamic nucleus has relationship with limbic system and prefrontal cortex. The precise topographical projections of mesencephalic raphe nuclei to the MD nucleus of thalamus were identified in the rat using horseradish peroxidase (HRP retrograde tracing substance. Injection of HRP in MD labeled a large number of neurons in rostral to caudal part of dorsal raphe nucleus. It exhibited a strong number of neurons in ipsilateral part of DR and a few cells in its contralateral part. Numerously labeled cells were also observed ipsilateral in rostral and medial part of MnR (86% and a few cells in it's contralateral part. The present study has provided that the MD innervation by DR is more greater in density than that observed at the MnR. Upon these results and previous study, mesencephalic raphe nuclei are involved in several specific functions of thalamus as limbic system behavioral mechanism. A much more detailed knowledge is needed to show topographic relationships between mesencephalic raphe nuclei and forebrain.

  2. Simultaneously study for particle transverse sphericity and ellipticity in pp collisions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu-Liang, E-mail: yanyl@ciae.ac.cn [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413 (China); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Zhou, Dai-Mei [Institute of Particle Physics, Central China Normal University, 430082 Wuhan (China); Key Laboratory of Quark and Lepton Physics (CCNU), Ministry of Education (China); Limphirat, Ayut [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Dong, Bao-Guo [China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413 (China); Yan, Yu-Peng [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Sa, Ben-Hao, E-mail: sabh@ciae.ac.cn [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413 (China); Institute of Particle Physics, Central China Normal University, 430082 Wuhan (China); Key Laboratory of Quark and Lepton Physics (CCNU), Ministry of Education (China)

    2014-10-15

    Since the PYTHIA6 and PYTHIA8 results are inconsistent with ALICE data of charged particle transverse momentum sphericity, we introduce a new method in which the p{sub x} and p{sub y} components of produced particles are randomly rearranged on the circumference of an ellipse with a half major and minor axes being p{sub T}(1+δ{sub p}) and p{sub T}(1−δ{sub p}). Based on the particles generated in the PYTHIA6.4 simulations this rearrangement method fairly well reproduces the ALICE data of the transverse sphericity as a function of charged multiplicity in the minimum bias pp collisions at √(s)=0.9 and 7 TeV. Meanwhile, this work predicts a measurable value of v{sub 2}∼0.2–0.3 for the charged particles in the above pp collisions and suggests a simultaneous study of the particle transverse momentum sphericity and elliptic flow parameter as well as other harmonic coefficients.

  3. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  4. Simultaneously study for particle transverse sphericity and ellipticity in pp collisions at LHC energies

    International Nuclear Information System (INIS)

    Yan, Yu-Liang; Zhou, Dai-Mei; Limphirat, Ayut; Dong, Bao-Guo; Yan, Yu-Peng; Sa, Ben-Hao

    2014-01-01

    Since the PYTHIA6 and PYTHIA8 results are inconsistent with ALICE data of charged particle transverse momentum sphericity, we introduce a new method in which the p x and p y components of produced particles are randomly rearranged on the circumference of an ellipse with a half major and minor axes being p T (1+δ p ) and p T (1−δ p ). Based on the particles generated in the PYTHIA6.4 simulations this rearrangement method fairly well reproduces the ALICE data of the transverse sphericity as a function of charged multiplicity in the minimum bias pp collisions at √(s)=0.9 and 7 TeV. Meanwhile, this work predicts a measurable value of v 2 ∼0.2–0.3 for the charged particles in the above pp collisions and suggests a simultaneous study of the particle transverse momentum sphericity and elliptic flow parameter as well as other harmonic coefficients

  5. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  6. Production and study of heavy neutron rich nuclei formed in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zagrebaev, V. I.; Zemlyanoy, S. G., E-mail: zemlya@jinr.ru; Kozulin, E. M. [Joint Institute for Nuclear Research, FLNR (Russian Federation); Kudryavtsev, Yu. [Instituut voor Kern-en Stralingsfysica (Belgium); Fedosseev, V. [CERN (Switzerland); Bark, R. [Nat. Research Foundation, iThemba LABS (South Africa); Othman, H. A. [Menoufiya University, Physics Department, Faculty of Science (Egypt)

    2013-04-15

    A new setup is proposed to produce and investigate heavy neutron-rich nuclei located along the neutron closed shell N = 126. This 'blank spot' of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be rather high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. This setup could definitely open a new opportunity in the studies at heavy-ion facilities and will have significant impact on future experiments.

  7. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  8. Application of the string method to the study of critical nuclei in capillary condensation.

    Science.gov (United States)

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  9. Modeling study of seated reach envelopes based on spherical harmonics with consideration of the difficulty ratings.

    Science.gov (United States)

    Yu, Xiaozhi; Ren, Jindong; Zhang, Qian; Liu, Qun; Liu, Honghao

    2017-04-01

    Reach envelopes are very useful for the design and layout of controls. In building reach envelopes, one of the key problems is to represent the reach limits accurately and conveniently. Spherical harmonics are proved to be accurate and convenient method for fitting of the reach capability envelopes. However, extensive study are required on what components of spherical harmonics are needed in fitting the envelope surfaces. For applications in the vehicle industry, an inevitable issue is to construct reach limit surfaces with consideration of the seating positions of the drivers, and it is desirable to use population envelopes rather than individual envelopes. However, it is relatively inconvenient to acquire reach envelopes via a test considering the seating positions of the drivers. In addition, the acquired envelopes are usually unsuitable for use with other vehicle models because they are dependent on the current cab packaging parameters. Therefore, it is of great significance to construct reach envelopes for real vehicle conditions based on individual capability data considering seating positions. Moreover, traditional reach envelopes provide little information regarding the assessment of reach difficulty. The application of reach envelopes will improve design quality by providing difficulty-rating information about reach operations. In this paper, using the laboratory data of seated reach with consideration of the subjective difficulty ratings, the method of modeling reach envelopes is studied based on spherical harmonics. The surface fitting using spherical harmonics is conducted for circumstances both with and without seat adjustments. For use with adjustable seat, the seating position model is introduced to re-locate the test data. The surface fitting is conducted for both population and individual reach envelopes, as well as for boundary envelopes. Comparison of the envelopes of adjustable seat and the SAE J287 control reach envelope shows that the latter

  10. Fast neutron inelastic scattering from nuclei

    International Nuclear Information System (INIS)

    Lachkar, J.

    1978-01-01

    The need for accurate values of inelastic scattering cross sections appears when the requests for neutron data for reactors and other applied purposes are considered. These requests are partly related to values for spherical nuclei, well studied over many years. These studies were extensively considered in two review papers presented, in 1976, at the International Conference on the Interactions of Neutrons with nuclei. Other requests are related to vibrational and rotational nuclei, and relevant studies have been recently performed. The quality of these investigations and the large number of recent results have lead to concentration on them as the topic of the present review. The constant improvements of the experimental techniques permits precise measurements of inelastic scattering cross sections to the first excited levels over a range of incident energies, such that different reactions mechanisms are predominant in different parts of that range of energies. Quadrupole, hexadecapole and octupole deformation parameters of the target nuclei can be deduced from the data using phenomenological models. The successful application of the analysis over the range of energies leads to the conclusion that reliable information on the shape of the nuclei has been derived. The validity of the various models, which include direct interaction and compound nucleus reaction mechanisms, is discussed in connection with analyses of recent experiments. (author) [fr

  11. A study of triton radiative capture in some light nuclei

    International Nuclear Information System (INIS)

    Schaeffer, Michel.

    1975-01-01

    The aim of this work is to complete the knowledge of the nucleon Giant Dipole Resonance (G.D.R.) by means of the study of radiative capture of complex particles: tritons. The following reactions were studied: 12 C(t,γ 0 ) 15 N, 16 O(t,γ) 19 F, 20 Ne(t,γ) 23 Na, 24 Mg(t,γ 0 ) 27 Al, 24 Mg(t,γ 1 ) 27 Al*, 23 Na(t,γ 0 ) 26 Mg, 23 Na(t,γ) 26 Mg* between between 1.5 and 3.5MeV incident triton energy. The detector was a 25x30cm NaI(Tl) crystal [fr

  12. New and precise construction of the local interstellar electron spectrum from the radio background and an application to the solar modulation of cosmic rays showing an incompatability of the electron and nuclei modulation using the spherically symmetric Fokker-Planck equation

    International Nuclear Information System (INIS)

    Rockstroh, J.M.

    1977-01-01

    Cosmic-ray electrons generate the observed radio-frequency background. Previous attempts in the literature to reconcile quantitatively the measured radio-frequency intensity with the intensity deduced from the electron spectrum measured at earth have culminated in the problem that to get the respective emissivities to agree, an unacceptably high interstellar B field must be chosen. In the light of new experimental data on the emissivity as deduced from H II region studies and on the functional dependence of the diffusion coefficient with solar radius and particle rigidity, the assumptions under which the electron emissivity comparison has been made have been reexamined closely. The paradox between predicted and measured emissivity was resolved by ascribing to the magnetic fields of the galaxy a distribution of magnetic field strengths. From modified synchrotron formulas, the interstellar electron spectrum has been constructed from the radio frequency emission data with greatly improved precision. The interstellar electron spectrum has been determined independently of the solar modulation and provides, therefore, an estimate of the absolute depth of the electron modulation. Then the measured electron, proton, and helium-nuclei fluxes were systematically compared to the predictions of the spherically symmetric Fokker-Planck equation using the electron modulation as a base. A previously unnoticed non-tracking of the modulation parameters was observed during the recent recovery that did not occur during the 1965 to 1969 period. Although the argument could be presented just as well by attributing the anomaly to the nuclei, the discussion here arbitrarily tailored it to the electrons, and this new phenomenon was named, the modulation reluctance of the cosmic-ray electrons

  13. Nuclear-structure studies of exotic nuclei with MINIBALL

    Science.gov (United States)

    Butler, P. A.; Cederkall, J.; Reiter, P.

    2017-04-01

    High-resolution γ-ray spectroscopy has been established at ISOLDE for nuclear-structure and nuclear-reaction studies with reaccelerated radioactive ion beams provided by the REX-ISOLDE facility. The MINIBALL spectrometer comprises 24 six-fold segmented, encapsulated high-purity germanium crystals. It was specially designed for highest γ-ray detection efficiency which is advantageous for low-intensity radioactive ion beams. The MINIBALL array has been used in numerous Coulomb-excitation and transfer-reaction experiments with exotic ion beams of energies up to 3 MeV A-1. The physics case covers a wide range of topics which are addressed with beams ranging from neutron-rich magnesium isotopes up to heavy radium isotopes. In the future the HIE-ISOLDE will allow the in-beam γ-ray spectroscopy program to proceed with higher secondary-beam intensity, higher beam energy and better beam quality.

  14. Study of electromagnetic moments in unstable nuclei with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Asahi, K; Kameda, D; Ueno, H; Yoshimi, A; Uchida, M; Miyoshi, H; Shimada, K; Nagae, D; Kijima, G; Haseyama, T; Watanabe, H; Takemura, M; Arai, T; Oshima, S; Umeya, A

    2005-01-01

    The measurements of nuclear moments have been conducted at RIKEN for the study of nuclei far from the β stability. Recent results for the magnetic moments of 30 Al and 32 Al obtained by means of β-NMR spectroscopy with spin-polarized radioactive beams from the projectile fragmentation reaction are presented. Remarks are also made on the developments and prospects for future moment studies at the RI Beam Factory

  15. A satellite born charged particles telescope for the study of cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)

    1995-09-01

    The description of the high energy particle telescope NINA for the study of cosmic ray nuclei is presented. The instrument will be installed on board of the Resource 01 satellite and will fly on a polar orbit at 690 Km. The telescope consists on a pile of 16 detecting planes each of them is composed by two silicon strip detectors with perpendicular strips and has a total area of 60x60mm{sup 2}. The experiment goals are the study of cosmic ray protons and nuclei in the energy range 12-100 MeV/amu. It will be sensitive to the anomalous component and will also make the observation of the large solar flare events and geophysical phenomena as well. This experiment is the first step of the program RIM whose goal is the satellite study of anti particles in primary cosmic rays.

  16. Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei

    CERN Multimedia

    2002-01-01

    The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1

  17. Study of very neutron-rich nuclei produced by means of a 48Ca beam

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Artukh, A.G.

    1991-01-01

    The results of experiments with a 48 Ca beam performed at GANIL are presented and discussed. More than 30 very neutron-rich isotopes were identified or studied for the first time. The evidence for particle-unstable character of the 26 O isotope is reported. Half-life measurements for light neutron rich nuclei are compared with different theoretical predictions. (author) 14 refs.; 6 figs.; 1 tab

  18. Variational Monte Carlo studies of electromagnetic structure of few-body nuclei

    International Nuclear Information System (INIS)

    Schiavilla, R.

    1990-01-01

    The electromagnetic structure and dynamic response of A = 2, 3 and 4 nuclei are studied with the Variational Monte Carlo method by using wave functions based on realistic nuclear interactions. Recent results obtained for the elastic form factors of 2 H, 3 H, 3 He and 4 He, the radiative neutron capture on 3 He at thermal energies, and the reaction 4 He(e,e'p) 3 H are reported. 24 refs., 5 figs

  19. Spherical models

    CERN Document Server

    Wenninger, Magnus J

    2012-01-01

    Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.

  20. Spherical CNNs

    OpenAIRE

    Cohen, Taco S.; Geiger, Mario; Koehler, Jonas; Welling, Max

    2018-01-01

    Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined t...

  1. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    Directory of Open Access Journals (Sweden)

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  2. Differential scanning calorimetric study of antibiotic distamycin A binding with chromatin within isolated rat liver nuclei.

    Science.gov (United States)

    Prusov, Andrey N; Kolomijtseva, Galina Ya; Smirnova, Tatiana A

    2017-12-01

    Natural oligopeptide antibiotic distamycin A (Dst) biosynthesized by Streptomyces distallicus is traditionally used in medical practice as an anti-inflammatory and antitumour drug. Dst was investigated for its effect on the structural components of native chromatin directly within isolated rat liver nuclei in the presence of physiologically significant cations (magnesium or spermine and spermidine). Differential scanning calorimetry (DSC) was used to study the Dst action at molar ratio Dst/DNA = 0.1 and 0.15 mM Dst on the melting profile of nuclei suspension in different conditions. Results showed that the thermodynamic parameters of control nuclei in the presence of polyamines or Mg 2+  were different. The incubation of nuclei with Dst raised transition temperatures of relaxed (peak II) and topologically constrained DNA (peak III) by 6-8 °C and decreased by 2-4 °C that of core-histones (peak I). The total excess transition enthalpy (ΔH exc ) in buffer with polyamines (24.7 kJ/mol DNA nucleotides) increased by1.5 times versus control but in buffer with Mg 2+ , the value of ΔH exc (35.8 kJ/mol DNA nucleotides) remained unchanged. The association of Dst with chromatin in the nucleus weakens histone-DNA contacts and causes additional strengthening of interaction between two complementary DNA chains. Our results contribute towards validation of DSC to test drug ability to modulate chromatin structure in the physiological environment and to clarify the mechanism of these modulations.

  3. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  4. Numerical study on the lubrication performance of compression ring-cylinder liner system with spherical dimples.

    Science.gov (United States)

    Liu, Cheng; Lu, Yan-Jun; Zhang, Yong-Fang; Li, Sha; Müller, Norbert

    2017-01-01

    The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width.

  5. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  6. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  7. Phase change characteristic study of spherical PCMs in solar energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Veerappan, M.; Kalaiselvam, S.; Iniyan, S. [Refrigeration and Air Conditioning Division, Department of Mechanical Engineering, Anna University, Chennai, Tamil Nadu 600025 (India); Goic, Ranko [Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split (Croatia)

    2009-08-15

    This paper investigates the phase change behavior of 65 mol% capric acid and 35 mol% lauric acid, calcium chloride hexahydrate, n-octadecane, n-hexadecane, and n-eicosane inside spherical enclosures to identify a suitable heat storage material. Analytical models are developed for solidification and melting of sphere with conduction, natural convection, and heat generation. Both the models are validated with previous experimental studies. Good agreement was found between the analytical predictions and experimental study and the deviations were lesser than 20%. Heat flux release at the wall, cumulative energy release to the external fluid, are revealed for the best PCM. The influence of the size of encapsulation, initial temperature of the PCM, the external fluid temperature on solidified and molten mass fraction, and the total phase change time are also investigated. (author)

  8. Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M. [Hokkaido University, Department of Physics, Sapporo (Japan); Hokkaido University, Nuclear Reaction Data Centre, Faculty of Science, Sapporo (Japan); Suhara, T. [Matsue College of Technology, Matsue (Japan); Kanada-En' yo, Y. [Kyoto University, Department of Physics, Kyoto (Japan)

    2016-12-15

    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this ''molecular-orbit picture'' reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering. (orig.)

  9. On the study of level density parameters for some deformed light nuclei

    International Nuclear Information System (INIS)

    Sonmezoglu, S.

    2005-01-01

    The nuclear level density, which is the number of energy levels/MeV at an excitation energy Ex , is a characteristic property of every nucleus. Total level densities are among the key quantities in statistical calculations in many fields, such as nuclear physics, astrophysics, spallation s neutrons measurements, and studies of intermediate-energy heavy-ion collisions. The nuclear level density is an important physical quantity both from the fundamental point of view as well as in understanding the particle and gamma ray emission in various reactions. In light and heavy deformed nucleus, the gamma-ray energies drop with decreasing spin in a very regular fashion. The nuclear level density parameters have been usually used in investigation of the nuclear level density. This parameter itself changes with excitation energy depending on both shell effect in the single particle model and different excitation modes in the collective models. In this study, the energy level density parameters of some deformed light nucleus (40 C a, 47 T i, 59 N i, 79 S e, 80 B r) are determined by using energy spectrum of the interest nucleus for different band. In calculation of energy-level density parameters dependent upon excitation energy of nuclei studied, a model was considered which relies on the fact that energy levels of deformed light nuclei, just like those of deformed heavy nuclei, are equidistant and which relies on collective motions of their nucleons. The present calculation results have been compared with the corresponding experimental and theoretical results. The obtained results are in good agreement with the experimental results

  10. Isobars in nuclei

    International Nuclear Information System (INIS)

    Beurtey, R.

    1975-01-01

    The present situation of the theoretical studies and experimental material concerning the potential presence of virtual nucleon excited states (isobars) in nuclei is reported. Three particular aspects are examined: the theoretical work devoted to the isobar content of nuclei (especially deuteron), the experimental material concerning isobar exchange and the attempts to obtain a direct evidence for such objects in the deuteron (spectator method) [fr

  11. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  12. Nonperturbative study of the damping of giant resonances in hot nuclei

    International Nuclear Information System (INIS)

    De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.

    1992-01-01

    The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space

  13. SuperB: An opportunity to study baryons with beauty and bottom super-nuclei

    Science.gov (United States)

    Feliciello, A.

    2012-05-01

    SuperB is an INFN flagship project for a new high-luminosity heavy-flavor factory. Along with its companion detector, it is dedicated to the search for CP violation effects in the B meson sector with the aim of looking for direct and indirect signals of new physics, beyond the Standard Model. However it could offer as well the opportunity for a systematic, high-statistics study of b baryon properties and for a search for bottom super-nuclei, that is bound nuclear systems with an explicit content of beauty.

  14. Systematic study on the competition between α-decay and spontaneous fission of superheavy nuclei

    Science.gov (United States)

    Zhang, Y. L.; Wang, Y. Z.

    2017-10-01

    The competition between α-decay and spontaneous fission (SF) of Z = 112 isotopes are studied. The α-decay half-lives are estimated by the generalized liquid-drop model (GLDM) and several sets of analytic formulas. These formulas include the Royer formula, Viola-Seaborg semiempirical (VSS) formula and universal decay law (UDL). For the SF, its half-lives are calculated by using the Xu, Ren, Karpov and Santhosh formulas. It is shown that the predicted α-decay half-lives by different approaches are more or less identical. However, the SF half-lives are highly sensitive to models. To test the accuracies of different SF formulas, the half-lives of 56 even-even heavy nuclei are calculated by these formulas. By comparing with the experimental data, it is found that the Xu formula is the most accurate one to reproduce the experimental SF half-lives. This allows us to make a systematic prediction on the competition between α-decay and SF of even-even superheavy nuclei (SHN) with Z = 104- 120 by using the Xu formula and the above mentioned models on α-decay. The calculations suggest that 258,260104, 268-276110, 270-280112, 272-286114, 274-294116, 284-302118 and 292-308120 have smaller α-decay half-lives than those of SF. Thus these nuclei can be synthesized and identified via α-decay in the laboratory. In addition, it is observed that N = 162, 178, 184 and 196 may be the submagic or magic numbers. Finally, an extensive study on the possible α-decay chains for Z = 120 isotopes is performed. It is predicted that six sequential α-decay chains can be observed from 292-296120, four α-decay chains from 298120, three α-decay chains from 300,302120, two α-decay chains from 304,306120, and only one α-decay chain from 308120. These nuclei are the most likely candidates to be synthesized experimentally via α-decay in the near future.

  15. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  16. CALCULATION ALGORITHM FOR STUDYING EFFORTS IN THE 4R SPHERICAL QUADRILATERAL MECHANISMS BECAUSE OF TECHNICAL DEVIATIONS

    Directory of Open Access Journals (Sweden)

    Ion BULAC

    2013-05-01

    Full Text Available Due to technical deviations, in the elements of the 4R spatial spherical mechanism appear efforts thatadditionally loads the mechanism, efforts that can be determined with the calculation algorithm that will bepresented in this paper

  17. Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  18. Studies of nuclei using radioactive beams. [Space Astronomy Lab. , Univ. of Florida, Gainesville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  19. Spectroscopy of the lightest nuclei in the Lanthanide region

    International Nuclear Information System (INIS)

    One of the most exciting subject in contemporary nuclear physics is the study of nuclei at the limit of stability with respect to particle emission. Recently, there has been an intensive experimental activity in measuring the proton decay and large variety of proton emitters were observed in the large variety of proton with 50 117 La, 121 Pr, 131 Eu and 141 Ho has been identified. The proton decay rates deviates significantly from calculations assuming spherical configurations, thus indicating the onset of large deformations in the drip line nuclei below Z=69. However, a detailed study of the structure of these nuclei can only be performed by means of ?-ray spectroscopy using large detector arrays coupled with efficient light charged particles detectors, since the cross section for their population with the presently available stable beams are very low

  20. Driving nuclei with resonant electrons: Ab initio study of (e+H2) 2Σu+

    International Nuclear Information System (INIS)

    Robicheaux, F.

    1991-01-01

    We have calculated the cross sections for vibrational excitation and dissociative attachment in H 2 below 5 eV scattering energy. This completely ab initio calculation uses the frame-transformation method of Greene and Jungen [Adv. At. Mol. Phys. 21, 51 (1985)] for electron-vibronic coupling in resonant scattering from a neutral molecule. We found it necessary to modify their method to obtain good agreement with previous theory and experiment for v=0→v f with v f =1--3; for larger v f and for dissociative attachment we obtained good agreement with previous theory and qualitative agreement with experiment. The fixed-nuclei phase shifts were derived from a fully ab initio calculation in prolate spheroidal coordinates and then transformed to spherical l=1 phase shifts. The vibrational structure of H 2 - becomes evident for excitation from higher vibrational states of H 2 as well as for larger Δv's, confirming previous theory and experiment

  1. A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach

    Science.gov (United States)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.

    2017-12-01

    This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective

  2. A model experiment to study swallowing of spherical and elongated particles

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Swallowing disorders are not uncommon among elderly and people affected by neurological diseases. For these patients the ingestion of solid grains, such as pharmaceutical oral solid formulations, could result in choking. This generally results in a low compliance in taking solid medications. The effect of the solid medication size on the real or perceived ease of swallowing is still to be understood from the mechanistic viewpoint. The interplay of the inclusion shape and the rheology of the liquid being swallowed together with the medication is also not fully understood. In this study, a model experiment was developed to study the oropharyngeal phase of swallowing, replicating the dynamics of the bolus flow induced by the tongue (by means of a roller driven by an applied force. Experiments were performed using a wide set of solid inclusions, dispersed in a thick Newtonian liquid. Predictions for a simple theory are compared with experiments. Results show that an increase in the grain size results in a slower dynamics of the swallowing. Furthermore, the experiments demonstrated the paramount role of shape, as flatter and more streamlined inclusions flow faster than spherical. This approach can support the design of new oral solid formulations that can be ingested more easily and effectively also by people with mild swallowing disorders.

  3. Activity study of biogenic spherical silver nanoparticles towards microbes and oxidants

    Science.gov (United States)

    Hoskote Anand, Kiran Kumar; Mandal, Badal Kumar

    2015-01-01

    The eco-friendly approach for the green synthesis of silver nanoparticles (SNP) using Terminalia bellirica (T. bellirica) fruit extract is reported herein. Initially formation of SNP was noticed through visual color change from yellow to reddish brown and further analyzed by surface plasmonic resonance (SPR) band at 429 nm using UV-Vis spectroscopy. Identification of different polyphenols present in T. bellirica extract was done using High Pressure Liquid Chromatography (HPLC). Aqueous T. bellirica extract contains high amount of gallic acid which is major secondary metabolite responsible for the reduction and stabilization process. It was established by analyses of extracts before and after reduction using HPLC. Formation of spherical SNP was characterized by Transmission Electron Microscopy (TEM) analysis. X-ray Diffraction (XRD) study revealed crystalline nature of SNP. Presence of different functional groups on the surface of SNP was evidenced by Fourier Transform Infrared Spectroscopy (FTIR) study. A plausible mechanism of reduction and stabilization processes involved in the synthesis of stable SNP was also explained based on HPLC and FTIR data. In addition, the synthesized SNP was tested for antibacterial and antioxidant activities. SNP showed good antimicrobial activity against both gram positive (S. aureus) and gram negative (E. coli) bacteria. It also showed good antioxidant activity compared to ascorbic acid as standard antioxidant by using standard DPPH method.

  4. Study of NpNn scheme in some near magic light nuclei

    International Nuclear Information System (INIS)

    Pradeep Kumar; Singh, M.; Rajesh Kumar; Singh, Y.; Varshney, A.K.; Gupta, D.K.

