Alpha Anisotropy Studies of Near-Spherical and Deformed Nuclei
Van Duppen, P
2002-01-01
% IS329 \\\\ \\\\ Although it was the first decay mode to be discovered, the process of $\\alpha$-particle emission is still poorly understood. A few years ago the first systematic study of anisotropic $\\alpha$-decay triggered renewed theoretical interest. Nevertheless, today the theories are still not adequate enough and more experimental data are urgently needed. We therefore measure the $\\alpha$-anisotropies of the favoured transitions of a number of near-spherical Rn and At isotopes, and of deformed nuclei near A=220. As the different models yield contradictory predictions for the transitions that are investigated, the measurements will allow to discern on their validity. They will at the same time provide the necessary basis for further theoretical developments.
Nuclear structure investigations on spherical nuclei
International Nuclear Information System (INIS)
Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.
1989-09-01
This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model
International Nuclear Information System (INIS)
Marumori, Toshio; Takada, Kenjiro; Sakata, Fumihiko.
1981-12-01
The history and the present status of the microscopic study of the low-lying collective excited states in spherical and transitional nuclei are discussed by putting emphasis on explaining the rather modern microscopic investigations of the concept of collective subspace. Importance of the dynamical interplay between the pairing and the quadrupole correlations is emphasized as a crucial element to mediate coupling between the collective and non-collective subspace. (author)
Stability of the spherical form of nuclei
International Nuclear Information System (INIS)
Sabry, A.A.
1976-08-01
An extension of the mass formula for a spherical nucleus in the drop model to include a largely deformed nucleus of different forms is investigated. It is found that although the spherical form is stable under small deformations from equilibrium, there exists for heavier nuclei another more favourable stable form, which can be approximated by two, or three touching prolate ellipsoids of revolution
Transitions between compound states of spherical nuclei
International Nuclear Information System (INIS)
Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.
1980-01-01
Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons
Vibrational collective model for spheric even-even nuclei
International Nuclear Information System (INIS)
Cruz, M.T.F. da.
1985-01-01
A review is made on the evidences of collective motions in spherical even-even nuclei. The several multipole transitions occuring in such a nuclei are discussed. Some hypothesis which are necessary in order to build-up the model are presented. (L.C.) [pt
Realistic microscopic level densities for spherical nuclei
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented
Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.
2006-03-01
Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.
Enhancement of octupole strength in near spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)
2016-09-15
The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)
International Nuclear Information System (INIS)
Haddad, S.
2010-01-01
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)
Phases of dense matter with non-spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Pethick, C J [NORDITA, Copenhagen (Denmark); [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
1998-06-01
A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)
Fluctuations in the thermal superfluid model for heated spherical nuclei
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1990-01-01
The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)
International Nuclear Information System (INIS)
Angelique, J.C.; Orr, N.A.
1997-01-01
The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed
Influence of the Pauli principle on the one-quasiparticle states in odd spherical nuclei
International Nuclear Information System (INIS)
Chan Zuy Khuong
1980-01-01
The effect of the Pauli principle on the fragmentation of one-quasiparticle states in odd spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states. The fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle into account roughly. (author)
Gamma transitions between compound states in spherical nuclei
International Nuclear Information System (INIS)
Kadmenskij, S.G.; Markushev, V.P.; Furman, V.I.
1980-01-01
Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons
Photon strength in spherical and deformed heavy nuclei
International Nuclear Information System (INIS)
Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.
2010-01-01
Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process
The tensor part of the Skyrme energy density functional. I. Spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)
2007-04-15
We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall
International Nuclear Information System (INIS)
Nesterenko, V.O.; Kleinig, W.
1995-01-01
The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)
Relativistic continuum random phase approximation in spherical nuclei
International Nuclear Information System (INIS)
Daoutidis, Ioannis
2009-01-01
Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)
Relativistic continuum random phase approximation in spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Daoutidis, Ioannis
2009-10-01
Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)
Shell and pairing effects in spherical nuclei close to the nucleon drip lines
International Nuclear Information System (INIS)
Beiner, M.; Lombard, R.J.
1975-01-01
The unstability against nucleon emission of light and medium exotic spherical nuclei is investigated systematically using an extended version of the energy density formalism which reproduces correctly shell and pairing effects in stable nuclei. The reliability of the predictions of this microscopic, self-consistent and weakly parametrized model should not decrease significantly with the distance of the nuclei from the β-stability line, what is not the case for conventional mass formulae or mass tables [fr
International Nuclear Information System (INIS)
Arvieu, Robert
1963-01-01
This research thesis deals with nuclear physics theory, and more particularly with the issues of collective states and matching properties. In a first part, the author presents the formalism and approximations used to obtain individual states and collective states of spherical nuclei, notably by studying the Bogoliubov-Valatin transformation and how it is possible to report matching phenomena, and then by introducing collective modes by means of an approximate diagonalization and of the 'quasi bosons' method. The phenomenon mechanism is described on a simple example, and, in a second part, the theory is applied to the detailed description of tin isotopes by means of finite range interaction
Cluster aspects of alpha decay of heavy spherical nuclei
International Nuclear Information System (INIS)
Kadmenskij, S.G.; Furman, V.I.; Kholan, S.; Khlebostroev, V.G.
1975-01-01
On the basis of the non-R-Matrix approach to the α-decay theory the surface α-cluster model of α-decay is introduced. In the frame of this model evidence is obtained about an important contribution of the peripherical region of parent nuclei for the absolute α-decay widths. A classification of the α-transitions following the values of experimental probabilities for the existence of α-particles at the nuclear surface is performed
Multiphonon states in even-even spherical nuclei. Pt.1. Calculation of the overlap matrix
International Nuclear Information System (INIS)
Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.
1995-01-01
The multiphonon method, previously developed for deformed nuclei is extended to the case of even-even spherical nuclei. Recursion formulae, well suited for numerical calculations are given for the overlap matrix elements. The method is illustrated for a single j-shell, where S-, D-, G-, .. phonons are introduced. In such an approach, the Pauli principle is fully and properly taken into account. ((orig.))
Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240
International Nuclear Information System (INIS)
Kumar, Krishna.
1979-01-01
Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm
International Nuclear Information System (INIS)
Svin'in, I.R.
1982-01-01
The Brownian motion of a quadrupole quantum oscillator is considered as a model of surface quadrupole oscillations of heated spherical nuclei. The integrals of the motion related to energy and angular momentum conservation are constructed and the wave functions are obtained for states with definite values of these integrals of the motion in the phonon representation
International Nuclear Information System (INIS)
Svin'in, I.R.
1982-01-01
Description of collective phenomena in heated nuclei within the framework of the Brownian approximation may be conditionally divided into two parts: 1) solution of the problem for some realization of a random force, 2) averaging in a set of all the possible realizations. Results of the present work are setted the first part of the problem in the case of surface quadrupole oscillations of spherical heated nuclei. Quadrupole surface oscillations of heated spherical nuclei are considered in the Brownian motion approximation. The integrals of motion are constructed taking into account the energy and angular momentum conservations for the nucleus in the process of relaxation of the collective excitations. Wave functions are obtained for states having definite values of the integrals of motion in the phonon representation. It is noted that the description scheme developed is easily used with respect to other multipolarity oscillations
International Nuclear Information System (INIS)
Khuong, C.Z.; Soloviev, V.G.; Voronov, V.V.
1981-01-01
The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states, the fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle roughly into account. (author)
Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei
International Nuclear Information System (INIS)
Guidry, M.W.
1992-01-01
Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed
International Nuclear Information System (INIS)
Svin'in, I.R.
1987-01-01
A method of calculation of statistical characteristics of a random force is presented. This method is used in the description of oscillations of heated spherical nuclei in the Brownian movement approximation. The mean value and the spectral density of the correlation function are calculated in the noninteracting-particle model. The dependence of the spectral density on the number of nucleons and on the temperature of the nucleus is analyzed
Development of the α-decay theory of spherical nuclei by means of the shell model
International Nuclear Information System (INIS)
Holan, S.
1978-01-01
The new results achieved within the α-decay theory of spherical nuclei with a (2)-(5) integral formula, unaffected by arbitrary parameters, taking into account the finite shape of the α particle and using a basis of Woods-Saxon uniparticle functions to describe initial and final nuclei, may be summarized as follows: Through α-width calculations performed for many spherical nuclei it has been proved that experimental classifying of α-transition into favoured and unfavoured transitions as well as the hyperfine structure of the transitions can be theoretically explained if considered the nucleon-nucleon correlations in the description of initial and final nuclei; The absolute values of the theoretical α-widths obtained are about 10 2 times smaller compared to the experimental ones. This might be due to an oversimplified approximation of the α-particle-daughter nucleus interaction potential or either to an inaccuracy of the model functions used in describing nucleus decay in the surface area. (author)
Energy Technology Data Exchange (ETDEWEB)
Gorelik, M.L.; Shlomo, S. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Tulupov, B.A. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Institute for Nuclear Research, RAS, Moscow 117312 (Russian Federation); Urin, M.H., E-mail: urin@theor.mephi.ru [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)
2016-11-15
The particle–hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in {sup 208}Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron–nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.
Improving the Calculation of The Potential Between Spherical and Deformed Nuclei
International Nuclear Information System (INIS)
Ismail, M.; Ramadan, Kh.A.
2000-01-01
The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)
Quasiparticle--phonon model of the nucleus. V. Odd spherical nuclei
International Nuclear Information System (INIS)
Vdovin, A.I.; Voronov, V.V.; Solov'ev, V.G.; Stoyanov, C.
1985-01-01
The formalism of the quasiparticle--phonon model of the nucleus for odd spherical nuclei is presented. The exact commutation relations of the quasiparticle and phonon operators together with the anharmonic corrections for the phonon excitations are taken into account in the derivation of equations for the energies and structure coefficients of the wave functions of excited states, which include quasiparticle--phonon and quasiparticle--two-phonon components. The influence of various physical effects and of the dimension of the phonon basis on the fragmentation of the single-quasiparticle and quasiparticle-phonon states is investigated
International Nuclear Information System (INIS)
Chrien, R.E.
1982-01-01
A brief history of the discovery of hypernuclei is given and some recent hypernuclei studies are described. Topics include the study of p-shell hypernuclei, 12 C (K - , π - ) experiment, and hypernuclear gamma rays. 13 references
Damping of isovector giant dipole resonances in hot even-even spherical nuclei
International Nuclear Information System (INIS)
Dang, N.D.
1989-01-01
An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)
Progress in octahedral spherical hohlraum study
Directory of Open Access Journals (Sweden)
Ke Lan
2016-01-01
Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
Al-Rawashdeh, S. M.; Jaghoub, M. I.
2018-04-01
In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.
High spin spectroscopy of near spherical nuclei: Role of intruder orbitals
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)
2014-08-14
High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.
Study of 148-152Sm nuclei employing γ - derived from B(E2) values and level energies
International Nuclear Information System (INIS)
Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, Mani
2011-01-01
The study of samarium nuclei has been a challenging theoretical problem, since they lie in the range from near spherical to well deformed shapes. 148 Sm was believed to be basically spherical while 154 Sm is thought to be well deformed nucleus and 150-15 '2Sm are transitional nuclei
Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei
International Nuclear Information System (INIS)
Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.
1978-01-01
The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found
Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei
International Nuclear Information System (INIS)
Khalfallah, F.
2007-08-01
Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)
Directory of Open Access Journals (Sweden)
Robert F Tournier
2009-01-01
Full Text Available The energy saving resulting from the equalization of Fermi energies of a crystal and its melt is added to the Gibbs free-energy change ΔG2ls associated with a crystal formation in glass-forming melts. This negative contribution being a fraction ε ls(T of the fusion heat is created by the electrostatic potential energy −U0 resulting from the electron transfer from the crystal to the melt and is maximum at the melting temperature Tm in agreement with a thermodynamics constraint. The homogeneous nucleation critical temperature T2, the nucleation critical barrier ΔG2ls*/kBT and the critical radius R*2ls are determined as functions of εls(T. In bulk metallic glass forming melts, εls(T and T2 only depend on the free-volume disappearance temperature T0l, and εls(Tm is larger than 1 (T0l>Tm/3; in conventional undercooled melts εls(Tm is smaller than 1 (T0l>Tm/3. Unmelted intrinsic crystals act as growth nuclei reducing ΔG2ls*/kBT and the nucleation time. The temperature-time transformation diagrams of Mg65Y10 Cu25, Zr41.2Ti13.8 Cu12.5Ni10Be22.5, Pd43Cu27 Ni10P20, Fe83B17 and Ni melts are predicted using classic nucleation models including time lags in transient nucleation, by varying the intrinsic nucleus contribution to the reduction of ΔG2ls*/kBT. The energy-saving coefficient ε nm(T of an unmelted crystal of radius Rnm is reduced when Rnm LtR*2ls; εnm is quantified and corresponds to the first energy level of one s-electron moving in vacuum in the same spherical attractive potential −U0 despite the fact that the charge screening is built by many-body effects.
Lifetime of spherical and deformed states in 1f7/2 nuclei
International Nuclear Information System (INIS)
Medina, N.H.; Ribas, R.V.; Oliveira, J.R.B.; Brandolini, F.; Lenzi, S.M.; Ur, C.A.; Bazzacco, D.; Menegazzo, R.; Pavan, P.; Rossi A, C.; Napoli, D.R.; Marginean, N.; Angelis, G. De; Poli, M. De; Martinez, T.; Algora P, A.; Gadea, A.; Farnea, E.; Bucurescu, D.; Ionescu B, M.; Iordachescu, A.; Cameron, J.A.; Kasemann, S.; Schneider, I.; Espino, J.M.; Poves, A.; Sanchez S, J.
2001-01-01
Full text: An extensive experimental study of the structure of the N ≅ Z 1f 7/2 shell nuclei is going on at LNL, using the GASP gamma-spectrometer. An essential part of this program is aimed at the determination of good quality electromagnetic moments for monitoring rotational collectivity and single particle properties. For this purpose precise DSAM lifetimes were deduced for many levels with the new procedure named Narrow Gate on Transition Below, which avoids the influence of side feeding. In this contribution we report, in particular, lifetime measurements in the N ≅ Z nuclei 46 48 V, and 46 Ti. The data were obtained from the reactions: 28 Si on 28 Si, and 28 Si on 24 Mg at 115 MeV. The targets consisted of a layer of about 0.8 mg/cm 2 backed with Au or Pb. The experimental results for levels with natural parity agree very well with Shell Model (SM) calculations in the full f p configuration space with respect to energies B(E2) and B(E1) values of all observed levels. Big efforts have been made to interpret SM in terms of collective models, developing new tools and approaches. Another well described feature is the loss of collectivity when approaching band termination in the 1f 7/2 shell. The N=Z 46 V nuclei is very peculiar because of the coexistence at low excitation energy of natural parity T=1 states with T=0 and unnatural parity states. Some new transitions have been observed, and lifetime values could be obtained for about 15 transitions. The yrast structure for the 48 V nucleus can be classified as a K = 4 + band, obtained by a parallel coupling of the π[321]3/2 - and υ[312]5/2 - . The strong variation in signature splitting in this band may indicate a change of triaxiality. The low lying negative parity levels can be grouped in two strongly coupled rotational bands with K = 4 - and K = 1 - , which are given by parallel and antiparallel coupling of π [203]3/2 - and υ [312]5/2 - orbitals, respectively. Life times have been determined for 24
International Nuclear Information System (INIS)
Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.
1985-01-01
We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)
Studies of spherical inertial-electrostatic confinement
International Nuclear Information System (INIS)
Miley, G.H.
1992-01-01
Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed
International Nuclear Information System (INIS)
Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.
2011-01-01
An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.
New estimates of quadrupole deformation β of some nearly spherical even Mo nuclei
International Nuclear Information System (INIS)
Singh, Y.; Gupta, K.K.; Singh, M.; Bihari, Chhail; Varshney, A.K.; Gupta, D.K.
2013-01-01
The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters (β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei and Hf, W, Os, Pt and Hg nuclei using rigid triaxial rotor model of Davydov – Filippov
Study of subshell gap around N = 70 for neutron-rich nuclei
International Nuclear Information System (INIS)
Hemalatha, M.
2011-01-01
The study and search for new regions of shell closure for nuclei away from stability is a topic of current interest both experimentally and theoretically. There have been few studies predicting a weak spherical subshell gap of 110 Zr (N = 70), for example. This is supported by a recent study indicating that the spherical N = 70 shell gap may not have a large effect at N = 68 for Zr isotopes. It would be, therefore, interesting to know whether there is a subshell closure at N = 70 in the neutron rich region and also for the very neutron-rich nuclei, 110 Zr
Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei
International Nuclear Information System (INIS)
Dupuis, M.
2006-01-01
When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)
On the Orientation Barrier Distribution of the interacting spherical- Deformed Nuclei
International Nuclear Information System (INIS)
Ismail, M.; Seif, W.M.
2009-01-01
The effect of different multipole deformations on the Coulomb barrier distribution in the orientation degrees of freedom is studied. The demonstrated Coulomb barriers are calculated microscopically using the double folding model which is based on realistic density dependent nucleon nucleon interaction. A simple straight forward method, presented in recent work, has been used to predict the distribution of barriers at arbitrary orientations in presence of different deformations far away the complicated numerical calculations. The proposed interpretation is related to the half density radius change of the deformed nucleus involved in interaction where the orientation Coulomb barrier parameters distributions show similar patterns to that of orientation deformed nucleus one. The orientation Coulomb barrier radius distribution follows the same variation of the deformed nucleus radius, while the barrier height distribution is directly proportional to it. This correlation allows a simple evaluation of the orientation barrier distribution which greatly helps us to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. It helps also to estimate the optimum orientations for hot and cold fusion of colliding nuclei.
Low temperature nuclear orientation studies of nuclei far from stability
International Nuclear Information System (INIS)
Brown, D.E.
1990-01-01
One of the major current interests in nuclear physics is to study transitional nuclei which lie between well known regions of spherical and deformed nuclei. The neutron deficient Tellurium and Iodine isotopes are examples of such nuclei. In both cases, the influence of a πg 9/2 intruder orbital is expected to be strong at low excitation energies and at A ∼120. The 120 Te decay scheme has been investigated in detail by LTNO supported by γ-γ coincidences and conversion electron spectroscopy. An interaction of the level scheme using an IBM-2 calculation which allows for mixing between the ground state and a (4p-2h) intruder state is made. The success of this calculation provides strong evidence for the existence of the intruder configuration in 120 Te. In addition, the relative electric quadrupole moments of the ground states in 120-123 I have been measured. The light Platinum isotopes are also transitional nuclei. The ground state magnetic dipole and electric quadrupole moments have been measured for 185,187 Pt which lie inside the region in which the shape transition is known to occur. An interpretation of nuclear moments and level structures in the range 179≤A≤193 using a particle plus triaxial core shows that the shape change takes place gradually via a broad region in which the nuclear shape is triaxial. (author)
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
International Nuclear Information System (INIS)
Mueller, J. M.; Shane, R.; Waldecker, S. J.; Dickhoff, W. H.; Charity, R. J.; Sobotka, L. G.; Crowell, A. S.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Westerfeldt, C.; Youngs, M.; Crowe, B. J. III; Pedroni, R. S.