    2014-01-01

    Study of N p N n is undertaken in present work on light mass near magic even nuclei e.g. Ar, Ca, Ti, Zn, Cr and Ni. Besides deformation β, the energy head of ground band E2 1 + is also studied in N p N n scheme. It is important to look at both of these quantities β and E2 1 + since β is derived from one basic observable B(E2; 2 1 + → 0 1 + ) and E2 1 + is another generally known quantity. The values of B(E2; 2 1 + → 0 1 + and E2 1 + and reach their saturation following different physics and as such while values decrease, the β values increase with the increase of N p N n values

  5. Relativistic effects in the study of weakly bound 17 F and 11 Be nuclei

    Indian Academy of Sciences (India)

    Relativistic effects are employed to describe the weakly bound nuclei of 17 F and 11 B e . In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of supersymmetric shape ...

  6. Study of the structure of light nuclei by AMD+GCM method

    Czech Academy of Sciences Publication Activity Database

    Thiamová, Gabriela; Itagaki, N.; Otsuka, T.

    2004-01-01

    Roč. 54, č. 3 (2004), s. 329-338 ISSN 0011-4626 R&D Projects: GA ČR GA202/04/0791 Institutional research plan: CEZ:AV0Z1048901 Keywords : antisymmetrized molecular-dynamics * even-Z nuclei * shell nuclei Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.292, year: 2004

  7. Study of fossil tracks due to 50<=Z<=92 galactic cosmic ray nuclei in meteoritic crystals: Results and perspectives

    CERN Document Server

    Perelygin, V P; Stetsenko, S G; Brandt, R; Vater, P; Rebetez, M; Spohr, R; Vetter, J; Perron, C

    1999-01-01

    A new approach to the problem of investigation of charge and energy spectra of ultra heavy Galactic cosmic ray nuclei, based on fossil track study of extraterrestrial olivine crystals has been developed. The results of an investigation of ultra heavy Galactic cosmic ray nuclei (Z=50-92) in meteoritic olivine crystals are presented. The technique was based on calibration of olivine crystals with accelerated Xe, Au, Pb and U ions and well-controlled partial annealing of 'fresh' and 'fossil' tracks. It allows us to determine the charge spectra and abundances of cosmic ray nuclei based on fossil track length study in meteoritic and Moon crystals. The comparative studies of the spectra of ''fossil' tracks and tracks due to sup 2 sup 0 sup 8 Pb and sup 2 sup 3 sup 8 U nuclei have shown that the group of 210 mu m 'fossil' tracks, first observed in 1980 at JINR is due to Th-U nuclei-products of recent r-process nucleosyntesis in our Galaxy. The method in principle allows one to resolve Pt-Pb peaks in fossil tracks, t...

  8. Studies of structures of Λ-hyper Be nuclei by the microscopic α + α + nΛ model

    International Nuclear Information System (INIS)

    Ikeda, Kiyomi

    1982-01-01

    This report is a brief review of the studies on the internal structure of Λ-hyper Be nuclei. The Λ-N and Λ-Λ interactions were chosen to explain the coupling energy of the hyper He-5 and the double hyper He-6 nuclei. The structure study of the four Λ-hyper Be nuclei by the molecular orbital model was performed. In the Λ hyper Be-9 nuclei, the Λ particles move around the α-α core. The energy level was obtained on the basis of the molecular orbital model. The results were able to be compared with the experimental values. The ground and excited states of the hyper Be nuclei were analyzed. The molecular orbital model was applied. The wave function was a product of the nucleon part and the Λ particle part. The energy curves as the functions of the distance between the centers of α-clusters were obtained. The curves showed the existence of the stable bound state of each hypernucleus. The coupling energy at the ground state and the energy level of hypernuclei were obtained by using the Hill-Wheeler equation. The electric quadrupole transition probability and the life of the level were also calculated. The obtained B(E2) was close to the values for the collective motion. The variation of structure with increasing number of the hyper particles was seen. (Kato, T.)

  9. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia

    2002-01-01

    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  10. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector

    International Nuclear Information System (INIS)

    Timis, C.N.

    2001-01-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of 11 Li. A complete decay scheme was obtained. The 33 Mg and 35 Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  11. Study of mass=28 isobaric nuclei. 28Si and 28P excited states

    International Nuclear Information System (INIS)

    Miehe, Christiane.

    1975-01-01

    A study of the electromagnetic decay of the excited states of 28 Si and 28 P was done using the reactions 27 Al(p,γ) 28 Si, 24 Mg(α,γ) 28 Si, 25 Mg(α,nγ) 28 Si, 26 Mg(tau,nγ) 28 Si, 27 Al(d,nγ) 28 Si and 28 Si(p,n) 28 P. Special interest was devoted to negative parity level structure and the T=1 states of 28 Si. The location and γ-decay of 28 P levels led to several isospin triplets identification and yields a measurement of Coulomb deplacement energy in the nuclei A=28 [fr

  12. A rare case of cerebellar agenesis: a probabilistic Constrained Spherical Deconvolution tractographic study.

    Science.gov (United States)

    Mormina, Enricomaria; Briguglio, Marilena; Morabito, Rosa; Arrigo, Alessandro; Marino, Silvia; Di Rosa, Gabriella; Micalizzi, Alessia; Valente, Enza Maria; Salpietro, Vincenzo; Vinci, Sergio Lucio; Longo, Marcello; Granata, Francesca

    2016-03-01

    Aim of this study is to show the potential of probabilistic tractographic techniques, based on the Constrained Spherical Deconvolution (CSD) algorithms, in recognizing white matter fiber bundle anomalies in patients with complex cerebral malformations, such as cerebellar agenesis. The morphological and tractographic study of a 17-year-old male patient affected by cerebellar agenesis was performed by using a 3Tesla MRI scanner. Genetic and neuropsychological tests were carried out. An MRI morphological study showed the absence of both cerebellar hemispheres and the flattening of the anterior side of the pons. Moreover, it showed a severe vermian hypoplasia with a minimal vermian residual. The study recognized two thin cerebellar remnants, medially in contact with the small vermian residual, at the pontine level. The third ventricle, morphologically normal, communicated with a permagna cerebello-medullary cistern. Probabilistic CSD tractography identified some abnormal and aberrant infratentorial tracts, symmetrical on both sides. In particular, the transverse pontine fibers were absent and the following tracts with aberrant trajectories have been identified: "cerebello-thalamic" tracts; "fronto-cerebellar" tracts; and ipsilateral and contralateral "spino-cerebellar" tracts. Abnormal tracts connecting the two thin cerebellar remnants have also been detected. There were no visible alterations in the main supratentorial tracts in either side. Neuropsychiatric evaluation showed moderate cognitive-motor impairment with discrete adaptive compensation. Probabilistic CSD tractography is a promising technique that overcome reconstruction biases of other diffusion tensor-based approaches and allowed us to recognize, in a patient with cerebellar agenesis, abnormal tracts and aberrant trajectories of normally existing tracts.

  13. Application of linear and spherical flow analysis techniques to field problems--case studies

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhaas, C.A.; delGiuoice, C.; Abbott, W.A.

    1982-09-01

    Most engineers examine well-test data only with techniques developed for flow in a horizontal cylindrical-radial pattern toward the wellbore. Spherical and linear flow have application in many reservoir situations. Spherical flow has been examined extensively by many authors as an intermediate period between two radial-flow periods for wells which have a short completion interval in thick formations. Linear flow situations develop early in the life of wells which have been fracture-treated: their early linear-flow periods are followed by radial flow. Linear flow may develop late in a well test after a period of early radial flow due to certain configurations of reservoir geometry. Techniques for analyzing spherical and linear flow are summarized here. Data plots which should be prepared and diagnostic features for recognizing and interpreting spherical and linear flow are outlined. These techniques are applied to three example cases to illustrate the methods of analysis and the types of information which can be developed from such analyses and cannot be obtained from the standard Horner-plot analysis.

  14. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study.

    Science.gov (United States)

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Gallagher, Louise; Leemans, Alexander

    2013-10-01

    Autism spectrum disorders (ASDs) are associated with a marked disturbance of neural functional connectivity, which may arise from disrupted organization of white matter. The aim of this study was to use constrained spherical deconvolution (CSD)-based tractography to isolate and characterize major intrahemispheric white matter tracts that are important in visuospatial processing. CSD-based tractography avoids a number of critical confounds that are associated with diffusion tensor tractography, and to our knowledge, this is the first time that this advanced diffusion tractography method has been used in autism research. Twenty-five participants with ASD and aged 25, intelligence quotient-matched controls completed a high angular resolution diffusion imaging scan. The inferior fronto-occipital fasciculus (IFOF) and arcuate fasciculus were isolated using CSD-based tractography. Quantitative diffusion measures of white matter microstructural organization were compared between groups and associated with visuospatial processing performance. Significant alteration of white matter organization was present in the right IFOF in individuals with ASD. In addition, poorer visuospatial processing was associated in individuals with ASD with disrupted white matter in the right IFOF. Using a novel, advanced tractography method to isolate major intrahemispheric white matter tracts in autism, this research has demonstrated that there are significant alterations in the microstructural organization of white matter in the right IFOF in ASD. This alteration was associated with poorer visuospatial processing performance in the ASD group. This study provides an insight into structural brain abnormalities that may influence atypical visuospatial processing in autism. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  15. A specific and correlative study of natural atmospheric radioactivity, condensation nuclei and some electrical parameters in marine or urban sites

    International Nuclear Information System (INIS)

    Le Gac, Jacqueline.

    1980-02-01

    In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222 Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air [fr

  16. Studies of yrast and continuum states in A = 100--200 nuclei

    International Nuclear Information System (INIS)

    Daly, P.J.

    1992-02-01

    This report summarizes progress in nuclear structure research for the year 1991. The highlights include new spectroscopic results for neutron excessive nuclei (around 124 Sn and 36 S) formed in deep inelastic heavy ion reactions

  17. Nuclear magnetic resonance studies of half-integer quadrupolar nuclei : sensitivity enhancements using double frequency sweeps

    NARCIS (Netherlands)

    Iuga, Dinu

    2003-01-01

    Exploiting adiabatic passages of the spin transitions, this thesis reports sensitivity enhancements of the MAS and MQMAS experiments on half-integer quadrupolar nuclei. The processes governing frequency sweeping are described. During such experiments the irradiation frequency sweeps through the

  18. Theoretical studies of excited states of heavy nuclei with large neutron excess

    International Nuclear Information System (INIS)

    Wiboolsake, S.

    1996-01-01

    Certain neutron excess heavy nuclei have a thick neutron skin on the nuclear surface. In this paper detailed collective densities excitations in heavy nuclei with a large neutron excess and a thick neutron skin will be considered within the framework of the 'hydrodynamic' model. It will be shown that low energy isoscalar excitations are possible. The knowledge obtained will give information on the neutron thickness, the compressibility and the surface tension of neutron excess at low density

  19. Spherically Actuated Motor

    Science.gov (United States)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  20. Studies on cluster decay from trans-lead nuclei using different versions of nuclear potentials

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Sukumaran, Indu [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2017-06-15

    The cluster decays from various isotopes of trans-lead nuclei have been studied using 12 different nuclear potentials by evaluating decay half-lives and are then compared with the available experimental data. The study has shown that the barrier penetrability as well as the decay half-lives varies with the nuclear potential used. The standard deviation of the estimated half-lives is also calculated for these twelve nuclear potentials in comparison with the experimental data. The potential Bass 1980 is found to be the most appropriate potential for studying cluster radioactivity as the standard deviation obtained is least. Among the different proximity potential versions; proximity 1977, proximity 1988, proximity 2000, and modified proximity 2000, the minimum standard deviation is for proximity 1988. The Geiger-Nuttall (G-N) plots studied for different cluster emissions from various parents are observed to show linear behavior but with different slopes and intercepts. Again, the G-N plots obtained are linear with different slopes and intercepts when plotted for different nuclear potentials. So it is observed that with the inclusion of different nuclear potentials, the linearity of the G-N plot remains unaltered. Irrespective of the nuclear potential used, the universal curve (log{sub 10}T{sub 1/2} vs. -ln P) studied for various clusters emitted from various parents are obtained as linear with same slope and intercept. (orig.)

  1. Emittance studies of high intensity negative ion sources equipped with continuous surface cylindrical and spherical geometry tungsten ionizers

    International Nuclear Information System (INIS)

    Alton, G.D.; McConnell, J.W.; Tajima, S.; Nelson, G.S.

    1986-01-01

    A digitally controlled emittance measurement, data acquisition and processing system has been designed, implemented and used to determine emittances of negative ion beams extracted from high-intensity negative-ion sources equipped with cylindrical and spherical geometry cesium surface ionizers. Comparative studies indicate that the emittances of ion beams extracted from the source equipped with a spherical geometry ionizer are lower by 13% to 21% than those extracted from the source equipped with a cylindrical geometry ionizer. This difference may be attributable to geometric factors rather than differences in the sizes of the emission areas at the points of negative-ion generation. Studies reveal that the emittances of these sources are independent of ion mass for most of the materials investigated and independent of ion current over the range of ion currents used in these investigations (4μA to 12 μA)

  2. Study of some odd-mass nuclei with 51 neutrons or 51 protons

    International Nuclear Information System (INIS)

    Duffait, Roger.

    1976-01-01

    The level schemes of 93 Mo, 113 Sb, 115 Sb and 119 Sb nuclei were studied. The knowledge of the sup(93m+g)Tc decays was improved. The 2,0 min 113 Te isotope was produced and studied for the first time; two 115 Te isomers with neighbouring half-lives were found and ambiguities on the 115 Te nature cleared up. The sup(119m+g)Te decays were studied with the help of isotopically separated sources and the 119 Sb level scheme was revised. The 93 Mo and 119 Sb level lifetimes were studied using Doppler-shift attenuation method (DSAM) using (p,nγ) reactions at the Van de Graaff accelerator of the University of Lyon. On the whole 16 lifetimes were measured. The experimental results were interpreted in the unified model by intermediate coupling between particle states and the even-even vibrational core; attempts to improve the interpretation by using a semi-microscopical model with the delta surface interaction were made and the two calculations were compared [fr

  3. Synthesis and radioactive properties of the heaviest nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1996-01-01

    Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs

  4. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  5. Study of single particle properties of nuclei in the region of the "island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Kruecken, R; Voulot, D

    2007-01-01

    We are aiming at the investigation of single particle properties of neutron-rich nuclei in the region of the "island of inversion" where intruder states from the $\\{fp}$-shell favour deformed ground states instead of the normal spherical $\\textit{sd}$-shell states. As first experiment, we propose to study single particle states in the neutron-rich isotope $^{31}$Mg. The nucleus will be populated by a one-neutron transfer reaction with a $^{30}$Mg beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$ target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by a newly built set-up of segmented Si detectors with a angular coverage of nearly 4$\\pi$. Relative spectroscopic factors extracted from the cross sections will enable us to pin down the configurations of the populated states. These will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure leading to the breaking of the ...

  6. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study

    Science.gov (United States)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-01

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  7. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8micelles: A molecular dynamics study.

    Science.gov (United States)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-21

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  8. Microscopic studies of electric dipole resonances in 1p shell nuclei

    International Nuclear Information System (INIS)

    Kissener, H.R.; Rotter, I.; Goncharova, N.G.

    1986-05-01

    Recent data on total and partial photonuclear cross sections in the GDR region of the nuclei 6 Li to 16 O are compared with theoretical predictions, mostly from shell model and continuum shell model studies. The influence of the size of the configuration space, of the adopted residual interaction and of the continuous spectrum on the isovector E1 response is discussed to some detail. The observed trends of the localization, the shape and width, the isospin and the configurational structure of the GDR with increasing 1p shell occupation are related to the microscopic structure of the nuclear ground state. Particular attention is given to the partial (γ, N/sub i/) disintegration channels. Complex-particle emission and isospin mixing in the nuclear states are discussed for a few cases. An attempt is made to bring some systematics also in the evidence on excited-state giant resonances through the 1p shell region. The photonuclear GDR is compared with other giant multipole excitations, mostly for the example of the 14 C nucleus. (author)

  9. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  10. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  11. Experimental study of the overpressures generated by the detonation of spherical air-hydrocarbon gaseous mixtures

    International Nuclear Information System (INIS)

    Brossard, J.

    1978-01-01

    The characteristics of the pressure waves transmitted by detonation of gaseous mixtures to the surrounding air were measured by tests made near the ground level in 1 to 54 m 3 spherical balloons containing air-acetylene or air-ethylene mixtures. As concerns the peak overpressure Δp, a theoretical dimensional analysis in accordance with the experimental results shows that Δp can be expressed as a function of two independent variables, which are the radial distance R and the volume V of the balloon . A semi-empirical formula, including ground effects, is proposed and its present validity range is given. (author)

  12. Study of GDR properties in hot nuclei of mass A≅125

    International Nuclear Information System (INIS)

    Fan Hongmei; Bellia, G.; Migneco, E.; Blumenfeld, Y.; Delaunay, F.; Frascaria, N.; Lima, V.

    2004-01-01

    The experiment was carried out at the National Laboratory of South in Italy using 116 Sn beam of 17 and 23 MeV/u delivered from the Superconducting Cyclotron impinging on 12 C and 24 Mg targets. The hot nuclei have been formed by complete and incomplete fusion reactions. The characteristics of the giant dipole resonance (GDR) in hot nuclei of mass A≅125 at lower excitation energies between 160 and 300 MeV have been measured with the multi element detector array (MEDEA) detector. A comparison of GDR yield for three reactions is presented. (authors)

  13. A study of the ''young'' states of particles in p-, d-, and α-nuclei interactions

    International Nuclear Information System (INIS)

    Sarycheva, L.I.

    1977-01-01

    Experimental data on leading particle generation in p-, d- and α-nuclei interactions are compared with calculations within the framework of a simple classical model of scattering. Data show that deuterons and α-particles in inelastic interactions retain their individuality in some case, even after loosing from 10 to 30% of their energy and scattering on considerable angles. Comparison between the experimental data and the calculations made in terms of simplified model shows, that there exists a sufficiently high probability for 8.4 GeV/c deuterons and 16.8 GeV/c α-particles to undergo more than one interaction in the same nuclei

  14. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  15. Gamow-Teller transitions from Ni-58 to discrete states of Cu-51 - The study of isospin symmetry in atomic nuclei

    NARCIS (Netherlands)

    Fujita, Y; Fujita, H; Adachi, T; Berg, GPA; Caurier, E; Fujimura, H; Hara, K; Hatanaka, K; Janas, Z; Kamiya, J; Kawabata, T; Langanke, K; Martinez-Pinedo, G; Noro, T; Roeckl, E; Shimbara, Y; Shinada, T; van der Werf, SY; Yoshifuku, M; Yosoi, M; Zegers, RGT

    Under the assumption that isospin is a good quantum number, symmetry is expected for the transitions from the ground states of T = 1, T-z = +/-1 nuclei to the common excited states of the T-z = 0 nucleus situated between the two nuclei. The symmetry can be studied by comparing the strengths of

  16. Behavior of shell effects with the excitation energy in atomic nuclei

    Science.gov (United States)

    Egido; Robledo; Martin

    2000-07-03

    We study the behavior of shell effects, like pairing correlations and shape deformations, with the excitation energy in atomic nuclei. The analysis is carried out with the finite temperature Hartree-Fock-Bogoliubov method and a finite range density dependent force. For the first time, properties associated with the octupole and hexadecupole deformation and with the superdeformation as a function of the excitation energy are studied. Calculations for the well quadrupole deformed 164Er and 162Dy, superdeformed 152Dy, octupole deformed 224Ra, and spherical 118Sn nuclei are shown. We find, in particular, the level density of superdeformed states to be 4 orders of magnitude smaller than for normal deformed ones.

  17. Contribution of direct processes to cross sections of fast neutron scattering by copper nuclei

    CERN Document Server

    Korzh, Y O

    2002-01-01

    Adaptability of the optical-statistical approach, based on the spherical optical model, excited core model, and modern versions of the statistical model, for description of the experimental data on neutron total and scattering cross sections for sup 6 sup 3 sup , sup 6 sup 5 Cu and Cu nuclei in the 0.5-15 MeV energy range is studied. It is shown that these experimental data can be adequately described in this approach by using the individual set of optical potential parameters only. The results of theoretical analysis are used for study of fast neutron interaction mechanism with the nuclei under consideration.

  18. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei

    International Nuclear Information System (INIS)

    Volpe, M.C.

    1997-01-01

    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for 208 Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author)

  19. Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2008-01-01

    The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy. (topical review)

  20. Study of fossil tracks due to 50≤Z≤92 galactic cosmic ray nuclei in meteoritic crystals: Results and perspectives

    International Nuclear Information System (INIS)

    Perelygin, V.P.; Petrova, R.I.; Stetsenko, S.G.; Brandt, R.; Vater, P.; Rebetez, M.; Spohr, R.; Vetter, J.; Perron, C.

    1999-01-01

    A new approach to the problem of investigation of charge and energy spectra of ultra heavy Galactic cosmic ray nuclei, based on fossil track study of extraterrestrial olivine crystals has been developed. The results of an investigation of ultra heavy Galactic cosmic ray nuclei (Z=50-92) in meteoritic olivine crystals are presented. The technique was based on calibration of olivine crystals with accelerated Xe, Au, Pb and U ions and well-controlled partial annealing of 'fresh' and 'fossil' tracks. It allows us to determine the charge spectra and abundances of cosmic ray nuclei based on fossil track length study in meteoritic and Moon crystals. The comparative studies of the spectra of ''fossil' tracks and tracks due to 208 Pb and 238 U nuclei have shown that the group of 210 μm 'fossil' tracks, first observed in 1980 at JINR is due to Th-U nuclei-products of recent r-process nucleosyntesis in our Galaxy. The method in principle allows one to resolve Pt-Pb peaks in fossil tracks, to establish the upper limit of the abundance of Z>110 nuclei in the Galactic cosmic rays at the level ≤10 -3 to the abundance of actinide nuclei and to get information on the history of Z>50 cosmic ray nuclei in time interval up to 220 M.Y

  1. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  2. Relativistic effects in the study of weakly bound F and Be nuclei

    Indian Academy of Sciences (India)

    FAHIME REZVANI

    2018-01-03

    Jan 3, 2018 ... was then seen that the relativistic approach matches more with the experimental results. Keywords. Relativistic effects; weakly bound nuclei; supersymmetry shape invariance method. PACS No. 21.10.−k. 1. Introduction. For the past few decades, the relativistic mean field theory has been successful in ...

  3. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  4. Study of effective interactions and models in nuclei using the moment method

    International Nuclear Information System (INIS)

    Parikh, J.C.

    1980-01-01

    Theoretical investigation of nuclear properties almost always involves the use of approximate schemes. A common starting point in many of these studies is the shell-model which describes a nucleus as a system consisting of m active nucleons in a N-dimensional single-particle space having an effective (1+2)-body Hamiltonian H. The Schrodinger equation in such a case reduces to a matrix (diagonalization) problem. The dimensionality of the matrix increases very rapidly with m and N. As a result, numerical computations become very large and hence additional approximations have to be used. One approach is to invoke symmetries like space symmetry and SU(3) in light nuclei so that there is a substantial reduction in the size of the many-particle vector space. Another approach which is more widely applicable is the variational one and in particular the Hartree-Fock (HF) approximation. Here the ground state is approximated by a single determinantal wave function having the lowest energy. In most of these applications the effective two-body interaction is chosen to be either a phenomenological one or a realistic one deduced from the free nucleon-nucleon interaction. It is of interest to study the nature of the Hamiltonian operator H under the group transformations which define the model in such spectroscopic spaces - i.e., a tensor decomposition of the interaction under the appropriate group is carried out. From this one would know about the different possible tensor components of H and their relative importance. One would also learn about symmetry breaking-its nature and the tensor components which lead to the breaking. Work done for effective interactions decomposed according to irreducible tensors under the transformations generated by the HF s.p. basis as well as the space symmetry is described

  5. Spatially modulated magnetic structure of AgFeO2: Mössbauer study on 57Fe nuclei

    Science.gov (United States)

    Rusakov, V. S.; Presnyakov, I. A.; Sobolev, A. V.; Gapochka, A. M.; Matsnev, M. E.; Belik, A. A.

    2014-01-01

    The results of the Mössbauer study of ferrite AgFeO2 manifesting multiferroic properties (at T ≤ T N2) have been presented. The hyperfine interaction parameters of 57Fe nuclei have been analyzed in a wide temperature range including the points of two magnetic phase transitions ( T N2 ≈ 7-9 K and T N1 ≈ 15-16 K). It has been shown that the Mössbauer spectra of the 57Fe nuclei are sensitive to the variations of the character of the magnetic ordering of Fe3+ ions in the studied ferrite. The results of the model identification of a series of spectra (4.7 K ≤ T ≤ T N2) under the assumption of the cycloid magnetic structure of ferrite AgFeO2 have been presented. The analysis of the results has been performed in comparison with the literature data for other oxide multiferroics.

  6. Study of the characteristics about the digital holography with spherical and plane reference wave

    Science.gov (United States)

    Zhu, Meng; Bai, Jianming; Xiao, Maosen

    2017-10-01

    In order to design and optimize the optical system of digital holography, rebuild the object field with high quality, the characteristics of imaging system with spherical and plane reference wave are demonstrated respectively based on optical scalar diffraction theory. Based on the discrete Fresnel diffraction integral, recording and reconstruction of hologram with plane reference wave as well as the impact of CCD size and reconstructed distance on holographic imaging have been simulated with matlab. The simulation results show that: zero-order image and twin images are spatially separated when choosing the parameters of recording system properly; the quality of rebuild image suffers as CCD decreases in size and the reconstruction distance deviates from the recording distance.

  7. Thomas-Fermi model of warm nuclei

    International Nuclear Information System (INIS)

    Buchler, J.R.; Epstein, R.I.

    1980-01-01

    The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed

  8. Study of a spherical gaseous detector for research of rare events at low energy threshold

    International Nuclear Information System (INIS)

    Dastgheibi-Fard, Ali

    2014-01-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of a particle detector, with a broad range of applications. Its main features include a very low energy threshold which is independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel. SEDINE, a low background detector installed at the underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at a very low energy threshold, around 40 eV. The sensitivity for the rare events detection at low energy is correlated to the detector background and to the decreasing the level of energy threshold, which was the main point of this thesis. A major effort has been devoted to the operating of the experimental detector. Several detection parameters were optimized: the electric field homogeneity in the sphere, keeping clear of sparks, the electronic noise level and the leak rate of the detector. The detector is optimized for operation with a high pressure stable gain. The modification of the shield, cleanings of the detector and the addition of an anti-Radon tent have significantly reduced the background of SEDINE. Progress has increased the sensitivity of the detector at low energy up to a value comparable to the results other underground research experiences for the low mass WIMPs. We will present the results with a measured background in the region of keV, which has allowed us to show a competitive figure of exclusion for the production of light dark matter. (author) [fr

  9. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  10. Structure of tellurium nuclei

    International Nuclear Information System (INIS)

    Cizewski, J.A.; Henry, R.G.; Lee, C.S.