2011-01-01
Neutron elastic-scattering angular distributions were measured at beam energies of 11.9 and 16.9 MeV on 40,48 Ca targets. These data plus other elastic-scattering measurements, total and reaction cross-sections measurements, (e,e ' p) data, and single-particle energies for magic and doubly magic nuclei have been analyzed in the dispersive optical-model (DOM), generating nucleon self-energies (optical-model potentials) that can be related, via the many-body Dyson equation, to spectroscopic factors and occupation probabilities. It is found that, for stable nuclei with N≥Z, the imaginary surface potential for protons exhibits a strong dependence on the neutron-proton asymmetry. This result leads to a more modest dependence of the spectroscopic factors on asymmetry. The measured data and the DOM analysis of all considered nuclei clearly demonstrate that the neutron imaginary surface potential displays very little dependence on the neutron-proton asymmetry for nuclei near stability (N≥Z).
Next Step Spherical Torus Design Studies
International Nuclear Information System (INIS)
Neumeyer, C.; Heitzenroeder, P.; Kessel, C.; Ono, M.; Peng, M.; Schmidt, J.; Woolley, R.; Zatz, I.
2002-01-01
Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (DandD) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program
Effects of ground state correlations on the structure of odd-mass spherical nuclei
International Nuclear Information System (INIS)
Mishev, S.; Voronov, V. V.
2008-01-01
It is well known that the Pauli principle plays a substantial role at low energies because the quasiparticle and phonon operators, used to describe them, are built of fermions and as a consequence they are not ideal bosons. The correct treatment of this problem requires calculation of the exact commutators between the quasiparticle and phonon operators and in this way to take into account the Pauli principle corrections. In addition to the correlations due to the quasiparticle interaction in the ground-state influence the single-particle fragmentation as well. In this article, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned above. As an illustration of our approach, calculations of the structure of the low-lying states in the odd-mass nuclei 131-137 Ba have been performed
Application studies of spherical tokamak plasma merging
International Nuclear Information System (INIS)
Ono, Yasushi; Inomoto, Michiaki
2012-01-01
The experiment of plasma merging and heating has long history in compact torus studies since Wells. The study of spherical tokamak (ST), starting from TS-3 plasma merging experiment of Tokyo University in the late 1980s, is followed by START of Culham laboratory in the 1900s, TS-4 and UTST of Tokyo University and MAST of Culham laboratory in the 2000s, and last year by VEST of Soul University. ST has the following advantages: 1) plasma heating by magnetic reconnection at a MW-GW level, 2) rapid start-up of high beta plasma, 3) current drive/flux multiplication and distribution control of ST plasma, 4) fueling and helium-ash exhaust. In the present article, we emphasize that magnetic reconnection and plasma merging phenomena are important in ST plasma study as well as in plasma physics. (author)
Spectroscopic Studies of Exotic Nuclei at ISOLDE
2002-01-01
Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...
International Nuclear Information System (INIS)
Kunasz, P.B.; Hummer, D.G.; Mihalas, D.
1975-01-01
Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models
Studies of isovector excitations in nuclei by neutron-induced reactions
International Nuclear Information System (INIS)
Nilsson, L.
1987-01-01
In this paper isovector excitations in nuclei, in particular the giant isovector quadrupole resonance in spherical nuclei, will be discussed. Several methods to investigate this excitation have been used, e.g. inelastic electron scattering and charge-exchange reactions. An alternative method to study isovector E2 resonances in nuclei, based on the radiative capture of fast neutrons, will be presented. Results from such experiments performed at the tandem accelerator laboratories in Los Alamos and Uppsala will be presented and discussed in terms of the direct-semidirect capture model. As a separate issue, the preparations being undertaken at Uppsala for studies of isovector excitations in nuclei by means of the (n,p) reaction will be described. A schematic lay-out of the experiment will be presented together with some relevant neutron beam parameters. Among isovector excitations to be studied by this method are the isovector monopole resonance and the Gamow-Teller resonance. 54 references, 6 figures, 1 table
Feasibility study for the Spherical Torus Experiment
International Nuclear Information System (INIS)
Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.
1985-10-01
The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs
International Nuclear Information System (INIS)
Smirnova, N.A.; Van Isacker, P.; Smirnova, N.A; Pietralla, N.; Yale Univ., New Haven, CT; Mizusaki, T.
2000-01-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 + 1 state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the γ-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei 142 Ce and 94 Mo. (authors)
Energy Technology Data Exchange (ETDEWEB)
Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics
2000-07-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)
HFE and Spherical Cryostats MC Study
International Nuclear Information System (INIS)
Brodsky, Jason P.
2016-01-01
The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat's inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO's background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.
Nuclei at extreme conditions. A relativistic study
Energy Technology Data Exchange (ETDEWEB)
Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)
2014-11-14
The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.
Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Dupuis, M. [CEA, DAM, DIF, Arpajon (France)
2017-05-15
The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off {sup 90}Zr and {sup 208}Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed. (orig.)
Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei
Dupuis, M.
2017-05-01
The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.
International Nuclear Information System (INIS)
Shroy, R.E. Jr.
1976-01-01
By applying the techniques of γ ray spectroscopy to γ rays produced in the decay of nuclear states populated in heavy-ion reactions, the following studies were performed: (1) High-spin states in 113 115 117 119 Sb and 125 127 I were investigated. The states were populated via the ( 6 Li,3n) reaction. Information on the energies, spins, decay modes, lifetimes, and electromagnetic moments was obtained for states up to a typical maximum spin of 25/2. The states in the Sb (Z = 51) and I (Z = 53) nuclei are of interest because of the nearness of the Z = 50 closed proton shell. (2) Experiments were performed to investigate the possibility of using the time differential perturbed angular distribution method to measure quadrupole moments of isomers populated in heavy-ion reactions. First, the previously known quadrupole interaction frequency of the 9/2 1 + state of 69 Ge in Zn was measured, with the state populated via the (α,n) and ( 7 Li,pn) reactions. Next, the quadrupole interaction frequency of the 9/2 1 + state of 73 As was measured in Zn using the ( 7 Li,2n) reaction. A value e 2 Qq/h = 20.2 +- 0.4 MHz was obtained. (3) The destruction of nuclear alignment by lattice defects was also studied for Sb nuclei in a Cd lattice by measuring the anisotropy of γ rays emitted in the decay of an isomer in 115 Sb as a function of temperature. The states were initially aligned when produced in a heavy-ion reaction. As the temperature of the target was increased from approximately 420 0 K to approximately 470 0 K, the anisotrophy was found to increase from zero to the maximum value expected. This can be interpreted in terms of trapping and detrapping of defects by the Sb impurities
Studies of nuclei using radioactive beams
International Nuclear Information System (INIS)
Piercey, R.B.
1989-07-01
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden
Study of nuclear level densities for exotic nuclei
International Nuclear Information System (INIS)
Nasrabadi, M. N.; Sepiani, M.
2012-01-01
Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.
Electron-microscope study of cloud and fog nuclei
Energy Technology Data Exchange (ETDEWEB)
Ogiwara, S; Okita, T
1952-01-01
Droplets of clouds on a mountain and of fog in an urban area were captured and the form, nature and size of their nuclei were studied by means of an electron-microscope and by a chamber of constant humidity. These nuclei have similar form and nature to the hygroscopic particles in haze and to the artificially produced combustion particles. No sea-salt nuclei were found in our observations, therefore, sea-spray appears to be an insignificant source of condensation nuclei. It was found that both the cloud and the fog nuclei originated in combustion products which were the mixture of hygroscopic and non-hygroscopic substances, and that the greater part of the nuclei did not contain pure sulfuric acid.
Electromagnetic Studies of Mesons, Nucleons, and Nuclei
Energy Technology Data Exchange (ETDEWEB)
Baker, Oliver K.
2013-08-20
Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.
Halo nuclei studied by relativistic mean-field approach
International Nuclear Information System (INIS)
Gmuca, S.
1997-01-01
Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)
Study of nuclei by electron scattering
International Nuclear Information System (INIS)
Torizuka, Yoshiharu; Saito, Teijiro; Ito, Kohei; Terasawa, Tatsuo; Hosoyama, Kenji.
1974-01-01
It is urgently required to clarify the physical meaning of the quasi-elastic scattering associated with the background, in order to develop rapidly the study of giant resonance. The experimental works performed in the present term aimed at the synthetic understanding of both giant resonance and quasi-elastic scattering, and presented the possibility of the separability of giant resonance from quasi-elastic scattering. The object of this experiment was to measure higher order multi-pole moment of 51 V by using relatively high energy electron beam. Targets of chemically pure 51 V had thickness of 68.2 or 100.5 mg/cm 2 . The measurement was made at the position where scattering angle was 155 0 . The state of M7 can be well explained by the model with (fsub(7/2)) 3 coordination. This may be because the nuclei with stretched configuration such as 51 V do not have any contribution of orbital motion, but have the contribution of eigen magnetic moment to the highest multiplicity. States of M3 and M5 are a little complicated. Since in the experimental equipment used, the contribution of charge distribution was so large, that it was difficult to make the precision measurement of M3 and M5. In 51 V, however, it can be considered that M3 and M5 decreased by the contribution of 2Psub(3/2) and 1fsub(5/2). On the other hand, there is no contribution from these energy states to M7. (Tai, I.)
Qiu, Chunyin
2009-09-25
Using the mean-field diffuse-interface model for liquid-vapor system and employing the numerical string method, we study the critical nuclei involved in the prewetting transitions on curved substrates. We first introduce three distinct kinds of critical nuclei, namely, the disklike, bandlike, and layerlike ones, which respectively correspond to three possible growth modes of wettingfilms. We show the disklike growth mode to be the only mode for infinite planar substrates. We then turn to cylindrical and spherical substrates, the two simplest but most important geometries in the real world. We focus on the critical nuclei of finite size, through which the wettingfilms may be formed with finite thermodynamic probabilities. It is shown that the disklike growth mode is always the most probable for wettingfilmnucleation and growth as long as a disklike critical nucleus exists. It is also shown that on a cylindrical substrate, the disklike critical nucleus can no longer exist if the substrate radius is smaller than some critical value, comparable to the radius of the disklike critical nucleus on planar substrate. We find that on a cylindrical substrate whose radius is below the critical value, the nucleation and growth of a wettingfilm can only occur through the bandlike critical nucleus. It is worth emphasizing that the results concerning the bandlike and layerlike growth modes can only be obtained from the diffuse-interface model, beyond the macroscopic description based on the line and surface tensions.
Qiu, Chunyin; Qian, Tiezheng
2009-01-01
Using the mean-field diffuse-interface model for liquid-vapor system and employing the numerical string method, we study the critical nuclei involved in the prewetting transitions on curved substrates. We first introduce three distinct kinds of critical nuclei, namely, the disklike, bandlike, and layerlike ones, which respectively correspond to three possible growth modes of wettingfilms. We show the disklike growth mode to be the only mode for infinite planar substrates. We then turn to cylindrical and spherical substrates, the two simplest but most important geometries in the real world. We focus on the critical nuclei of finite size, through which the wettingfilms may be formed with finite thermodynamic probabilities. It is shown that the disklike growth mode is always the most probable for wettingfilmnucleation and growth as long as a disklike critical nucleus exists. It is also shown that on a cylindrical substrate, the disklike critical nucleus can no longer exist if the substrate radius is smaller than some critical value, comparable to the radius of the disklike critical nucleus on planar substrate. We find that on a cylindrical substrate whose radius is below the critical value, the nucleation and growth of a wettingfilm can only occur through the bandlike critical nucleus. It is worth emphasizing that the results concerning the bandlike and layerlike growth modes can only be obtained from the diffuse-interface model, beyond the macroscopic description based on the line and surface tensions.
Shell-model Monte Carlo studies of nuclei
International Nuclear Information System (INIS)
Dean, D.J.
1997-01-01
The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented
A study of the disintegration of highly excited nuclei with the Vlasov-Uehling-Uhlenbeck equation
International Nuclear Information System (INIS)
Vinet, L.; Gregoire, C.; Schuck, P.; Remaud, B.; Sebille, F.
1987-01-01
The disintegration of hot and/or compressed nuclei is studied using (i) the Vlasov equation (VE) with imposed spherical symmetry, (ii) the VE in three dimensions (3D) and (iii) the VE in three dimensions supplemented by the Uehling-Uhlenbeck collision term (VUU). We find that case (ii) is slightly more unstable with respect to disintegration compared to case (i) whereas (iii) tends to make nuclei more stable. In all cases the thermal energies (15-20 MeV per nucleon) needed to totally disintegrate a nucleus seem to be higher than those found in static and hydrodynamic calculation. On the contrary, compressional energy very much helps disintegration. Some comments on the introduction of fluctuations and corresponding fragmentation are added. (orig.)
Study of Triaxial deformation variable γ in even - even nuclei
International Nuclear Information System (INIS)
Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.
2011-01-01
The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly
International Nuclear Information System (INIS)
Berg, S.; Semmes, P.B.; Nazarewicz, W.
1997-01-01
Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society
Morphological and electrochemical studies of spherical boron doped diamond electrodes
Energy Technology Data Exchange (ETDEWEB)
Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br
2006-08-14
Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.
Experimental study of synthesis of heavy nuclei at JAERI
International Nuclear Information System (INIS)
Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Satou, K.
2001-01-01
Evaporation residue (ER) cross sections for 82 Se+ nat Ce and 76 Ge+ 150 Nd were measured in the vicinity of the Coulomb barrier, and the fusion probability was obtained with the aid of calculated survival probability. The former system represents fusion of two spherical nuclei, the latter fusion involving the pro-lately deformed target 150 Nd. The collision of 76 Ge with the side of 150 Nd is more compact in configuration at touching. The system 82 Se+ nat Ce showed fusion hindrance in form of extra-extra-push energy of 27 ± 5 MeV, whereas the system 76 Ge+ 150 Nd does not show fusion hindrance at and above the Coulomb barrier energy, suggesting that the reaction starting from the compact touching point results in a higher fusion probability. (author)
International Nuclear Information System (INIS)
Oyamatsu, K.; Yamada, M.
1994-01-01
We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)
Understanding Nuclei in the upper sd - shell
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.
2013-01-01
Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...
Possibilities at LAMPF for studying nuclei of astrophysical interest
International Nuclear Information System (INIS)
Talbert, W.L. Jr.; Bunker, M.E.
1985-01-01
Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented
Study of fp States in Nuclei with High Neutron Excess
2002-01-01
Previous results obtained at ISOLDE on GT transitions in n-rich Na and Mg nuclei have shown the sharp decrease of excitation energy for fp states when A$>$29. \\\\ \\\\ Independently, shell model calculations have revealed that the onset of a deformation region near N=20 for Ne, Na and Mg nuclei was related to a sudden transition in the ground state properties with the appearance of a major (sd)$^{-2}$(fp)$^2$ component. \\\\ \\\\ We propose to use the new possibilities of producing and detecting n-rich nuclei to study by $\\gamma$ and n spectroscopy the properties of fp states with different cores: around N=20 (Na, Mg and Al) and N=28 (Ar, K and Ca). In particular, the cases of $^3
Recent studies of heavy nuclei far from stability at JYFL
Energy Technology Data Exchange (ETDEWEB)
Julin, R.; Enqvist, T.; Helariutta, K. [Univ. of Jyvaeskylae (Finland)] [and others
1996-12-31
The new K=130 Cyclotron + ECR facility of the Physics Department of the University of Jyvaskyla (JYFL) provides stable beams from protons up to krypton ions for nuclear structure studies. Two instruments designed especially for in-beam spectroscopic studies of heavy nuclei at JYFL are introduced in this contribution. Some results from recent measurements with them are reported.
Study of 19F and 19Ne mirror nuclei
International Nuclear Information System (INIS)
Lebrun, Claude.
1976-01-01
The electromagnetic properties of the mirror nuclei 19 F and 19 Ne were studied using the 18 O(d,nγ) 19 F, 17 O( 3 He,nγ) 19 Ne and 19 F(p,nγ) 19 Ne reactions. Lifetimes of 8 levels in 19 F and 11 levels in 19 Ne have been measured using the Doppler shift attenuation method. Weak and strong components of M 1 , E 1 and E 2 transition strengths are compared with shell model predictions. M 1 and E 2 transition strengths of conjugated nuclei (A=18 to A=34) are compiled and compared with wide configuration space shell models [fr
Study on decay of rare earth nuclei produced by fission
Energy Technology Data Exchange (ETDEWEB)
Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki
1996-01-01
JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)
Numerical study of spherical Torus MHD equilibrium configuration
International Nuclear Information System (INIS)
Cheng Faying; Dong Jiaqi; Wang Aike
2003-01-01
Tokamak equilibrium code SWEQU has been modified so that it can be used for the MHD equilibrium study of low aspect ratio device. Evolution of plasma configuration in start-up phase and double-null divertor configuration in steady-state phase has been simulated using the modified code. Results show that the new code can be used not only to obtain the equilibrium configuration of spherical Torus in steady-state phase, but also to simulate the evolution of plasma in the start-up phase
Studies of Heavy-Ion Reactions and Transuranic Nuclei
Energy Technology Data Exchange (ETDEWEB)
Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics
2016-07-28
Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.
Studies of Heavy-Ion Reactions and Transuranic Nuclei
International Nuclear Information System (INIS)
Schroeder, W. Udo
2016-01-01
Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.
Statistical studies on quasars and active nuclei of galaxies
International Nuclear Information System (INIS)
Stasinska, G.
1987-01-01
A catalogue of optical, radio and X-ray properties of quasars and other active galactic nuclei, now in elaboration, is presented. This catalogue may serve as a data base for statistical studies. As an example, we give some preliminary results concerning the determination of the quasar masses [fr
Studies of relativistic jets in active galactic nuclei with SKA
Agudo, I.; Bottcher, M.; Falcke, H.; Georganopoulos, M.; Ghisellini, G.; Giovannini, G.; Giroletti, M.; Gomez, J.L.; Gurvits, L.; Laing, R.; Lister, M.; Marti, J.M.; Meyer, E.T.; Mizuno, Y.; O'Sullivan, S.; Padovani, P.; Paragi, Z.; Perucho, M.; Schleicher, D.; Stawarz, L.; Vlahakis, N.; Wardle, J.
2014-01-01
Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli &
Seismic performance of spherical liquid storage tanks: a case study
Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo
2018-02-01
Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.
Study of fusion reactions forming Cf nuclei
International Nuclear Information System (INIS)
Khuyagbaatar, J.; Hinde, D. J.; Du Rietz, R.; Carter, I. P.; Dasgupta, M.; Duellmann, C. E.; Evers, M.; Wakhle, A.; Williams, E.; Yakushev, A.
2013-01-01
The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34 S+ 208 Pb in comparison to 36 S+ 206 Pb; both reactions lead to the compound nucleus 242 Cf*.The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission. (authors)
Study of fusion probabilities with halo nuclei using different proximity based potentials
International Nuclear Information System (INIS)
Kumari, Raj
2013-01-01
We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei
Optimization experiments on the study of giant resonance in nuclei
International Nuclear Information System (INIS)
Lyubarskij, G.Ya.; Savitskij, G.A.; Fartushnyj, V.A.; Khazhmuradov, M.A.; Levandovskij, S.P.
1988-01-01
Optimum choice of the target exposure to a beam in experiments on the study of giant resonances in nuclei is considered. Optimization is aimed at reducing mean square errors of defined formfactors. Four different optimization quality criteria - variances of four form factor experimental values are considered. Variances resulting form optimization are 1.5-2 times as less as variances in real experiment. The effect of experiment design optimization criterion on form factors determination errors is ascertained. 1 ref.; 3 tabs
Neutron skin studies of medium and heavy nuclei
Directory of Open Access Journals (Sweden)
Thiel M.
2014-06-01
Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.
Using nuclear structure to study the vaporization of hot nuclei
International Nuclear Information System (INIS)
Broglia, R.A.
1985-01-01
Many experiments on the gamma decay of highly excited nuclei show the persistence of the giant dipole resonance as a collective mode even under rather extreme conditions. The theory of these resonances predicts that they should essentially retain the properties they have in the ground state to quite high excitation. The average resonance energy may be studied in mean-field theory and is found to change less than 5% for temperatures as high as approx.1.5 MeV. The spreading of the resonance has recently been calculated for nuclei at finite temperatures and rotational frequencies. The damping is found to increase by an insignificant amount in the measured temperature range, except when the nucleus changes deformation. The authors argue here that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. For example, given that a compound nucleus is formed in a heavy-ion reaction, the dipole branching ratio is very sensitive to the statistical properties of the nucleus. The branching ratio allows a more sensitive measurement of the level density parameter at high excitation than would be otherwise available
Study of high angular momentum phenomena in rotating nuclei
International Nuclear Information System (INIS)
Walus, W.
1982-01-01
Information about rotational bands of deformed Yb nuclei as obtained through in-beam spectroscopic studies is discussed. Routhians and alignments have been extracted from the experimental data. Experimental single-quasineutron routhians have been used to construct two- and three-quasineutron routhians. Residual interaction between excited quasiparticles is obtained from a comparison of the excitation energies of multiple-quasiparticle states constructed from single-quasiparticle states. An odd-even neutron-number dependence of the alignment frequency of the first pair of isub(13/2) quasineutron in rare-earth nuclei is presented. This effect is explained by a reduction of the neutron pairing-correlation parameter for odd-N systems as compared to seniority-zero configurations in even-N nuclei. The signature dependence of the interband-intraband branching ratios as well as of the interband M1/E2 mixing ratios is discussed and compared to the signature dependence of B(M1) transition rates recently suggested by Hamamoto. (author)
International Nuclear Information System (INIS)
Geissel, H.
1997-03-01
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de
Study on wall recycling behaviour in CPD spherical tokamak
International Nuclear Information System (INIS)
Bhattacharyay, R.; Zushi, H.; Hirooka, Y.; Sakamoto, M.; Yoshinaga, T.; Okamoto, K.; Kawasaki, S.; Hanada, K.; Sato, K.N.; Nakamura, K.; Idei, H.; Ryoukai, T.; Nakashima, H.; Higashijima, A.
2008-01-01
Experiments to study wall recycling behaviour have been performed in the small spherical tokamak compact plasma-wall interaction experimental device (CPD) from the viewpoint of global as well as local plasma wall interaction condition. Electron cyclotron resonance (ECR) plasma of typically ∼50 to 400 ms duration is produced using ∼40 to 80 kW RF power. In order to study the global wall recycling behaviour, pressure measurements are carried out just before and after the ECR plasma in the absence of any external pumping. The recycling behaviour is found to change from release to pumping beyond a certain level of pressure value which is again found to be a function of shot history. The real-time local wall behaviour is studied in similar RF plasma using a rotating tungsten limiter, actively coated with lithium. Measurement of H α light intensity in front of the rotating surface has indicated a clear reduction (∼10%) in the steady-state hydrogen recycling with continuous Li gettering of several minutes
Studies of yrast and continuum states in A = 140 to 160 nuclei. Progress report for 1983
International Nuclear Information System (INIS)
Daly, P.J.
1983-12-01
The structure of nuclei, principally in the A-150 region, has been studied by in-beam γ-ray spectroscopy using heavy ion beams from the Argonne Tandem/Linac. New structural information was obtained for many shell model nuclei around 146 Gd, for the shape transitional nuclei 153 Dy and 154 Dy, and for the nuclei 147 Gd, 186 Hg, and 187 Hg at high-spin
Properties of neutron-rich nuclei studied by fission product nuclear chemistry
International Nuclear Information System (INIS)
Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.
1979-09-01
A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references
International Nuclear Information System (INIS)
Patra, S.K.; Wu, Cheng-Li; Praharaj, C.R.; Gupta, Raj K.
1999-01-01
We have studied the structural properties of even-even, neutron deficient, Z=114-126, superheavy nuclei in the mass region A ∼ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z=80, 92, (114), 120 and 138, N=138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z=114 and N = 164 ∼ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z=120 and N=172 or N 184 double shell closure is also discussed
Barriers in the energy of deformed nuclei
Directory of Open Access Journals (Sweden)
V. Yu. Denisov
2014-06-01
Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.
Study of side-feeding time for light mass nuclei
International Nuclear Information System (INIS)
Ray, Sudatta; Bisoi, A.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.
2011-01-01
Precise determination of level lifetime is of utmost importance in nuclear γ-spectroscopy. Doppler Shift Attenuation (DSA) method suitable for measuring sub-pico second lifetimes, involves inclusion of proper correction for side-feeding which is synonymous to unknown feeding of the level under consideration. It is possible to avoid a sidefeeding contribution by gating on Doppler shifted gamma lines above (GTA) the level being studied in the cascade. In the present work, an empirical approach has been adopted to find the dependence of side-feeding times in nuclei in A ≅ 40 region as function of level energies
Laserspectroscopic studies of collective properties of neutron deficient Ba nuclei
International Nuclear Information System (INIS)
Bekk, K.; Andl, A.; Goering, S.; Hanser, A.; Nowicki, G.; Rebel, H.; Schatz, G.
1979-01-01
Isotope shifts and hyperfine structure of the BaI resonance-line (lambda=553.6 nm) have been measured by dye laser induced resonance fluorescence on an atomic beam for sup(135m,129g,129m,126) Ba thus extending previous high resolution measurements of neutron deficient Ba nuclides (N - isomers sup(135m) Ba and sup(135m) Ba show a decreased staggering. Conspicuously the isomer shift of the g 7/2 + isomer sup(129m) Ba proves to be negative. The nuclear structure information is discussed in the context of gamma-spectroscopic studies of transitional nuclei with 50 [de
Neutron emission study after muon capture by nuclei
International Nuclear Information System (INIS)
Bouyssy, Alain.
1974-01-01
Muon capture by nuclei, used in the beginning for checking the weak interaction, is now a method of investigation of nuclear structure. Study of spectrum, asymmetry and polarization of emitted neutrons after polarized muon capture has been done in three directions: weak coupling constants, final state interaction, nuclear wave functions. The neutron intensity and helicity are very dependent of the neutron - residual nucleus interaction, while the asymmetry is sensitive to the wave functions used for the proton. Moreover if the induced tensor coupling constant is different from zero the asymmetry is increased. Longitudinal polarization experiments, with those for neutron intensity, would be of great interest to give informations on neutron asymmetry [fr
Study of transitional nuclei at TRISTAN. Progress report
International Nuclear Information System (INIS)
Petry, R.F.
1983-01-01
During the past calendar year the Oklahoma group has participated in decay studies on the following nuclides: 99 Rb, 99 Sr, 101 Y, and 100 Y. The resulting information on the structure of these nuclides has defined band structure for the first time in the odd-A nuclei in this region. The principal investigator also participated in a measurement of the g-factor of an excited state in 97 Zr and two attempts to measure the quadrupole moment of the same state. Details of these and other activities are given
Vibrational motions in rotating nuclei studied by Coulomb excitations
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)
A systematic study of odd-odd Gallium nuclei
International Nuclear Information System (INIS)
Allegro, P.R.P.; Medina, N.H.; Oliveira, J.R.B.; Ribas, R.V.; Cybulska, E.W.; Seale, W.A.; Zagatto, V.A.B.; Zahn, G.S.; Genezini, F.A.; Silveira, M.A.G.; Tabor, S.; Bender, P.; Tripathi, V.; Baby, L.
2012-01-01
Full text: Recently, many studies have been published attempting to explain the role of the 0g 9/2 orbital in the high spin excited states of nuclei in the region of the mass A=50-80, especially very neutron rich nuclei like, for example 59-66 Fe [1], 65,67 Cu [2], 70,80 Ge [3,4] nuclei and those with odd mass number like As, Ge and Ga [5]. Stefanescu et al. [6] demonstrated the presence of bands in the neutron-rich isotopes Ga formed from excitation of a proton to the 0g 9/2 orbital and Cheal et al. [7] revealed, from the study of the spins and moments of the ground state, changes in nuclear structure of the odd Ga isotopes between N = 40 and N 50, indicating a change in the energy gap between the 0g 9/2 orbital and the pf shell. In this work, we have performed a systematic study of odd-odd 64,66,68,70 Ga nuclei to examine the behavior of the 0g 9/2 orbital with an increasing number of neutrons. We have compared the predictions of the Large Scale Shell Model, obtained using the Antoine code [8] with the FPG [9] and JUN45 [10] effective interactions, with the experimental results obtained with in-beam gamma-ray spectroscopy experiments performed at University of Sao Paulo using SACI-PERERE spectrometer and at Florida State University using the Clover Array System. We have also performed calculations to study 67 Ge, an odd nucleus in the same mass region, in order to verify the behavior of the effective interactions in a nucleus without the proton-neutron interaction. [1] S. Lunardi. et al., Phys. Rev. C 76, 034303 (2007). [2] C. J. Chiara et al., Phys. Rev. C 85, 024309 (2012). [3] M. Sugawara et al., Phys. Rev. C 81, 024309 (2010). [4] H. Iwasaki.et al., Phys. Rev. C 78, 021304(R) (2008). [5] N. Yoshinaga et al. Phys. Rev. C 78, 044320 (2008). [6] I. Stefanescu et al., Phys. Rev. C 79, 064302 (2009). [7] B. Cheal et al. Phys. Rev. Lett. 104, 252502 (2010). [8] E. Caurier and F. Nowacki, Acta Phys. Polonica B 30, 705 (1999). [9] O. Sorlin et al., Phys. Rev. Lett
Electron scattering and collective excitations in nuclei
International Nuclear Information System (INIS)
Goutte, D.
1989-01-01
Nuclear collective degrees of freedom are investigated through the study of the radial dependance of their wave function. Inelastic electron scattering is shown to be the appropriate tool to extract such a detailed information. Some recent results on spherical as well as deformed nuclei are discussed and the most recent extensions to the mean field approach are compared to these data in order to clarify the present status of our understanding of the dynamical properties of complex nuclei
International Nuclear Information System (INIS)
Villari, A.C.C.
1990-01-01
The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)
Potential capabilities at LAMPF to study nuclei far from stability
International Nuclear Information System (INIS)
Talbert, W.L.; Bunker, M.E.
1985-01-01
Feasibility studies have shown that a He-jet activity transport line, with a target chamber placed in the LAMPF main beam line, will provide access to short-lived isotopes of a number of elements that cannot be extracted efficiently for study at any other type of on-line facility. The He-jet technique requires targets thin enough to allow a large fraction of the reaction products to recoil out of the target foils; hence, a very intense incident beam current, such as that uniquely available at LAMPF, is needed to produce yields of individual radioisotopes sufficient for detailed nuclear studies. We present the results of feasibility experiments on He-jet transport efficiency and timing. We also present estimates on availability of nuclei far from stability from both fission and spallation processes. Areas of interest for study of nuclear properties far from stability will be outlined. 17 refs
The Array for Nuclear Astrophysics Studies with Exotic Nuclei
Linhardt, L. E.; Blackmon, J. C.; Matos, M.; Mondello, L. L.; Zganjar, E. F.; Johnson, E.; Rogachev, G.; Wiedenhover, I.
2010-11-01
The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array that is targeted primarily towards reaction studies with radioactive ion beams at FSU and the NSCL. ANASEN consists of 40 double-sided silicon-strip detectors backed with CsI scintillators and an innovative gas counter design that allows operation in a gas target/detector mode and experiments covering a broad range of center-of-mass energies simultaneously. Electronics based on ASIC components are being implemented to achieve a high channel count at low cost. Prototypes of all the detector components have been fabricated and are currently being tested. Performance of the individual components and plans for the first experiments that aim to improve our knowledge of the nuclear reactions important in stellar explosions will be reported.
Study of cosmic ray nuclei detection by an image calorimeter
Energy Technology Data Exchange (ETDEWEB)
Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany)
1995-09-01
It is shown that a cosmic gamma-ray telescope made of a multilayer silicon tracker and a imaging CsI calorimeter, is capable of identifying cosmic ray nuclei. The telescope charge resolution is estimated around 4% independently of charge. Simulation methods are used to determine the telescope properties for nuclei detection.
Systematic study of α half-lives of superheavy nuclei
Budaca, A. I.; Silisteanu, I.
2014-03-01
Two different descriptions of the α-decay process, namely, the shell model rate theory and phenomenological description are emphasized to investigate the α-decay properties of SHN. These descriptions are shortly presented and illustrated by their results. Special attention is given to the shell structure and resonance scattering effects due to which they exist and decay. A first systematics of α-decay properties of SHN was performed by studying the half-life vs. energy correlations in terms of atomic number and mass number. Such a systematics shows that the transitions between even-even nuclei are favored, while all other transitions with odd nucleons are prohibited. The accuracy of experimental and calculated α-half-lives is illustrated by the systematics of these results.
Hot nuclei studied with high efficiency neutron detectors
International Nuclear Information System (INIS)
Galin, J.
1990-01-01
We have shown the invaluable benefit that a high efficiency 4π neutron detector can bring to the study of reaction mechanisms following collisions of heavy nuclei at intermediate energy. Analysis requires Monte-Carlo simulations for comparison between experimental data and any emission model. In systematic measurements with projectiles of velocity corresponding to energies between 27 and 77 MeV/u, where both the influence of beam velocity and mass have been investigated separately, it has been shown that the projectile-target mass asymmetry, much more than velocity, has a decisive influence on energy dissipation. The closer the projectile mass to the target mass, the more energy is dissipated per unit mass of the considered projectile plus target system. The latter presents all the characteristics of a thermalized system, evaporating a copious number of light particles: up to about 40 neutrons (after efficiency correction) and 11 light charged particles in the most dissipative collisions between Kr+Au, and 90 neutrons for Pb+U with a yet unknown number of l.c.p. In the Kr experiment, these particles are isotropically emitted in the frame of a fused system, excited with 1.2 GeV. Moreover, l.c.p. exhibit Maxwellian energy distributions as in any standard evaporation process. We are now eager to better characterize the properties of the Pb+Au (U) systems for which about 1/3 of the neutrons are freed in a rather large fraction of all collisions. The thermalized energy should then approach very closely the total binding energy of the two interacting nuclei
Microscopic study of proton emission from heavy nuclei
International Nuclear Information System (INIS)
Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.
2011-01-01
In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus
Energy Technology Data Exchange (ETDEWEB)
Khalfallah, F
2007-08-15
Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)
Studies of pear-shaped nuclei using accelerated radioactive beams
Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M
2013-01-01
There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...
Normal range of facial asymmetry in spherical coordinates: a CBCT study
Energy Technology Data Exchange (ETDEWEB)
Yoon, Suk Ja [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Wang, Rui Feng [Research Laboratory Specialist Intermediate, Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI (United States); Na, Hee Ja [Dept. ofDental Hygiene, Honam University, Gwangju (Korea, Republic of); Palomo, Juan Matin [Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (United States)
2013-03-15
This study aimed to measure the bilateral differences of facial lines in spherical coordinates from faces within a normal range of asymmetry utilizing cone-beam computed tomography (CBCT). CBCT scans from 22 females with normal symmetric-looking faces (mean age 24 years and 8 months) were selected for the study. The average menton deviation was 1.01{+-}0.66 mm. The spherical coordinates, length, and midsagittal and coronal inclination angles of the ramal and mandibular lines were calculated from CBCT. The bilateral differences in the facial lines were determined. All of the study subjects had minimal bilateral differences of facial lines. The normal range of facial asymmetry of the ramal and mandibular lines was obtained in spherical coordinates. The normal range of facial asymmetry in the spherical coordinate system in this study should be useful as a reference for diagnosing facial asymmetry.
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Aftab, S M A; Ahmad, K A
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
Introduction to the study of collisions between heavy nuclei
International Nuclear Information System (INIS)
Bayman, B.F.
1980-01-01
Current investigations concerning the collisions of nuclei governed by small de Broglie wavelengths are reviewed. The wave packets localize nuclei in regions small compared to their diameters. Cross sections are examined for potential scattering, elastic scattering, quasi-molecular states, peripheral particle-transfer reactions, fusion, and deep inelastic collisions. Theories of fusion and deep inelastic collisions are summarized. This paper is in the nature of a review-tutorial. 45 references, 51 figures, 2 tables
Hot nuclei studies with a 4 π-Neutron detector
International Nuclear Information System (INIS)
Galin, J.; Crema, E.; Doubre, H.; Guerreau, D.; Jiang, D.X.; Morjean, M.; Piasecki, E.; Pouthas, J.; Saint-Laurent, F.; Sokolov, A.; Wang, X.D.; Charvet, J.L.; Frehaut, J.; Lott, B.; Magnago, C.; Patin, Y.; Gatty, B.; Jacquet, D.; Lott, B.