    1991-01-01

    The tellurium nuclei with two protons outside of the Z = 50 shell closure exhibit a complicated structure with signatures of collective vibrational, two-quasiparticle, possibly moderately deformed intruder configurations. To study further the structure of the tellurium nuclei the authors made extensive measurements of the (α,xnγ) reactions on even Sn targets, populating excitations in even- and odd-mass Te nuclei up to moderate angular momenta. By examining limits on possible intraband transitions, results suggest that a possible rotational band structure is not supported by the data, since intraband transitions are of comparable E2 strength to interband transitions. In the odd-A isotopes they concentrated on identifying the higher angular momentum negative-parity states (which probe the role of the h 11/2 neutron in the core), and the search for non-yrast negative-parity states, which are a sensitive measure of the shape of the collective excitations

  11. Vibrations in deformed nuclei

    International Nuclear Information System (INIS)

    Aprahamian, A.

    1992-01-01

    Quadrupole oscillations around a deformed shape give rise to vibrations in deformed nuclei. Single phonon vibrations of K = 0 (β) and K = 2 (γ) are a systematic feature in deformed nuclei, but the existence of multi-phonon vibrations had remained an open question until the recently reported results in 168 Er. In this nucleus, a two-phonon K = 4(γγ) band was observed at approximately 2.5 times the energy of the single γ vibration. The authors have studied several deformed rare-earth nuclei using the ( 4 He,2n) reaction in order to map out the systematic behavior of these multi-phonon vibrations. Recently, they have identified a similar K = 4 band in 154 Gd

  12. Theoretical study of the similarity between nuclei with four valence nucleons in A = 208, 132 and 68 regions

    Energy Technology Data Exchange (ETDEWEB)

    Benmicia, N.; Benrachi, F. [Laboratoire de Physique Mathematique et Subatomique, Majister, Mentouri University, Constantine (Algeria)

    2012-06-27

    One of the most interesting topics in nuclear structure is the study of nuclei near the limits of particle stability. Much attention is currently being focused on nuclei with few valence nucleons around Z= 28, 50 and 82, in particular the 68Ni, 132Sn and 208Pb neighbors. We are interested of the even-even isobars 72Ni, 72Ge and 72Zn in 68Ni region, 136Sn, 136Xe and 136Te in 132Sn region, 212Pb, 212Rn and 212Po in 208Pb region. The calculation of energies spectra using the effective interactions JUN45M, CW{Delta}5082 and KHP shows a good agreement with the available experimental data for the energie levels and their sequences. We have extended the existed similarity between lead and tin regions to the Nickel region.

  13. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  14. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.

  15. Dynamical correlations in finite nuclei: A simple method to study tensor effects

    International Nuclear Information System (INIS)

    Dellagiacoma, F.; Orlandini, G.; Traini, M.

    1983-01-01

    Dynamical correlations are introduced in finite nuclei by changing the two-body density through a phenomenological method. The role of tensor and short-range correlations in nuclear momentum distribution, electric form factor and two-body density of 4 He is investigated. The importance of induced tensor correlations in the total photonuclear cross section is reinvestigated providing a successful test of the method proposed here. (orig.)

  16. Study of the threshold anomaly in systems involving weakly bound nuclei

    International Nuclear Information System (INIS)

    Figueira, J.M.; Niello, J.O. Fernandez; Abelof, G.A.; Arazi, A.; Barmak, D.H.; Capurro, O.A.; Carnelli, P.; Fimiani, L.; Marti, G.V.; Heimann, D. Martinez; Negri, A.E.; Pacheco, A.J.; Gomes, P.R.S.; Lubian, J.; Monteiro, D.S.

    2009-01-01

    Full text: One of the dominant mechanisms in systems involving weakly bound nuclei is the break-up channel; however, the dynamics of this process remains poorly understood. In elastic scattering of strongly bound nuclei it is clearly established that there is always a threshold anomaly (TA) in the optical potential. The TA is characterized by a localized peak in the real part of the potential and by a decrease of the imaginary part of the potential as the bombarding energy decreases towards the Coulomb barrier. But when at least one of the nuclei is weakly bound the results are different for different systems. Three kinds of situations have been reported: the usual TA is observed; the usual TA is not observed because the potentials are almost constant even close to the Coulomb barrier; the so-called Break up Threshold Anomaly (BTA), where the imaginary potential increases as the bombarding energy decreases towards the Coulomb barrier. The BTA is attributed to a strong coupling of the elastic channel with the breakup process, which might have a much larger cross section than fusion at sub-barrier energies. In order to understand how those differences are affected by the system properties it is important to have data of new systems available. In this work we contribute original elastic scattering data of the weakly bound 6,7 Li projectiles on 144 Sm at near coulomb barrier energies. The measurements have been performed at the TANDAR Laboratory using 6 Li and 7 Li beams and a 100 μg/cm 2 thick 144 Sm target. Eleven different bombarding energies between 21 and 42.3 MeV were used for each projectile. The results are analyzed using phenomenological optical potentials and compared with results from other systems involving weakly bound nuclei. (author)

  17. An X-ray spectral study of 24 type 1 active galactic nuclei

    Science.gov (United States)

    Reynolds, C. S.

    1997-04-01

    I present a study of the X-ray spectral properties of a sample containing 24 type 1 active galactic nuclei using the medium spectral resolution of ASCA. The sample consists of 20 radio-quiet objects (18 Seyfert 1 galaxies and two radio-quiet quasars) and four radio-loud objects (three broad-line radio galaxies and one radio-loud quasar). A simple power-law continuum absorbed by Galactic material provides a very poor description of the spectra of most objects. Deviations from the power-law form are interpreted in terms of X-ray reprocessing/absorption processes. In particular, at least half of the objects show K-shell absorption edges of warm oxygen (Ovii and Oviii) characteristic of optically thin, photoionized material along the line of sight to the central engine, the so-called warm absorber. The amount and presence of this absorption are found to depend on either the luminosity or radio properties of the objects: luminous and/or radio-loud objects are found to possess less ionized absorption. This ambiguity exists because the radio-loud objects are also amongst the most luminous of the sample. It is also found that objects with significant optical reddening display deep Ovii edges. The converse is true with two possible exceptions (NGC 3783 and NGC 3516). Coupled with other evidence resulting from detailed study of particular objects, this suggests the existence of dusty warm plasma. A radiatively driven outflow originating from the molecular torus is probably the source of this plasma. Rapid variability of the warm absorber also points to there being another component closer to the central source and probably situated within the broad-line region (BLR). Independent evidence for such an optically thin, highly ionized BLR component comes from detailed optical/UV studies. Spectral features at energies characteristic of cold iron Kalpha emission are common. Such emission is expected to arise from the fluorescence of cold iron in optically thick material when

  18. Beta decay studies of shell model aspects of N=83 and 84 nuclei

    International Nuclear Information System (INIS)

    Menegazzo, R.

    1991-09-01

    In the present work we report on results of β-decay measurements of N=82 and 83 nuclei above the doubly magic 146 Gd, namely the decays of the 1/2 + and 11/2 - isomers in 147 Tb and 149 Ho, and on the unusual β-decay of the 27/2 - 3-quasiparticle isomer in 149 Dy at 3 MeV excitation. For these nuclei the only allowed β-decay is the πh 11/2 → νh 9/2 GT-transition. The data provide new information on several nuclear structure aspects. Among these are the absolute GT-transition strength, and the distrubution of the νh 9/2 orbital in the daugther nucleus. The β-decay data firmly identify specific one- or few-nucleon configurations at low excitation in the daugther nucleus, and moreover, the γ-decay of the primary β-populated states can excite low-lying above yrast levels that cannot be reached by other techniques and are of particular interest for understanding of the nuclear structure in the nuclei of this region. (orig.)

  19. Unveiling the strangeness secrets: low-energy kaon-nucleon/nuclei interactions studies at DAΦNE

    International Nuclear Information System (INIS)

    Curceanu, C.; Bazzi, M.; Clozza, A.; D'uffizi, A.; Guaraldo, C.; Iliescu, M.; Levi Sandri, P.; Poli Lener, M.; Sbardella, E.; Scordo, A.; Tatsuno, H.; Tucakovic, I.; Beer, G.; Berucci, C.; Bosnar, D.; Bragadireanu, A.M.; Pietreanu, D.; Ponta, T.; Cargnelli, M.; Ishiwatari, T.; Marton, J.; Widmann, E.; Zmeskal, J.; Fabbietti, L.; Vazquez Doce, O.; Fiorini, C.; Quaglia, R.; Ghio, F.; Hayano, R.S.; Shi, H.; Iwasaki, M.; Okada, S.; Piscicchia, K.; Romero Vidal, A.; Sirghi, D.L.; Sirghi, F.

    2014-01-01

    The DAΦNE electron-positron collider at the Frascati National Laboratory of INFN (Italy) has made available a unique quality low-energy negatively charged kaons 'beam', which is used to unveil the secrets of the kaon-nucleon/nuclei interactions at low energies through the SIDDHARTA-2 and AMADEUS experiments. SIDDHARTA has already performed unprecedented precision measurements of kaonic atoms, and is being presently upgraded, as SIDDHARTA-2, to approach new frontiers. SIDDHARTA-2 will measure the kaonic deuterium transitions to the 1s level. The AMADEUS experiment will perform the first complete study of the low-energy kaon-nuclei interactions by using a series of cryogenic gaseous targets as d, 3 He, 4 He, and solid targets. Among the aims of AMADEUS are: the measurement of the Λ(1405) decaying to Σ π in all possible combinations and to give a definite answer to the debated question of the existence of the kaonic nuclei. If such states exist we will measure their properties (binding energies, width and decay channels)

  20. Microscopic study on proton elastic scattering of light exotic nuclei at energies below than 100 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)

    2012-11-15

    The proton elastic scattering data on some light exotic nuclei, namely, {sup 6,} {sup 8}He, {sup 9,} {sup 11}Li, and {sup 10,} {sup 11,} {sup 12}Be, at energies below than 100MeV/nucleon are analyzed using the single folding optical model. The real, imaginary, and spin-orbit parts of the optical potential (OP) are constructed only from the folded potentials and their derivatives using M3Y effective nucleon-nucleon interaction. These OP parts, their renormalization factors and their volume integrals are studied. The surface and spin-orbit potentials are important to fit the experimental data. Three model densities for halo nuclei are used and the sensitivity of the cross-sections to these densities is tested. The imaginary OP within high-energy approximation is used and compared with the single folding OP. This OP with few and limited fitting parameters, which have systematic behavior with incident energy, successfully describes the proton elastic scattering data with exotic nuclei. (orig.)

  1. Single particle orbitals of the heaviest known actinide nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1992-01-01

    Single particle states in the actinide nuclei have been well characterized by decay scheme, (n, γ) and one nucleon transfer reaction studies. The energies of the single particle states are used to calculate the shell corrections which may give rise to stable superheavy elements. Large shell corrections for the superheavy elements arise from the gaps in the proton single-particle spectrum at Z = 114 and in the neutron single-particle spectrum at N = 184. The gap at Z = 114 is determined by the splitting of the f 7/2 and f 5/2 orbitals and the gap at N = 184 is determined by the locations of the h 11/2 , k 17/2 and j 13/2 spherical orbitals. Many of these states have been identified in very heavy actinide nuclei. Experiments identifying these states and the relation of the observed energies to the stability of superheavy elements are discussed

  2. Study of a phase change energy storage using spherical capsules. Part I: Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Bedecarrats, J.P.; Castaing-Lasvignottes, J.; Strub, F.; Dumas, J.P. [Laboratoire de Thermique, Energetique et Procedes, Universite de Pau et des Pays de l' Adour, Avenue de l' Universite, BP 1155, 64013 Pau cedex (France)

    2009-10-15

    This paper presents an experimental investigation of the performance of an encapsulated phase change energy storage during the charging and the discharging processes. The spherical capsules, containing water with a nucleation agent as a phase change material (PCM), fill the thermal storage tank. The heat transfer fluid which circulates through the tank and around the capsules is an aqueous solution of monoethylene glycol. A series of experiments were carried out to investigate the effects of various parameters including the inlet heat transfer fluid temperature and flow rate, kinetics of cooling and heating, on the charging and discharging processes. The main results are:-There is a significant influence of the supercooling phenomenon during the charging process. -The lower the inlet coolant temperature and the larger the coolant flow rate are, the faster the storage is. The choice of the couples (flow rate, inlet temperature) must permit to store the total energy in a given time. -When a charge mode follows an incomplete discharge mode, the charge mode is the result of the crystallization of some capsules which present supercooling and of others which do not. The consequence is that the charge mode is made at a higher temperature with a relatively shorter duration. (author)

  3. Comparative studies on the minus origin mutants of Escherichia coli spherical single-stranded DNA phages.

    Science.gov (United States)

    Kodaira, K; Godson, N G; Taketo, A

    1995-01-25

    The minus origins for complementary strand DNA synthesis (-ori) of Escherichia coli spherical single-stranded DNA (microvirid) phages G4, phi K, alpha 3, and St-1 closely resemble each other in DNA structure and contain two potential secondary hairpin loops (I and II) that have been implicated as direct recognition sites for host E. coli dnaG protein (primase). We introduced mutations (deletion or insertion) within the -ori regions of phi K and G4 by the nuclease digestion method. Mutants thus constructed produced minute plaques, showed thermosensitivity, and they remarkably reduced the phage yield and rate of viral DNA synthesis. Deletions in the phi K mutants (dTa) were ranging from 1 nucleotide (nt) to 102 nt centered at the hairpin II; a dTa8 mutant was entirely lacking in the two hairpins besides the starting point for primer RNA synthesis. On the other hand, the G4 mutants (dSa) had deletions centered at hairpin I; two mutants dSa35 and dXN completely lost the hairpin I and the primer RNA starting point. In addition, progeny phage populations of several phi K and G4 mutants contained revertant-like phages. DNA sequencing analysis revealed that these secondary phages had been generated by spontaneous DNA rearrangement with additional insertion or deletion near the parental mutation sites, via an unknown recA-independent pathway.

  4. Studies of ice nuclei at the Leipzig Aerosol Cloud Interaction Simulator and their implications

    Science.gov (United States)

    Wex, Heike

    2013-04-01

    Ice containing clouds permanently cover 40% of the earth's surface. Ice formation processes have a large impact on the formation of precipitation, cloud radiative properties, cloud electrification and hence influence both, weather and climate. Our understanding of the physical and chemical processes underlying ice formation is limited. However what we know is that the two main pathways of atmospheric ice formation are homogeneous and heterogeneous ice nucleation. The latter involves aerosol particles that act as ice nuclei inducing cloud droplet freezing at temperatures significantly above the homogeneous freezing threshold temperature. Particles acting as IN are e.g. dust particles, but also biological particles like bacteria, pollen and fungal spores. Different heterogeneous freezing mechanisms do exit, with their relative importance for atmospheric clouds still being debated. However, there are strong indications that immersion freezing is the most important mechanism when considering mixed phase clouds. What we are still lacking is a) the fundamental process understanding on how aerosol particles induce ice nucleation and b) means to quantify ice nucleation in atmospheric models. Concerning a) there most likely is not only one answer, considering the variety of IN found in the atmosphere. With respect to b) different approaches based on either the stochastic or singular hypotheses have been suggested. However it is still being debated which would be a suitable way to parameterize laboratory data for use in atmospheric modeling. In this presentation, both topics will be addressed. Using the Leipzig Aerosol Cloud Interaction Simulator (LACIS) (Hartmann et al., 2011), we examined different types of dust particles with and without coating, and biological particles such as bacteria and pollen, with respect to their immersion freezing behaviour. We will summarize our findings concerning the properties controlling the ice nucleation behaviour of these particles and

  5. Nucleons in nuclei (II)

    International Nuclear Information System (INIS)

    Laget, J.M.

    1988-01-01

    This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed

  6. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei; Relativistische exotische Kerne als Projektilstrahlen. Neue Perspektiven zum Studium der Kerneigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H.

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.

  7. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  8. Spherical Surfaces

    DEFF Research Database (Denmark)

    Brander, David

    2016-01-01

    We study surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give...

  9. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available OBJECTIVES: Gold nanoparticles (AuNPs of 21 nm have been previously well characterized in vitro for their capacity to target macrophages via active uptake. However, the short-term impact of such AuNPs on physiological systems, in particular resident macrophages located in fat tissue in vivo, is largely unknown. This project investigated the distribution, organ toxicity and changes in inflammatory cytokines within the adipose tissue after mice were exposed to AuNPs. METHODS: Male C57BL/6 mice were injected intraperitoneally (IP with a single dose of AuNPs (7.85 μg AuNPs/g. Body weight and energy intake were recorded daily. Tissues were collected at 1 h, 24 h and 72 h post-injection to test for organ toxicity. AuNP distribution was examined using electron microscopy. Proinflammatory cytokine expression and macrophage number within the abdominal fat pad were determined using real-time PCR. RESULTS: At 72 hours post AuNP injection, daily energy intake and body weight were found to be similar between Control and AuNP treated mice. However, fat mass was significantly smaller in AuNP-treated mice. Following IP injection, AuNPs rapidly accumulated within the abdominal fat tissue and some were seen in the liver. A reduction in TNFα and IL-6 mRNA levels in the fat were observed from 1 h to 72 h post AuNP injection, with no observable changes in macrophage number. There was no detectable toxicity to vital organs (liver and kidney. CONCLUSION: Our 21 nm spherical AuNPs caused no measurable organ or cell toxicity in mice, but were correlated with significant fat loss and inhibition of inflammatory effects. With the growing incidence of obesity and obesity-related diseases, our findings offer a new avenue for the potential development of gold nanoparticles as a therapeutic agent in the treatment of such disorders.

  10. Physics of Unstable Nuclei

    Science.gov (United States)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  11. The study of structure in 224–234 thorium nuclei within the framework IBM

    Directory of Open Access Journals (Sweden)

    Lee Su Youn

    2017-01-01

    Full Text Available An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3 limit of the interacting boson model(IBM in the algebraic nuclear model. Furthermore, 224−232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5 symmetry. However, as 226−230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3 limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5 limit to the SU(3 Hamiltonian in IBM. We compared the results with experimental data of 224−234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224−234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.

  12. Study of nuclei far from stability with AYE-Ball array

    International Nuclear Information System (INIS)

    Carpenter, M.P.

    1996-01-01

    The coupling of a Compton-suppressed Ge (CsGe) detector array to a recoil mass separator (RMS) has seen limited use in the past due to the low efficiency for measuring recoil-γ ray coincidences (< 0.1%). With the building of new generation recoil separators and gamma-ray arrays, a substantial increase in detection efficiency has been achieved. This allows for the opportunity to measure excited states in nuclei with cross-sections approaching 100 nb. In this paper, results from the coupling of a modest array of CsGe detectors (AYE-Ball) with a recoil separator (FMA) will be presented

  13. Preliminary Studies of Thermal Wavelength Approximation in 208Pb and 91Zr hot Nuclei

    Directory of Open Access Journals (Sweden)

    R. Kurniadi

    2006-05-01

    Full Text Available Level density parameters of 208Pb and 91Zr in equilibrium states have been calculated with a new fugacity approximation namely a thermal wavelength approximation. In this approximation, the fugacity is directly proportional to the nucleon density. In contrast with the constant fugacity, the thermal wavelength approximation gives a simpler way to calculate the nuclei constant radius and the density profile. The calculated 208Pb nuclear density is about 0.17 (fm-3 in which the discrepancy is 0.1% higher than the experimental one. The level density parameters are 14% higher than the experimental results due to neglecting of the shell correction.

  14. Contributions to the study of heavy and superheavy nuclei stability in alpha-decay

    International Nuclear Information System (INIS)

    Silisteanu, I.

    1978-01-01

    Alpha-decay is treated in this work on the complete analogy of transfer reactions by means of nuclear shell models with continuous spectrum nucleons. Certain phenomenologically obtained or microscope evaluated data on low energy interactions between alpha-particles and nuclei, when related to nuclear structure data within the unified theory of nuclear reactions, allow of an improved accuracy in determining the alpha-particle wave function as well as of an estimation of alpha-probabilities in good keeping with experimental ones. The problem of alpha lifetimes thus narrows to the resolution of some homogeneous and inhomogeneous differential equations systems including the optic potential and the alpha formfactors. (author)

  15. Experimental Studies of the Mechanism of Photon Absorption on Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Steven A. [Univ. of Edinburgh, Scotland (United Kingdom)

    2000-09-13

    1st time a comparison between the 12C(γ,p) reaction and the transverse part of 12C(e,e'p) reaction cross section has been made. This comparison suggests that the mechanism of the 2 reactions converge when both are studied in equivalent kinematics resolving the long standing issue of anomalous excitation of the ~ 7 MeV triplet in 11B, following 12C(γ,p), not seen in the 12C(e,e'p) case. In a further use of the (γ,pγ') reaction the relative population of the 4.44 MeV (T = 0) and 15.1 MeV (T = 1) states in 12C, following 14N(γ,pn), have been measured with tagged photons in the range 50.20 < Eγ < 71.40 MeV. A strong suppression for population of the T = 1 state in the residual nucleus as compared to the T = 0 state was observed. This is consistent with the picture of photon absorption on T = 0 (3S1) p-n pairs in nuclei. A measurement of the 14N(γ,d) reaction has also been made in which the converse population of states in 12C was observed.

  16. Deformed model Sp(4) model for studying pairing correlations in atomic nuclei

    CERN Document Server

    Georgieva, A I; Sviratcheva, K

    2002-01-01

    A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom

  17. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  18. Proton scattering from unstable nuclei 20O, 30S, 34Ar: experimental study and models

    International Nuclear Information System (INIS)

    Khan, Elias

    2000-01-01

    Elastic and inelastic proton scattering from the unstable nuclei 20 O, 30 S and 34 Ar were measured in inverse kinematics at the Grand Accelerateur National d'Ions Lourds. Secondary beams of 20 O at 43 MeV/A, 30 S at 53 MeV/A and 34 Ar at 47 MeV/A impinged on a (CH 2 ) n target. Recoiling protons were detected in the silicon strip array MUST. Energies and angular distributions of the first 2 + and 3 - states were measured. A phenomenological analysis yields values of the deformation parameters β 2 and β 3 of 0.55 (6) and 0.35 (5) for 20 O, 0.32 (3) and 0.22 (4) for 30 S, 0.27 (2) and 0.39 (3) for 34 Ar, respectively, and allows the extraction of the ratio of neutron to proton transition matrix elements (M n /M p )/(N/Z) for 2 + states: 2.35 (37) for 20 O, 0.93 (20) for 30 S and 1.35 (28) for 34 Ar. Therefore the proton rich nuclei 30 S and 34 Ar show a 2 + excitation of isoscalar character whereas the excitation of 20 O is of isovector character. In order to perform a microscopic analysis of the data, we have developed a QRPA model, using three Skyrme interaction: SIII, SG2, SLy4. This model reproduces measured B(EL) values for the oxygen, sulfur and argon isotopic chains, whereas RPA calculations, which do not take pairing into account, underestimate these values. In the case of the QRPA model the energies of the first 2 + state are overestimated by about 1 MeV, but the evolution along the isotopic chains is well reproduced. (M n /M p )/(N/Z) ratios for the first 2 + state deduced from the microscopic analysis using QRPA are 1.98 for 20 O, 1.05 for 30 S and 1.00 for 34 Ar, in agreement with the conclusions of the phenomenological analysis. However important discrepancies are observed between the two types of analysis for other isotopes, in particular neutron rich argon and sulfur nuclei. (author)

  19. Deformed shapes in odd-odd nuclei near Z = 82

    International Nuclear Information System (INIS)

    Mukherjee, G.; Pai, H.; Bhattacharya, S.; Bhattacharya, C.; Bhattacharyya, S.; Bhattacharjee, T.; Basu, S.K.; Kundu, S.; Ghosh, T.K.; Bannerjee, K.; Rana, T.K.; Meena, J.K.; Chanda, S.; Bhowmik, R.K.; Singh, R.P.; Muralithar, S.; Garg, R.

    2009-01-01

    The neutron deficient nuclei in the vicinity of the Z = 82 region are known for interesting structural phenomena arising due to different shape driving effects of the proton and neutron orbitals near the Fermi surface. It has been found that the heavier bismuth and thallium nuclei with A > 200 are spherical and the lighter nuclei with A < 194 have rotational bands indicating deformation. We report here our recent experimental investigation of γ-ray spectroscopy of odd-odd Bi and Tl nuclei in mass region A = 190

  20. A detailed study of nucleon structure function in nuclei in the valence quark region

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, N. [INFN-Laboratori, Nazionali di Frascati (Italy)

    1994-04-01

    The so called {open_quotes}EMC effect{close_quotes} discovered during the 1980`s, has caused a big controversy in the community of nuclear and high energy physicists; during the last ten years, five experiments have been performed in different laboratories and several hundreds of papers about the possible interpretation of the modification of the nucleon structure function inside nuclei have been published. However, from the experimental point of view, the main goal of four experiments (EMC, BCDMS, NMC, FNAL) has been to emphasize the region of low x{sub b}, where shadowing effects appear. In the region of valence quarks and nuclear effects (x{sub b} > 0.1 - 0.2) the most reliable data presently available are from the SLAC E139 experiment performed in 1983 with only 80 hours of beam time. New precise data in the valence quark region are necessary to measure separate structure functions F{sub 2}(x{sub b}, Q{sup 2}) and R{sup lt}(x{sub b},Q{sup 2}) = {sigma}{sub l}/{sigma}{sub t}, and to investigate the real A-dependence of the ratio between bound and free-nucleon structure functions which is not completely defined by the SLAC data. Moreover, from the nuclear physics point of view, a measurement on some unexplored nuclei, like {sup 3}He and {sup 48}Ca, would be of great interest. The intermediate scaling region (0.1 < x{sub b} < 0.7) would be accessible at CEBAF if the machine energy will reach 6-8 GeV, as suggested by all the tests performed on the RF cavities. This physics program has been already presented in two letter of intents.