1989-01-01
When studying the behavior of hot nuclei, the challenge is twofold: how are they formed in nucleus-nucleus collisions and how do they decay Systematic studies have been undertaken at GANIL by bombarding heavy targets (Au, Th) with intermediate energy projectiles (27, 35, 44 and 77 MeV/u Ar and 32 MeV/u Kr). For such neutron rich systems the thermalized energy can be roughly evaluated simply by measuring the multiplicity of evaporated neutrons using a 4 π Gd loaded, liquid scintillator detector. The influence of the bombarding energy and projectile mass on the energy dissipation has been investigated for different exit channels and special emphasis has been put in the study of the most dissipative collisions. The thermal energy, derived by summing the energy removed by both evaporated neutrons and light charged particles is shown to saturate at E * ≅ 650 MeV in the Ar induced reactions between 27 and 77 MeV/u, in good consistency with the predictions of semi-classical Landau-Vlasov calculations
Experimental Studies of Acoustics in a Spherical Couette Flow
Gowen, Savannah; Adams, Matthew; Stone, Douglas; Lathrop, Daniel
2016-11-01
The Earth, like many other astrophysical bodies, contains turbulent flows of conducting fluid which are able to sustain magnetic field. To investigate the hydromagnetic flow in the Earth's outer core, we have created an experiment which generates flows in liquid sodium. However, measuring these flows remains a challenge because liquid sodium is opaque. One possible solution is the use of acoustic waves. Our group has previously used acoustic wave measurements in air to infer azimuthal velocity profiles, but measurements attempted in liquid sodium remain challenging. In the current experiments we measure acoustic modes and their mode splittings in both air and water in a spherical Couette device. The device is comprised of a hollow 30-cm outer sphere which contains a smaller 10-cm rotating inner sphere to drive flow in the fluid in between. We use water because it has material properties that are similar to those of sodium, but is more convenient and less hazardous. Modes are excited and measured using a speaker and microphones. Measured acoustic modes and their mode splittings correspond well with the predicted frequencies in air. However, water modes are more challenging. Further investigation is needed to understand acoustic measurements in the higher density media.
Studies of heavy-ion reactions and transuranic nuclei
International Nuclear Information System (INIS)
Schroeder, W.U.
1993-08-01
This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope
Studies of the giant resonances in heavy nuclei
International Nuclear Information System (INIS)
Cataldi, M.I.C.
1986-01-01
Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt
Studying the potential of antihyperons in nuclei with antiprotons
Energy Technology Data Exchange (ETDEWEB)
Sanchez Lorente, Alicia; Bleser, Sebastian; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Pochodzalla, Josef [Institute for nuclear physics, JGU Mainz (Germany); Collaboration: PANDA-Collaboration
2014-07-01
The interaction between an antibaryon and a nucleus may shed light on the short range antibaryon-baryon force in a unique way. However, because of the deep imaginary part of the nuclear potential of antibaryons, the physics of antihyperons in nuclei is hitherto an uncharted territory. Recently it was proposed to use transverse momentum correlations of exclusively produced antihyperon-hyperon pairs in antiproton-nucleus collisions to obtain information on the antihyperon potentials relative to that of the corresponding hyperon. In the present study we use the Giessen Boltzmann-Uehling- Uhlenbeck Transportmodell (GiBUU) to explore the production of exclusive hyperon-antihyperon pairs close to threshold. Unlike the schematic calculation, these GiBBU simulations take e.g. important rescattering effects into account. In case of anti p + {sup 20}Ne → anti ΛΛ+X we confirm a significant sensitivity of transverse momentum correlations to the nuclear potential of Λs. We also explore the feasibility of such measurements at the PANDA experiment of the international facility FAIR.
Clustering aspects of sd shell nuclei studied by AMD
Energy Technology Data Exchange (ETDEWEB)
Kimura, Masaaki [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Taniguchi, Yasutaka [Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); En' yo, Yoshiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Horiuchi, Hisashi [Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan)
2006-10-10
The new clustering aspects of sd-shell nuclei found by the recent application of the antisymmetrized molecular dynamics are reported. In this paper we present two topics, 'superdeformed band of {sup 32}S and {sup 16}O + {sup 16}O clustering' and 'molecular-orbital and di-nuclei states in {sup 22}Ne'. In the first topic, it will be shown that the superdeformed band of 32S has a considerable amount of {sup 16}O + {sup 16}O cluster component, and can be regarded as to belong to a family of the {sup 16}O + {sup 16}O molecular bands. In the second topic, the presence of the molecularorbital band which has an {alpha} + {sup 16}O cluster core surrounded by two covalently neutrons is suggested together with an {alpha} + {sup 18}O di-nuclei band.
Clustering aspects of sd shell nuclei studied by AMD
International Nuclear Information System (INIS)
Kimura, Masaaki; Taniguchi, Yasutaka; En'yo, Yoshiko; Horiuchi, Hisashi
2006-01-01
The new clustering aspects of sd-shell nuclei found by the recent application of the antisymmetrized molecular dynamics are reported. In this paper we present two topics, 'superdeformed band of 32 S and 16 O + 16 O clustering' and 'molecular-orbital and di-nuclei states in 22 Ne'. In the first topic, it will be shown that the superdeformed band of 32S has a considerable amount of 16 O + 16 O cluster component, and can be regarded as to belong to a family of the 16 O + 16 O molecular bands. In the second topic, the presence of the molecularorbital band which has an α + 16 O cluster core surrounded by two covalently neutrons is suggested together with an α + 18 O di-nuclei band
Study of single-nucleon spectroscopic characteristics in light nuclei
International Nuclear Information System (INIS)
Zhusupova, K.A.
1998-01-01
Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)
Snowflake divertor configuration studies in National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); and others
2012-08-15
Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.
Monte Carlo studies of nuclei and quantum liquid drops
International Nuclear Information System (INIS)
Pandharipande, V.R.; Pieper, S.C.
1989-01-01
The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs
Trends in the study of light proton rich nuclei
International Nuclear Information System (INIS)
Moltz, D.M.; Aysto, J.; Hotchkis, M.A.C.; Cerny, J.
1985-09-01
Recent work in light proton-rich nuclei is reviewed. Evidence for the first T/sub z/ = -5/2 nuclide, 35 Ca, is presented. The mechanisms of two-proton emission following beta-decay is investigated. Future directions in this field are discussed. 23 refs., 5 figs
Monte Carlo studies of nuclei and quantum liquid drops
Energy Technology Data Exchange (ETDEWEB)
Pandharipande, V.R.; Pieper, S.C.
1989-01-01
The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.
Unified studies of structure and reactions in light unstable nuclei
Directory of Open Access Journals (Sweden)
Ito Makoto
2016-01-01
Full Text Available The generalized two-center cluster model (GTCM, which can treat covalent, ionic and atomic configurations in general systems with two inert cores plus valence nucleons, is formulated in the basis of the microscopic cluster model. In this model, the covalent configurations constructed by the molecular orbital (MO method and the atomic (or ionic configuration obtained by the valence bonding (VB method can be described in a consistent manner. GTCM is applied to the light neutron-rich system, 10,12Be = α + α + XN (X = 2,4, and the unified studies of the structural changes and the reaction problem are performed. In the structure study, the calculated energy levels are characterized in terms of the chemical bonding like structures, such as the covalent MO or ionic VB structures. The chemical bonding structures changes from level to level within a small energy interval. In the unbound region, the structure problem with the total system of α + α + XN and the reaction problem, induced by the collision of an asymptotic VB state of α+6,8He, are combined by GTCM. The properties of unbound resonant states are discussed in a close connection to the reaction mechanism, and some enhancement factors originated from the properties of the intrinsic states are predicted in the reaction observables. The unified calculation of the structures and the reactions is applied to the Coulomb shift problem in the mirror system, such the 10Be and 10C nuclei. The Coulomb displacement energy of the mirror systems are discussed.
Studies of (n,t) reactions on light nuclei
International Nuclear Information System (INIS)
Suhaimi, A.
1988-04-01
Cross Sections were measured with uncertainties of 13 to 21% for the reactions 9 Be(n,t)L 7 Li, 10 B(n,t)2α and 14 N(n,t) 12 C over various energy ranges. Irradiations were performed with thermal neutrons and neutrons produced via the reactions 2 H(d,n) 3 He and 9 Be(d,n) 10 B. The tritium produced and accumulated in the irradiated samples was separated by vacuum extraction and measured in the gas phase using anticoincidence β - counting. The residual tritium content was determined for the enriched 10 B and AlN samples. The characteristics of tritium diffusion in B 4 C were studied by high-temperature release experiments. The Li impurity in the AlN sample was determined via neutron activation analysis. The average 9 Be(n,t) 7 Li cross sections lie between 3 and 14 mb for break-up neutrons produced by 17.5 to 31.0 MeV deuterons on a thick Be target. A comparison of the measured data with the values deduced from differential data and neutron spectral distributions shows agreement within ± 21%. The 10 B(n,t)2α cross sections in the neutron energy range of 0.025 eV to 10.6 MeV lie between 12 and 215 mb (with the maximum at about 5.5 MeV). The 14 N(n,t) 12 C cross sections in the neutron energy range of 5.0 to 10.6 MeV lie between 11 and 30 mb. The excitation function shows a fluctuation which is attributed to the decay properties of the compound nucleus 15 N. Detailed Hauser-Feshbach calculations show that the statistical model cannot satisfactorily describe the (n,t) cross section on light nuclei. (orig.)
Transient neutrons flux behaviour in a spherical reactor core
International Nuclear Information System (INIS)
Souza, A.W.A. de.
1978-11-01
This work studies the transient neutron flux in a fast reactor of spherical geometry. The burning of U 235 nuclei is equated and two kinds of reflector were studied. The numeric solutions are then compared with the results for those reflectors. (author) [pt
Unified model studies of N = 84 and N = 80 nuclei
International Nuclear Information System (INIS)
Corrigan, T.M.
1977-12-01
The unified model which couples two valence nucleons to collective quadrupole surface vibrations is applied to the N = 84 and N = 80 nuclei which have respectively two neutrons and two neutron holes outside the closed N = 82 core. Two different interactions between these valence nucleons are considered. The first is a simple pairing interaction, and the second used matrix elements determined in a bare G matrix calculation. The simple pairing force gives much better results. A two step diagonalization is employed to treat the core and valence nucleons consistently. Up to four phonons are retained in the collective basis and the diagonalized (coupled) valence nucleon space is truncated at approximately the same energy. The experimental spectra and electromagnetic properties are well reproduced for both types of nuclei, and in the N = 84 nuclei the four phonon contribution was found to be nonnegligible. In addition, a closed form, multiplicity resolved expression for matrix elements of α (the collective surface coordinate) is presented, and a table of these values for N less than or equal to 6 is given
Studies of high-K isomers in hafnium nuclei
International Nuclear Information System (INIS)
Sletten, G.; Gjoerup, N.L.
1991-01-01
K-isomeric states built on high-Ω Nilsson orbitals from deformation-aligned high-j levels near the Fermi surface are found to cluster in the neutron rich Hf, W and Os nuclei. It has been shown that some of the high seniority states of this type have decay properties that indicate strong mixing of configurations and that in Osmium nuclei γ-softness cause strong deviations from the well established K-selection rule. Also in the Hafnium nuclei is the expected forbiddenness in isomeric decays an order of magnitude smaller than expected from the K-selection rule. A new 9 quasiparticle isomer has been discovered in 175 Hf at I=57/2. This isomer has the anomalous decay as the dominant mode. Other lower seniority states are also identified. At spin 35/2 and 45/2 the deformation aligned states become yrast, but the structure of the yrast line to even higher spins is not yet understood. (author)
Cloud condensation nuclei closure study on summer arctic aerosol
Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.
2011-11-01
We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble
Rotor dynamic studies of a vertical sodium pump supported on a spherical seat
International Nuclear Information System (INIS)
Asokkumar, S.; Ramalingam, P.; Baskar, S.; Balachander, K.; Kale, R.D.
1994-01-01
One of the important areas in the mechanical design of Primary Sodium Pumps (PSP) concerns with the problem of accommodating the differential thermal expansion between the pump support and the discharge pipe which function at substantially different temperatures. A spherical ball resting on a spherical split seat is designed to allow the tilting of the pump without creating significant stresses in the pump casing and the discharge pipe. To ascertain the dynamic performance of the pump and to validate the design, an experimental study was carried out with a 1/4 model spherical seat installed in an existing 50 cu.m/hr pump. The paper discusses the modeling criteria, details of theoretical/experimental studies and results obtained during testing. This paper also discusses details of full size test rig which is under construction. (author). 4 refs., 3 figs., 2 tabs
Understanding nuclei in the upper sd - shell
Energy Technology Data Exchange (ETDEWEB)
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)
2014-08-14
Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.
Superheavy nuclei: a relativistic mean field outlook
International Nuclear Information System (INIS)
Afanasjev, A.V.
2006-01-01
The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP
Deformation and clustering in even-Z nuclei up to Mg studied using AMD with the Gogny force
Energy Technology Data Exchange (ETDEWEB)
Kimura, Masaaki; Sugawa, Yoshio; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics
2001-12-01
Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In a previous paper, we discussed the nuclear binding energies and nuclear radii of He, Be, C, O, Ne and Mg isotopes. In this paper, we mainly consider the deformation properties and the clustering nature of these isotopes. By comparing the calculated results with the AMD results by use of the Skyrme-III (SIII) force, we investigated the differences and similarities between the SIII force and the Gogny force. We find that the Gogny force yields rather better binding energy and larger deformation than the SIII force. We carry out the parity-projected calculations. Parity projection enhances the parity-violating deformation and the cluster structure of certain nuclei. Shape of the deformation energy surface is also changed by parity projection. This causes a competition between the mean-field-like structure and the cluster-like structure. A modified version of AMD, which employs deformed Gaussian wave packets instead of spherical ones, is shown to give large quadrupole moments in the case of Mg isotopes. (author)
Deformation and clustering in even-Z nuclei up to Mg studied using AMD with the Gogny force
International Nuclear Information System (INIS)
Kimura, Masaaki; Sugawa, Yoshio; Horiuchi, Hisashi
2001-01-01
Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In a previous paper, we discussed the nuclear binding energies and nuclear radii of He, Be, C, O, Ne and Mg isotopes. In this paper, we mainly consider the deformation properties and the clustering nature of these isotopes. By comparing the calculated results with the AMD results by use of the Skyrme-III (SIII) force, we investigated the differences and similarities between the SIII force and the Gogny force. We find that the Gogny force yields rather better binding energy and larger deformation than the SIII force. We carry out the parity-projected calculations. Parity projection enhances the parity-violating deformation and the cluster structure of certain nuclei. Shape of the deformation energy surface is also changed by parity projection. This causes a competition between the mean-field-like structure and the cluster-like structure. A modified version of AMD, which employs deformed Gaussian wave packets instead of spherical ones, is shown to give large quadrupole moments in the case of Mg isotopes. (author)
Energy Technology Data Exchange (ETDEWEB)
Myint Kyaw Soe, E-mail: npkyaw1@gmail.com; Goto, Ryosuke; Mishina, Akihiro; Nakanisi, Yoshiaki; Nakashima, Daisuke; Yoshida, Junya; Nakazawa, Kazuma
2017-03-11
An automatic track following system has been successfully developed to follow tracks in nuclear emulsion sheets exposed with beam up to the limit to be observed for the first time. The track followed rate of the system is 99.5% with the assistance of the new techniques. The working speed for a track is less than 1 min through one thick emulsion sheet, whereas it is 15 times faster than that of semiautomatic system with human. The system working for 24 h is applied for the E07 experiment at J-PARC and makes it possible to detect ~10{sup 2} nuclei with double strangeness (S=−2 nuclei) within one year. Regarding analyses to identify nuclear species of S=−2 nuclei, the system shows quite decent job for significant steps such as following tracks emitted to spherical directions from S=−2 nuclei, measurement of lengths of followed tracks, and so on.
Study at high angular momentum of the reflection asymmetry in the 218 Ra transition nuclei
International Nuclear Information System (INIS)
Aiche, M.
1990-07-01
The investigations concerning the 218 Ra nuclei at high angular momentum are discussed. The aim of the study is to enlarge the knowledge on the octupolar phenomena and to analyse its evolution as a funcion of the angular momentum. The 218 Ra nuclei is obtained from the ( 14 C, 4n) reaction. The gamma angular distribution and the gamma-gamma coincidence were measured by means of the Chateau de Cristal multicounter. The reflection asymmetric mean field theory and the bosons interaction model were applied to analyze the data and obtain the structure at high angular moments. The results show the existence of dipole-octupole correlations in the nuclei [fr
Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM
International Nuclear Information System (INIS)
Dong Yongsheng; Hu Wentao; Feng Youliang; Wang Jinbao; Yu Shaoying; Shen Caiwan
2012-01-01
The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104 Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104 Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)
Studies of the neutron single-particle structure of exotic nuclei at the HRIBF
International Nuclear Information System (INIS)
Thomas, J.S.; Bardayan, D.W.; Blackmon, J.C.; Cizewski, J.A.; Greife, U.; Gross, C.J.; Johnson, M.S.; Jones, K.L.; Kozub, R.L.; Liang, J.F.; Livesay, R.J.; Ma, Z.; Moazen, B.H.; Nesaraja, C.D.; Shapira, D.; Smith, M.S.
2004-01-01
The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a 82 Ge beam will be presented
Study on the fatigue crack initiation life under spherical contact
Energy Technology Data Exchange (ETDEWEB)
Cho, Yong Joo; Kim, Tae Wan [Busan National Univ., Busan (Korea, Republic of); Lee, Mun Ju [Samsung Electronics Co., Ltd., Suwon (Korea, Republic of)
2001-08-01
In case of contact fatigue, the accurate calculation of surface tractions and subsurface stress is essential to the prediction of crack initiation life. Surface tractions influencing shear stress amplitude have been obtained by contact analysis based on influence function. Subsurface stress has been obtained by using rectangular patch solutions. In this study, to simulate asperity contact under sliding condition, the tip of asperity was simulated by sphere and to calculate crack initiation life in the substrate, dislocation pileup theory was used.
Study on the fatigue crack initiation life under spherical contact
International Nuclear Information System (INIS)
Cho, Yong Joo; Kim, Tae Wan; Lee, Mun Ju
2001-01-01
In case of contact fatigue, the accurate calculation of surface tractions and subsurface stress is essential to the prediction of crack initiation life. Surface tractions influencing shear stress amplitude have been obtained by contact analysis based on influence function. Subsurface stress has been obtained by using rectangular patch solutions. In this study, to simulate asperity contact under sliding condition, the tip of asperity was simulated by sphere and to calculate crack initiation life in the substrate, dislocation pileup theory was used
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Directory of Open Access Journals (Sweden)
S M A Aftab
Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
Studies of short-lived nuclei in the proximity of closed shells
International Nuclear Information System (INIS)
Omtvedt, J.P.
1995-01-01
In this work the structure of 84,85 Se at the closed N=50 neutron shell, and the 132 Sb, 132 Sn, and 134 Te nuclei, at the doubly closed N=82,Z=50 shells, was studied. The experiments were performed at the OSIRIS fission product mass separator at Studsvik, Sweden. The excited levels of the studied nuclei were populated in β decay. The sources were produced in fission of 235 U in the OSIRIS combined target and ion source. The nuclei were studied by standard nuclear spectroscopy measuring techniques: Singles γ spectra and γγ-coincidence data were obtained. In addition γγ(θ) angular correlation and βγγ(t) triple coincidence ''fast-timing'' ,measurements were performed on the nuclei in the 132 Sn (N=82,Z=50) region. Detailed level schemes for the 84,85 Se, 132 Sb, 132 Sn, 132 Te nuclei were built, greatly improvi our knowledge of the structure of these nuclei. The experimentally deduced transition rates and multipole mixing ratios of the studied 132 Sn region nuclei were compared to theoretical calculations within the random phase approximation framework and related models. Particular attention was paid to the collective properties of nuclei in the 132 Sn region, parametrized by the electrical octupole effective charge. A range of general software spectroscopic tools were developed for the purpose of analysing the experimental data. This included a program, Yggdrasil, which for the first time allowed a complete two-dimensional γγ-coincidence matrix to be analysed on ordinary ''small'' personal computers (PCs). 49 refs., 10 figs., 2 tabs
Studies of short-lived nuclei in the proximity of closed shells
Energy Technology Data Exchange (ETDEWEB)
Omtvedt, J.P.
1995-12-31
In this work the structure of {sup 84,85}Se at the closed N=50 neutron shell, and the {sup 132}Sb, {sup 132}Sn, and {sup 134}Te nuclei, at the doubly closed N=82,Z=50 shells, was studied. The experiments were performed at the OSIRIS fission product mass separator at Studsvik, Sweden. The excited levels of the studied nuclei were populated in {beta} decay. The sources were produced in fission of {sup 235}U in the OSIRIS combined target and ion source. The nuclei were studied by standard nuclear spectroscopy measuring techniques: Singles {gamma} spectra and {gamma}{gamma}-coincidence data were obtained. In addition {gamma}{gamma}({theta}) angular correlation and {beta}{gamma}{gamma}(t) triple coincidence ``fast-timing`` ,measurements were performed on the nuclei in the {sup 132}Sn (N=82,Z=50) region. Detailed level schemes for the {sup 84,85}Se, {sup 132}Sb,{sup 132}Sn, {sup 132}Te nuclei were built, greatly improvi our knowledge of the structure of these nuclei. The experimentally deduced transition rates and multipole mixing ratios of the studied {sup 132}Sn region nuclei were compared to theoretical calculations within the random phase approximation framework and related models. Particular attention was paid to the collective properties of nuclei in the {sup 132}Sn region, parametrized by the electrical octupole effective charge. A range of general software spectroscopic tools were developed for the purpose of analysing the experimental data. This included a program, Yggdrasil, which for the first time allowed a complete two-dimensional {gamma}{gamma}-coincidence matrix to be analysed on ordinary ``small`` personal computers (PCs). 49 refs., 10 figs., 2 tabs.
International Nuclear Information System (INIS)
Bonsignori, K.; Allaart, K.; Egmond, A. van
1983-01-01
A broken-pair study of Sn nuclei is reported in which the model space includes two broken pair states. It is shown that for even Sn nuclei, with a rather simple Gaussian interaction and with single-particle-energies derived from data on odd nuclei, the main features of the excitation spectra up to about 3.5 MeV may be reproduced in this way. The idea of the generalized seniority scheme, that the composition of S-pair operator and that of the D-pair operator may be independent of the total number of pairs, is confirmed by the pair structures which result from energy minimization and diagonalization for each number of pairs separately. A general procedure is described to derive IBA parameters when the valence orbits are nondegenerate. Numerical results for Sn nuclei are given. (U.K.)
Experimental studies of the formation and decay of hot nuclei
International Nuclear Information System (INIS)
Nifenecker, H.; Blachot, J.; Crancon, J.; Gizon, A.; Lleres, A.
1985-06-01
In the following we shall report on a number of measurements made with different projectiles ranging from 12 C to 40 Ar. In most cases the target was 124 Sn. In this case the reported results were obtained by off line γ counting of series of catchers allowing mass and velocity measurements of the quasi compound or quasi target recoils 11 . We shall also refer to some other results using conventional counter techniques and either lightersup(12,13) or heavier targetssup(14,15,16). We shall first examine the cross section for quasi fusion. We shall then adress the question of the limit of momentum transfer and that of the inference of excitation energies from recoil energies. Finally we discuss the possible observation of a threshold in the excitation energy that nuclei can support without breaking apart
Systematic study of iodine nuclei in A∼125 mass region
Energy Technology Data Exchange (ETDEWEB)
Sharma, H. P.; Chakraborty, S.; Kumar, A. [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Banerjee, P. [Division of Nuclear Physics, Saha Institute of Nuclear Physics, Kolkata-700064 (India); Ganguly, S. [Department of Physics, Chandernagore College, Chandannagar-721136 (India); Muralithar, S.; Singh, R. P. [Inter University Accelerator Center, New Delhi-110067 (India); Kumar, A.; Kaur, N. [Department of Physics, Punjab University, Chandigarh-160014 (India); Kumar, S. [Department of Physics and Astrophysics, University of Delhi, New Delhi-110067 (India); Chaturvedi, L. [Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009 (India); Jain, A. K. [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Laxminarayan, S. [Department of Physics, Andhra University, Visakhapatnam-530003 (India)
2014-08-14
Excited states of {sup 127}I were populated via {sup 124}Sn({sup 7}Li,{sup 4}nγ){sup 127}I fusion-evaporation reaction at beam energy of 33 MeV. Multipolarities of several transitions were determined and spins of corresponding states have been confirmed. The band-head spin and parity of an already reported band at 2901.2 keV has been confirmed. Based on the observed characteristic features and by comparing with the systematics of odd mass iodine nuclei, a πg{sub 7/2}⊗νh{sub 11/2}{sup 2} configuration has been proposed for this band. The experimental B(M1)/B(E2) values for πg{sub 7/2} band were compared with the theoretical results of semi classical model of Frauendorf and Donau and found in well agreement.
International Nuclear Information System (INIS)
Saleh, Z.A.; Abdel-Hafez, A.
2002-01-01
Results from EMU-01/12 collaboration for the experimental data on multifragmentation of gold residual nuclei created in the interactions with photoemulsion nuclei at the energy of 10.7 GeV/nucleon are presented together with the experimental data on multifragmentation of krypton created on the interactions with photoemulsion nuclei at energy of 0.9 GeV/nucleon. The data are analyzed in the frame of the statistical model of multifragmentation. It is obvious that there are two regimes for nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with masses close to each other created at different reactions are fragmented practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. These results give an indication that projectiles other than Gold and Krypton may give the same characterization on interaction with emulsion nuclei at high energies
Study of the production of nuclei and anti-nuclei at the LHC with the ALICE experiment
AUTHOR|(INSPIRE)INSPIRE-00508690; Bufalino, Stefania
In the ultra-relativistic lead-lead collisions at the CERN Large Hadron Collider (LHC), a state of matter called Quark Gluon Plasma (QGP) is created. A typical signature of a heavy ion collision (HIC) correlated to the production of the QGP is the large number of particles produced ($\\mathrm{d} N_{\\mathrm{ch}}/\\mathrm{d}\\eta$ up to 2000 in Pb-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV). This high multiplicity environment poses a tremendous experimental challenge on the experiments that have to cope with the high density of signals in their sensitive volume. A Large Ion Collider Experiment (ALICE) has been designed to deal with the harsh environment of a HIC and to study in details the characteristics of the QGP. Among the particles produced in a HIC, light nuclei and their anti-matter companions are of special interest since the production mechanism of such loosely bound states is not clear in high energy collisions. The production rate at the LHC for the lightest of these objects, the deuteron, is a...
Experimental study on practicability of self-created spherical tokamak in coilless STPC-EX machine
International Nuclear Information System (INIS)
Sinman, S.
2002-01-01
The aim of this study is to recognize the physical basis of the alternative self organization mechanism occurred STPC-EX machine. The conventional diagnostic tools are used in this study and for photographic recording, open shutter integrated post-fogging method is preferred. The annular coaxial two plasma current sheets one within other at the same direction are created and flowed on the surface of floating conductive central rod. Consequently, spherical tokamak configurated by new creation mechanism of Dual Axial Z-Pinch. (DAZP) yields fairly high beta of 0.4-0.6 at self created spherical tokamak plasma. Sustainment time of DAZP is 5.6-6.3 mili second. (author)
The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants
International Nuclear Information System (INIS)
Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.
2001-01-01
Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)
Study of the de-excitation of the 44Ti nuclei light charged particles
International Nuclear Information System (INIS)
Papka, Paul
2003-01-01
The deexcitation process of the 44 Ti compound nuclei, produced by fusion-evaporation reactions, has been studied at bombarding energies E lab 44 Ti has been populated through two reactions: 16 O + 28 Si at bombarding energies E lab ( 16 O) = 76, 96 and 112 MeV, and 32 S + 12 C at E lab ( 32 S) = 180 and 225 MeV. The exclusive experimental data, angular and energy distributions, have been analysed with the statistical code CACARIZO. The well identified evaporation channels have been precisely studied to determine the energy distributions of the residual nuclei. The calculations reproduce the sequential emission of α particles in the deexcitation chains, however, the emission of nucleons is partially misunderstood. In both reactions, the energy distribution of the protons indicates a temperature in residual nuclei lower than predicted. The dynamical deformation induced for the highest angular momenta has been quantified with an axis ratio of 2:1. (author) [fr
Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei
International Nuclear Information System (INIS)
Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.
2011-01-01
A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.
Study of Neutron Halo Structure in Interaction of 6He with Nuclei of Photoemulsion
International Nuclear Information System (INIS)
Belovitsky, G.; Konobeevski, E.; Stepanov, A.; Zavarzina, V.; Zuyev, S.; Polukhina, N.; Rusetsky, A.; Starkov, N.; Lukyanov, S.; Sobolev, Yu.
2008-01-01
To investigate the structure of halo of Borromean nuclei, we propose an experimental method of studying quasi-free scattering of proton by the constituents of halo-nuclei in photo emulsion. The experimental study of 6 He + 1 H interaction is performed using 6 He beam of Flerov Laboratory of Nuclear Reactions (JINR, Dubna) at energy of about 10 MeV/u and technique of nuclear photo emulsions. Searching for events of quasi-free scattering and their processing is performed using the PAVICOM-setup at P.N. Lebedev Physical institute
International Nuclear Information System (INIS)
Mach, H.; Baluyut, A.-M.; Smith, D.; Ruchowska, E.; Koester, U.; Fraile, L. M.; Penttilae, H.; Aeystoe, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Ronkainen, J.; Ronkanen, P.; Saastamoinen, A.
2009-01-01
Using the Advanced Time-Delayed method we have studied transition rates in several neutron-rich nuclei at the magic shell closures. These include the heavy Co and Fe nuclei just below the Z = 28 shell closure at the point of transition from spherical to collective structures. Of particular interest is 63 Fe located exactly at the point of transition at N = 37. A substantial increase in the information on this nucleus was obtained from a brief fast timing study conducted at ISOLDE. The new results indicate that 63 Fe seems to depart from a simple shell model structure observed for heavier N = 37 isotones of 65 Ni and 67 Zn.Another region of interest are the heavy Cd and Sn nuclei at N = 72, 74 and the properties of negative parity quasi-particle excitations. These experiments, performed at the IGISOL separator at Jyvaeskylae, revealed interesting properties of the E2 rates in the sequence of E2 transitions connecting the 10 + , 8 + , 6 + , 4 + , 2 + and 0 + members of the multiplet of levels in 122 Sn due to neutrons in the h 11/2 orbit.
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael
2017-11-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.
2017-12-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Critical and shape-unstable nuclei
Cailliau, M; Husson, J P; Letessier, J; Mang, H J
1973-01-01
The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).
The giant resonance and the shape of hot nuclei
Energy Technology Data Exchange (ETDEWEB)
Bracco, A; Camera, F; Million, B; Pignanelli, M [Milan Univ. (Italy). Ist. di Fisica; Gaardhoje, J J; Maj, A; Atac, A [Niels Bohr Inst., Copenhagen (Denmark)
1992-08-01
The gamma decay of the giant dipole resonance is a sensitive tool for investigating how nuclear shape changes with spin and excitation energy, but the information is coded in a subtle way, inasmuch as the shape and orientation of nuclei at finite temperature display large fluctuations. At the time of the conference, the three systems {sup 109-110}Sn, {sup 161-162}Yb and {sup 165-167}Er had recently been studied on the HECTOR spectrometer. The Sn nuclei are spherical in their ground states, and are expected to become oblate under the stress of rotation. The Yb and Er nuclei are prolate, and are expected to become first spherical, then oblate. While the patterns of the measured angular anisotropies are consistent with this general picture, many questions still remain open. 3 refs., 1 tab., 3 figs.
International Nuclear Information System (INIS)
Daly, P.J.
1981-01-01
The structure of nuclei in the A approx. 150 region was investigated by in-beam γ-ray spectroscopy using heavy-ion beams, mostly from the Argonne Tandem-Linac. Results for the nuclei 148 Dy, 149 Dy, 153 Dy, 154 Dy, 149 Ho, and 150 Ho are summarized. The feeding of yrast states in these nuclei and the link between the highest known yrast states and the continuum region were also studied. 6 figures
Spectroscopy of few-particle nuclei around magic 132Sn from fission product γ-ray studies
International Nuclear Information System (INIS)
Zhang, C. T.
1998-01-01
We are studying the yrast structure of very neutron-rich nuclei around doubly magic 132 Sn by analyzing fission product γ-ray data from a 248 Cm source at Eurogam II. Yrast cascades in several few-valence-particle nuclei have been identified through γγ cross coincidences with their complementary fission partners. Results for two-valence-particle nuclei 132 Sb, 134 Te, 134 Sb and 134 Sn provide empirical nucleon-nucleon interactions which, combined with single-particle energies already known in the one-particle nuclei, are essential for shell-model analysis in this region. Findings for the N = 82 nuclei 134 Te and 135 I have now been extended to the four-proton nucleus 136 Xe. Results for the two-neutron nucleus 134 Sn and the N = 83 isotones 134 Sb, 135 Te and 135 I open up the spectroscopy of nuclei in the northeast quadrant above 132 Sn
Nuclear structure studies of exotic nuclei. Progress report, September 1, 1996--August 31, 1997
International Nuclear Information System (INIS)
Winger, J.A.
1997-05-01
This report concerns the current status of the project 'Nuclear Structure Studies of Exotic Nuclei'. Discussed in this report are experiments performed during the current year, status of data analysis, plans and proposals for future experiments, conferences attended, equipment purchases related to the project, and use of graduate and undergraduate students
Studies of yrast and continuum states in A = 140-160 nuclei: Progress report for 1987
International Nuclear Information System (INIS)
Daly, P.J.
1988-02-01
High-spin nuclear phenomena in the mass region around A-150 have been studied by in-beam γ-ray and electron spectroscopy. Recent results for the nuclei 148 Gd, 149 Er, 152 Dy and 154 Dy are summarized. The first in-beam experiments at ATLAS using the Purdue superconducting electron spectrometer are also described. 11 refs., 2 figs
Elastic scattering study of three 4n nuclei systems above the Coulomb barrier
International Nuclear Information System (INIS)
Ashok Kumar; Sarita Kumar; Sunita Kumar
2000-01-01
A comprehensive study of elastic scattering of 4n nuclei, namely 16 O + 40 Ca, 24 Mg + 24 Mg and 32 S + 28 Si is carried out at various incident energies near and above the Coulomb barrier using a semi microscopic approach. In the present work real part of the nucleus-nucleus interaction is microscopically calculated using equivalence relation between RGM and GCM
Theoretical study of elastic electron scattering off stable and exotic nuclei
International Nuclear Information System (INIS)
Roca-Maza, X.; Centelles, M.; Salvat, F.; Vinas, X.
2008-01-01
Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains
Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei
Energy Technology Data Exchange (ETDEWEB)
Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)
2005-01-01
Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.
International Nuclear Information System (INIS)
Scharff-Goldhaber, G.
1979-01-01
It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references
International Nuclear Information System (INIS)
Kimura, Masaaki; Dote, Akinobu; Ohnishi, Akira; Matsumiya, Hiroshi
2009-01-01
This article is originally prepared as the course text for the practice of the AMD course of 'studies of the strangeness nuclei by using the antisymmetrized molecular dynamics (AMD) method' in the Summer School held at KEK and IPCR in 2006-8 for postgraduate as well as undergraduate students and to foster young physicists in the titled area. The fundamental principle and the formalism of the AMD method which have been commonly used in the nuclear physics are explained at first, and it is described how to extend the AMD method to the studies of exotic nuclei especially to hypernuclei. Then calculation procedure is explained in detail so that the readers can understand the structure of exotic nuclei as they follow the process by themselves. It is intended here that they will be able not only to become familiar with the research by using the AMD method but also to visually enjoy the structure of exotic nuclei and will have further interest in this field. (S. Funahashi)
Near and sub-barrier fusion studies with radioactive nuclei: an overview
International Nuclear Information System (INIS)
Majumdar, Harashit
2004-01-01
Full text: Understanding of the reaction mechanism with radioactive nuclei, e.g., halo nuclei, at near barrier energies appears to be a challenging problem at present. Recent experimental and theoretical investigations of fusion of exotic nuclei with stable targets have yielded new insights into the structure of these nuclei and its effects on the fusion reaction dynamics. One interesting and intriguing result of this type of study is the controversy over fusion enhancement in the presence of strong break-up channels. Other novel information include an increase of break-up cross-sections and weakening or absence of threshold anomaly, related to energy dependence of optical model potentials, in the neighbourhood of the barrier. It is believed that the coupling of the entrance channel to different non-elastic channels (including break-up) is responsible for the above phenomena and these aspects are more prominent in the near barrier region. An overview of the experimental studies of fusion excitation function with RIB will be presented
Near and sub-barrier fusion studies with radioactive nuclei: an overview
International Nuclear Information System (INIS)
Majumdar, Harashit
2004-01-01
Full Text: Understanding of the reaction mechanism with radioactive nuclei, e.g., halo nuclei, at near barrier energies appears to be a challenging problem at present. Recent experimental and theoretical investigations of fusion of exotic nuclei with stable targets have yielded new insights into the structure of these nuclei and its effects on the fusion reaction dynamics. One interesting and intriguing result of this type of study is the controversy over fusion enhancement in the presence of strong break-up channels. Other novel information include an increase of break-up cross-sections and weakening or absence of threshold anomaly, related to energy dependence of optical model potentials, in the neighbourhood of the barrier. It is believed that the coupling of the entrance channel to different non-elastic channels (including break-up) is responsible for the above phenomena and these aspects are more prominent in the near barrier region. An overview of the experimental studies of fusion excitation function with RIB will be presented
International Nuclear Information System (INIS)
Rockstroh, J.M.