  1. The cochlear nuclei of snakes.

    Science.gov (United States)

    Miller, M R

    1980-08-15

    The cochlear nuclei of three burrowing snakes (Xenopeltis unicolor, Cylindrophis rufus, and Eryx johni) and three non-burrowing snakes (Epicrates cenchris, Natrix sipedon, and Pituophis catenifer) were studied. The posterior branch of the statoacoustic nerve and its posterior ganglion were destroyed and the degenerated nerve fibers and terminals traced to primary cochlear nuclei in 13 specimens of Pituophis catenifer. All these snake species possess three primary and one secondary cochlear nuclei. The primary cochlear nuclei consist of a small nucleus angularis located at the cerebello-medullary junction and a fairly large nucleus magnocellularis forming a dorsal cap over the cephalic end of the alar eminence. Nucleus magnocellularis may be subdivided into a medially placed group of rounder cells, nucleus magnocellularis medialis, and a laterally placed group of more ovate and paler-staining cells, nucleus magnocellularis lateralis. A small but well-defined secondary nucleus which showed no degenerated nerve terminals after nerve root section, nucleus laminaris, underlies the cephalic part of both nucleus magnocellularis medialis and nucleus magnocellularis lateralis. Larger and better-developed cochlear nuclei were found in burrowing species than in non-burrowing species of snakes. Of the three burrowing species studied, Xenopeltis showed the greatest development of cochlear nuclei; Eryx cochlear nuclei were not quite as large but were better differentiated than in Xenopeltis; and Cylindrophis cochlear nuclei were fairly large but not as well developed nor as well differentiated as in either Xenopeltis or Eryx. The cochlear nuclei of the three non-burrowing snakes, Epicrates, Natrix, and Pituophis, were not as large nor as well developed as those of the burrowing snakes. There is some, but not complete, correlation between cochlear development and papilla basilaris length and number of hair cells. Thus, Xenopeltis and Eryx, with well-developed cochlear nuclei

  2. A study of the effect of non-spherical dust particles on Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.

    2017-12-01

    Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.

  3. Nuclear spectroscopy by radioactivity. Study of nuclei adjacent to the 82 neutron closed shell and application to fission

    International Nuclear Information System (INIS)

    Carraz, L.-C.

    1974-01-01

    Chemical separation techniques have been developed which make it possible to obtain a certain number of isotopes presenting anomalies in the fission efficiencies (near the magic shell N=82). A short description is given of the fission phenomenon by analysing the selection of isotopes investigated; it is shown how it was possible to explain the results by means of computers and the various chemical separations perfected are described. Thus a study was made of the 144 La direct γ spectrum. It was shown that the anomalies in the fission efficiencies of certain nuclei are apparent only. Hence, it is the presence of isomers and the distribution of the corresponding efficiency between two isomers which are the cause of the apparent weakness of the efficiency of 134 I, 136 I and 136 Cs, and of certain isotopes of Nb(Z=41). The nuclear spectrometry of nuclei of the area N=82 has made it possible to extend the existence of a metastable state to 136 Xe and 138 Ba. The value of the energies of the first 2 + , 4 + , 6 + levels and the half life duration of the 6 + metastable state are given. The discussion of the results and of the models show that the interpretation of the 0 + , 2 + , 4 + of the 82 neutron nuclei by means of a two quasi-particle (protons) model gives a fairly satisfactory description of the various experimental events: elastic scattering, gamma spectrometry and proton transfer reactions; on the other hand the interpretation of higher energy levels, requires the use of more complicated configurations [fr

  4. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  5. Studies of heavy-ion reactions and transuranic nuclei: Progress report, September 1, 1987--August 31, 1988

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1988-08-01

    The effect of successively increasing gradients of the potential energy surface on mass and charge transport was studied experimentally and theoretically with a series of damped reactions induced by 48 Ca, 64 Ni, 58 Ni, and 40 Ca projectiles on 238 U targets. Combined transport-evaporation calculations that were performed for the interpretation of data demonstrate a systematic deficiency of quantitative reaction theory. A new type of experimental method has been employed to study several moments of the energy partition in damped reactions, measuring multiplicity correlations of neutrons emitted from the asymptotic fragments with a specially designed, directionally sensitive multiplicity counter. First results indicate significant departures of damped reaction systems from thermal equilibrium. Employing realistic Monte Carlo simulation of published experiments, it was demonstrated that the directions of net mass transfer and energy deposit are uncorrelated in damped reactions. Evaporative and preequilibrium neutron emission has been studied for the asymmetric heavy-ion system 139 La + 40 Ar. The disequilibrium energy transport phenomena observed in the experiment are quantitatively reproduced by model calculations. A strong impact-parameter dependence of preequilibrium emission is demonstrated. The emission patterns of α particles evaporated from high spin compound nuclei, previously attributed to exotic nuclear shapes, have been explained in realistic statistical model calculations for nuclei with conventional shapes. A new octal digital delay module has been designed and tested

  6. Medium energy hadron scattering from nuclei

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Wenes, G.

    1986-01-01

    The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154 Sm and 154 Gd. 27 refs., 5 figs., 1 tab

  7. A dye laser-cryogenic helium jet system and recoil-mass-separator for studies of nuclei far from stability

    CERN Document Server

    Clark, D L; Cormier, T M; Hermann, G; Lin, B S; Martin, A G; Nicolis, N G; Stwertka, P M

    1981-01-01

    Most of the recent applications of lasers to on-line measurements of hyperfine interactions and isotope shifts have been made using high energy proton beams to produce large fluxes of a wide range of unstable atoms. On-line mass separators select the atomic species of interest. At NSRL the authors have in the final stages of development an on-line laser spectroscopy system for the upgraded MP tandem. The system is based on the use of more selective heavy-ion reactions so that mass separation is not usually required, and very sensitive detection techniques so that measurements are possible with small fluxes of atoms. A recoil mass separator is also near completion and will be used for a variety of studies of nuclei far from stability, including providing, when necessary, mass separated reaction products for study using the laser system. The heavy ion beam energy available from the upgraded MP allows production of neutron deficient nuclei by means of fusion-evaporation reactions that is limited only by the onse...

  8. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  9. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  10. A study of the (p,pn) reaction on 1p shell nuclei at 46 MeV

    International Nuclear Information System (INIS)

    Miller, C.A.

    1974-01-01

    The (p,pn) reaction on four 1p shell nuclei, 6 Li, 9 Be, 13 C and 12 C, as well as the 6 Li(p,2p) reaction, have been studied at 46 MeV. The 6 Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in 6 Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the 9 Be and 13 C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons. (author)

  11. Nuclei in Astrophysics

    Science.gov (United States)

    Penionzhkevich, Yu. E.

    2016-06-01

    This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclearphysics methods for studying cosmic objects and properties of the Universe. The results of investigations in nuclear reactions, induced by radioactive nuclear beams, make it possible to analyze the nucleosynthesis scenario in the region of light elements in a new manner.

  12. Study on gamma-ray strength function of neutron radiative capture for middle and heavy nuclei

    CERN Document Server

    LiuJianFeng; Su Zong Di

    2002-01-01

    Using the hypothesis as well as the gamma-ray strength function proposed, the neutron radiative capture reaction cross sections and the gamma energy spectra have been calculated for sup 9 sup 3 Nb, natural Ag and sup 1 sup 8 sup 1 Ta in the neutron incident energy region from 0.01 to 5 MeV as well as for sup 1 sup 9 sup 7 Au in the neutron incident energy region from 0.01 to 10 MeV. The results which are coincident better with the experimental values were obtained. The comparisons with the experimental values have shown that, not only the abnormal protuberances near and after 5.5 MeV of the gamma spectra in the nuclear mass regions about 110 < A < 140 and 180 < A < 210 are explained better, but also the gamma production data can be theoretically calculated for the middle and heavy nuclei by means of this hypothesis and the gamma-ray strength function deduced from this hypothesis

  13. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum

    International Nuclear Information System (INIS)

    Bonneau, L.

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)

  14. Experimental study of the two-body spin-orbit force in nuclei.

    Science.gov (United States)

    Burgunder, G; Sorlin, O; Nowacki, F; Giron, S; Hammache, F; Moukaddam, M; de Séréville, N; Beaumel, D; Càceres, L; Clément, E; Duchêne, G; Ebran, J P; Fernandez-Dominguez, B; Flavigny, F; Franchoo, S; Gibelin, J; Gillibert, A; Grévy, S; Guillot, J; Lepailleur, A; Matea, I; Matta, A; Nalpas, L; Obertelli, A; Otsuka, T; Pancin, J; Poves, A; Raabe, R; Scarpaci, J A; Stefan, I; Stodel, C; Suzuki, T; Thomas, J C

    2014-01-31

    Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

  15. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  16. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  17. Boson forbidden transitions and their manifestation in spherical nuclei

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2002-01-01

    For the correct description of the 'boson forbidden' transitions it is necessary to go beyond the quasi-boson approximation and to take into account the fermion structure of the phonons. Once it done it is quantitative description of the transitions is possible within the simplest model based on the separable residual interactions. Calculations of the forbidden E1-transitions in 120 Sn, 144 Sm and 144 Nd are presented. Analysis of some low-energy M1-transitions is made using IBM-2. The discussed examples reveal the complex properties of the low-lying excited states

  18. Nuclei Isolation from Nematode Ascaris

    Science.gov (United States)

    Kang, Yuanyuan; Wang, Jianbin; Davis, Richard E.

    2017-01-01

    Preparing nuclei is necessary in a variety of experimental paradigms to study nuclear processes. In this protocol, we describe a method for rapid preparation of large number of relatively pure nuclei from Ascaris embryos or tissues that are ready to be used for further experiments such as chromatin isolation and ChIP-seq, nuclear RNA analyses, or preparation of nuclear extracts (Kang et al., 2016; Wang et al., 2016). PMID:29082294

  19. Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo

    2012-01-01

    shape, void orientation etc. The objective of this work is to expand the range of stress triaxiality usually faced in 3D cell model studies, such that intense shearing is covered, and to bring forward details on the porosity and void shape evolution. The overall material response is presented...

  20. Study of a phase change energy storage using spherical capsules. Part II: Numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bedecarrats, J.P.; Castaing-Lasvignottes, J.; Strub, F.; Dumas, J.P. [Laboratoire de Thermique, Energetique et Procedes, Universite de Pau et des Pays de l' Adour, Avenue de l' Universite, BP 1155, 64013 Pau cedex (France)

    2009-10-15

    The objective of this work is the numerical study of an industrial process of energy storage which consists in the use of a cylindrical tank filled with encapsulated phase change materials (PCM). A particularity is present in this kind of processes; it concerns the delay of the crystallization of the PCM, called supercooling phenomenon. The development of the model for cold storage with heat transfer fluid flowing enables a detailed analysis of this process. The effects of different parameters on the behaviour of the tank, such as the inlet temperature, the flow rate, are examined when the tank is in vertical position. There is substantial agreement between the prediction and the experimental values already presented in part I. (author)

  1. Euclid’s phaenomena a translation and study of a hellenistic treatise in spherical astronomy

    CERN Document Server

    Berggren, J L; Thomas, R S D

    2006-01-01

    The book contains a translation and study of Euclid's Phaenomena, a work which once formed part of the mathematical training of astronomers from Central Asia to Western Europe. Included is an introduction that sets Euclid's geometry of the celestial sphere, and its application to the astronomy of his day, into its historical context for readers not already familiar with it. So no knowledge of astronomy or advanced mathematics is necessary for an understanding of the work. The book shows mathematical astronomy shortly before the invention of trigonometry, which allowed the calculation of exact results and the subsequent composition of Ptolemy's Almagest. The Phaenomena itself begins with an introduction (possibly not by Euclid) followed by eighteen propositions set out in geometrical style about how arcs of the zodiacal circle move across the sky. The astronomical application is to the small arc of that circle occupied by the Sun, but the Sun is not mentioned. This work and the (roughly) contemporaneous treati...

  2. Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei

    Science.gov (United States)

    Quan, S.; Liu, W. P.; Li, Z. P.; Smith, M. S.

    2017-11-01

    Background: Predictions of the spectroscopic properties of low-lying states are critical for nuclear structure studies but are problematic for nuclei with an odd nucleon due to the interplay of the unpaired single particle with nuclear collective degrees of freedom. Purpose: To predict the spectroscopic properties of odd-mass medium-heavy and heavy nuclei with a model that treats single-particle and collective degrees of freedom within the same microscopic framework. Method: A microscopic core-quasiparticle coupling (CQC) model based on the covariant density functional theory is developed that contains the collective excitations of even-mass cores and spherical single-particle states of the odd nucleon as calculated from a quadrupole collective Hamiltonian combined with a constrained triaxial relativistic Hartree-Bogoliubov model. Results: Predictions of the new model for excitation energies, kinematic and dynamic moments of inertia, and transition rates are shown to be in good agreement with results of low-lying spectroscopy measurements of the axially deformed odd-proton nucleus 159Tb and the odd-neutron nucleus 157Gd. Conclusions: A microscopic CQC model based on covariant density functional theory is developed for odd-mass nuclei and shown to give predictions that agree with measurements of two medium-heavy nuclei. Future studies with additional nuclei are planned.

  3. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-07

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  4. Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Kanada-En'yo, Y.; Kimura, M.

    2005-01-01

    To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions

  5. Study of biodistribution of lipidic nanospheres charged with cis-diaminedichloroplatinum (II) and labelled with radioactive nuclei of Indium-111

    International Nuclear Information System (INIS)

    Lopez R, V.; Juarez O, C.; Medina L, A.; Perez C, E.; Garcia L, P.

    2007-01-01

    The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)

  6. Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study.

    Science.gov (United States)

    Rojkova, K; Volle, E; Urbanski, M; Humbert, F; Dell'Acqua, F; Thiebaut de Schotten, M

    2016-04-01

    In neuroscience, there is a growing consensus that higher cognitive functions may be supported by distributed networks involving different cerebral regions, rather than by single brain areas. Communication within these networks is mediated by white matter tracts and is particularly prominent in the frontal lobes for the control and integration of information. However, the detailed mapping of frontal connections remains incomplete, albeit crucial to an increased understanding of these cognitive functions. Based on 47 high-resolution diffusion-weighted imaging datasets (age range 22-71 years), we built a statistical normative atlas of the frontal lobe connections in stereotaxic space, using state-of-the-art spherical deconvolution tractography. We dissected 55 tracts including U-shaped fibers. We further characterized these tracts by measuring their correlation with age and education level. We reported age-related differences in the microstructural organization of several, specific frontal fiber tracts, but found no correlation with education level. Future voxel-based analyses, such as voxel-based morphometry or tract-based spatial statistics studies, may benefit from our atlas by identifying the tracts and networks involved in frontal functions. Our atlas will also build the capacity of clinicians to further understand the mechanisms involved in brain recovery and plasticity, as well as assist clinicians in the diagnosis of disconnection or abnormality within specific tracts of individual patients with various brain diseases.

  7. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade.

    Science.gov (United States)

    Scotti, F; Soukhanovskii, V A

    2015-12-01

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow bandpass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3 orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). The diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.

  8. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  9. Spherical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  10. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  11. Study of the universal function of nuclear proximity potential between α and nuclei from density-dependent nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Zhang, G.L.; Zheng, H.B.; Qu, W.W.

    2013-01-01

    The universal function of proximity potential between α and nuclei is systematically studied from the double-folding model with the density-dependent nucleon-nucleon interaction (CDM3Y6) by analyzing different target nuclei with Z=48-92. The analytical formula of universal function is obtained at s 0 >-1 by fitting all of the calculated values. Using this formula we calculate the half-lives of α decay for heavy nuclei in comparison with the values of the experimental data. It is shown that the half-lives of the α decay calculated from the presently obtained universal function in proximity potential can keep within a factor of 3 with the experimental data. (orig.)

  12. Spherical agglomeration of acetylsalicylic acid

    Directory of Open Access Journals (Sweden)

    Polowczyk Izabela

    2016-01-01

    Full Text Available In this paper spherical agglomeration of acetylsalicylic acid was described. In the first step, the system of good and poor solvents as well as bridging liquid was selected. As a result of a preliminary study, ethyl alcohol, water and carbon tetrachloride were used as the good solvent, poor one, and bridging liquid, respectively. Then, the amount of acetylsalicylic acid and the ratio of the solvents as well as the volume of the bridging liquid were examined. In the last step, the agglomeration conditions, such as mixing intensity and time, were investigated. The spherical agglomerates obtained under optimum conditions could be subjected to a tableting process afterwards.

  13. First-principle study on optical properties of spherical and cylindrical hydrogen-passivated Si nanoparticles with different sizes

    NARCIS (Netherlands)

    Wang, Yinglong; Chen, Chao; Wu, Zhuanhua; Liang, Weihua; Wang, Xiuli; Ding, Xuecheng; Chu, Lizhi; Deng, Zechao; Chen, Jinzhong; Fu, Guangsheng

    To investigate the size dependence of the optical properties of the hydrogen-passivated Si nanoparticles (Hp-SiNPs), the energy bands and optical dielectric functions for two types of nanostructures, that is, the spherical Hp-SiNPs (SHp-SiNPs) with various diameters and the cylindrical Hp-SiNPs

  14. Study on the energy spectra of sdg odd-A nuclei sup 1 sup 1 sup 5 sup - sup 1 sup 2 sup 3 I with PDHF method

    CERN Document Server

    Liu Ying Tai

    2002-01-01

    The approximate angular-momentum-projected Hartree-Fock (PDHF) method is used to study some odd-A nuclei in the 3s-2d-1g shell: sup 1 sup 1 sup 5 sup - sup 1 sup 2 sup 3 I. Their ground bands and low excited bands are calculated. The calculated results agree well with the experimental spectrum

  15. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  16. High spin studies of neutron-rich nuclei produced in the spontaneous fission process of californium-252

    Science.gov (United States)

    Zhang, Xueqian

    2001-08-01

    From an experiment with GAMMMASPHERE and a 252Cf spontaneous fission source, high spin studies of several neutron-rich nuclei have been carried out. In the mass region A ~ 150, a new negative-parity band in 154Nd and new negative-parity levels in 152Nd were identified and the yrast bands were extended to 18+ in 154Nd and 20+ 152Nd in a triple gamma coincidence study. These new negative-parity bands are consistent with octupole vibrational mode rather than the stable octupole deformation seen in Ba and Ce nuclei. There is a constant difference as a function of spin between the J1 values for the negative-parity band in 152Nd and J1 for the similar negative-parity band in 154Nd, however, their J2 values are essentially identical above the 4 + state. These bands indicate a new kind of identical bands associated with an octupole vibrational mode. In mass region A ~ 110, we have observed new bands in 113,115,117,118 Pd up to moderately high spin. The newly identified negative-parity yrast band energy level systematics built on the / isomeric states fit smoothly with the known systematic for other Pd isotopes, and show a minimum excitation energy at N = 68 related to a mid-shell closure. These new negative- parity yrast bands indicate a first band crossing at ¢ω ~ 0.45 MeV, nearly identical to those seen in 109,111Pd, but significantly higher than those in the positive yrast parity bands in 113,115Pd and in the even-even Pd isotopes. We have interpreted the new negative-parity yrast bands as having band crossings from the alignment of a nh/ pair, and this suggests that 113,115,117Pd maintain a prolate shape. Additionally, we have observed two new bands in 113,115 Pd, which are tentatively assigned positive parity with band crossings about 0.25 and 0.32 MeV. These lower frequencies are consistent with a nh/ pair alignment. In the neutron-rich 118Pd, the first band crossing at a frequency of ¢ω ~ 0.29 MeV was observed in its yrast band. This band crossing frequency is

  17. Dynamical effects of successive mergers on the evolution of spherical stellar systems

    International Nuclear Information System (INIS)

    Lee, H.M.

    1987-01-01

    Numerical investigations are carried out to study the dynamical effects of high-mass stars formed out of successive mergers among tidally captured binaries on the evolution of spherical stellar systems. It is assumed that all tidally captured systems become mergers in order to maximize these effects. Stellar systems with N greater than about 10 to the 7th are susceptible to merger instability which may lead to the formation of a central black hole. It is shown that globular clusters are likely to achieve postcollapse expansion due to three-body binary heating and stellar evolution, while galactic nuclei can easily be overcome by the merger instability in the core. 25 references

  18. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  19. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  20. Spectroscopical study of the yrast and yrare structure in far-from-stability nuclei; Etude spectroscopique de la structure yrast et yrare de noyaux loin de la stabilite

    Energy Technology Data Exchange (ETDEWEB)

    Hoellinger Fabien [Institut de Recherches Subatomiques, 23, Rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    1999-01-13

    The nuclear structure study of neutron-rich nuclei was realized with the EUROGAM II array in two different experiments. The first study consisted in the analysis of the product of spontaneous fission of {sup 248}Cm. Three neutron-rich cerium isotopes {sup 147,149,151}Ce were analyzed. A level scheme for {sup 151}Ce is presented for the first time. The yrast structure of the three nuclei does not show alternative parity bands as expected in this region of octupole deformations. We studied the rotational structure of the bands and this leads to suggest Nilsson configurations to some of them. The aim of this second experiment was the study of the nuclei {sup 99}Mo, {sup 101}Tc, {sup 103}Ru. The three nuclei are situated on the neutron-rich side of the nuclear chart and are produced as fission fragments of a heavy-ion induced reaction. Some bands are extended to higher spins and some new bands are observed. The structure of the rotational bands is interpreted by means of the Hartree-Fock-Bogolyubov model. A last experiment intended to study the structure of the proton-rich nucleus {sup 223}Pa has been achieved with the JURO+RITU array located at Jyvaeskylae (Finland). In this proton-rich actinide region, the nuclei develop octupole features around Z{approx_equal}88, N{approx_equal}132. The analysis of this experiment leads to the first assignment of gamma transitions to the {sup 223}Pa. (author) 91 refs., 78 figs., 16 tabs.

  1. A Comparative Study of the Monitoring of a Self Aligning Spherical Journal using Surface Vibration, Airborne Sound and Acoustic Emission

    International Nuclear Information System (INIS)

    Raharjo, P; Tesfa, B; Gu, F; Ball, A D

    2012-01-01

    A Self aligning spherical journal bearing is a plain bearing which has spherical surface contact that can be applied in high power industrial machinery. This type of bearing can accommodate a misalignment problem. The journal bearing faults degrade machine performance, decrease life time service and cause unexpected failure which are dangerous for safety issues. Non-intrusive measurements such as surface vibration (SV), airborne sound (AS) and acoustic emission (AE) measurement are appropriate monitoring methods for early stage journal bearing fault in low, medium and high frequency. This paper focuses on the performance comparison using SV, AS and AE measurements in monitoring a self aligning spherical journal bearing for normal and faulty (scratch) conditions. It examines the signals in the time domain and frequency domain and identifies the frequency ranges for each measurement in which significant changes are observed. The results of SV, AS and AE experiments indicate that the spectrum can be used to detect the differences between normal and faulty bearing. The statistic parameter shows that RMS value and peak value for faulty bearing is higher than normal bearing.

  2. Deformation effect on spectral statistics of nuclei

    Science.gov (United States)

    Sabri, H.; Jalili Majarshin, A.

    2018-02-01

    In this study, we tried to get significant relations between the spectral statistics of atomic nuclei and their different degrees of deformations. To this aim, the empirical energy levels of 109 even-even nuclei in the 22 ≤ A ≤ 196 mass region are classified as their experimental and calculated quadrupole, octupole, hexadecapole and hexacontatetrapole deformations values and analyzed by random matrix theory. Our results show an obvious relation between the regularity of nuclei and strong quadrupole, hexadecapole and hexacontatetrapole deformations and but for nuclei that their octupole deformations are nonzero, we have observed a GOE-like statistics.

  3. A new spin on nuclei

    International Nuclear Information System (INIS)

    Clark, R.; Wadsworth, B.

    1998-01-01

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  4. Contribution to the study of deformed heavy nuclei by means of nuclear reactions; Contribution a l'etude des noyaux lourds deformes au moyen de reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)

  5. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods

    International Nuclear Information System (INIS)

    Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.

    2015-01-01

    In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.

  6. The total ordinary muon capture rates. Microscopic calculations for heavy nuclei

    International Nuclear Information System (INIS)

    Kuz'min, V.A.; Tetereva, T.V.; Ovchinnikova, A.A.; Junker, K.

    2000-01-01

    The total ordinary muon capture (OMC) rates are calculated on the basis of the Quasiparticle Random Phase Approximation for several spherical nuclei from 90 Zr to 208 Pb. It is shown that the total OMC rates calculated with the free value of axial-vector coupling constant g A agree well with the experimental data for medium-size nuclei and exceed considerably the experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates to the nuclear residual interactions is discussed

  7. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    International Nuclear Information System (INIS)

    Dudek, Jozef; Melnitchouk, Wally

    2016-01-01

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German ''hub'' for visits of U.S. physicists, while Jefferson Lab served as the corresponding ''hub'' for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  8. An observational study of atmospheric ice nuclei number concentration during three fog-haze weather periods in Shenyang, northeastern China

    Science.gov (United States)

    Li, Liguang; Zhou, Deping; Wang, Yangfeng; Hong, Ye; Cui, Jin; Jiang, Peng

    2017-05-01

    Characteristics of ice nuclei (IN) number concentrations during three fog-haze weather periods from November 2010 to January 2012 in Shenyang were presented in this paper. A static diffusion chamber was used and sampling of IN aerosols was conducted using a membrane filter method. Sampling membrane filter processing conditions were unified in the activation temperature at - 15 °C under conditions of 20% ice supersaturation and 3% water supersaturation. The variations of natural IN number concentrations in different weather conditions were investigated. The relations between the meteorological factors and the IN number concentrations were analyzed, and relationships between pollutants and IN number concentrations were also studied. The results showed that mean IN number concentration were 38.68 L- 1 at - 20 °C in Shenyang, for all measurements. Mean IN number concentrations are higher during haze days (55.92 L- 1 at - 20 °C) and lower after rain. Of all meteorological factors, wind speed, boundary stability, and airflow direction appeared to influence IN number concentrations. IN number concentrations were positively correlated with particulate matters PM1, PM2.5, and PM10 during haze weather.

  9. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  10. Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F

    We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.

  11. THE DISTRIBUTION OF THE ROTATIONAL TRANSITION STRENGTH IN WARM NUCLEI STUDIED THROUGH GAMMA-RAY CORRELATIONS

    NARCIS (Netherlands)

    LEONI, S; HERSKIND, B; DOSSING, T; RASMUSSEN, P; BOSETTI, P; BRACCO, A; FRATTINI, S; MATSUO, M; NICA, N; VIGEZZI, E; ATAC, A; BERGSTROM, M; BROCKSTEDT, A; CARLSSON, H; EKSTROM, P; INGEBRETSEN, F; JENSEN, HJ; JONGMAN, J; HAGEMANN, GB; LIEDER, RM; LONNROTH, T; MAJ, A; MILLION, B; NORDLUND, A; NYBERG, J; PIIPARINEN, M; RYDE, H; RADFORD, DC; SUGAWARA, M; TJOM, PO; VIRTANEN, A

    1995-01-01

    The study of damping of rotational motion applying the rotational plane mapping (RPM) method is presented and discussed. The aim of this technique is to extract the distribution of the rotational transition strength from an analysis of the shape of the ''central valley'' of two- and

  12. Study of the (p,px) reaction at 156 MeV on some light nuclei

    International Nuclear Information System (INIS)

    Bachelier, Daniel

    1971-01-01

    This research thesis reports the study of four quasi-elastic diffusion reactions of (p,px) type at 156 MeV: 6 Li(p,pd ) 4 He, 6 Li(p,pr) 3 H, 7 Li(p,pt) 4 He and 12 C(p,pd) 10 B. The objectives were to check the quasi-elastic character of these reactions and to describe them by pulse approximations with plane waves, to study their selection rules and to understand their angular correlations with respect to momentum distribution in the target nucleus of ejected substructures (clusters), to compare the probabilities of different configurations corresponding to different models, and, in the case of carbon, to compare the experimental energy spectrum with theoretical predictions. After a discussion of the theoretical expression of the cross-section of a quasi-elastic reaction, and a presentation of the different nuclear models which have been used for this reaction type, the author reports the study of the kinematics of these reactions by defining the conditions under which the knock-out mechanism is promoted. The author describes the beam, targets, detectors and electronic devices used for this study. He addresses the methods used to identify events and to analyse results. Experimental results are presented and compared with theoretical results and with other published experimental results

  13. Experimental Studies of Quark-Gluon Structure of Nucleons and Nuclei

    International Nuclear Information System (INIS)

    Kyle, Gary

    2004-01-01

    The NMSU group has a lengthy history in the study of the nucleon structure and in particular its spin structure in terms of its fundamental constituents. This line of research is continuing in our current involvement in experiments at Brookhaven National Lab and the Thomas Jefferson National Accelerator Facility

  14. Study of interactions between hadrons and light nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Levy, Dominique.

    1977-01-01

    A theoretical study of the following reactions: πN→πN, πd→πd and Nd→Nπd, at incident energies of a few hundreds MeV is presented. The amplitudes of the πN→πN reaction are studied when at least one of the external particles is off-mass-shell. This study leads to the selection of a model used subsequently. For the πd→πd reaction, the simple scattering model is analyzed in detail then the Glauber and Brueckner double scattering models are compared. In the simple scattering model, the effect of the Fermi motion is examined in detail: a calculation of this effect, taking into account both the deuteron D wave and the nucleon spins is completed. Several approximations to the Fermi integral are also presented and the deficiencies of the models are discussed. In the inelastic Nd→Nπd reaction, the peak observed around 1150 MeV in the invariant mass spectrum of the Nπ final system is studied. This Nπ(1150) effect is explained using a Deck-type model. Other mechanisms that might contribute to the Nd→Nπd reaction, in particular at high transfers, are analyzed [fr

  15. Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation

    International Nuclear Information System (INIS)

    Kong-A-Siou, D.-H.

    1975-01-01

    The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr

  16. Electrons and photons: a probe for short distance study of nuclei

    International Nuclear Information System (INIS)

    Gerard, A.

    1983-01-01

    Study of nuclear interactions using electron and photon beams between 100 and 700 MeV energy has shown the limitations of the mean field theory, and given unambiguous evidence for meson exchange currents and Δ resonance propagation. Continuing the investigation at higher energies (1-3 GeV) would permit to deepen further these discoveries and probe the short and very short range parts of nuclear interactions, thus specifying the role of quarks in the nuclear dynamics [fr

  17. Recent Studies of Proton Drip-Line Nuclei Using the Berkeley Gas-Filled Separator

    International Nuclear Information System (INIS)

    Rowe, M.W.; Batchelder, J.C.; Ninov, V.; Gregorich, K.E.; Toth, K.S.; Bingham, C.R.; Piechaczek, A.; Xu, X.J.; Powell, J.; Joosten, R.; Cerny, J.

    1999-01-01

    The Berkeley Gas-filled Separator provides new research opportunities at Lawrence Berkeley National Laboratory's X-Inch Cyclotron. The use of this apparatus for the study of proton drip-line nuclides is discussed. Preliminary results of 78 Kr bombardments of 102 Pd targets at mid-target energies of 360, 375 and 385 MeV are presented. Improvements planned partially as a result of this measurement are also discussed

  18. Recent studies of proton drip-line nuclei using the Berkeley gas-filled separator

    International Nuclear Information System (INIS)

    Rowe, M.W.; Batchelder, J.C.; Ninov, V.; Gregorich, K.E.; Toth, K.S.; Bingham, C.R.; Piechaczek, A.; Xu, X.J.; Powell, J.; Joosten, R.; Cerny, Joseph

    1999-01-01

    The Berkeley Gas-filled Separator provides new research opportunities at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The use of this apparatus for the study of proton drip-line nuclides is discussed. Preliminary results of 78 Kr bombardments of 102 Pd targets at mid-target energies of 360, 375 and 385 MeV are presented. Improvements planned partially as a result of this measurement are also discussed

  19. Study of the Structure of Exotic Light Nuclei Produced at the PS

    CERN Multimedia

    2002-01-01

    The results obtained during experiment PS155 have confirmed the existence of an ``island of deformation'' around N=20 for Z=11 and $^{12}$(Na and Mg). The aim of this experiment is to study this effect in more detail, and also the interesting region past N=28 for Z=19 and $^{20}$(K and Ca). \\\\ \\\\ We plan: \\\\ \\\\ $\\textbf{a)}$ To study excited states of daughter Mg and Ca isotopes: \\\\ \\\\- $\\gamma$ spectroscopy will be achieved using high resolution Ge(Li) detectors on Mg isotopes up to 34 and of Ca isotopes up to 52; of particular interest will be the extension of the systematic study of the first 2$^{+}$ level of $e^{-}e$ or Mg isotopes up to 34; \\\\ \\\\- energy spectra of the delayed neutrons emitted from $^{28-31}$Na will be measured with a $^{3}$He proportional counter. \\\\ \\\\ $\\textbf{b)}$ To measure more precisely the deformation of sodium isotopes using our newly determined methods of optical hyperfine spectroscopy: \\\\ \\\\ - high precision determination of the isotopic shifts of the D$_{1}$ line for ...

  20. Experimental Studies of the Microphysics of Cloud Condensation Nuclei as a Function of Organic Solute

    Science.gov (United States)

    Dure, E.; Morris, V. R.; Greene, N.

    2003-12-01

    Biomass burning has played, and continues to play a significant part in the lives of indigenous people across the world. Biomass burning results from brushfires, land clearing, and cloud-to-ground lightning strikes, this is particularly true in the tropics. A unique feature about the biomass burning aerosols is that its sources are overwhelmingly confined to the tropics despite evidence that their effects may be global in extent. Recently, Rosenfeld has argued that the inclusion of biomass aerosols into warm clouds can also inhibit precipitation. However, several reported case studies in the literature report precipitation enhancements due to aerosol entrainment as well. Quantitative relationships between the indirect forcing from clouds and anthropogenic aerosol inclusions have not been developed to a point where the resultant prediction of cloud optical properties is reliable. The problem is the lack of understanding of the basic microphysical processes governing cloud droplet nucleation and evolution. This level of understanding requires that the physical chemistry of the systems be well understood. Because such a large fraction of anthropogenic aerosol and specifically biomass aerosol are organic in nature, we have performed laboratory simulations of the nucleation of aerosols with organic inclusions. In our study, homogeneous and heterogeneous nucleation effects were studied for several organic solutions; n-Hexane, benzene, chlorobenzene, nitrobenzene, with and without crushed graphite. We will report results of the analyses of the size distribution characteristics, electrical mobility, and number density characteristics.

  1. Study of light particle emission in α like and non-α like nuclei

    International Nuclear Information System (INIS)

    Rana, T.K.; Kundu, S.; Banerjee, K.; Bhattacharya, C.; Ghosh, T.K.; Mukherjee, G.; Bhattacharya, S.; Meena, J.K.; Banerjee, S.R.; Mukhopadyay, S.; Pandit, D.; Dey, A.; Gupta, D.; Mali, P.; Srivastava, A.; Kumar, Suresh; Chatterjee, A.; Ramachandran, K.

    2008-01-01

    Recently the α energy spectra emitted from the same compound system 39 K produced at excitation energy (67 MeV) have been studied via two different entrance channels viz. 12 C (73 MeV) + 27 Al and 11 B (64 MeV) + 28 Si and compared the results with those obtained from a α-cluster system 40 Ca viz. 12 C (77 MeV) + 28 Si, for which orbiting phenomenon has already been established in inverse kinematical reaction viz. 28 Si (180 MeV) + 12 C. The preliminary results have been reported here

  2. Study of pairing and clusterisation in light nuclei through nuclear break-up

    Directory of Open Access Journals (Sweden)

    Assié Marlène

    2014-03-01

    Full Text Available Nuclear break-up is a powerful tool to investigate nuclear structure as it is sensitive to the quantum properties of the emitted particles. This reaction mechanism has been used to investigate several aspects of correlations. First, the case of 11Be was studied where the spectroscopic factors for the two configurations where extracted. Secondly, the spectroscopic factor for alpha clusterization in the ground state of 40Ca was measured. Finally the correlation between the two neutrons in the halo of 6He emitted through break-up reactions showed strong contribution for the di-neutron configuration.

  3. Studies of heavy ion reactions and transuranic nuclei. Progress report, August 1, 1979-July 31, 1980

    International Nuclear Information System (INIS)

    Huizenga, J.R.

    1980-07-01

    The study of heavy-ion reaction mechanisms at the SuperHILAC and LAMPF is reported. Preprints of five articles and manuscripts of four recent conference papers are given, along with complete citations of publications and a list of personnel. Significant work was performed in the following areas: the bombarding energy dependence of the 209 Bi + 136 Xe reaction; the fragment yields for specific Z and A for projectile-like fragments produced in the reaction of 8.3-MeV/u 56 Fe ions with targets of 56 Fe, 165 Ho, 209 Bi, and 238 U; and time distributions of fragments from delayed fission after muon capture for muonic 235 U, 238 U, 237 Np, 239 Pu, and 242 Pu

  4. Study of the low-energy neutron inelastic scattering in deformed transitional nuclei: 186W

    International Nuclear Information System (INIS)

    Diaz, J.R.F.; Solorzano, R.C.

    1983-01-01

    A study of inelastic neutron scattering by the nucleus 186 W at an incident energy of 2.75 MeV using the coupled-channel method has been made. Consideration is made of the 2 + (0.122 MeV), 4 + (0.3966 MeV), 2 + (0.7375 MeV), 3 + (0.8618 MeV) and 4 + (1.031 MeV) excited states. It is shown that in this energy range the process may be described satisfactorily by the Davydov-Filippov model, considering 186 W as a deformed nucleus with non-axial symmetry, given the quadrupole and hexadecapole deformations. The scattering process through the compound nucleus is calculated according to the Hauser-Feshbach formula. It is shown that the presence of direct processes may be partly due to the non-axiality of 186 W. (author)

  5. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    Science.gov (United States)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  6. Spherical aberration in contact lens wear.

    Science.gov (United States)

    Lindskoog Pettersson, A; Jarkö, C; Alvin, A; Unsbo, P; Brautaset, R

    2008-08-01

    The aim of the present studies was to investigate the effect on spherical aberration of different non custom-made contact lenses, both with and without aberration control. A wavefront analyser (Zywave, Bausch & Lomb) was used to measure the aberrations in each subject's right eye uncorrected and with the different contact lenses. The first study evaluated residual spherical aberration with a standard lens (Focus Dailies Disposable, Ciba Vision) and with an aberration controlled contact lens (ACCL) (Definition AC, Optical Connection Inc.). The second study evaluated the residual spherical aberrations with a monthly disposable silicone hydrogel lens with aberration reduction (PureVision, Bausch & Lomb). Uncorrected spherical aberration was positive for all pupil sizes in both studies. In the first study, residual spherical aberration was close to zero with the standard lens for all pupil sizes whereas the ACCL over-corrected spherical aberration. The results of the second study showed that the monthly disposable lens also over-corrected the aberration making it negative. The changes in aberration were statistically significant (plenses. Since the amount of aberration varies individually we suggest that aberrations should be measured with lenses on the eye if the aim is to change spherical aberration in a certain direction.

  7. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  8. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  9. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  10. Application of spherical fly-ash particles to study spatial deposition of atmospheric pollutants in northen-eastern Estonia

    International Nuclear Information System (INIS)

    Alliksaar, T.

    2000-01-01

    Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)

  11. Fission dynamics in 132Ce composite nuclei: study within a stochastic approach

    International Nuclear Information System (INIS)

    It is well known that nuclear viscosity plays a fundamental role in the fission process. Although much experimental and theoretical work has been devoted to this subject, many questions still remain open. They mainly refer to a precise determination of the fission time scale as well as to the nature of the dissipation. At issue is whether nuclear dissipation proceeds primarily by means of individual two-body collisions (two-body friction), as in the case of ordinary fluid, or by means of nucleons colliding with a moving potential wall (one-body friction). The modified statistical model as well as dynamical models based on the Lagrange, Fokker Planck and Langevin equations have been used in order to gain insight on these aspects of fission dynamics. The lack of constraints to the models appears to be, in several cases, the main source of controversies. In this framework, we are carrying on a research program with 8πLP apparatus at LNL, aimed at studying the fission dynamics in systems of intermediate fissility. These systems, compared to the heavier ones, have larger prescission charged particle multiplicities as well as comparable fission and evaporation residue (ER) cross sections. Therefore, the measurements of the relevant quantities in both channels allow to put severe constraints on the models, providing more reliable estimates of fission delay and of viscosity parameter. We report on the system 32 S + 100 Mo at E l ab=200 MeV which produces the composite system 132 Ce at E x =122 MeV. The analysis of the pre-scission charged particles was already described in a previous report. We have proceeded in the analysis of this system extracting the charged particle multiplicities in the ER channel as well as the ER and fission cross sections. The whole set of extracted quantities has been compared with the predictions of a dynamical model based on the Langevin equation

  12. Contribution to the study of cluster structures in some light nuclei

    International Nuclear Information System (INIS)

    Kohmoto, Susumu.

    1977-01-01

    Excitation functions for the reactions: 6 Li(α,α 0 ) 6 Li, 6 Li(α,d 0 ) 8 Be, 7 Li(α,α 0 ) 7 Li, 7 Li(α,α 1 ) 7 Li, 7 Li(α,t 0 ) 8 Be and 7 Li(α,p 0 ) 10 Be have been measured, at several angles, in the incident energy regions: Esup(Lab)sub(α)=3.6 to 7.0 MeV for the 6 Li+α system. The spins and parities of the resonances observed are determined by means of the R-matrix formalism using optical-model phase shifts. The characteristics of the resonances are following: for the 6 Li+α, system, Jsup(π)=3 + (2) + , Esub(x)( 10 B)=7.00 MeV, GAMMAsub(tot)=110 keV, GAMMAsub(α 0 )=80 keV, GAMMAsub(d 0 )=30 keV, GAMMAsub(d 1 ) 7 Li+α system, Jsup(π)=5/2 - , Esub(x)( 11 B)=14.53 MeV, GAMMAsub(tot)=204 keV, GAMMAsub(α 0 )=100 keV, GAMMAsub(t 0 )=40 keV, GAMMAsub(α 1 )+GAMMAsub(α 2 )=64 keV. The three-body theory of Brayshaw and Peierls is reexamined and discussed. The resonances have been interpreted as 'cluster resonances' of the three-cluster systems, 2α+d and 2α+t, respectively. The discret-ambiguity problem of the optical model has also been studied including spin-orbit potential for target spin [fr

  13. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  14. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1998-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  15. Systematic of triaxial moment of inertia in even nuclei of mass region A = 90 - 120

    International Nuclear Information System (INIS)

    Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Singh, Yuvraj; Gupta, K.K.

    2011-01-01

    The Ru - isotopes with Z > 50 lie in a region of structural change that has been a challenge to theoretical interpretations. The Zr and Sr - isotopes near A ∼ 100 undergo the most rapid spherical deformed transition in heavy nuclei. The rate of change of structure with neutron number becomes more gradual with increasing proton number in Mo, Ru, Pd and Cd - nuclei. The qualitative trend of 'a' versus N p N n are found similar in Ru and Pd isotopes. The present study points out a systematic difference in the rates of growth of collectivity in different regions i.e. particle-particle and hole-hole (P,P and P,H) that seems not to have been noted before in moment of inertia 'a'

  16. Fast-timing studies of nuclei below $^{68}$Ni populated in the $\\beta$-decay of Mn isotopes

    CERN Multimedia

    Jokinen, A; Simpson, G S; Garcia borge, M J; Koester, U H; Georgiev, G P; Fraile prieto, L M; Aprahamian, A

    2008-01-01

    We intend to investigate structure of nuclei populated in the $\\beta$-decay of Mn isotopes via the ATD $\\beta\\gamma\\gamma$(t) technique. With this method we will measure dynamic moments in Fe isotopes and their daughters in order to characterize the role of particle-hole excitation across the ${N}$=40 sub-shell closure and the development of collectivity.

  17. The Role of Anterior Nuclei of the Thalamus: A Subcortical Gate in Memory Processing: An Intracerebral Recording Study

    Czech Academy of Sciences Publication Activity Database

    Štillová, K.; Jurák, Pavel; Chládek, Jan; Chrastina, J.; Halámek, Josef; Bočková, M.; Goldemundová, S.; Říha, I.; Rektor, I.

    2015-01-01

    Roč. 56, S1 (2015), s. 162 ISSN 0013-9580. [International Epilepsy Congress /31./. 05.09.2015-09.09.2015, Istanbul] Institutional support: RVO:68081731 Keywords : anterior nuclei * thalamus * hippocampus * visual * verbal memory Subject RIV: BH - Optics, Masers, Lasers

  18. The Role of Anterior Nuclei of the Thalamus: A Subcortical Gate in Memory Processing: An Intracerebral Recording Study

    Czech Academy of Sciences Publication Activity Database

    Štillová, K.; Jurák, Pavel; Chládek, Jan; Chrastina, J.; Halámek, Josef; Bočková, M.; Goldemundová, S.; Říha, I.; Rektor, I.

    2015-01-01

    Roč. 10, č. 11 (2015), e140778:1-13 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : anterior nuclei * thalamus * hippocampus * visual * verbal memory * DBS * P300 * ERP * intracerebral EEG Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.057, year: 2015

  19. Spherical geodesic mesh generation

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jimmy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenamond, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burton, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  20. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  1. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    collaborators [1,2]. The importance of deformed valleys in the potential energy surfaces. (PES) is that they provide the most favoured fission channels for the decay of superheavy nuclei. For the dynamics study, one has to introduce the influence of mass tensor. We use the results from pairing calculations for the occupation ...

  2. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    Abstract. The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in ...

  3. Proton scattering from unstable nuclei

    Indian Academy of Sciences (India)

    Abstract. Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data ...

  4. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  5. Unintegrated parton distributions in nuclei

    Science.gov (United States)

    de Oliveira, E. G.; Martin, A. D.; Navarra, F. S.; Ryskin, M. G.

    2013-09-01

    We study how unintegrated parton distributions in nuclei can be calculated from the corresponding integrated partons using the EPS09 parametrization. The role of nuclear effects is presented in terms of the ratio R A = uPDF A / A·PDF N for both large and small x domains.

  6. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    The pion production processes from nucleons and nuclei at intermediate energies are important tools to study the hadronic structure. The dynamic models of the hadronic structure are used to calculate the various nucleon and transition form factors which are tested by using the experimental data on photo, electro and.

  7. TOPICAL REVIEW: Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials

    Directory of Open Access Journals (Sweden)

    Nobuo Tanaka

    2008-01-01

    Full Text Available The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy.

  8. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on liquid argon pollution tests of the ATLAS detector materials at IBR-2 reactor in Dubna, irradiation tests of readout chain components of the ATLAS liquid argon calorimeters, study of neutron induced outgassing from tungsten alloy for ATLAS FCAL, yields of nuclear reaction products from a thick beryllium target bombarded by beams of 7 Li, 11 B and 15 N ions as well as on the mass surface and the properties of nuclides close to hypothetic doubly magic lead-164, the Web-site of information-diagnostic system of IBR-2 pulsed neutron source state, discovery of η-mesic nuclei and calculation of the ion angular distributions after the ionization in ion-atom collisions

  9. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  10. Developments in the studies of pear-shaped nuclei and their impact on searches for CP-violation in atoms

    NARCIS (Netherlands)

    Butler, Peter A.; Willmann, Lorenz

    2015-01-01

    The atomic nucleus is a many-body quantum system, and hence its shape is determined by the number of nucleons present in the nucleus and the interactions between them. The long-range correlations between valence nucleons distort the shape from spherical symmetry and the nucleus becomes deformed. In

  11. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  12. Testing for bivariate spherical symmetry

    OpenAIRE

    Einmahl, J.H.J.; Gantner, M.

    2012-01-01

    An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic ones, are presented. In a simulation study, the good perfor- mance of the test is demonstrated. Furthermore, a real data example is presented.

  13. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  14. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig

  15. Algebraic description of intrinsic modes in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig.

  16. Algebraic description of intrinsic modes in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Los Alamos National Lab., NM (USA))

    1990-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intrinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. (author).

  17. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intrinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. (author)

  18. PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2013-01-01

    Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.

  19. PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL

    OpenAIRE

    G. Ch. Shushkevich; N. N. Kiselyova

    2013-01-01

    An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening) coefficient is studied via a numerical simulation.

  20. Study of the influence of the shell correction energy on the nuclear reactions leading to the region of the superheavy nuclei

    International Nuclear Information System (INIS)

    Marchix, A.

    2007-11-01

    The aim of this work is to study the influence of shell correction energy on the deexcitation of superheavy nuclei. For that purpose, a new statistical code, called Kewpie2, which is based on an original algorithm allowing to have access to very weak probabilities, was developed. The results obtained with Kewpie2 have been compared to the experimental data on residue cross sections obtained by cold fusion (Z=108 to Z=113) and by hot fusion (Z=112, Z=114 and Z=116), as well as data on fission times (Z=114, Z=120 and Z=126). Constraints on the microscopic structure of the studied nuclei have been obtained by means of the shell correction energy. By adjusting the intrinsic parameters of the models of fusion in order to reproduce the data on the fusion cross sections, this study shows the necessity of decreasing very strongly the shell correction energy predicted by the calculations of Moller and Nix, during the study of the residues cross sections as well for the nuclei produced by cold fusion as by hot fusion. On the other hand, during the confrontation of the results of Kewpie2 to the data on mean fission times, it is rather advisable to increase it. A shift of the proton shell closure predicted for Z=114 by the calculations of Moller and Nix towards larger Z would allow to explain these opposite conclusions. In this thesis, we also have shown the significant influence of the inclusion of isomeric states on fission times for the superheavy nuclei. (author)

  1. Nuclear Phase Transition from Spherical to Axially Symmetric Deformed Shapes Using Interacting Boson Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2015-04-01

    Full Text Available The interacting boson model (sd-IBM1 with intrinsic coherent state is used to study the shape phase transitions from spherical U(5 to prolate deformed SU(3 shapes in Nd- Sm isotopic chains. The Hamiltonian is written in the creation and annihilation form with one and two body terms.For each nucleus a fitting procedure is adopted to get the best model parameters by fitting selected experimental energy levels, B(E2 transi- tion rates and two-neutron separation energies with the calculated ones.The U(5-SU(3 IBM potential energy surfaces (PES’s are analyzed and the critical phase transition points are identified in the space of model parameters.In Nd-Sm isotopic chains nuclei evolve from spherical to deformed shapes by increasing the boson number. The nuclei 150 Nd and 152 Sm have been found to be close to critical points.We have also studied the energy ratios and the B(E2 values for yrast band at the critical points.

  2. Note: Development of a multichannel magnetic probe array for magnetohydrodynamic activity studies in Sino-United Spherical Tokamak

    Science.gov (United States)

    Zhong, H.; Tan, Y.; Gao, Z.

    2018-02-01

    A 30-channel movable magnetic probe radial array measuring the poloidal magnetic field's time derivative B˙ θ has been developed and installed on the Sino-United Spherical Tokamak to investigate the magnetohydrodynamic (MHD) activities in ohmic discharges. The probe array consists of thirty identical commercial chip inductors mounted on a slim printed circuit board and shielded by a customized quartz tube of 14 mm in outer diameter. With the application of instrumentation amplifiers, the system exhibits a good signal to noise ratio and the measured vertical field spatial distribution agrees well with the simulation result. The measured spatial and temporal distribution of B˙ θ during the MHD activities exhibits a clear phase reversal layer, which is a direct proof of tearing mode and provides a reliable indication of the magnetic island chain position.

  3. Low resolution structural X-ray studies of human FEZ1: a natively unfolded protein associated to the flower-like nuclei phenotype

    International Nuclear Information System (INIS)

    Lanza, Daniel Carlos Ferreira; Trindade, Daniel Maragno; Bressan, Gustavo Costa; Kobarg, Joerg

    2008-01-01

    The fasciculation and elongation protein Zeta1 (FEZ1) has been implicated in important functions in mammalian cells, ranging from molecular transport to transcriptional regulation. Theoretical predictions, circular dichroism spectroscopy and limiting proteolysis experiments all suggested that FEZ1 contains regions of low structural complexity and that it may belong to the growing family of natively unfolded proteins. We therefore performed Small Angle Scattering (SAXS) experiments which showed that FEZ1 is a dimer of elongated shape and that its conformation is mainly disordered. In parallel functional studies we observed that the overexpression of FEZ1 in human cells causes the so-called 'flower-like nuclei' phenotype, similar to what is observed in certain leukemic cells. Taken together, our results suggest that the FEZ1 dimer configuration may be critical to explain why its overexpression causes the formation of flower-like nuclei in human cells. (author)

  4. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  5. Models of light nuclei

    International Nuclear Information System (INIS)

    Harvey, M.; Khanna, F.C.