1977-01-01
Cosmic-ray electrons generate the observed radio-frequency background. Previous attempts in the literature to reconcile quantitatively the measured radio-frequency intensity with the intensity deduced from the electron spectrum measured at earth have culminated in the problem that to get the respective emissivities to agree, an unacceptably high interstellar B field must be chosen. In the light of new experimental data on the emissivity as deduced from H II region studies and on the functional dependence of the diffusion coefficient with solar radius and particle rigidity, the assumptions under which the electron emissivity comparison has been made have been reexamined closely. The paradox between predicted and measured emissivity was resolved by ascribing to the magnetic fields of the galaxy a distribution of magnetic field strengths. From modified synchrotron formulas, the interstellar electron spectrum has been constructed from the radio frequency emission data with greatly improved precision. The interstellar electron spectrum has been determined independently of the solar modulation and provides, therefore, an estimate of the absolute depth of the electron modulation. Then the measured electron, proton, and helium-nuclei fluxes were systematically compared to the predictions of the spherically symmetric Fokker-Planck equation using the electron modulation as a base. A previously unnoticed non-tracking of the modulation parameters was observed during the recent recovery that did not occur during the 1965 to 1969 period. Although the argument could be presented just as well by attributing the anomaly to the nuclei, the discussion here arbitrarily tailored it to the electrons, and this new phenomenon was named, the modulation reluctance of the cosmic-ray electrons
Application of the string method to the study of critical nuclei in capillary condensation.
Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing
2008-10-21
We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.
GALS – setup for production and study of heavy neutron rich nuclei
Directory of Open Access Journals (Sweden)
Zemlyanoy Sergey
2015-01-01
Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.
GALS – setup for production and study of heavy neutron rich nuclei
Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam
2015-01-01
The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.
Freeden, Willi; Schreiner, Michael
2018-01-01
This book presents, in a consistent and unified overview, results and developments in the field of today´s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.
Exclusive studies of the GDR in excited nuclei
International Nuclear Information System (INIS)
Nanal, V.
1998-01-01
The GDR in 164 Er at 62 MeV excitation energy has been studied in coincidence with the evaporation residues, selected using the Argonne fragment mass analyzer (FMA). The 164 Er* has a prolate shape with deformation statistical model fit to the data indicate that similar to the ground state
A study of triton radiative capture in some light nuclei
International Nuclear Information System (INIS)
Schaeffer, Michel.
1975-01-01
The aim of this work is to complete the knowledge of the nucleon Giant Dipole Resonance (G.D.R.) by means of the study of radiative capture of complex particles: tritons. The following reactions were studied: 12 C(t,γ 0 ) 15 N, 16 O(t,γ) 19 F, 20 Ne(t,γ) 23 Na, 24 Mg(t,γ 0 ) 27 Al, 24 Mg(t,γ 1 ) 27 Al*, 23 Na(t,γ 0 ) 26 Mg, 23 Na(t,γ) 26 Mg* between between 1.5 and 3.5MeV incident triton energy. The detector was a 25x30cm NaI(Tl) crystal [fr
Systematic studies for medium-heavy even-even nuclei
International Nuclear Information System (INIS)
Chen, Y.; Zhao, Y.M.; Chen, J.Q.
1995-01-01
The systematics for the excitation energies of the ground, β, and γ bands are presented using the empirical total np interaction V NP . Some regularities found in the previous studies are tested by the systematics in the V NP schemes. The systematics of the β and γ bands are presented in detail. Elegant regularities are observed for the excitation energies. The correlation phenomenon of the general behavior among different bands within each major shell is pointed out
Cohen, Taco S.; Geiger, Mario; Koehler, Jonas; Welling, Max
2018-01-01
Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined t...
The Study of Spherical Cores with a Toroidal Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)
2017-04-01
Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.
Further microscopic studies of the fission barriers of heavy nuclei
International Nuclear Information System (INIS)
Nhan Hao, T.V.; Le Bloas, J.; Bonneau, L.; Quentin, P.; Koh, Meng-Hock
2012-01-01
Two systematic sources of error in most current microscopic evaluations of fission-barrier heights are studied. They are concerned with an approximate treatment of the Coulomb exchange terms (known as the Slater approximation) in the self-consistent mean-fields and the projection on good parity states (e.g., of positive parity for the spontaneous fission of an even–even nucleus) of left–right reflection asymmetric intrinsic solutions (e.g., around the second barrier). Approximate or unprojected solutions are shown to lead each to an underestimation of the barrier heights by a few hundred keV. (author)
Studies of heavy-ion reactions and transuranic nuclei
International Nuclear Information System (INIS)
Schroeder, W.U.; Huizenga, J.R.
1991-08-01
The development of the ''cold-fusion'' episode is reviewed. Ongoing studies of compound-nucleus formation and decay via the neutron multiplicity distribution confirm the validity of conventional statistical theory. The excitation energy partition in near-barrier damped 58 Ni + 208 Pb collisions is found to be largely independent of the direction of net mass transfer, supporting a diffusion-like nucleon-exchange mechanism. Exclusive experiments on the heavy reaction systems 197 Au + 208 Pb and 209 Bi + 136 Xe in the Fermi-energy domain have revealed important new insights into the reaction mechanism, which is found to be dominated by damped, binary processes. The effectiveness of the neutron multiplicity as an impact-parameter filter is demonstrated. It is shown that very-heavy-ion reactions lead to transient nuclear systems with temperatures in excess of τ = 6 MeV and transfer of large, aligned spins to reaction fragments. The first measurements of neutrons in coincidence with kinematically identified reaction fragments provide evidence for the binary, sequential character of dissipative collisions in the Fermi-energy domain. Also for the first time, a full event characterization was achieved for nuclear reactions in terms of neutrons and charged particles. Technical information on this experiment is provided. First results yield strong evidence for dominantly binary primary reaction dynamics of even highly dissipative 209 Bi + (28MeV/u) 136 Xe collisions, associated with several intermediate-mass fragments
Directory of Open Access Journals (Sweden)
Cheng Liu
Full Text Available The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width.
Capillary condensation hysteresis in overlapping spherical pores: a Monte Carlo simulation study.
Gor, Gennady Yu; Rasmussen, Christopher J; Neimark, Alexander V
2012-08-21
The mechanisms of hysteretic phase transformations in fluids confined to porous bodies depend on the size and shape of pores, as well as their connectivity. We present a Monte Carlo simulation study of capillary condensation and evaporation cycles in the course of Lennard-Jones fluid adsorption in the system of overlapping spherical pores. This model system mimics pore shape and connectivity in some mesoporous materials obtained by templating cubic surfactant mesophases or colloidal crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical pore: capillary condensation takes place upon achieving the limit of stability of adsorption film and evaporation is triggered by cavitation. When the window is large enough, the capillary condensation shifts to a pressure higher than that of the isolated pore, and the possibility for the equilibrium mechanism of desorption is revealed. These finding may have important implications for practical problems of assessment of the pore size distributions in mesoporous materials with cagelike pore networks.
A satellite born charged particles telescope for the study of cosmic ray nuclei
Energy Technology Data Exchange (ETDEWEB)
De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)
1995-09-01
The description of the high energy particle telescope NINA for the study of cosmic ray nuclei is presented. The instrument will be installed on board of the Resource 01 satellite and will fly on a polar orbit at 690 Km. The telescope consists on a pile of 16 detecting planes each of them is composed by two silicon strip detectors with perpendicular strips and has a total area of 60x60mm{sup 2}. The experiment goals are the study of cosmic ray protons and nuclei in the energy range 12-100 MeV/amu. It will be sensitive to the anomalous component and will also make the observation of the large solar flare events and geophysical phenomena as well. This experiment is the first step of the program RIM whose goal is the satellite study of anti particles in primary cosmic rays.
International Nuclear Information System (INIS)
Bazin, D.
1987-07-01
Among the nuclear mechanisms used for the production of nuclei far from stability, the projectile fragmentation process has recently proved its efficiency. However, at Fermi energies, one has to take into account some collective and relaxation effects which drastically modify the production cross-sections. The spectroscopic study of very neutron-rich nuclei is very dependent of these production rates. A study of beta-delayed neutron emission which leads to new measurements of half-lives and neutron delayed emission probabilities is achieved with a liquid scintillator detector. The results which are then compared to different theories are of interest for the understanding of natural production of heavy elements (r processus) [fr
Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry
Toque, Nathalie
1996-12-01
This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.
Study on Physics of Unstable Nuclei within the Framework of Vietnam-France Joint Laboratory
International Nuclear Information System (INIS)
Le Xuan Chung; Dao Tien Khoa; Nguyen Tuan Khai; Do Cong Cuong; Tran Huu Phat; Bui Minh Loc; Tran Viet Nhan Hao
2015-01-01
The study on nuclear physics is presented by both theory and experiment. For theory, we present the analyses on the scatterings of nucleon (proton and neutron) and nucleus. This approach is known as the simplest way to study nuclei of interest because nucleon is screen-tested. Precise nuclear radii of "6","8He has been obtained from the Glauber analysis on the experimental data. The microscopic calculations of elastic nucleon-nucleus scattering off double-closed shell nuclei "1"6O and "2"0"8Pb at energies below 50 MeV were performed. This work will be a key input for the prediction of elastic and inelastic scattering reactions of nuclei far from the stability valley. Through analysis on the charge-exchange ("3He,t) reaction, the neutron skins of "2"0"8Pb and "9"0Zr have been obtained which were in a good agreement with previous works. Further study on elastic α+α scattering at low energy gives possible explanation of a long-standing inconsistency of the double-folding model in its study on this system and α-nucleus scattering using the same realistic density dependent M3Y interaction. For the experiment, the experiments performed at RIKEN and IPN Orsay are reported. The results from the RIKEN experiments shows that the 2"+ and 4"+ energies of "6"6Cr and "7"0","7"2Fe were measured for the first time. The preliminary results on the data of "6"8Fe show 4 de-excited gammas on the spectrum of this isotope. The level scheme of "6"8Fe is built. The results from the IPN Orsay experimental data analysis improved level schemes of the neutron-rich "8"3","8"4Ge and "8"2As isotopes. The experimental data of unstable nuclei is significant in nuclear structure or shell evolution study. (author)
Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei
2002-01-01
The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1
A study of 11 Be an 11 Li halo nuclei by core breakup reactions
International Nuclear Information System (INIS)
Grevy, S.
1997-01-01
The study of light nuclei with large neutron excess are very useful for the understanding of nuclear matter far from stability. The nuclear halo phenomenon has been observed for the first time for Z 11 Be and 11 Li halo nuclei. In this channel, the neutron is supposed not to participate to the reaction and then, when detected, to carry out the same properties as in the halo nucleus. The deduced widths of the neutron momentum distributions are different from the one extracted from the core distributions and with the more recent theoretical models. From these studies, it is also stressed that the properties of the core are essential to understand the halo phenomenon. In particular, the correlation between the core vibrations and the halo neutron are able to explain the emergence of the halo in 11 Be. (author)
A study of nuclei far from stability by using the JAERI ISOL
International Nuclear Information System (INIS)
Ichikawa, Shin-ichi
1988-01-01
Since a mass separator was installed at the JAERI tandem accelerator facilities, a high-temperature ion source, a tape transport system, a radiation detection system and a data acquisition system have been constructed for online experiments. Although the ion source can ionize effectively alkali, alkaline-earth and rare-earth elements, further we have developed a new technique applying the favoured formation of monoxide ions of La and Ce to strengthen elemental selectivity. Taking advantage of the technique and heavy-ion fusion-nucleon evaporation reactions, we are studying nuclei in the light rare-earth region. So far, decays of odd-odd nuclei such as 122,124 , 126 La and 128,130 Pr have been studied, and the isotope 121 La has been newly identified with a half-life of 5.2 ± 0.2 s. (author)
Variational Monte Carlo studies of electromagnetic structure of few-body nuclei
International Nuclear Information System (INIS)
Schiavilla, R.
1990-01-01
The electromagnetic structure and dynamic response of A = 2, 3 and 4 nuclei are studied with the Variational Monte Carlo method by using wave functions based on realistic nuclear interactions. Recent results obtained for the elastic form factors of 2 H, 3 H, 3 He and 4 He, the radiative neutron capture on 3 He at thermal energies, and the reaction 4 He(e,e'p) 3 H are reported. 24 refs., 5 figs
Study of very neutron-rich nuclei produced by means of a 48Ca beam
International Nuclear Information System (INIS)
Lewitowicz, M.; Artukh, A.G.
1991-01-01
The results of experiments with a 48 Ca beam performed at GANIL are presented and discussed. More than 30 very neutron-rich isotopes were identified or studied for the first time. The evidence for particle-unstable character of the 26 O isotope is reported. Half-life measurements for light neutron rich nuclei are compared with different theoretical predictions. (author) 14 refs.; 6 figs.; 1 tab
Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao
2016-01-01
In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment.
Spectroscopic study of 228-234Th nuclei using multi-nucleon transfer reactions
International Nuclear Information System (INIS)
Amzal, N.; Butler, P.A.; Cann, K.J.; Greenlees, P.T.; Jones, G.D.; Cocks, J.F.C.; Asztalos, S.; Clark, R.M.; Deleplanque, M.A.; Diamond, R.M.; Fallon, P.; Lees, I.Y.; Machiavelli, A.O.; MacLeod, R.W.; Stephens, F.S.; Jones, P.M.; Julin, R.; Broda, R.; Fornal, B.; Smith, J.F.; Lauritsen, T.; Bhattacharyya, P.; Zhang, C.T.
1999-01-01
Light-actinide nuclei in the octupole deformed region have been populated using multi-nucleon transfer from 232 Th. The energy level schemes of several thorium isotopes with A=228-234 have been extended up to I∼24ℎ and negative parity states have been observed for the first time in 234 Th. A systematic study of the difference in alignment between the positive- and negative-parity bands in thorium nuclei in this mass region shows that 228,230,234 Th behave like octupole vibrators, in contrast with 224,226 Th, which are octupole-deformed in character. An intrinsic electric dipole moment has been measured for the first time in 234 Th. The small value obtained is consistent with the vibrational description of this nucleus. (author)
A study on heat transfer characteristics of spherical and fibrous alumina nanofluids
International Nuclear Information System (INIS)
Kim, Chang Kyu; Lee, Gyoung-Ja; Rhee, Chang Kyu
2012-01-01
Highlights: ► Spherical and fibrous alumina nanoparticles were prepared by pulsed wire evaporation and hydrolysis methods. ► Fibrous alumina nanofluid exhibited higher thermal conductivity enhancement than spherical one due to entangled structure of nanofibers with high aspect-ratio. ► Decreasing rate of viscosity with temperature for fibrous alumina nanofluid was much larger than that for spherical one. - Abstract: Ethylene glycol based nanofluids containing spherical/fibrous alumina nanoparticles were synthesized by pulsed wire evaporation and hydrolysis methods. The crystallographic and morphological properties of the prepared nanoparticles were analyzed by X-ray diffraction, nitrogen gas adsorption and transmission electron microscopy. The average diameter of spherical alumina nanoparticles was about 80 nm and the alumina nanofibers exhibited a high aspect ratio (length/width). The viscosity and thermal conductivity of the spherical/fibrous alumina nanofluids were experimentally measured in the temperature range from 25 to 80 °C. For the fibrous alumina nanofluid, the increase of temperature raised thermal conductivity but lowered viscosity. On the other hand, for the spherical alumina nanofluid, both thermal conductivity and viscosity were decreased with increasing temperature. In particular, the fibrous alumina nanofluid exhibited a higher enhancement of thermal conductivity than the spherical one due to the well-connected structure between entangled nanofibers with high aspect ratio.
Yu, Hua-Gen
2008-05-21
A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.
Luminescence studies of CdS spherical particles via hydrothermal synthesis
Xu, Guo Qin; Liu, Bing; Xu, Shi Jie; Chew, Chwee Har; Chua, Soo Jin; Gana, Leong Ming
2000-06-01
The spherical particles of CdS consisting of nanoparticles (∼100 nm) were synthesized by a hydrothermal process. The particle formation and growth depend on the rate of sulfide-ion generation and diffusion-controlled aggregation of nanoparticles. As demonstrated in the profiles of powder X-ray diffraction, the crystalline phases are governed by the reaction temperature. Photoluminescence studies on CdS particles show two emission bands at the room temperature. The red emission at 680 nm is due to sulfur vacancies, and a new infrared red (IR) emission at 760 nm is attributed to self-activated centers. A red shift of IR band with the decrease of temperature was explained with a configurational coordinate model. The different saturation limits for the red and IR bands are discussed in terms of the formation of donor-acceptor pairs and exciton in CdS particles.
Experimental study of potential structure in a spherical IEC fusion device
International Nuclear Information System (INIS)
Gu, Y.; Miley, G.H.