    1975-01-01

    The general problem of what constitutes a physical model and what is known about the free nucleon-nucleon interaction are considered. A time independent formulation of the basic equations is chosen. Construction of the average field in which particles move in a general independent particle model is developed, concentrating on problems of defining the average spherical single particle field for any given nucleus, and methods for construction of effective residual interactions and other physical operators. Deformed shell models and both spherical and deformed harmonic oscillator models are discussed in detail, and connections between spherical and deformed shell models are analyzed. A section on cluster models is included. 11 tables, 21 figures

  6. Solutocapillary convection in spherical shells

    Science.gov (United States)

    Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry

    2005-01-01

    A linear stability study of solutocapillary driven Marangoni instabilities in small spherical shells is presented. The shells contain a binary fluid with an evaporating solvent. The viscosity is a strong function of the solvent concentration, the inner surface of the shell is assumed impermeable and stress free, while nonlinear boundary conditions are modeled and prescribed at the receding outer boundary. A time-dependent diffusive state is possible and may lose stability through the Marangoni mechanism due to surface tension dependence on solvent concentration (buoyant forces are negligible in this microscale problem). A frozen-time or quasisteady state linear stability analysis is performed to compute the critical Reynolds number and degree of surface harmonics, as well as the maximum growth rate of perturbations at specified parameters. The development of maximum growth rates in time was also computed by solving the initial value problem with random initial conditions. Results from both approaches are in good agreement except at short times where there is dependence on initial conditions. The physical problem models the manufacturing of spherical shells used as targets in inertial confinement fusion experiments where perfect sphericity is demanded for efficient fusion ignition. It is proposed that the Marangoni instability might be the source of observed surface roughness. Comparisons with the available experiments are made with reasonable qualitative and quantitative agreement.

  7. Collectivity in A ∼ 70 nuclei studied via lifetime measurements in {sup 70}Br and {sup 68,70}Se

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A.J., E-mail: an527@york.ac.uk [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Wadsworth, R. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Iwasaki, H. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States); Kaneko, K. [Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503 (Japan); Lemasson, A. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States); Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, F-14076 Caen Cedex 05 (France); Angelis, G. de [Laboratori Nazionali di Legnaro dell' INFN, Legnaro (Padova) I-35020 (Italy); Bader, V.M.; Baugher, T.; Bazin, D. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States); Bentley, M.A. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Berryman, J.S. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States); Braunroth, T. [Institut für Kernphysik der Universität zu Köln, Köln 50937 (Germany); Davies, P.J. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); and others

    2014-06-02

    Transition strengths for decays from low-lying states in A ∼ 70 nuclei have been deduced from lifetime measurements using the recoil distance Doppler shift technique. The results confirm the collectivity previously reported for the 2{sub 1}{sup +}→0{sub gs}{sup +} decay in {sup 68}Se and reveal a relative decrease in collectivity in {sup 70}Br. This trend is reproduced by shell model calculations using the GXPF1A interaction in an fp model space including the Coulomb, spin-orbit and isospin non-conserving interactions. The 3{sub 1}{sup +}→2{sub 1}{sup +} decay in {sup 70}Br is found to have a very small B(M1) value, which is consistent with the configuration of the state being dominated by the coupling of f{sub 5/2} protons and neutrons. The results suggest that the g{sub 9/2} orbit does not play an important role at low spin in these nuclei. The B(E2) values for the decays of the (T = 1) 2{sub 1}{sup +} states in {sup 70}Br and {sup 70}Se are almost identical, suggesting there is no major shape change between the two nuclei at low spin.

  8. Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4.

    Science.gov (United States)

    Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2006-12-07

    Depth distributions of positron-emitting nuclei in PMMA phantoms are calculated within a Monte Carlo model for heavy-ion therapy (MCHIT) based on the GEANT4 toolkit (version 8.0). The calculated total production rates of (11)C, (10)C and (15)O nuclei are compared with experimental data and with corresponding results of the FLUKA and POSGEN codes. The distributions of e(+) annihilation points are obtained by simulating radioactive decay of unstable nuclei and transporting positrons in the surrounding medium. A finite spatial resolution of the positron emission tomography (PET) is taken into account in a simplified way. Depth distributions of beta(+)-activity as seen by a PET scanner are calculated and compared to available data for PMMA phantoms. The obtained beta(+)-activity profiles are in good agreement with PET data for proton and (12)C beams at energies suitable for particle therapy. The MCHIT capability to predict the beta(+)-activity and dose distributions in tissue-like materials of different chemical composition is demonstrated.

  9. Evidence for the importance of basal ganglia output nuclei in semantic event sequencing: an fMRI study.

    Science.gov (United States)

    Tinaz, Sule; Schendan, Haline E; Schon, Karin; Stern, Chantal E

    2006-01-05

    Semantic event sequencing is the ability to plan ahead and order meaningful events chronologically. To investigate the neural systems supporting this ability, an fMRI picture sequencing task was developed. Participants sequenced a series of four pictures presented in random order based on the temporal relationship among them. A control object discrimination task was designed to be comparable to the sequencing task regarding semantic, visuospatial, and motor processing requirements but without sequencing demands. fMRI revealed significant activation in the dorsolateral prefrontal cortex and globus pallidus internal part in the picture sequencing task compared with the control task. The findings suggest that circuits involving the frontal lobe and basal ganglia output nuclei are important for picture sequencing and more generally for the sequential ordering of events. This is consistent with the idea that the basal ganglia output nuclei are critical not only for motor but also for high-level cognitive function, including behaviors involving meaningful information. We suggest that the interaction between the frontal lobes and basal ganglia output nuclei in semantic event sequencing can be generalized to include the sequential ordering of behaviors in which the selective updating of neural representations is the key computation.

  10. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  11. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  12. Two-particle spatial correlations in superfluid nuclei

    International Nuclear Information System (INIS)

    Pillet, N.; Berger, J.-F.; Sandulescu, N.; Schuck, P.

    2010-01-01

    We discuss the effect of pairing on two-neutron space correlations in deformed nuclei. The spatial correlations are described by the pairing tensor in coordinate space calculated in the HFB approach. Calculations are done using the D1S Gogny force. We show that the pairing tensor has a rather small extension in the relative coordinate, a feature observed earlier in spherical nuclei. It is pointed out that in deformed nuclei the coherence length corresponding to the pairing tensor has a pattern similar to what we have found previously in spherical nuclei; that is, it is maximal in the interior of the nucleus and then it decreases rather rapidly in the surface region, where it reaches a minimal value of about 2 fm. This minimal value of the coherence length in the surface is essentially determined by the finite size properties of single-particle states in the vicinity of the chemical potential and has little to do with enhanced pairing correlations in the nuclear surface. It is shown that in nuclei the coherence length is not a good indicator of the intensity of pairing correlations. This feature is contrasted with the situation in infinite matter.

  13. Study on the temperature field effect analysis and test of the five-hundred-meter aperture spherical radio telescope

    Science.gov (United States)

    Song, Li-qiang; Wang, Qi-ming

    2016-10-01

    The thermal problem is one of the important research contents of the design and operation about giant radio antenna. This kind of influence to the antenna has been concerned in the astronomy field. Due to the instantaneous temperature load and uncertainty, it is difficult to accurately analysis and effectively control about its effect. It has important significance to analyze the thermal problem of giant radio antenna to its design and operation. The research of solar cookers and temperature field on Five-hundred-meter Aperture Spherical radio Telescope (FAST) were preceded in detail. The tests of temperature distribute about 30 meters antenna in Mi-yun observatory station were performed. The research work including the parameters related to the sun, the flow algorithm of telescope site, mathematical model of solar cooker, analysis results of temperature field and corresponding control strategy, the temperature distribution test of 30 meters model. The results showed that: solar cookers could be weakened and controlled effectively of FAST. This work will provide a reference to design and operation of the FAST and same big antenna. It has certain theory significance, engineering significance and application value.

  14. Study on the Failure and Energy Absorption Mechanism of Multilayer Explosively Welded Plates Impacted by Spherical Fragments

    Science.gov (United States)

    Zhou, N.; Wang, J. X.; Tang, S. Z.; Tao, Q. C.; Wang, M. X.

    2018-01-01

    A stereomicroscope, microscopic metallograph, scanning electron microscope, and the ANSYS/LS-DYNA 3D finite-element code were employed to investigate the failure and energy absorption mechanism of two-layer steel/aluminum and three-layer steel/aluminum/steel and aluminum/steel/aluminum explosively welded composite plates impacted by spherical fragments. The effects of layer number, target order, and the combination state of interfaces on the failure and energy absorption mechanism are analyzed based on experimental and numerical results. Results showed that the effect of the combination state of interfaces on the failure mode was pronounced the most compared with other factors. The failure mechanism of the front and middle plates were shearing and plugging, and that of rear plate was ductile deformation when the tied interface failed by tension (or by shearing and plugging when the interface combination remained connected). A narrow adiabatic shear band was formed in the locally yielding plate damaged by shearing and plugging during the penetration process. The amount of energy needed to completely perforate the three-layer composite target was greater than that for a two-layer composite target with the same areal density and total thickness. The protective performance of the steel/aluminum/steel target was better than that of the aluminum/steel/aluminum target with the same areal density.

  15. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  16. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1997-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  17. Single Particle energy levels in ODD-A Nuclei

    International Nuclear Information System (INIS)

    Lasijo, R.S.

    1997-01-01

    Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot

  18. Collectivity in A ∼ 70 nuclei studied via lifetime measurements in 70 Br and 68,70 Se

    OpenAIRE

    Nichols, A.J.; Wadsworth, R.; Iwasaki, H.; Kaneko, K.; Lemasson, A.; de Angelis, G.; Bader, V.M.; Baugher, T.; Bazin, D.; Bentley, M.A.; Berryman, J.S.; Braunroth, T.; Davies, P.J.; Dewald, A.; Fransen, C.

    2016-01-01

    Transition strengths for decays from low-lying states in A ∼ 70 nuclei have been deduced from lifetime measurements using the recoil distance Doppler shift technique. The results confirm the collectivity previously reported for the 21+→0gs+ decay in 68 Se and reveal a relative decrease in collectivity in 70 Br. This trend is reproduced by shell model calculations using the GXPF1A interaction in an fp model space including the Coulomb, spin-orbit and isospin non-conserving interactions. The 31...

  19. Study of the two body dissociation of light nuclei in nuclear fields. Progress report, January 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    Kirk, P.N.; Huggett, R.W.

    The object of the experiment is to measure the frequency with which nucleons within a parent nucleus coalesce into clusters. The experiment is being carried out at the Bevatron with heavy ion beams of 2.1 GeV kinetic energy per nucleon. The extracted heavy ion beam is directed onto a target in which many interactions occur. The interactions of interest are those in which the incident nucleus fragments into two daughter nuclei. These events are selected from the background by scintillation counters and associated fast electronics

  20. Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution.

    Science.gov (United States)

    Wang, J J; Gouesbet, G; Han, Y P; Gréhan, G

    2011-01-01

    Based on the recent results in the generalized Lorenz-Mie theory, solutions for scattering problems of a sphere with an eccentrically located spherical inclusion illuminated by an arbitrary shaped electromagnetic beam in an arbitrary orientation are obtained. Particular attention is paid to the description and application of an arbitrary shaped beam in an arbitrary orientation to the scattering problem under study. The theoretical formalism is implemented in a homemade computer program written in FORTRAN. Numerical results concerning spatial distributions of both internal and external fields are displayed in different formats in order to properly display exemplifying results. More specifically, as an example, we consider the case of a focused fundamental Gaussian beam (TEM(00) mode) illuminating a glass sphere (having a real refractive index equal to 1.50) with an eccentrically located spherical water inclusion (having a real refractive index equal to 1.33). Displayed results are for various parameters of the incident electromagnetic beam (incident orientation, beam waist radius, location of the beam waist center) and of the scatterer system (location of the inclusion inside the host sphere and relative diameter of the inclusion to the host sphere).

  1. How atomic nuclei cluster.

    Science.gov (United States)

    Ebran, J-P; Khan, E; Nikšić, T; Vretenar, D

    2012-07-18

    Nucleonic matter displays a quantum-liquid structure, but in some cases finite nuclei behave like molecules composed of clusters of protons and neutrons. Clustering is a recurrent feature in light nuclei, from beryllium to nickel. Cluster structures are typically observed as excited states close to the corresponding decay threshold; the origin of this phenomenon lies in the effective nuclear interaction, but the detailed mechanism of clustering in nuclei has not yet been fully understood. Here we use the theoretical framework of energy-density functionals, encompassing both cluster and quantum liquid-drop aspects of nuclei, to show that conditions for cluster formation can in part be traced back to the depth of the confining nuclear potential. For the illustrative example of neon-20, we show that the depth of the potential determines the energy spacings between single-nucleon orbitals in deformed nuclei, the localization of the corresponding wavefunctions and, therefore, the degree of nucleonic density clustering. Relativistic functionals, in particular, are characterized by deep single-nucleon potentials. When compared to non-relativistic functionals that yield similar ground-state properties (binding energy, deformation, radii), they predict the occurrence of much more pronounced cluster structures. More generally, clustering is considered as a transitional phenomenon between crystalline and quantum-liquid phases of fermionic systems.

  2. Observation of spinodal decomposition in nuclei?

    International Nuclear Information System (INIS)

    Guarnera, A.; Colonna, M.; Chomaz, Ph.

    1996-01-01

    Multifragmentation in heavy ion collisions is investigated in the framework of mean-field theory, in order to gain information on the equation of state of nuclear matter. Spinodal decomposition in nuclei is studied. (K.A.)

  3. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  4. The Fragmentation of Heavy Nuclei by 13.8 GeV/c Protons as a Contribution to the Study of the Interaction Mechanism and Nuclear Structure

    International Nuclear Information System (INIS)

    Gil Perez, D.

    1967-01-01

    We present he re an global study of the interaction between high- energy particles and heavy nuclei, an interaction which holds obvious interest in relation to the problems of nuclear fragmentation and which, up lo now has only been studied piecemeal. We have used three stacks of photographic emulsions which were irradiated by 13.8 GeV/c protons, 17 GeV/c negative pions and 24 GeV/c protons. All three irradiations took place in a 180 K.G. magnetic field using CERN beams. (Author) 20 refs

  5. Gluon density in nuclei

    International Nuclear Information System (INIS)

    Ayala, A.L.

    1996-01-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  6. Study of high gain spherical shell ICF targets containing uniform layers of liquid deuterium tritium fuel. A numericial model for analyzing thermal layering of liquid mixtures of hydrogen isotopes inside a spherical inertial confinement fusion target: Final report

    International Nuclear Information System (INIS)

    Simpson, E.M.; Kim, Kyekyoon

    1994-05-01

    A numerical model has been developed to describe the thermally induced behavior of a liquid layer of hydrogen isotopes inside a spherical Inertial Confinement Fusion (ICF) target and to calculate the far-field temperature gradient which will sustain a uniform liquid layer. This method is much faster than the trial-and-error method previously employed. The governing equations are the equations of continuity, momentum, energy, mass diffusion-convection, and conservation of the individual isotopic species. Ordinary and thermal diffusion equations for the diffusion of fluxes of the species are included. These coupled equations are solved by a finite-difference method using upwind schemes, variable mesh, and rigorous boundary conditions. The solution methodology unique to the present problem is discussed in detail. in particular, the significance of the surface tension gradient driven flows (also called Marangoni flows) in forming uniform liquid layers inside ICF targets is demonstrated. Using the theoretical model, the values of the externally applied thermal gradients that give rise to uniform liquid layers of hydrogen inside a cryogenic spherical-shell ICF target are calculated, and the results compared with the existing experimental data

  7. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  8. Vestibular nuclei characterized by calcium-binding protein immunoreactivity and tract tracing in Gekko gecko.

    Science.gov (United States)

    Song, Jing; Wang, Wenbo; Carr, Catherine E; Dai, Zhendong; Tang, Yezhong

    2013-02-01

    Immunohistochemical techniques were used to describe the distribution of the calcium binding proteins calretinin, calbindin and parvalbumin as well as synaptic vesicle protein 2 in the vestibular nuclei of the Tokay gecko (Gekko gecko). In addition, tract tracing was used to investigate connections between the vestibular nerves and brainstem nuclei. Seven vestibular nuclei were recognized: the nuclei cerebellaris lateralis (Cerl), vestibularis dorsolateralis (Vedl), ventrolateralis (Vevl), ventromedialis (Vevm), tangentialis (Vetg), ovalis (VeO) and descendens (Veds). Vestibular fibers entered the brainstem with the ascending branch projecting to Vedl and Cerl, the lateral descending branch to Veds, and the medial descending branch to ipsilateral Vevl. Cerl lay most rostral, in the cerebellar peduncle. Vedl, located rostrally, was ventral to the cerebellar peduncle, and consisted of loosely arranged multipolar and monopolar cells. Vevl was found at the level of the vestibular nerve root and contained conspicuously large cells and medium-sized cells. Veds is a large nucleus, the most rostral portion of which is situated lateral and ventral to Vevl, and occupies much of the dorsal brainstem extending caudally through the medulla. VeO is a spherically shaped cell group lateral to the auditory nucleus magnocellularis and dorsal to the caudal part of Vevl. Vevm and Vetg were small in the present study. Except for VeO, all other vestibular nuclei appear directly comparable to counterparts in other reptiles and birds based on their location, cytoarchitecture, and connections, indicating these are conserved features of the vestibular system. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Nuclear treasure island [superheavy nuclei

    CERN Document Server

    CERN. Geneva

    1999-01-01

    Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...

  10. Cooper pairs in atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

    2008-12-15

    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  11. Multiple phonon excitation in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Frascaria, N.

    1994-01-01

    The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π + π - ) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs

  12. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  13. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  14. The interaction of two nonplanar solitary waves in electron-positron-ion plasmas: An application in active galactic nuclei

    International Nuclear Information System (INIS)

    EL-Labany, S. K.; Khedr, D. M.; El-Shamy, E. F.; Sabry, R.

    2013-01-01

    In the present research paper, the effect of bounded nonplanar (cylindrical and spherical) geometry on the interaction between two nonplanar electrostatic solitary waves (NESWs) in electron–positron–ion plasmas has been studied. The extended Poincaré–Lighthill–Kuo method is used to obtain nonplanar phase shifts after the interaction of the two NESWs. This study is a first attempt to investigate nonplanar phase shifts and trajectories for NESWs in a two-fluid plasma (a pair-plasma) consisting of electrons and positrons, as well as immobile background positive ions in nonplanar geometry. The change of phase shifts and trajectories for NESWs due to the effect of cylindrical geometry, spherical geometry, the physical processes (either isothermal or adiabatic), and the positions of two NESWs are discussed. The present investigation may be beneficial to understand the interaction between two NESWs that may occur in active galactic nuclei.

  15. The interaction of two nonplanar solitary waves in electron-positron-ion plasmas: An application in active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    EL-Labany, S. K.; Khedr, D. M. [Department of Physics, Faculty of Science, Damietta University, Damietta El-Gedida 34517 (Egypt); El-Shamy, E. F. [Department of Physics, Faculty of Science, Damietta University, Damietta El-Gedida 34517 (Egypt); Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha (Saudi Arabia); Sabry, R. [Department of Physics, Faculty of Science, Damietta University, Damietta El-Gedida 34517 (Egypt); Department of Physics, College of Science and Humanitarian Studies, Salman bin Abdulaziz University, Alkharj (Saudi Arabia)

    2013-01-15

    In the present research paper, the effect of bounded nonplanar (cylindrical and spherical) geometry on the interaction between two nonplanar electrostatic solitary waves (NESWs) in electron-positron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain nonplanar phase shifts after the interaction of the two NESWs. This study is a first attempt to investigate nonplanar phase shifts and trajectories for NESWs in a two-fluid plasma (a pair-plasma) consisting of electrons and positrons, as well as immobile background positive ions in nonplanar geometry. The change of phase shifts and trajectories for NESWs due to the effect of cylindrical geometry, spherical geometry, the physical processes (either isothermal or adiabatic), and the positions of two NESWs are discussed. The present investigation may be beneficial to understand the interaction between two NESWs that may occur in active galactic nuclei.

  16. The interaction of two nonplanar solitary waves in electron-positron-ion plasmas: An application in active galactic nuclei

    Science.gov (United States)

    EL-Labany, S. K.; EL-Shamy, E. F.; Sabry, R.; Khedr, D. M.

    2013-01-01

    In the present research paper, the effect of bounded nonplanar (cylindrical and spherical) geometry on the interaction between two nonplanar electrostatic solitary waves (NESWs) in electron-positron-ion plasmas has been studied. The extended Poincaré-Lighthill-Kuo method is used to obtain nonplanar phase shifts after the interaction of the two NESWs. This study is a first attempt to investigate nonplanar phase shifts and trajectories for NESWs in a two-fluid plasma (a pair-plasma) consisting of electrons and positrons, as well as immobile background positive ions in nonplanar geometry. The change of phase shifts and trajectories for NESWs due to the effect of cylindrical geometry, spherical geometry, the physical processes (either isothermal or adiabatic), and the positions of two NESWs are discussed. The present investigation may be beneficial to understand the interaction between two NESWs that may occur in active galactic nuclei.

  17. New vistas of exotic heavy nuclei

    International Nuclear Information System (INIS)

    Cocks, J.F.C.; Butler, P.A.

    1997-01-01

    We report studies of examples of reflection-asymmetric nuclei which are difficult to access using compound nucleus reactions. The most octupole deformed nuclei should be uranium isotopes with N ∼ 132; preliminary measurements of these very fissile nuclei suggest that they are within reach of current spectroscopic techniques. The octupole radium isotopes with N > 132 and radon isotopes are not accessible by reactions employing stable targets and beams; we have shown that multinucleon transfer reactions can populate these nuclei with sufficient yield for their structure to be determined. We report high spin studies in 218,220,222 Rn and 222,224,226 Ra which reveal upbending effects in this mass region for the first time and show that the electric dipole moment is constant with spin. (author)

  18. Nuclear Computational Low Energy Initiative (NUCLEI)

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sanjay K. [University of Washington

    2017-08-14

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS and FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).

  19. The correlation between uptake of methyl green and Feulgen staining intensity of cell nuclei. An image analysis study

    DEFF Research Database (Denmark)

    Lyon, H; Schulte, E; Hoyer, P E

    1989-01-01

    were stored in the computer, making it possible to measure the same cells in the Feulgen-restained sections. Image analysis gave results which invalidate the sequential methods as opposed to the simultaneous method. Mean optical densities were significantly increased for both dyes with the simultaneous......Paraffin sections of rat tissue fixed in either formaldehyde solution (3.6% w/v) or in Carnoy's fluid were stained using standardized Methyl Green-Pyronin procedures with the dyes used either simultaneously or in sequence. The sections were evaluated for the uptake of the two dyes by cell nuclei......, nucleoli and cytoplasm using colour TV-image analysis. The parameters measured were integrated optical density and the surface area of the object. The sections were then destained and a Feulgen reaction was performed. The coordinates of the cells measured after the simultaneous Methyl Green-Pyronin method...

  20. Study of the angular momentum distribution of compound nuclei obtained from fusion reactions close to the Coulomb barrier

    International Nuclear Information System (INIS)

    Romain, P.

    1990-03-01

    The effect of the mass asymmetry of the input channel on the compound nuclei spin distribution. The 16 O + 144 Nd and 80 Se + 80 Se reactions produce the same 160 Er compound nucleus in the 38 to 68 MeV energy range. In certain cases, the incident energies required to form the compound nucleus, at the same excitation energies, are very close to the Coulomb barrier. In the experimental device, the 'Chateau de Cristal' multidetector and additional sensors are used. The angular momentum distribution of the different evaporation products are measured by gamma spectrometry techniques. The fusion cross sections are measured by the time-of-flight technique. Theoretical predictions and experimental results concerning the distribution of the compound nucleus angular momentum are compared [fr

  1. Correlating radii and electric monopole transitions of atomic nuclei.

    Science.gov (United States)

    Zerguine, S; Van Isacker, P; Bouldjedri, A; Heinze, S

    2008-07-11

    A systematic analysis of the spherical-to-deformed shape phase transition in even-even rare-earth nuclei from 58Ce to 74W is carried out in the framework of the interacting boson model. These results are then used to calculate nuclear radii and electric monopole (E0) transitions with the same effective operator. The influence of the hexadecapole degree of freedom (g boson) on the correlation between radii and E0 transitions thus established is discussed.

  2. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  3. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  4. Mesons and light nuclei

    International Nuclear Information System (INIS)

    Truhlik, E.; Mach, R.

    1992-01-01

    62 papers and one summary talk were presented at the conference, on subject matters in between nuclear physics (mainly light nuclei) and elementary particle physics, as indicated by the session headings (1) Electroweak nuclear interaction (2) Nuclear physics with pions and antiprotons (3) Nuclear physics with strange particles (4) Relativistic nuclear physics (5) Quark degrees of freedom. (Quittner)

  5. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  6. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  7. Casimir effect in spherical shells

    International Nuclear Information System (INIS)

    Ruggiero, J.R.

    1985-01-01

    The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt

  8. Flow cytometry of DNA in mouse sperm and testis nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meistrich, M.L. (Univ. of Texas, Houston); Lake, S.; Steinmetz, L.L.; Gledhill, B.L.

    1978-01-01

    Mutations that occur in spermatogenic cells may be expressed as changes in DNA content, but developmentally-dependent alteration of its staining properties complicates the quantitation of DNA in individual germ cells. These alterations have been studied with flow cytometric techniques. Nuclei from mouse testis cells and sperm were stained by the acriflavine--Feulgen method. The fluorescence intensity frequency distribution of nuclei of testis cells was characterized by 2 major and 5 minor peaks. Nuclei sorted from the various peaks with a fluorescence-activated cell sorter were identified microscopically. These data were confirmed by generation of peaks with nuclei prepared from cell suspensions enriched in specific cell types. One of the major peaks corresponded to round spermatid nuclei. The other major peak, located at 0.6 of the fluorescence intensity of the round nuclei, corresponded to elongated spermatid nuclei. Purified nuclei of epididymal and vas deferens spermatozoa displayed asymmetric fluorescence distributions. A minor peak at 0.8 the intensity of the round spermatid nuclei was tentatively assigned to elongating spermatids. 2 of the minor peaks, located at 1.7 and 2.0 times the fluorescence intensity of the round nuclei, corresponded to clumps of 2 haploid and diploid nuclei.

  9. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  10. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  11. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  12. The ETE spherical Tokamak project

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen

    1999-01-01

    This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)

  13. The ETE spherical Tokamak project

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br

    1999-07-01

    This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)

  14. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  15. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-09-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5 % organic carbon content where deposition freezing occurred at an ice saturation ratio Sice ~ 1.22 at a temperature T = 226.6 K with 25 % of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30 % and ~70 % organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5 % organic carbon content soot had an undetectable OC coating whereas the 30 % organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the

  16. Elastic magnetic form factors of exotic nuclei

    International Nuclear Information System (INIS)

    Dong Tiekuang; Guo Yanqing; Ren Zhongzhou

    2007-01-01

    How to identify the orbital of the valence nucleon(s) of exotic nuclei is an important problem. The elastic magnetic electron scattering is an excellent probe to determine the valence structure of odd-A nuclei. The relativistic mean-field theory has been successfully applied to systematic studies of the elastic charge electron scattering from even-even exotic nuclei. The extension of this method to investigate the elastic magnetic electron scattering from odd-A exotic nuclei is a natural generalization. The experimental form factors of 17 O and 41 Ca are reproduced very well with the help of the spectroscopic factors which are introduced into the relativistic treatment of the magnetic electron scattering for the first time. The emphases are put on the magnetic form factors of 15,17,19 C, 23 O, 17 F, and 49,59 Ca calculated in the relativistic impulse approximation. Great differences have been found in the form factors of the same nucleus with different configurations. Therefore, the elastic magnetic electron scattering can be used to determine the orbital of the last nucleon of odd-A exotic nuclei. Our results can provide references for the electron scattering from exotic nuclei in the near future

  17. Experimental and theoretical study of several nuclei from the 1f(7/2) region for mass number 47, 48, 49

    International Nuclear Information System (INIS)

    Haas, Bernard.

    1974-01-01

    The experimental study of the following nuclei 48 V, 49 V and 48 Cr has been undertaken by in-beam γ-ray spectroscopy. The nuclear structure has been deduced from angular distribution and particle-γ angular correlation measurements as well as lifetime measurements with the Doppler shift technique. Most of the energy levels could be classified in rotational bands followings quite well the low I(I+1):K(π)=1 - ( 48 V), K(π)=3/2 + and 1/2 + ( 49 V) and K(π)=0 + ( 48 Cr). The properties of these bands, as for example the B(E2) reduced matrix elements and the intrinsic quadrupole moments Q 0 have been described in the framework of the Nilsson model using a deformation parameter β approximately 0.3. The negative parity levels of the cross-conjugate nuclei 47 V- 49 Cr and 49 V- 47 Ti have also been explained by a collective model, however a strong configuration mixing in their wave function, due to the Coriolis interaction, destroys the energy dependence in I(I+1) [fr

  18. Theoretical study of different features of the fission process of excited nuclei in the framework of the modified statistical model and four-dimensional dynamical model

    Science.gov (United States)

    Eslamizadeh, H.

    2017-02-01

    Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.

  19. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei

    International Nuclear Information System (INIS)

    Lorkovic, Zdravko J.; Hilscher, Julia; Barta, Andrea

    2008-01-01

    SR proteins are multidomain splicing factors which are important for spliceosome assembly and for regulation of alternative splicing. In mammalian nuclei these proteins localise to speckles from where they are recruited to transcription sites. By using fluorescent protein fusion technology and different experimental approaches it has been shown that Arabidopsis SR proteins, in addition to diffuse nucleoplasmic staining, localise into an irregular nucleoplasmic network resembling speckles in mammalian cells. As Arabidopsis SR proteins fall into seven conserved sub-families we investigated co-localisation of members of the different sub-families in transiently transformed tobacco protoplast. Here we demonstrate the new finding that members of different SR protein sub-families localise into distinct populations of nuclear speckles with no, partial or complete co-localisation. This is particularly interesting as we also show that these proteins do interact in a yeast two-hybrid assay as well as in pull-down and in co-immunopreciptiation assays. Our data raise the interesting possibility that SR proteins are partitioned into distinct populations of nuclear speckles to allow a more specific recruitment to the transcription/pre-mRNA processing sites of particular genes depending on cell type and developmental stage

  20. A Three-decade X-band VLBI Study of 3CR Lobe-dominated Quasar Nuclei

    Directory of Open Access Journals (Sweden)

    Hough David H.

    2013-12-01

    Full Text Available We report X-band VLBI observations of several 3CR lobe-dominated quasar nuclei from 1981 to 2010, mostly obtained with the NRAO VLBA. The goal is to follow flux density outbursts and to fully determine the jet morphology and kinematics on 1-100 pc scales. In 3C207, the core region has flux outbursts at mean intervals of ~7 yr; one of these is actually a double outburst from a stationary true core and a swinging component ~0.5 mas apart. The position angle (PA of the swinging component varies by ~40°, while the PA values of the jet components span ~25°. The jet extends to ~25 mas. Average superluminal speeds are ~10c. One component shows apparent acceleration from 7c to 14c at 2-3 mas from the true core, in a jet recollimation zone that redirects the flow toward PA ~90°. Individual jet components expand until reaching the recollimation zone. In 3C263 and other objects, some of the same phenomena are seen, including ejection of jet components over a range in PA, superluminal motion, and apparent acceleration, but to a lesser degree. Possible physical interpretations involving beaming, orientation, projection, precession, and magnetic effects are discussed.

  1. Analysis of spherical thermo-acoustic radiation in gas

    OpenAIRE

    Hanping Hu; Zedong Wang; Hao Wu; Yandong Wang

    2012-01-01

    A general solution of the spherical thermo-acoustic (TA) radiation from any solid in gas is derived by using a fully thermally-mechanically coupled TA model. Therefore, the characteristics and regularities of spherical TA emission can be studied more completely. It is shown that flat amplitude-frequency response, the most important feature for planar TA emission from technical standpoint, still exists for spherical TA emission, and changes with the radius of a sphere, thickness of TA sample, ...

  2. Pion coupling to nuclei

    International Nuclear Information System (INIS)

    Dumbrajs, O.

    1981-01-01

    The concept of the pion-nucleus coupling constants is discussed. Methods of their determination are reviewed. These include: forward dispersion relations, extrapolation of differential cross sections to the poles in the angular variable, analysis of data on electromagnetic form factors with the use of the PCAC and CVC hypotheses, pion photoproduction at threshold and low-energy theorems. Our present knowledge of the pion coupling to the He, Li, Be, C, N and O nuclei is summarized. (author)

  3. Chaotic behavior in nuclei

    International Nuclear Information System (INIS)

    Mitchel, G.; Shriner, J.

    2005-01-01

    Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The

  4. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...

  5. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  6. Dynamics of a spherical minority game

    International Nuclear Information System (INIS)

    Galla, T; Coolen, A C C; Sherrington, D

    2003-01-01

    We present an exact dynamical solution of a spherical version of the batch minority game (MG) with random external information. The control parameters in this model are the ratio of the number of possible values for the public information over the number of agents, and the radius of the spherical constraint on the microscopic degrees of freedom. We find a phase diagram with three phases: two without anomalous response (an oscillating versus a frozen state) and a further frozen phase with divergent integrated response. In contrast to standard MG versions, we can also calculate the volatility exactly. Our study reveals similarities between the spherical and the conventional MG, but also intriguing differences. Numerical simulations confirm our analytical results

  7. Size-resolved cloud condensation nuclei concentration measurements in the Arctic: two case studies from the summer of 2008

    Science.gov (United States)

    Zábori, J.; Rastak, N.; Yoon, Y. J.; Riipinen, I.; Ström, J.

    2015-12-01

    The Arctic is one of the most vulnerable regions affected by climate change. Extensive measurement data are needed to understand the atmospheric processes governing this vulnerability. Among these, data describing cloud formation potential are of particular interest, since the indirect effect of aerosols on the climate system is still poorly understood. In this paper we present, for the first time, size-resolved cloud condensation nuclei (CCN) data obtained in the Arctic. The measurements were conducted during two periods in the summer of 2008: one in June and one in August, at the Zeppelin research station (78°54´ N, 11°53´ E) in Svalbard. Trajectory analysis indicates that during the measurement period in June 2008, air masses predominantly originated from the Arctic, whereas the measurements from August 2008 were influenced by mid-latitude air masses. CCN supersaturation (SS) spectra obtained on the 27 June, before size-resolved measurements were begun, and spectra from the 21 and 24 August, conducted before and after the measurement period, revealed similarities between the 2 months. From the ratio between CCN concentration and the total particle number concentration (CN) as a function of dry particle diameter (Dp) at a SS of 0.4 %, the activation diameter (D50), corresponding to CCN / CN = 0.50, was estimated. D50 was found to be 60 and 67 nm for the examined periods in June and August 2008, respectively. Corresponding D50 hygroscopicity parameter (κ) values were estimated to be 0.4 and 0.3 for June and August 2008, respectively. These values can be compared to hygroscopicity values estimated from bulk chemical composition, where κ was calculated to be 0.5 for both June and August 2008. While the agreement between the 2 months is reasonable, the difference in κ between the different methods indicates a size dependence in the particle composition, which is likely explained by a higher fraction of inorganics in the bulk aerosol samples.

  8. Exotic nuclei and radioactive beams; Noyaux exotiques et faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.

    1996-12-31

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs.

  9. Spherical Collapse in Chameleon Models

    CERN Document Server

    Brax, Ph; Steer, D A

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.

  10. Spherical collapse in chameleon models

    International Nuclear Information System (INIS)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A.

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity

  11. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  12. The Role of Magnetic Vortex Formation in Chains of Spherical FeNi Nanoparticles: A Micromagnetics Study

    DEFF Research Database (Denmark)

    Barpandal, Prabeer; Scheinfein, Michael R.; Kasama, Takeshi

    2009-01-01

    Magnetic remanent states and magnetization reversal mechanisms in linear chains of three closely-spaced Fe1-xNix nanoparticles are studied using micromagnetic simulations, for particle sizes of between 10 and 150 nm. The role of the formation and switching of magnetic vortices in the particles...

  13. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.

    Science.gov (United States)

    Gilliland, Kurt O; Freel, Christopher D; Johnsen, Sonke; Craig Fowler, W; Costello, M Joseph

    2004-10-01

    To characterize multilamellar bodies (MLBs), determine their distribution along the optic axis and predict their potential Mie scattering within human age-related nuclear cataracts. Previous studies restricted to the equatorial plane have shown that MLBs are rare spherical objects that are 1-4 microm in diameter and covered by multiple layers of thin lipid-rich membranes. Eight human aged transparent lenses were obtained from eye bank donors and eight human age-related nuclear cataracts were obtained immediately after extracapsular extraction. Each sample was Vibratome sectioned fresh into 200 microm thick sections that were fixed and embedded for light or electron microscopy. Light micrograph montages of the optic axis containing the juvenile, fetal and embryonic nuclei were examined. Mie scattering for random coated spherical particles was calculated based on assumed and measured particle parameters. Cells along the optic axis of the cataract contained approximately 7.5 times more MLBs as similar regions of the aged transparent lens, although these MLBs occurred with extremely low frequency. Cells of the aged transparent lens contained 1.3 MLBs mm(-2), while those of the cataract contained 9.6 MLBs mm(-2), which are equivalent to calculated densities of 5.6 x 10(2) and 4.1 x 10(3)mm(-3), respectively. While some MLBs were located within the cytoplasm near cell membranes, others were found away from membranes. The MLBs are distinct from circular profiles resulting from finger-like projections between adjacent cells. MLBs displayed varying geometries and cytoplasmic textures, although predominately spherical with interiors similar to adjacent fiber cell cytoplasm. These results are in agreement with previous theoretical analysis of light scattering from human lenses and with previous morphological studies examining the equatorial plane of the lens. Potential Mie scattering of spherical particles with the average properties of the observed MLBs and assumed

  14. The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hergert, H., E-mail: hergert@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Bogner, S.K., E-mail: bogner@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Morris, T.D., E-mail: morrist@nscl.msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Schwenk, A., E-mail: schwenk@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Tsukiyama, K., E-mail: tsuki.kr@gmail.com [Center for Nuclear Study, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 (Japan)

    2016-03-21

    We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab initio method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave functions. To put the IM-SRG in context with other many-body methods, in particular many-body perturbation theory and non-perturbative approaches like CC, a detailed perturbative analysis of the IM-SRG flow equations is carried out. We conclude with a discussion of ongoing developments, including IM-SRG calculations with three-nucleon forces, the multi-reference IM-SRG for open-shell nuclei, first non-perturbative derivations of shell-model interactions, and the consistent evolution of operators in the IM-SRG. We dedicate this review to the memory of Gerry Brown, one of the pioneers of many-body calculations of nuclei.

  15. Reaction Dynamics and Nuclear Structure Studies of n-Rich Nuclei Around 48Ca via Deep Inelastic Collisions with Heavy-Ions

    International Nuclear Information System (INIS)

    Leoni, S.

    2011-01-01

    The population and γ decay of neutron rich nuclei around 48 Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions on 64 Ni, at 5.9 MeV/A. The reaction properties of the main products are investigated, focusing on total cross-sections and energy integrated angular distributions. Gamma spectroscopy studies are also performed for the most intense transfer channels, making use of angular distributions and polarization measurements to firmly establish spin and parity of the excited states. In the case of 49 Ca candidates for particle-core couplings are investigated and interpreted on basis of lifetime measurements and comparison with model predictions. (author)

  16. Three dimensional reconstruction of human pachytene spermatocyte nuclei of a 17;21 reciprocal translocation carrier: study of XY-autosome relationships.

    Science.gov (United States)

    Guichaoua, M R; de Lanversin, A; Cataldo, C; Delafontaine, D; Alasia, C; Fraterno, M; Terriou, P; Stahl, A; Luciani, J M

    1991-10-01

    A study of XY-autosome relationships at the pachytene stage in an infertile 17-21 reciprocal translocation carrier was undertaken by means of three dimensional reconstruction. Synaptonemal complexes and the sex vesicle were analysed on electron microscopic serial sections and the reconstruction was performed on transparent sheets and on a Samba 2000 (Alcatel TITN) image analysis system. All asynapsed segments were entirely included in the sex vesicle, the chromatin fibre of the autosomes and sex chromosomes being tightly intermingled. In one nucleus, the four arms of the quadrivalent were paired, except around the breakpoints where an interstitial asynapsis was observed. In the other nuclei, a terminal asynapsis involving one or two arms of the quadrivalent was found. In the sex vesicle, autosomal asynapsed segments showed the same morphological characteristics as those of X and Y chromosomes. This observation agrees with the hypothesis of the extension of gene inactivation from sex chromosomes to autosomes.

  17. Safety and Biocompatibility of a New High-Density Polyethylene-Based Spherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits

    Directory of Open Access Journals (Sweden)

    Ivan Fernandez-Bueno

    2015-01-01

    Full Text Available Purpose. To evaluate clinically and histologically the safety and biocompatibility of a new HDPE-based spherical porous orbital implants in rabbits. Methods. MEDPOR (Porex Surgical, Inc., Fairburn, GA, USA, OCULFIT I, and OCULFIT II (AJL Ophthalmic S.A., Vitoria, Spain implants were implanted in eviscerated rabbis. Animals were randomly divided into 6 groups (n=4 each according to the 3 implant materials tested and 2 follow-up times of 90 or 180 days. Signs of regional pain and presence of eyelid swelling, conjunctival hyperemia, and amount of exudate were semiquantitatively evaluated. After animals sacrifice, the implants and surrounding ocular tissues were processed for histological staining and polarized light evaluation. Statistical study was performed by ANOVA and Kaplan-Meier analysis. Results. No statistically significant differences in regional pain, eyelid swelling, or conjunctival hyperemia were shown between implants and/or time points evaluated. However, amount of exudate differed, with OCULFIT I causing the smallest amount. No remarkable clinical complications were observed. Histological findings were similar in all three types of implants and agree with minor inflammatory response. Conclusions. OCULFIT ophthalmic tolerance and biocompatibility in rabbits were comparable to the clinically used MEDPOR. Clinical studies are needed to determine if OCULFIT is superior to the orbital implants commercially available.

  18. Safety and Biocompatibility of a New High-Density Polyethylene-Based Spherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits

    Science.gov (United States)

    Fernandez-Bueno, Ivan; Di Lauro, Salvatore; Alvarez, Ivan; Lopez, Jose Carlos; Garcia-Gutierrez, Maria Teresa; Fernandez, Itziar; Larra, Eva; Pastor, Jose Carlos

    2015-01-01

    Purpose. To evaluate clinically and histologically the safety and biocompatibility of a new HDPE-based spherical porous orbital implants in rabbits. Methods. MEDPOR (Porex Surgical, Inc., Fairburn, GA, USA), OCULFIT I, and OCULFIT II (AJL Ophthalmic S.A., Vitoria, Spain) implants were implanted in eviscerated rabbis. Animals were randomly divided into 6 groups (n = 4 each) according to the 3 implant materials tested and 2 follow-up times of 90 or 180 days. Signs of regional pain and presence of eyelid swelling, conjunctival hyperemia, and amount of exudate were semiquantitatively evaluated. After animals sacrifice, the implants and surrounding ocular tissues were processed for histological staining and polarized light evaluation. Statistical study was performed by ANOVA and Kaplan-Meier analysis. Results. No statistically significant differences in regional pain, eyelid swelling, or conjunctival hyperemia were shown between implants and/or time points evaluated. However, amount of exudate differed, with OCULFIT I causing the smallest amount. No remarkable clinical complications were observed. Histological findings were similar in all three types of implants and agree with minor inflammatory response. Conclusions. OCULFIT ophthalmic tolerance and biocompatibility in rabbits were comparable to the clinically used MEDPOR. Clinical studies are needed to determine if OCULFIT is superior to the orbital implants commercially available. PMID:26689343

  19. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  20. Flow and scour around spherical bodies

    DEFF Research Database (Denmark)

    Truelsen, Christoffer

    2003-01-01

    4, an experimental study on the scour around spherical bodies and self-burial in sand for steady current and waves has been carried out. The effect of the contraction of streamlines is found to be the key element in the scour process both for steady current and waves. Furthermore, it is demonstrated...

  1. Collapsing spherical null shells in general relativity

    Directory of Open Access Journals (Sweden)

    S Khakshournia

    2011-03-01

    Full Text Available In this work, the gravitational collapse of a spherically symmetric null shell with the flat interior and a charged Vaidya exterior spacetimes is studied. There is no gravitational impulsive wave present on the null hypersurface which is shear-free and contracting. It follows that there is a critical radius at which the shell bounces and starts expanding.

  2. Exotic light nuclei and nuclei in the lead region

    International Nuclear Information System (INIS)

    Poppelier, N.A.F.M.

    1989-01-01

    Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11 Li is discussed. Results of shell-model calculations of 20i Pb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208 Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes

  3. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  4. Universality and Halo Nuclei

    Directory of Open Access Journals (Sweden)

    Tomio L.

    2010-04-01

    Full Text Available Universal aspects of few-body systems will be reviewed motivated by recent interest in atomic and nuclear physics. The critical conditions for the existence of excited states in three-body systems with two-identical particles will be explored. In particular, we consider halo nuclei that can be modeled as three-body nuclear systems, with two halo neutrons and a core. In this context, we also discuss the low-energy neutron−19C elastic scattering, near the conditions for the app earance of an Efimov state.

  5. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  6. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ 6 He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235 U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  7. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  8. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  9. A simple model for studying rotation errors of gimbal mount axes in laser tracking system based on spherical mirror as a reflection unit

    Science.gov (United States)

    Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang

    2018-01-01

    This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.

  10. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  11. Potentials of interaction between medium energy particles and nuclei

    International Nuclear Information System (INIS)

    Berezhnoj, Yu.A.; Molev, A.S.

    1986-01-01

    The potential of interaction between mean-energy particles and atomic nuclei is determined as a solution of an integral equation relating it to the scattering matrix. Potentials involving the central and spin-orbital or isospin parts are reconstructed on the basis of the scattering matrix of the diffraction model. Approximated expressions for central and spin-orbital potentials in the case of weak refraction are obtained. The effect of nuclear parameters on the shape of central potential of interaction between 156 MeV protons and the 208 Pb nuclei is considered. The calculated and phenomenological central and spin-orbital potentials of interaction between 185 MeV protons and the 90 Zr, 208 Pb nuclei are in good agreement only in the surface region of nuclei. The central and isospin potentials of interaction between the 3 He nuclei with 217 MeV energy and the 9 Be nuclei are studied

  12. Cavitation inception by almost spherical solid particles in water

    DEFF Research Database (Denmark)

    Marschall, H.B.; Mørch, Knud Aage; Keller, A.P.

    2003-01-01

    . In this investigation, using degassed tap water from which natural particles larger than about 1 µm had been filtered out, the tensile strength was measured before and after seeding with almost spherical solid balls of diameters from 3 up to 76 µm. The smallest balls, one type being hydrophobic, the other hydrophilic......, had no measurable influence on the tensile strength, though they were notably larger than the remaining natural nuclei. Seeding with the larger balls, hydrophilic as well as hydrophobic ones, reduced the tensile strength compared with that measured for unseeded, filtered water, but at most down to 1...

  13. Stability of transparent spherically symmetric thin shells and wormholes

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Lake, Kayll

    2002-01-01

    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations

  14. Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry

    Science.gov (United States)

    Guven, Bulent; Baki, Adnan

    2010-01-01

    This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…

  15. Characterization of diffusivity based on spherical array processing

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Jeong, Cheol-Ho

    2015-01-01

    The purpose of this study is to assess the diffuse field conditions in a reverberant space using a sound field reconstruction method based on spherical microphone array measurements. Spherical microphone arrays are particularly well suited for applications in non-anechoic enclosures, where the so...

  16. Rotating clusters in nuclei

    International Nuclear Information System (INIS)

    Pauling, L.; Robinson, A.B.

    1975-01-01

    Values of R, the radius of rotation of the rotating cluster, are calculated from the energy of the lowest 2 + level of even-even nuclei with the assumption that the cluster consists of p 2 or n 2 respectively, for N or P magic, and of a helion (α) for N or P differing from a magic number by +-2. The values as a function of A show a zigzag course, which is correlated with the polyspheron structure of the nuclei. If the mantle is not overcrowded the cluster glides over the surface of the mantle and the value of R increases by one spheron diameter, about 3.2 fm. At certain values of N a change in structure of the nucleus occurs, with increase in radius of the core by half a spheron diameter, permitting the cluster to drop back into the mantle, with decrease in R by half a spheron diameter. In the lanthanon region of permanent prolate deformation the rotating cluster is a polyhelion, containing the number of helions permitted by the difference between Z or N and the nearest magic number, and in the actinon region it contains all the nucleons beyond 208 Pb, with maximum p 10 n 16 . An explanation is given of the difference between these regions. (author)

  17. Pollen grains are efficient cloud condensation nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pope, F D, E-mail: fdp21@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2010-10-15

    This letter presents a laboratory study investigating the ability of pollen grains to act as cloud condensation nuclei. The hygroscopicity of pollen is measured under subsaturated relative humidities using an electrodynamic balance. It is found, along with other results, that pollen exhibits bulk uptake of water under subsaturated conditions. Through the use of an environmental scanning electron microscope it was observed that the surface of pollen is wettable at high subsaturated humidities. The hygroscopic response of the pollen to subsaturated relative humidities is parametrized using {kappa}-Koehler theory and values of the parameter {kappa} for pollen are between 0.05 and 0.1. It is found that while pollen grains are only moderately hygroscopic, they can activate at critical supersaturations of 0.001% and lower, and thus pollen grains will readily act as cloud condensation nuclei. While the number density of pollen grains is too low for them to represent a significant global source of cloud condensation nuclei, the large sizes of pollen grains suggest that they will be an important source of giant cloud condensation nuclei. Low temperature work using the environmental scanning electron microscope indicated that pollen grains do not act as deposition ice nuclei at temperatures warmer than - 15 deg. C.

  18. JUST: Joint Upgraded Spherical Tokamak

    International Nuclear Information System (INIS)

    Azizov, E.A.; Dvorkin, N.Ya.; Filatov, O.G.

    1997-01-01

    The main goals, ideas and the programme of JUST, spherical tokamak (ST) for the plasma burn investigation, are presented. The place and prospects of JUST in thermonuclear investigations are discussed. (author)

  19. Spherical Primary Optical Telescope Testbed

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD proposes to continue operation of the Spherical Primary Optical Telescope (SPOT) testbed as an image-based wavefront sensing demonstrator. In addition to...

  20. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  1. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  2. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  3. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  4. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  5. Systematic study of electric-dipole excitations with fully self-consistent Skyrme HF plus RPA from light-to-medium-mass deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Inakura, T. [University of Tsukuba, Institute for Physics, Tsukuba (Japan); Nakatsukasa, T. [RIKEN Nishina Center, Theoretical Nuclear Physics Laboratory, Wako (Japan); Yabana, K. [University of Tsukuba, Institute for Physics, Tsukuba (Japan); University of Tsukuba, Center for Computational Sciences, Tsukuba (Japan)

    2009-12-15

    We undertake a systematic calculation on electric-dipole responses of even-even nuclei for a wide mass region employing a fully self-consistent Hartree-Fock plus RPA approach. For an easy implementation of the fully self-consistent calculation, the finite-amplitude method which we have proposed recently is employed. We calculated dipole responses in Cartesian mesh representation, which can deal with deformed nuclei but do not include pairing correlation. The systematic calculation has reached Nickel isotopes. The calculated results show reasonable agreement for heavy nuclei while the average excitation energies are underestimated for light nuclei. We show a systematic comparison of the splitting of the peak energy with the ground-state deformation. (orig.)

  6. Theory and applications of spherical microphone array processing

    CERN Document Server

    Jarrett, Daniel P; Naylor, Patrick A

    2017-01-01

    This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to ...

  7. MAGIC NUCLEI: Tin-100 turns up

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the same way as the Periodic Table of chemical elements reflects the successive filling of orbital electron shells, in nuclear physics the socalled 'magic' numbers correspond to closed shells of 2, 8, 20, 28, 50, 82, 126,... neutrons and/or protons. More tightly bound than other nuclei, these are the nuclear analogues of the inert gases. 'Doubly magic' nuclei have closed shells of both neutrons and protons. Examples in nature are helium-4 (2 protons and 2 neutrons), oxygen-16 (8 and 8), calcium-40 (20 and 20) and calcium-48 (20 and 28). Radioactive tin-132 (50+82) has been widely studied

  8. Dissipation and the population of compound nuclei

    International Nuclear Information System (INIS)

    Thoennessen, M.; Beene, J.R.

    1992-01-01

    The importance of nuclear dissipative efforts on the formation of compound nuclei is studied with the γ-ray decay of the giant dipole resonance (GDR) built on highly excited states. The compound nuclei 164 Yb, 160 Er, and 110 Sn were produced with very mass-asymmetric and with more mass-symmetric target/projectile combinations. The large deviation from statistical model prediction observed in the γ-ray spectra from the more symmetrically formed 160 Er and 164 Yb can be qualitatively explained within the particle exchange model

  9. Computer Model Of Fragmentation Of Atomic Nuclei

    Science.gov (United States)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  10. Electron spin resonance study of a-Cr2 O3 and Cr2 O3·nH 2 O quasi-spherical nanoparticles

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-12-01

    Full Text Available The quasi-spherical nanoparticles of hydrated Cr2 O3 · nH 2 O, and crystalline -Cr2 O3, have been synthesized by reduction of the first row (3d) transition metal complex of K2Cr2 O7. The temperaturedependence of electron spin resonance (ESR) spectrum...