2000-01-01
The spherical inertial-electrostatic confinement (SIEC) concept is designed to focus and accelerate ions and electrons radially inward towards the center of a negatively biased, highly transparent spherical grid. The converging ions create a high-density plasma core where a high fusion rate occurs. In addition, under proper conditions, the ion and electron flows create a space-charge induced double potential well (a negative potential well nested inside a positive potential well). This structure traps high-energy ions within the virtual anode created by the double potential, providing a high fusion density in the trap volume. The present experiment was designed to verify double potential well formation and trapping by a measurement of the radial birth profile of energetic (3-MeV) protons produced by D-D fusion reactions in a deuterium discharge. This experiment was designed to operate at high perveance (0.4 to 1.4 mA/kV 3/2 ), where formation of a double well is predicted theoretically. Additional steps to aid well formation included: use of the unique Star mode of operation to obtain ion beam focusing down to approximately 1.6 H the ballistic limit and the incorporation of a second electrically floating grid (in addition to the focusing/accelerating cathode grid) to reduce the ion radial energy spread to 0.34 mA/kV 3/2 . As the perveance increased, the depth of the double well also increased. At the maximum perveance studied, 1.38 mA/kV 3/2 (corresponding to 80 mA and 15 kV), the negative potential well depth, corresponding to the measured proton-rate density, was estimated to be 22%--27% of the applied cathode voltage. This represents the first conclusive demonstration of double well formation in an SIEC, since prior measurements by other researchers typically yielded marginal or negative results
International Nuclear Information System (INIS)
Chomaz, Ph.
2000-01-01
This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information
Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei
Energy Technology Data Exchange (ETDEWEB)
De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)
1997-08-01
The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.
International Nuclear Information System (INIS)
1986-03-01
The project dealt with angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei. Both partial projects were worked in the period of the report. (orig.) [de
Neutron halo in deformed nuclei
International Nuclear Information System (INIS)
Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang
2010-01-01
Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.
Collective properties of drip-line nuclei
Energy Technology Data Exchange (ETDEWEB)
Hamamoto, I. [Univ. of Lund (Sweden); Sagawa, H. [Univ. of Aizu, Fukushima (Japan)
1996-12-31
Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.
Directory of Open Access Journals (Sweden)
Ion BULAC
2013-05-01
Full Text Available Due to technical deviations, in the elements of the 4R spatial spherical mechanism appear efforts thatadditionally loads the mechanism, efforts that can be determined with the calculation algorithm that will bepresented in this paper
Study of Cr52 and Ca40 nuclei by electron scattering
International Nuclear Information System (INIS)
Blum, Daniel
1966-01-01
As high energy electron scattering is a powerful mean to study nuclear structure, this research thesis first reports and comments results obtained while taking the Born approximation into account, and which are useful to interpret electron scattering experiments. The author describes how nucleus charge distribution parameters are obtained from these results of elastic scattering, and then addresses the case of inelastic scattering. Three nuclear models are presented. Then, after a brief presentation of the characteristics of the experimental installation, the author describes how raw results are processed to obtain cross sections, and discusses errors. The last parts address the study of chromium 52 and calcium 40 nuclei
Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Kimura, M. [Hokkaido University, Department of Physics, Sapporo (Japan); Hokkaido University, Nuclear Reaction Data Centre, Faculty of Science, Sapporo (Japan); Suhara, T. [Matsue College of Technology, Matsue (Japan); Kanada-En' yo, Y. [Kyoto University, Department of Physics, Kyoto (Japan)
2016-12-15
We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this ''molecular-orbit picture'' reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering. (orig.)
On the study of level density parameters for some deformed light nuclei
International Nuclear Information System (INIS)
Sonmezoglu, S.
2005-01-01
The nuclear level density, which is the number of energy levels/MeV at an excitation energy Ex , is a characteristic property of every nucleus. Total level densities are among the key quantities in statistical calculations in many fields, such as nuclear physics, astrophysics, spallation s neutrons measurements, and studies of intermediate-energy heavy-ion collisions. The nuclear level density is an important physical quantity both from the fundamental point of view as well as in understanding the particle and gamma ray emission in various reactions. In light and heavy deformed nucleus, the gamma-ray energies drop with decreasing spin in a very regular fashion. The nuclear level density parameters have been usually used in investigation of the nuclear level density. This parameter itself changes with excitation energy depending on both shell effect in the single particle model and different excitation modes in the collective models. In this study, the energy level density parameters of some deformed light nucleus (40 C a, 47 T i, 59 N i, 79 S e, 80 B r) are determined by using energy spectrum of the interest nucleus for different band. In calculation of energy-level density parameters dependent upon excitation energy of nuclei studied, a model was considered which relies on the fact that energy levels of deformed light nuclei, just like those of deformed heavy nuclei, are equidistant and which relies on collective motions of their nucleons. The present calculation results have been compared with the corresponding experimental and theoretical results. The obtained results are in good agreement with the experimental results
Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment
International Nuclear Information System (INIS)
Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.
2010-01-01
The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-α transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D 2 , LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.
Self-consistent study of nuclei far from stability with the energy density method
Tondeur, F
1981-01-01
The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densities, shell structure, even-odd mass differences, single-particle potentials and nuclear deformations. A few possible consequences of the results for astrophysical problems are briefly considered. The predictions of the model in the super- heavy region are summarised. (34 refs).
Nonperturbative study of the damping of giant resonances in hot nuclei
International Nuclear Information System (INIS)
De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.
1992-01-01
The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space
Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite
International Nuclear Information System (INIS)
Sanchez, D.
2010-06-01
The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion
Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres, V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Pryanikov, D. S.; Semak, A. A.; Stavinsky, A. V.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimansky, S. S.
2017-11-01
A two-arm spectrometer FLUKTON for investigations in the field of relativistic nuclear physics at U70 energies is proposed to be constructed on base of the existing detector SPIN (IHEP, Protvino). The main objective is to obtain new data on clusters of cold superdense nuclear matter. Interaction of a high intensity proton beam with nuclear targets and an ion beam with liquid hydrogen and nuclear targets will be studied.
A study of charge-pickup interactions by (158A GeV) Pb nuclei
International Nuclear Information System (INIS)
Sher, G.; Shahzad, M.I.
2012-01-01
Study of the relativistic heavy-ion collision is important to focus on probing phase transitions between hadrons and quark-gluon phases in the extreme conditions of temperature and density of nuclear matter formed in the collisions. These states of nuclear matter are expected to be created in relativistic nuclear collisions with large overlap of interacting nuclei, the Lorentz-boosted Coulomb potential Vc proportional to alpha gamma Z/b of a partner with charge Z is very strong, where b is impact parameter and is the fine structure constant. Either one or both nuclei may be disintegrated by the electromagnetic forces in ultra-peripheral collisions at b = R1 + R2, where R1 and R2 are the nuclear radii. This distinct feature of electromagnetic dissociation makes it possible to study the behavior of nuclear matter under electromagnetic fields. The nuclear charge-pickup ( delta Z = +1) by Pb projectiles at energy 158A GeV interacting with targets Bi, Pb, Cu and Al was investigated using CR39 nuclear track detectors. The target-detector stacks were exposed at CERN SPS beam facility. The projectile and fragments charge states have been identified using the etch-cone lengths for charge-pickup at Z = 83 of residual nuclei. Our measured charge-pickup cross sections (delta Z = +1) are shown. It was observed that for the heavy targets the increase in the cross section is anticipated by substantial contribution of electromagnetic dissociation process of production by virtual photons which is almost negligible at 10.6A GeV. In the light target region, our measured cross sections and charge-pickup cross sections reported at energy 10.6A GeV show dominant nuclear contribution and very small contribution of electromagnetic dissociation term. A strong dependence of charge-pickup cross sections on the target mass number was observed particularly in the heavy targets. (orig./A.B.)
Study of neutron-proton pairing in N=Z unstable nuclei through transfer reactions
International Nuclear Information System (INIS)
Le Crom, B.
2016-01-01
A nucleus is described as a set of independent neutrons and protons linked by a mean-field potential. However, in order to have a better description one needs to take into account some residual interactions such as pairing. Neutron-neutron and proton-proton pairings are well-studied but neutron-proton pairing is not well-known. np pairing can be isovector pairing such as nn and pp pairing or isoscalar which is yet unknown. Over-binding of N=Z nuclei could be a manifestation of np pairing. We have studied np pairing through transfer reactions. In this case, the cross-section of np pair transfer is expected to be enhanced in the presence of important np pairing. np pairing is expected to be important in N=Z nuclei with high J orbitals. Since the development of radioactive beam facilities, such beams are only available. The experiment was performed at GANIL with an efficient set-up so as to detect products from the (p, 3 He) transfer reaction. This reaction is affected by isovector and isoscalar np pairing. We used 56 Ni and 52 Fe beams so as to see the effect of the occupancy of 0f 7/2 shell on the np pairing. First, we analysed the data from the 56 Ni(p,d) 55 Ni reaction and we compared the results with the literature to validate analysis procedure. After analysing data from the 56 Ni(p, 3 He) 54 Co reaction and extracting the population of the various states of 54 Co, we obtained information about the relative intensity between isoscalar and isovector np pairing in 56 Ni showing the predominance of isovector np pairing in this nucleus. Moreover, in the framework of developing a new charged particle detector, research on the discrimination of light nuclei using pulse shape analysis was performed and is also presented. (author)
A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach
Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.
2017-12-01
This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective
International Nuclear Information System (INIS)
Foucher, R.
1979-01-01
If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed
A model experiment to study swallowing of spherical and elongated particles
Directory of Open Access Journals (Sweden)
Marconati Marco
2017-01-01
Full Text Available Swallowing disorders are not uncommon among elderly and people affected by neurological diseases. For these patients the ingestion of solid grains, such as pharmaceutical oral solid formulations, could result in choking. This generally results in a low compliance in taking solid medications. The effect of the solid medication size on the real or perceived ease of swallowing is still to be understood from the mechanistic viewpoint. The interplay of the inclusion shape and the rheology of the liquid being swallowed together with the medication is also not fully understood. In this study, a model experiment was developed to study the oropharyngeal phase of swallowing, replicating the dynamics of the bolus flow induced by the tongue (by means of a roller driven by an applied force. Experiments were performed using a wide set of solid inclusions, dispersed in a thick Newtonian liquid. Predictions for a simple theory are compared with experiments. Results show that an increase in the grain size results in a slower dynamics of the swallowing. Furthermore, the experiments demonstrated the paramount role of shape, as flatter and more streamlined inclusions flow faster than spherical. This approach can support the design of new oral solid formulations that can be ingested more easily and effectively also by people with mild swallowing disorders.
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
International Nuclear Information System (INIS)
Urban, Jeffry Todd
2004-01-01
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
Energy Technology Data Exchange (ETDEWEB)
Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)
2004-01-01
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an
A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations
Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.
1985-01-01
Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.
International Nuclear Information System (INIS)
Stutman, D.; Finkenthal, M.; Tritz, K.; Redi, M. H.; Kaye, S. M.; Bell, M. G.; Bell, R. E.; LeBlanc, B. P.; Hill, K. W.; Medley, S. S.; Menard, J. E.; Rewoldt, G.; Wang, W. X.; Synakowski, E. J.; Levinton, F.; Kubota, S.; Bourdelle, C.; Dorland, W.; The NSTX Team
2006-01-01
Electron transport is rapid in most National Spherical Torus Experiment, M. Ono et al., Nucl. Fusion 40, 557 (2000) beam heated plasmas. A regime of improved electron confinement is nevertheless observed in low density L-mode (''low-confinement'') discharges heated by early beam injection. Experiments were performed in this regime to study the role of the current profile on thermal transport. Variations in the magnetic shear profile were produced by changing the current ramp rate and onset of neutral beam heating. An increased electron temperature gradient and local minimum in the electron thermal diffusivity were observed at early times in plasmas with the fastest current ramp and earliest beam injection. In addition, an increased ion temperature gradient associated with a region of reduced ion transport is observed at slightly larger radii. Ultrasoft x-ray measurements of double-tearing magnetohydrodynamic activity, together with current diffusion calculations, point to the existence of negative magnetic shear in the core of these plasmas. Discharges with slower current ramp and delayed beam onset, which are estimated to have more monotonic q-profiles, do not exhibit regions of reduced transport. The results are discussed in the light of the initial linear microstability assessment of these plasmas, which suggests that the growth rate of all instabilities, including microtearing modes, can be reduced by negative or low magnetic shear in the temperature gradient region. Several puzzles arising from the present experiments are also highlighted
Study on the exposure of spherical microtargets to a (1-3) TW iodine laser pulse
International Nuclear Information System (INIS)
Zaretskij, A.I.; Kirillov, G.A.; Kormer, S.B.; Kochemasov, G.G.; Murugov, V.M.; Sukharev, S.A.
1983-01-01
Investigations carried out at the photo dissociation iodine laser ''Iskra-4'' (PIL) with the aim of improving laser parameters and studying the interaction of laser radiation with microtargets filled with TD gas, are reviewed. PIL ''Iskra-4'' has the radiation energy maximum in the world of approximately 1.8 kJ in one beam with the light aperture approximately 60 cm, pulse duration approximately 0.8 ns, beam divergence theta approximately 0.3-0.4 mrad and the contrast more than 10 6 . A good direction of laser radiation is achieved due to . the optimization of the composition of working medium, pressure of its components, and other factors that permits to minimize the gradient of refraction index without considerable reduction of the stored energy. The problem of selecting the regime of affecting of the ''exploding shell'' type and obtaining of short duration pulses is generally considered. The assigning generator and results of experiments into irradiation of spherical microtargets filled with DT gas are described. The neutron yield of up to 10 6 neutrons in the case of 50 time volumetric compression is obtained for the first time with the aid of PIL
Study of even-Z nuclei up to Mg with the Gogny force using AMD
Energy Technology Data Exchange (ETDEWEB)
Sugawa, Yoshio; Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics
2001-12-01
Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In this study, we are mainly concerned with the binding energies and radii of light even-Z isotopes, namely He, Be, C, O, Ne and Mg. Using a new technique to calculate the density dependent term of the effective force, we have realized fast and accurate calculations. From a comparison with Skyrme SIII results within the same AMD framework, we find that the Gogny and SIII forces well reproduce the experimental binding energies of stable nuclei. The two forces give almost equal radii, except in the case of {sup 7}Be and {sup 9}Be. For both forces, approximate treatment of the center-of-mass kinetic energy causes overestimation of the binding energy compared with the exact treatment. It also causes a decrease of the nuclear deformation compared with the exact treatment. We also carry out an energy variation after the parity projection. With regard to the binding energies and radii, parity-projected calculations do not exhibit a large difference compared to non-projected results, although the density distribution and clustering features are often significantly changed by the parity projection. (author)
Study of even-Z nuclei up to Mg with the Gogny force using AMD
International Nuclear Information System (INIS)
Sugawa, Yoshio; Kimura, Masaaki; Horiuchi, Hisashi
2001-01-01
Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In this study, we are mainly concerned with the binding energies and radii of light even-Z isotopes, namely He, Be, C, O, Ne and Mg. Using a new technique to calculate the density dependent term of the effective force, we have realized fast and accurate calculations. From a comparison with Skyrme SIII results within the same AMD framework, we find that the Gogny and SIII forces well reproduce the experimental binding energies of stable nuclei. The two forces give almost equal radii, except in the case of 7 Be and 9 Be. For both forces, approximate treatment of the center-of-mass kinetic energy causes overestimation of the binding energy compared with the exact treatment. It also causes a decrease of the nuclear deformation compared with the exact treatment. We also carry out an energy variation after the parity projection. With regard to the binding energies and radii, parity-projected calculations do not exhibit a large difference compared to non-projected results, although the density distribution and clustering features are often significantly changed by the parity projection. (author)
Energy Technology Data Exchange (ETDEWEB)
Piercey, R.B.
1989-07-01
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.
Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989
Energy Technology Data Exchange (ETDEWEB)
Piercey, R.B.
1989-07-01
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.
Chalian, Hamid; Seyal, Adeel Rahim; Rezai, Pedram; Töre, Hüseyin Gürkan; Miller, Frank H; Bentrem, David J; Yaghmai, Vahid
2014-01-10
The accuracy for determining pancreatic cyst volume with commonly used spherical and ellipsoid methods is unknown. The role of CT volumetry in volumetric assessment of pancreatic cysts needs to be explored. To compare volumes of the pancreatic cysts by CT volumetry, spherical and ellipsoid methods and determine their accuracy by correlating with actual volume as determined by EUS-guided aspiration. Setting This is a retrospective analysis performed at a tertiary care center. Patients Seventy-eight pathologically proven pancreatic cysts evaluated with CT and endoscopic ultrasound (EUS) were included. Design The volume of fourteen cysts that had been fully aspirated by EUS was compared to CT volumetry and the routinely used methods (ellipsoid and spherical volume). Two independent observers measured all cysts using commercially available software to evaluate inter-observer reproducibility for CT volumetry. The volume of pancreatic cysts as determined by various methods was compared using repeated measures analysis of variance. Bland-Altman plot and intraclass correlation coefficient were used to determine mean difference and correlation between observers and methods. The error was calculated as the percentage of the difference between the CT estimated volumes and the aspirated volume divided by the aspirated one. CT volumetry was comparable to aspirated volume (P=0.396) with very high intraclass correlation (r=0.891, Pvolumetry. There was excellent inter-observer correlation in volumetry of the entire cohort (r=0.997, Pvolumetry is accurate and reproducible. Ellipsoid and spherical volume overestimate the true volume of pancreatic cysts.
International Nuclear Information System (INIS)
Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.
2005-01-01
Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER
Telles, J. E.; de Souza, R. E.; Penereiro, J. C.
1990-11-01
RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL
Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei
International Nuclear Information System (INIS)
Stolk, A.
1988-01-01
A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs
Study of NpNn scheme in some near magic light nuclei
International Nuclear Information System (INIS)
Pradeep Kumar; Singh, M.; Rajesh Kumar; Singh, Y.; Varshney, A.K.; Gupta, D.K.
2014-01-01
Study of N p N n is undertaken in present work on light mass near magic even nuclei e.g. Ar, Ca, Ti, Zn, Cr and Ni. Besides deformation β, the energy head of ground band E2 1 + is also studied in N p N n scheme. It is important to look at both of these quantities β and E2 1 + since β is derived from one basic observable B(E2; 2 1 + → 0 1 + ) and E2 1 + is another generally known quantity. The values of B(E2; 2 1 + → 0 1 + and E2 1 + and reach their saturation following different physics and as such while values decrease, the β values increase with the increase of N p N n values
Experimental study of the E2 strength distribution in the 12C and 16O nuclei
International Nuclear Information System (INIS)
Buenerd, M.; California Univ., Berkeley; Gelbke, C.K.; Hendrie, D.L.; Mahoney, J.; Olmer, C.; Scott, D.K.