  11. Neutrino interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    We examine tests of the Glashow-Weinberg-Salam (GWS) Standard Theory of Electroweak Interactions. The tests are model-independent in the sense that they are relations between experimental quantities that are direct consequences of the GWS theory, but they are independent of the detailed structure of the nucleus. Such relationships were anticipated by Weinberg. Neutrino reactions with nuclei are considered, focusing largely on charged-lepton production, and it is demonstrated that intermediate-energy neutrino reactions have a central and unique role to play in our understanding of semileptonic weak interactions. This point is illustrated by discussing a complete kinematic experiment on the nucleon. A discussion of what neutrino reactions could teach us about nuclear structure is also given

  12. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  13. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  14. Evolving shape coexistence in the lead isotopes: The geometry of configuration mixing in nuclei

    International Nuclear Information System (INIS)

    Frank, Alejandro; Isacker, Piet van; Vargas, Carlos E.

    2004-01-01

    A matrix coherent-state approach is applied to the interacting boson model (IBM) with configuration mixing to describe the evolving geometry of neutron-deficient Pb isotopes. It is found that for small mixing with parameters determined previously, the potential energy surface of 186 Pb has three minima, which correspond to spherical, oblate, and prolate shapes, in agreement with recent measurements and mean-field calculations. Away from midshell, in the heavier Pb isotopes, no deformed minima occur. Our analysis suggests that the configuration-mixing IBM, used in conjunction with a matrix coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  15. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  16. Development of the helium-jet fed on-line mass separator RAMA and its application to studies of T/sub z/ = -2 nuclei

    International Nuclear Information System (INIS)

    Moltz, D.M.

    1979-10-01

    The study of nuclei far from beta stability is hampered greatly when the nuclide of interest decays in a manner identical to that of a nuclide produced in greater yield in the same bombardment. Attempts to observe the protons associated with the decay of the A = 4n, T/sub z/ = -2 series of beta-delayed proton emitters failed because of the large number of protons arising from the strong beta-delayed proton decay of the A = 4n + 1, T/sub z/ = -3/2 nuclides. One solution to this problem is through the use of an on-line mass separator. Development of the Berkelely helium-jet fed on-line mass separator RAMA is discussed as applied to studies of the A = 4n, T/sub z/ = -2 nuclides. RAMA (Recoil Atom Mass Analyzer) has typical efficiencies of 0.1% for approx. 75 elements with melting points less than or equal to 2000 0 C. This efficiency permits decay studies to be readily performed on nuclei with production cross sections greater than or equal to 500 μb for γ-ray spectroscopy and greater than or equal to 1 μb for discrete energy charged particle spectroscopy. The mass range on the normalized RAMA focal plane is +- 10%. The quoted efficiency is for a mass resolution of M/ΔM approx. 300. RAMA has been used to observe two members of the A = 4n, T/sub z/ = -2 series of beta-delayed proton emitters, 20 Mg and 24 Si. Observation of beta-delayed protons from a mass-separated sample of 20 Mg(t/sub 1/2/ approx. 95 ms) establishes the mass-excess of the lowest T = 2 (0 + ) state in 20 Na (13.42 +- .05 MeV), thereby completing the mass twenty isospin quintet. A similar measurement of the decay of 24 Si (t/sub 1/2/ approx. 100 ms) establishes the mass-excess of the lowest T = 2 (0 + ) state in 24 Al (5.903 +- 0.009 MeV). The mass 24 isospin quintet is incomplete because the mass of 24 Si remains unknown

  17. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  18. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  19. Mass Measurements of Proton-rich Nuclei with JYFLTRAP

    OpenAIRE

    Eronen, Tommi

    2011-01-01

    The Penning trap setup JYFLTRAP, connected to the IGISOL facility, has been extensively used for atomic mass measurements of exotic nuclei. On the proton rich side of the chart of nuclei mass measurements have mostly contributed to fundamental physics and nuclear astrophysics studies with about 100 atomic masses measured.

  20. Experimental studies of the quark-gluon structure of nucleons and nuclei and of pion- and proton-nucleus interactions. Progress report, April 1, 1994--March 31, 1997

    International Nuclear Information System (INIS)

    1996-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out by New Mexico State University from April 1, 1994, through March 31, 1996 under a grant from the US Department of Energy. During this period we began phasing out our programs of study of pion-nucleus and pion-nucleon interaction and of nucleon-nucleus charge-exchange reactions, which have been our major focus of the past two or three years. At the same time we continued moving in a new direction of research on studies of the internal structure of nucleons and nuclei in terms of quarks and gluons. The pion and nucleon work has been aimed at improving our understanding of the nature of pion and proton interactions in the nuclear medium and of various aspects of nuclear structure. The studies of the quark-gluon structure of nucleons are aimed at clarifying such problems as the nature of the quark sea and the relation of the nucleon spin to the spins of the quarks within the nucleon, questions which are of a very fundamental nature

  1. Experimental studies of the quark-gluon structure of nucleons and nuclei and of pion- and proton-nucleus interactions. Progress report, April 1, 1994--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out by New Mexico State University from April 1, 1994, through March 31, 1996 under a grant from the US Department of Energy. During this period we began phasing out our programs of study of pion-nucleus and pion-nucleon interaction and of nucleon-nucleus charge-exchange reactions, which have been our major focus of the past two or three years. At the same time we continued moving in a new direction of research on studies of the internal structure of nucleons and nuclei in terms of quarks and gluons. The pion and nucleon work has been aimed at improving our understanding of the nature of pion and proton interactions in the nuclear medium and of various aspects of nuclear structure. The studies of the quark-gluon structure of nucleons are aimed at clarifying such problems as the nature of the quark sea and the relation of the nucleon spin to the spins of the quarks within the nucleon, questions which are of a very fundamental nature.

  2. Study of Interaction of Low-Energy Antiprotons with H$^{2}$,He$^{3}$,He$^{4}$,Ne-Nuclei Using a Streamer Chamber in Magnetic Field

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the systematic study of the interaction between low-energy antiprotons and the H|2,~He|3,~He|4,~Ne-nuclei using a self shunted streamer chamber in a magnetic field exposed to the antiproton beam of the LEAR facility. The properties of the self shunted streamer chamber, which allows the use of the filling gas (hydrogen, helium, neon at a pressure of l~atm) as a target, permit to carry out experiments also in the very low-energy region. \\\\ \\\\ The experimental apparatus is suitable for a large programme of measurements. We plan to measure the @*H|2 cross section and the spectator momentum distributions at @* momenta lower than 250~MeV/c, where data are lacking. It is interesting to study for the first time the @*He|3 and @*He|4 interactions measuring the cross sections and the emitted particle distributions. Among other things the knowledge of the branching ratio of the @*He|4 annihilation channels clarifies some open cosmological questions. The study of the process of nuclear absor...

  3. Radiative muon capture on nuclei and protons

    International Nuclear Information System (INIS)

    Azuelos, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Azuelos, G.; Depommier, P.; Poutissou, R.; Ahmad, S.; Burnham, A.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Bertl, W.; Chen, C.Q.; Zhang, N.S.; McDonald, S.C.; Taylor, G.N.; Robertson, B.C.

    1990-01-01

    A brief review is made of the study of gp, the induced pseudoscalar coupling constant, in radiative muon capture on light nuclei, and of motivations for a measurement on hydrogen, with particular emphasis on recent and ongoing experiments at TRIUMF [fr

  4. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    OpenAIRE

    Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L.; Foong, Shaohui

    2017-01-01

    Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the...

  5. Osmotic buckling of spherical capsules.

    Science.gov (United States)

    Knoche, Sebastian; Kierfeld, Jan

    2014-11-07

    We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on the relationship between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications. We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte capsules.

  6. Problem of α-clustering levels in heavy nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, V.G.; Kadmenskij, S.G.; Kurgalin, S.D.; Furman, V.I.

    1982-01-01

    From the optical model analysis of elastic scattering and absorption cross sections of α-particles including the (n,α) reaction induced by resonance neutrons it may be concluded that the conception of black nucleus is valid for α-particles. It was shown that the magnitudes of α-particle surface spectroscopic factors did not exceed 10sup(-2) for all the known α-transitions both in spherical and deformed heavy nuclei accounting for the ambiguities of the optical model potential. The possibilities of extracting the α-particles form factors of low-lying nuclear states from α-transfer reaction data are considered. From all the data considered it is concluded that there is no evidence for the revealing of α-clustering levels in heavy nuclei. (author)

  7. A study of {sup 11} Be an {sup 11} Li halo nuclei by core breakup reactions; Etude des noyaux a halo de {sup 11} Be et {sup 11} Li par reactions de cassure du coeur

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S. [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1997-12-31

    The study of light nuclei with large neutron excess are very useful for the understanding of nuclear matter far from stability. The nuclear halo phenomenon has been observed for the first time for Z < 10 nuclei in 80`s: halo nuclei consist of a `stable` core (neutron separation energy of about a few MeV) and one or two neutrons with a very low separation energy of about a few hundred keV. Their wave functions can extent from the core at distances larger than the main range of nuclear force. These halo nuclei have been studied by dissociation reactions in which the neutron from the halo is detected in coincidence with the core. It has been shown that the extraction of the halo wave function is strongly influenced by (i) the reaction mechanism itself (ii) final state interactions. In the present work core breakup reactions are used in which the halo neutron is detected in anticoincidence with the core to study the {sup 11} Be and {sup 11} Li halo nuclei. In this channel, the neutron is supposed not to participate to the reaction and then, when detected, to carry out the same properties as in the halo nucleus. The deduced widths of the neutron momentum distributions are different from the one extracted from the core distributions and with the more recent theoretical models. From these studies, it is also stressed that the properties of the core are essential to understand the halo phenomenon. In particular, the correlation between the core vibrations and the halo neutron are able to explain the emergence of the halo in {sup 11} Be. (author). 78 refs.

  8. Low energy resonance in the neutron rich nucleus of 48Ca. New detectors for the study of unstable nuclei: MUST and CATS

    International Nuclear Information System (INIS)

    Ottini, St.

    1998-01-01

    Two new detectors have been developed to study reactions resulting from exotic beams. The first one, MUST, a set of Si strip detectors is devoted to light recoil particles detection between 500 eV and 120 MeV. The 40 Ar elastic and inelastic scattering analysis at 77 MeV per nucleon showed a non ambiguous identification of the particles in the detector, thanks the time and energy resolutions. The second one, CATs, is a set of beam detectors. These low pressure wire chambers allow each particle measurement of the exotic beams with an accuracy of 0,4 mm. A special interest is given to the halo nuclei low excitation energy spectra. A dipolar low energy resonance should be observed. The inelastic scattering at 60 MeV per nucleon on two targets ( 40 Ca and 48 Ca) has been studied with SPEG at Ganil (France), to search a low energy resonance. It is not possible to conclude on this low energy resonance existence. (A.L.B.)

  9. Spherical Demons: Fast Surface Registration

    Science.gov (United States)

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  10. Gravitational Field of Spherical Branes

    Science.gov (United States)

    Gogberashvili, Merab

    The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found that the analytic form of the coordinate transformations from the Schwarzschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.

  11. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup......Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...... results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500-1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time...

  12. General bottom-up construction of spherical particles by pulsed laser irradiation of colloidal nanoparticles: a case study on CuO.

    Science.gov (United States)

    Wang, Hongqiang; Kawaguchi, Kenji; Pyatenko, Alexander; Li, Xiangyou; Swiatkowska-Warkocka, Zaneta; Katou, Yukiko; Koshizaki, Naoto

    2012-01-02

    The development of a general method to fabricate spherical semiconductor and metal particles advances their promising electrical, optical, magnetic, plasmonic, thermoelectric, and optoelectric applications. Herein, by using CuO as an example, we systematically demonstrate a general bottom-up laser processing technique for the synthesis of submicrometer semiconductor and metal colloidal spheres, in which the unique selective pulsed heating assures the formation of spherical particles. Importantly, we can easily control the size and phase of resultant colloidal spheres by simply tuning the input laser fluence. The heating-melting-fusion mechanism is proposed to be responsible for the size evolution of the spherical particles. We have systematically investigated the influence of experimental parameters, including laser fluence, laser wavelength, laser irradiation time, dispersing liquid, and starting material concentration on the formation of colloidal spheres. We believe that this facile laser irradiation approach represents a major step not only for the fabrication of colloidal spheres but also in the practical application of laser processing for micro- and nanomaterial synthesis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental study of laminar and turbulent flame speed of a spherical flame in a fan-stirred closed vessel for hydrogen safety application

    Energy Technology Data Exchange (ETDEWEB)

    Goulier, J. [Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS-ICARE (France); Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France); Chaumeix, N., E-mail: chaumeix@cnrs-orleans.fr [Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS-ICARE (France); Halter, F. [Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS-ICARE (France); Meynet, N.; Bentaïb, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)

    2017-02-15

    The aim of this paper is to report new experimental results on the effect of turbulence on the propagation speed of hydrogen/air flames. To do so, a new experimental setup, called the spherical bomb, has been designed and built at CNRS-ICARE laboratory. With this new setup, the effect of a given and well-characterized turbulence intensity on the increase of hydrogen/air flame speed can be investigated. This new facility consists of a spherical vessel equipped (563 mm internal diameter) equipped with 8 motors which are linked to fans inside the bomb. Fan actuation induces the generation of a turbulent flow inside the vessel prior to any ignition. The spherical bomb is equipped with 4 quartz windows (200 mm optical diameter) that allow the use of a Particle Image Velocimetry diagnostic in order to characterize the turbulence level inside the bomb. The flame propagation was recorded using a high speed camera at 19,002 frames per second. These experiments were performed for lean to stoichiometric hydrogen/air mixtures (16–20% of H{sub 2} in air), initially at ambient temperature and pressure, and for a rotation speed from 1000 to 5000 rpm. The PIV measurements showed that a homogeneous and isotropic turbulence is created with a fluctuation speed that can reach 4 m/s at 5000 rpm.

  14. Photon interactions with nuclei

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1989-01-01

    This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')

  15. Supersymmetry in nuclei

    CERN Document Server

    Jolie, J

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...

  16. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  17. Study of the Energy Dependence of the Anomalous Mean Free Path Effect by Means of High-energy ($\\geq$12 GeV/nucleon) Helium Nuclei

    CERN Multimedia

    2002-01-01

    The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...

  18. Theoretical study of electric field gradients at nitrogen nuclei in HNO, CH{sub 3}NO and C{sub 2}H{sub 3}NO

    Energy Technology Data Exchange (ETDEWEB)

    Polak, R., E-mail: rudolf.polak@jh-inst.cas.cz [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic); Fiser, J. [Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2 (Czech Republic)

    2010-09-14

    Graphical abstract: Nitroxyl, nitrosomethane and nitrosoethylene were studied using high level ab initio methods with the main aim to provide a description of the nitrogen electric field gradients, relate them to the field gradient values of the free NO radical and use them for the evaluation of the {sup 14}N quadrupole coupling tensor elements. - Abstract: Electric field gradients (EFGs) at the nitrogen nuclei of nitroxyl, nitrosomethane and nitrosoethylene were calculated by employing the complete-active-space self-consistent field (CASSCF), internally contracted multireference configuration interaction (icMRCI) and single-configuration coupled-cluster (CC) methods with correlation-consistent basis sets at the levels of attainable accuracy. Changes in the p{sigma} and p{pi} atomic orbital populations were used to rationalize the differences between the N EFG tensor components related to the nitroso compound and separate nitric oxide. Calculated {sup 14}N nuclear quadrupole coupling constants were found in reasonable accord with experimental values. Comparison of electric dipole moments and potential energy characteristics with external values served to testify to good overall quality of the wave functions used in our calculations.

  19. Development of the ISOLDE Decay Station and γ spectroscopic studies of exotic nuclei near the N=20 “Island of Inversion”

    CERN Document Server

    Lica, Razvan; Garcia Borge, Maria Jose; Marginean, Nicolae Marius

    2017-10-03

    The main topic of my PhD Thesis is related to nuclear structure studies of neutron-rich nuclei following the beta-decay of 34Mg isotopes produced at the ISOLDE facility of CERN and measured using one of the newest permanent experimental setups, the ISOLDE Decay Station (IDS). I will also describe this setup and some of developments I contributed to during the three years spent as a PhD Student at CERN. This Thesis is divided into 6 chapters: The first chapter contains a description of the radioactive ion-beam production techniques with an emphasis on the ISOL technique and an overview of the capabilities of the ISOLDE facility of CERN. The second chapter is dedicated to the IDS setup, its capabilities and development since the first experimental campaign in 2014. The GEANT4 simulations of IDS are the subject in the third chapter, which cover mainly the HPGe detectors, the core detection system of IDS, and a possible improvement related to reducing the large background present in the high energy region of the ...

  20. Characteristics and Manufacture of Spherical Smokeless Powders

    OpenAIRE

    Botelho, Fernanda Diniz; Galante, Erick Braga Ferrão; Mendes, Álvaro José Boareto

    2015-01-01

    ABSTRACT: Smokeless propellants have been studied and manufactured for many decades. They can exist in various physical forms and also can have different properties according to the use of each propellant. One important form of smokeless powders is the ball powder, which has spherical grains. The manufacture process of the ball powder has many advantages over the usual way to manufacture a smokeless powder. For example, unstable and even deteriorated nitrocellulose, after being stabilized aga...

  1. Diffusion of spherical particles in microcavities

    OpenAIRE

    Imperio, A.; Padding, J. T.; Briels, W. J.

    2011-01-01

    The diffusive motion of a colloidal particle trapped inside a small cavity filled with fluid is reduced by hydrodynamic interactions with the confining walls. In this work, we study these wall effects on a spherical particle entrapped in a closed cylinder. We calculate the diffusion coefficient along the radial, azimuthal and axial direction for different particle positions. At all locations the diffusion is smaller than in a bulk fluid and it becomes anisotropic near the container's walls. W...

  2. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    Science.gov (United States)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  3. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  4. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  5. Improvement in White Matter Tract Reconstruction with Constrained Spherical Deconvolution and Track Density Mapping in Low Angular Resolution Data: A Pediatric Study and Literature Review

    Directory of Open Access Journals (Sweden)

    Benedetta Toselli

    2017-08-01

    Full Text Available IntroductionDiffusion-weighted magnetic resonance imaging (DW-MRI allows noninvasive investigation of brain structure in vivo. Diffusion tensor imaging (DTI is a frequently used application of DW-MRI that assumes a single main diffusion direction per voxel, and is therefore not well suited for reconstructing crossing fiber tracts. Among the solutions developed to overcome this problem, constrained spherical deconvolution with probabilistic tractography (CSD-PT has provided superior quality results in clinical settings on adult subjects; however, it requires particular acquisition parameters and long sequences, which may limit clinical usage in the pediatric age group. The aim of this work was to compare the results of DTI with those of track density imaging (TDI maps and CSD-PT on data from neonates and children, acquired with low angular resolution and low b-value diffusion sequences commonly used in pediatric clinical MRI examinations.Materials and methodsWe analyzed DW-MRI studies of 50 children (eight neonates aged 3–28 days, 20 infants aged 1–8 months, and 22 children aged 2–17 years acquired on a 1.5 T Philips scanner using 34 gradient directions and a b-value of 1,000 s/mm2. Other sequence parameters included 60 axial slices; acquisition matrix, 128 × 128; average scan time, 5:34 min; voxel size, 1.75 mm × 1.75 mm × 2 mm; one b = 0 image. For each subject, we computed principal eigenvector (EV maps and directionally encoded color TDI maps (DEC-TDI maps from whole-brain tractograms obtained with CSD-PT; the cerebellar-thalamic, corticopontocerebellar, and corticospinal tracts were reconstructed using both CSD-PT and DTI. Results were compared by two neuroradiologists using a 5-point qualitative score.ResultsThe DEC-TDI maps obtained presented higher anatomical detail than EV maps, as assessed by visual inspection. In all subjects, white matter (WM tracts were successfully reconstructed using both

  6. Exotic nuclei: α-decay, direct reactions and structure

    International Nuclear Information System (INIS)

    Jain, Arun K.

    2003-01-01

    With input parameters from the microscopic studies of stable nuclei and their variations with respect to energy, density, asymmetry etc. one expects to describe the decay of unstable nuclei, their microscopic structure and various scattering and reaction cross sections. The exotic nuclei, both in the lower-mass region as well as in the super-heavy region also should be accessible for predictions and verification. Somehow the direct nuclear reactions of the transfer and knockout type, employed to investigate quantitatively the microscopic behaviour of nuclei, have been only marginally successful. Successful resolution of some of the striking gross disagreements between theory and observations has been achieved now. The manner in which information of the microscopic structure and the effective nuclear interaction affect the predictive power of the direct reactions is found to be remarkable. In the α-decay of heavy nuclei also the microscopic structure information of the target and residual nuclei play decisive role in the values of decay energy and half-life. The interior and surface parts of the α-particle residual nucleus effective interaction, control the energy and decay rates. Fitting the observations with microscopic model values lead to the required predictive power for decay properties of super-heavy nuclei. In a similar manner the analysis of scattering and reactions involving light exotic-nuclei gives information about their microscopic structure. (author)

  7. Spherical Dunkl-monogenics and a factorization of the Dunkl-Laplacian

    International Nuclear Information System (INIS)

    Fei Minggang; Cerejeiras, Paula; Kaehler, Uwe

    2010-01-01

    In this paper, we consider and study a factorization of the Dunkl-Laplacian in terms of spherical coordinates. This allows for the construction of a direct sum decomposition of spherical Dunkl-harmonics. By explicit representation in spherical coordinates of Dunkl-harmonics, one obtains explicit projection operators from Dunkl-harmonics to inner (resp. outer) Dunkl-monogenics. Concrete examples of spherical Dunkl-monogenics will be given at the end.

  8. Synthesis of Superheavy Nuclei with Z = 112 - 118

    Science.gov (United States)

    Utyonkov, V. K.

    2015-06-01

    Review of the discovery and investigation of the "Island of stability" of superheavy nuclei at the separator DGFRS in the 238U-249Cf+48Ca reactions is presented. The synthesis of the heaviest nuclei, their decay properties, and methods of identification are discussed. The results are compared with the data obtained in the chemistry experiments performed at the IVO+COLD setup and at the separators SHIP, BGS, and TASCA. The role of shell effects in the stability of superheavy nuclei is demonstrated by comparison of the experimental and theoretical data. The recent experiment aimed at the investigation of the region of neutron-deficient nuclei produced in the 239Pu+48Ca reaction is described. Future experiments at DGFRS aimed at the study of superheavy nuclei are considered.

  9. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  10. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  11. Study of Doubly Charged Delta Baryons in Collisions of Copper Nuclei at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    2017-05-22

    involving heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce the hottest matter known to humans, approximately 100,000 times hotter... properties of the medium in which they were produced. Some of the produced particles, known collectively as “resonances,” have lifetimes comparable to the...lifetime of the col- lision medium itself. More specifically , comparative studies of the relative pro- duction of short-lived resonances and possible

  12. Growth and Interaction of Colloid Nuclei

    Science.gov (United States)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  13. Isovector giant dipole resonance in hot rotating light nuclei in the calcium region

    International Nuclear Information System (INIS)

    Shanmugam, G.; Thiagasundaram, M.

    1989-01-01

    The isovector giant dipole resonances in hot rotating light nuclei in the calcium region are studied using a rotating anisotropic harmonic oscillator potential and a separable dipole-dipole residual interaction. The influence of temperature on the isovector giant dipole resonance is assumed to occur through the change of deformation of the average field only. Calculations are performed for the three nuclei /sup 40,42/Ca and /sup 46/Ti which have spherical, oblate, and prolate ground states, respectively, to see how their shape transitions at higher excited states affect the isovector giant resonance frequencies built on them. It is seen that, while the width fluctuations present at T = 0 vanish at T = 0.5 MeV in /sup 40,42/Ca, they persist up to T = 1.5 MeV in the case of /sup 46/Ti. This behavior brings out the role of temperature on shell effects which in turn affects the isovector giant dipole resonance widths

  14. Probing single-particle and collective states in atomic nuclei with Coulomb excitation

    CERN Document Server

    DiJulio, Douglas

    A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...

  15. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E < 20 MeV) from the p(1200 MeV) + 208 Pb reaction and of spallation residues from the p(1000 MeV) + 208 Pb reaction. The investigation of neutron multiplicity from proton-induced fission of 232 Th up to 85 MeV showed that it was being overestimated by CRISP model; on the other hand, fission cross section were being underestimated. This behavior is due to limitations of the intranuclear cascade model for low-energies (around 50 MeV). The p(1200 MeV) + 208 Pb reaction was selected for the study of a spallation neutron source. High-energy neutrons (E > 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  16. Spherical harmonics and integration in superspace

    International Nuclear Information System (INIS)

    Bie, H de; Sommen, F

    2007-01-01

    In this paper, the classical theory of spherical harmonics in R m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace, and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral

  17. Serotonergic projections from the raphe nuclei to the subthalamic nucleus; a retrograde- and anterograde neuronal tracing study

    DEFF Research Database (Denmark)

    Reznitsky, Martin; Plenge, Per; Hay-Schmidt, Anders

    2016-01-01

    the 5-HT1A and 5-HT2A not were present. Retrograde tracer FluoroGold or Choleratoxin subunit B were iontophoretically delivered in the STN and combined with immunohistochemistry for 5-HT in order to map the topographic organization in the dorsal raphe system. The study showed that approximately 320......+/-137 neurons were retrogradely traced from each STN to the DRN, located mainly in the dorsal- and ventrolateral DRN, and of these 108+/-42 or 34% co-localized 5-HT. Additionally anterograde tracer PHA-L was injected in the DRN to confirm projections to STN and accordingly only a sparse number of axon terminals...

  18. Spherical Pendulum, Actions, and Spin

    NARCIS (Netherlands)

    Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan

    1996-01-01

    The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of

  19. Testing for Bivariate Spherical Symmetry

    NARCIS (Netherlands)

    Einmahl, J.H.J.; Gantner, M.

    2010-01-01

    An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the

  20. A charged spherically symmetric solution

    Indian Academy of Sciences (India)

    A charged spherically symmetric solution. K MOODLEY, S D MAHARAJ and K S GOVINDER. School of Mathematical and Statistical Sciences, University of Natal, Durban 4041, South Africa. Email: maharaj@nu.ac.za. MS received 8 April 2002; revised 7 April 2003; accepted 23 June 2003. Abstract. We find a solution of the ...