1977-01-01
The distribution of the E2 strength in 12 C and 16 O nuclei is investigated by inelastic scattering of 3 He. The giant quadrupole resonance is found to be splitted into several states in both nuclei and exhausts 31% and 37% of the quadrupole energy weighted sum rule (EWSR) in 12 C and 16 O respectively
Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei
2002-01-01
% PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.
Neutron scattering on deformed nuclei
International Nuclear Information System (INIS)
Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.
1984-09-01
Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP
Transfer reaction studies in the region of heavy and superheavy nuclei at SHIP
Energy Technology Data Exchange (ETDEWEB)
Heinz, S; Comas, V; Hofmann, S; Ackermann, D; Heredia, J; Hessberger, F P; Khuyagbaatar, J; Kindler, B; Lommel, B; Mann, R, E-mail: s.heinz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)
2011-02-01
We studied multi-nucleon transfer reactions in the region of heavy and superheavy nuclei. The goal was to investigate these reactions as possibility to create new superheavy neutron-rich isotopes, which cannot be produced in fusion reactions. The experiments have been performed at the velocity filter SHIP at GSI. At SHIP we can detect and identify the heavy, target-like, transfer products. Due to the low background at the focal plane detector and the isotope identification via radioactive decays, the setup allows to reach an upper cross-section limit of 10 pb/sr within one day of beamtime. We investigated the systems {sup 58,64}Ni + {sup 207}Pb and {sup 48}Ca + {sup 248}Cm at beam energies below and up to 20% above the Coulomb barrier. At all energies we observed a massive transfer of protons and neutrons, where transfer products with up to eight neutrons more than the target nucleus could be identified.
Study of the electromagnetic form factors of Helium-3 and Tritium nuclei by electron scattering
International Nuclear Information System (INIS)
Amroun, A.
1989-01-01
Accurate measurements of the tritium electromagnetic form factor demonstrated that, when the exchange currents are included, the theoretical and the experimental data are in agreement. Similar calculations carried out on helium-3 were not satisfactory. In this investigation, a new electromagnetic form factor of helium-3 is measured. The transfer zone of the diffraction spectra concerning the first minimum and the second maximum is considered. The aim of the study is to test on both nuclei the validity and the uncertainties of the models. The scattering of electrons on helium-3 is analyzed. The experiment was performed in the Saclay linear accelerator. The isoscalar and isovector form factors could be differentiated. By comparing the theoretical and the experimental data, it is demonstrated that the use of three body forces in the calculations has no effect on the form factor results [fr
Studies of spherical tori, stellarators and anisotropic pressure with M3D
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.; Hudson, S.; Tang, X.-Z.; Strauss, H.R.; Stutman, D.
2001-01-01
The M3D (Multi-level 3D) project simulates plasmas using multiple levels of physics, geometry, and grid models in one code package. The M3D code has been extended to fundamentally nonaxisymmetric and small aspect ratio, R/a>or∼1, configurations. Applications include the nonlinear stability of the NSTX spherical torus and the spherical pinch, and the relaxation of stellarator equilibria. The fluid-level physics model has been extended to evolve the anisotropic pressures p jparallel and p jperpendicular for the ion and electron species. Results show that when the density evolves, other terms in addition to the neoclassical collisional parallel viscous force, such as B· ∇p e in the Ohm's law, can be strongly destabilizing for nonlinear magnetic islands. (author)
Study of the parabolic-spherical shape on the energy resolution in gamma spectrometry
International Nuclear Information System (INIS)
Silva, Joao Carlos Pereira da
1997-01-01
In gamma spectrometry, the energy resolution is an important parameter. This parameter measures the capability of the system to separate two photopeaks that are together. Scintillation systems have various factors that affect the energy resolution: energy deposition, light emission, light collection and electric signal processing. Light collection depended on the mechanisms of light transport until light strikes on the photocathode. In this trajectory the light losses energy by attenuation and refractions on the surfaces. In order to minimize these effects, a parabolic-spherical shape is proposed. The energy resolutions of hemispherical and parabolic-spherical shapes were measured. The results show a better resolution for the new shape, about 33% for Compton edge due to a 137 Cs radioactive source. (author)
A Study on the Preparation of Spherical PCM Particle and Its Encapsulation
Energy Technology Data Exchange (ETDEWEB)
Kim, J.K. [Dept. of Chemical Engineering, Konyang University (Korea); Yoon, W.S.; Jung, K.T.; Shul, Y.G. [Dept. of Chemical Engineering, Yonsei University, Seoul (Korea); Joo, H.K.; Jeon, M.S.; Lee, T.K. [Korea Institute of Energy Research, Taejon (Korea)
1999-04-01
Spherical shape of phase change materials(PCM) were prepared by using sodium acetate trihydrate as a latent heat storage medium and then encapsulated with PMMA and wax. Gelatin was used as an effective thickener to prevent undesirable phase separation and sodium pyrophosphate decahydrate was used as nucleator to decrease the degree of supercooling in the thickened PCM. The optimal composition of PCM was 2 wt% thickener and 2wt% nucleator. Spherical shape of PCM particles of 3-3.5 mm in diameter were continuously manufactured varing the effluent velocity of molten PCM from 1.3 to 1.8 ml/min. Tertiary coatings of PMMA-wax-PMMA onto the PCM particles obtained were 0.03 mm, 0.25 mm, and 0.4 mm. Freezing-thaw cycle test of the coated PCM particle was done using dodecane as heat transfer medium by the experimental apparatus and DSC. 15 refs., 11 figs., 5 tabs.
Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium
Matsuo, Y; Nagaya, Y
2003-01-01
Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.
Energy Technology Data Exchange (ETDEWEB)
Nisius, D.; Janssens, R.V.F.; Ahmad, I. [and others
1995-08-01
The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.
International Nuclear Information System (INIS)
Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.
1990-01-01
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr
Sphericity in the interacting boson model
International Nuclear Information System (INIS)
Ogata, H.
1977-01-01
The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)
Unveiling the strangeness secrets: low-energy kaon-nucleon/nuclei interactions studies at DAΦNE
Directory of Open Access Journals (Sweden)
Curceanu C.
2014-03-01
Full Text Available The DAΦNE electron-positron collider at the Laboratori Nazionali di Frascati of INFN, Italy has made available a unique quality low-energy negatively charged kaons “beam”, which is used to unveil the secrets of the kaon-nucleon/nuclei interactions at low energies by the SIDDHARTA-2 and AMADEUS experiments. SIDDHARTA has already performed unprecedented precision measurements of kaonic atoms, and is being presently upgraded, as SIDDHARTA-2, to approach new frontiers. The AMADEUS experiment plans to perform in the coming years precision measurements on kaon-nuclei interactions at low-energies, to study the possible formation of kaonic nuclei, of the Λ(1405 and of many other processes involving strangeness.
International Nuclear Information System (INIS)
Le Gac, Jacqueline.
1980-02-01
In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222 Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air [fr
Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak
Energy Technology Data Exchange (ETDEWEB)
Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Mazzucato, E.; Bell, R. E.; Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Lee, K. C. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2012-05-15
Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of {+-}2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k{sub Up-Tack }{rho}{sub s} Less-Than-Or-Equivalent-To 10 ({rho}{sub s} is the ion gyroradius at electron temperature and k{sub Up-Tack} is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations show ETG turbulence may be able to explain the experimental electron heat flux observed before the ELM event. The collisionality dependence of electron-scale turbulence is also studied by systematically varying plasma current and toroidal field, so that electron gyroradius ({rho}{sub e}), electron beta ({beta}{sub e}), and safety factor (q{sub 95}) are kept approximately constant. More than a factor of two change in electron collisionality, {nu}{sub e}{sup *}, was achieved, and we found that the spectral power of electron-scale turbulence appears to increase as {nu}{sub e}{sup *} is
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-21
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Studies of yrast and continuum states in A = 100--200 nuclei
International Nuclear Information System (INIS)
Daly, P.J.
1992-02-01
This report summarizes progress in nuclear structure research for the year 1991. The highlights include new spectroscopic results for neutron excessive nuclei (around 124 Sn and 36 S) formed in deep inelastic heavy ion reactions
Relativistic effects in the study of weakly bound F and Be nuclei
Indian Academy of Sciences (India)
FAHIME REZVANI
2018-01-03
Jan 3, 2018 ... equations in various fields of physics [6–12]. The equa- ... Within the framework of the Dirac equation, ... is only an approximation; the quality of approximation ... nuclei, the nucleon angular momentum J and spin–orbit.
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
Lu , H.; Marchix , A.; Abe , Y.; Boilley , D.
2016-01-01
Submitted to Computer Physics Communications; International audience; KEWPIE — a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions — has been improved and rewritten in C++ programing language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission ...
Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles
Schmidbauer, E.
1988-05-01
Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.
International Nuclear Information System (INIS)
Brossard, J.
1978-01-01
The characteristics of the pressure waves transmitted by detonation of gaseous mixtures to the surrounding air were measured by tests made near the ground level in 1 to 54 m 3 spherical balloons containing air-acetylene or air-ethylene mixtures. As concerns the peak overpressure Δp, a theoretical dimensional analysis in accordance with the experimental results shows that Δp can be expressed as a function of two independent variables, which are the radial distance R and the volume V of the balloon . A semi-empirical formula, including ground effects, is proposed and its present validity range is given. (author)
International Nuclear Information System (INIS)
Aaberg, S.; Uhrenholt, H.
2009-01-01
We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.
Studies on cluster decay from trans-lead nuclei using different versions of nuclear potentials
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P.; Sukumaran, Indu [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)
2017-06-15
The cluster decays from various isotopes of trans-lead nuclei have been studied using 12 different nuclear potentials by evaluating decay half-lives and are then compared with the available experimental data. The study has shown that the barrier penetrability as well as the decay half-lives varies with the nuclear potential used. The standard deviation of the estimated half-lives is also calculated for these twelve nuclear potentials in comparison with the experimental data. The potential Bass 1980 is found to be the most appropriate potential for studying cluster radioactivity as the standard deviation obtained is least. Among the different proximity potential versions; proximity 1977, proximity 1988, proximity 2000, and modified proximity 2000, the minimum standard deviation is for proximity 1988. The Geiger-Nuttall (G-N) plots studied for different cluster emissions from various parents are observed to show linear behavior but with different slopes and intercepts. Again, the G-N plots obtained are linear with different slopes and intercepts when plotted for different nuclear potentials. So it is observed that with the inclusion of different nuclear potentials, the linearity of the G-N plot remains unaltered. Irrespective of the nuclear potential used, the universal curve (log{sub 10}T{sub 1/2} vs. -ln P) studied for various clusters emitted from various parents are obtained as linear with same slope and intercept. (orig.)
International Nuclear Information System (INIS)
Maj, A.
2000-01-01
This work entitled ''Properties of hot and fast rotating atomic nuclei studied by means of Giant Dipole Resonance in exclusive experiments'', is the habilitation thesis of dr. Adam Maj. It consists of the review (in Polish) of performed research and of attached reprints from 16 original publications (in English) which A. Maj is the main or one of the main authors. All the studies were performed in collaboration with the groups from Milano and Copenhagen, using the HECTOR array equipment (described in chapter V). The Giant Dipole Resonance couples to the quadrupole degrees of freedom of the nucleus, and therefore constitutes a unique probe to test the shapes of atomic nuclei. In addition, the γ decay of the GDR from highly excited nuclei is a very fast process, it can compete with other modes of nuclear decay, and therefore can provide the information on the initial stages of excited nuclei. The presented investigations were concentrated on the following aspects: the shapes and thermal shape fluctuations, the origin of the behaviour of the GDR width, the properties of some exotic nuclei (Jacobi shapes, superdeformation, superheavy nuclei) and on ''entrance channel'' effects. The GDR γ decay was measured for nuclei with very different masses: from light nuclei with A≅45, through A≅110, 145,170,190, up to superheavy nuclei with A≅270. The shapes of hot nuclei are not fixed but fluctuate. The extent of these fluctuations and their influence on the measured quantities (GDR strength function, angular distribution and effective shape) is discussed in chapter VI.1. The observed width of the GDR is found to arise from the interplay of two effects: the thermal shape fluctuations, which are controlled by the nuclear temperature, and the deformation effects, controlled by the angular momentum. The ''collisional damping'' effect, which should influence the intrinsic GDR width, was found to be negligible (chapter VI.2). The GDR γ decay from hot superheavy nucleus 272 Hs
Spherical Torus Center Stack Design
International Nuclear Information System (INIS)
C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz
2002-01-01
The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device
International Nuclear Information System (INIS)
Tanaka, Nobuo
2008-01-01
The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy. (topical review)
Study of some odd-mass nuclei with 51 neutrons or 51 protons
International Nuclear Information System (INIS)
Duffait, Roger.
1976-01-01
The level schemes of 93 Mo, 113 Sb, 115 Sb and 119 Sb nuclei were studied. The knowledge of the sup(93m+g)Tc decays was improved. The 2,0 min 113 Te isotope was produced and studied for the first time; two 115 Te isomers with neighbouring half-lives were found and ambiguities on the 115 Te nature cleared up. The sup(119m+g)Te decays were studied with the help of isotopically separated sources and the 119 Sb level scheme was revised. The 93 Mo and 119 Sb level lifetimes were studied using Doppler-shift attenuation method (DSAM) using (p,nγ) reactions at the Van de Graaff accelerator of the University of Lyon. On the whole 16 lifetimes were measured. The experimental results were interpreted in the unified model by intermediate coupling between particle states and the even-even vibrational core; attempts to improve the interpretation by using a semi-microscopical model with the delta surface interaction were made and the two calculations were compared [fr
International Nuclear Information System (INIS)
Janssens, R.V.F.; Khoo, T.L.
1991-01-01
Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states
Protonic decay of oriented nuclei
International Nuclear Information System (INIS)
Kadmensky, S.G.
2002-01-01
On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid
Collective oblate bands in Pb nuclei
Energy Technology Data Exchange (ETDEWEB)
Huebel, H; Baldsefen, G; Mehta, D [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; and others
1992-08-01
The coexistence of different nuclear shapes is a well established phenomenon in the Hg-Pb region, where spherical, oblate, prolate and superdeformed prolate shapes have been observed. In this work, the authors report on several new rotational bands in the normally spherical nuclei {sup 199-201}Pb. Similar structures were found previously in the lighter isotopes {sup 197,198}Pb. 11 refs., 1 tab., 3 figs.
Synthesis and radioactive properties of the heaviest nuclei
International Nuclear Information System (INIS)
Oganesyan, Yu.Ts.
1996-01-01
Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs
Kruecken, R; Voulot, D
2007-01-01
We are aiming at the investigation of single particle properties of neutron-rich nuclei in the region of the "island of inversion" where intruder states from the $\\{fp}$-shell favour deformed ground states instead of the normal spherical $\\textit{sd}$-shell states. As first experiment, we propose to study single particle states in the neutron-rich isotope $^{31}$Mg. The nucleus will be populated by a one-neutron transfer reaction with a $^{30}$Mg beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$ target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by a newly built set-up of segmented Si detectors with a angular coverage of nearly 4$\\pi$. Relative spectroscopic factors extracted from the cross sections will enable us to pin down the configurations of the populated states. These will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure leading to the breaking of the ...
International Nuclear Information System (INIS)
Peter Egelhof
2011-01-01
The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)
Study of proton and 2 protons emission from light neutron deficient nuclei around A=20
International Nuclear Information System (INIS)
Zerguerras, T.
2001-09-01
Proton and two proton emission from light neutron deficient nuclei around A=20 have been studied. A radioactive beam of 18 Ne, 17 F and 20 Mg, produced at the Grand Accelerateur National d'Ions Lourds by fragmentation of a 24 Mg primary beam at 95 MeV/A, bombarded a 9 Be target to form unbound states. Proton(s) and nuclei from the decay were detected respectively in the MUST array and the SPEG spectrometer. From energy and angle measurements, the invariant mass of the decaying nucleus could be reconstructed. Double coincidence events between a proton and 17 F, 16 O, 15 O, 14 O and 18 Ne were registered to obtain excitation energy spectra of 18 Ne, 17 F, 16 F, 15 F et 19 Na. Generally, the masses measures are in agreement with previous experiments. In the case of 18 Ne, excitation energy and angular distributions agree well with the predictions of a break up model calculation. From 17 Ne proton coincidences, a first experimental measurement of the ground state mass excess of 18 Na has been obtained and yields 24,19(0,15)MeV. Two proton emission from 17 Ne and 18 Ne excited states and the 19 Mg ground state was studied through triple coincidences between two proton and 15 O, 16 O and 17 Ne respectively. In the first case, the proton-proton relative angle distribution in the center of mass has been compared with model calculation. Sequential emission from excited states of 17 Ne, above the proton emission threshold, through 16 F is dominant but a 2 He decay channel could not be excluded. No 2 He emission from the 1.288 MeV 17 Ne state, or from the 6.15 MeV 18 Ne state has been observed. Only one coincidence event between 17 Ne and two proton was registered, the value of the one neutron stripping reaction cross section of 20 Mg being much lower than predicted. (author)
Study of the unbound nuclei 7,9He and 10Li
International Nuclear Information System (INIS)
Al Falou, H.
2007-07-01
The unbound nuclei 7,9 He and 10 Li have been investigated via the high-energy breakup of beams of neutron-rich nuclei ( 8 He, 11 Be and 14 B). The decay-energy spectra were reconstructed from coincident measurements of the charged fragments ( 6,8 He and 9 Li) with a ΔE-E telescope (CHARISSA) and the neutrons with the DEMON array. A theoretical approach based on the sudden approximation was used to model the reactions populating the unbound final states. The calculated decay-energy spectra were convoluted with the response function of the experimental setup using a simulation developed specifically for the present study and compared with the experimental results. The 10 Li system was produced using an 11 Be beam and the results confirm the continuation of the inversion of the ν1s1/2 and ν0p1/2 levels in the N = 7 isotopic chain. The 9 He system was produced in two different ways with the breakup of 11 Be and 14 B, and was the most exotic system studied here. In this case, a structure was observed at very low decay energy which very probably corresponds to a virtual s state (a s ≅ -2 - 0 fm). This result suggests that the level inversion also occurs in 9 He, but with a much weaker core-neutron interaction than for 10 Li (a s equals -14 ± 2 fm). For the data acquired from the breakup of the 14 B beam, the decay energy spectrum exhibits a resonance around E r equals 1.2 MeV, which most probably corresponds to an excited 1/2 - state in 9 He. The 7 He system was investigated with three different beams ( 8 He, 11 Be and 14 B). No evidence for the existence of the proposed low-lying (E r ∼ 1 MeV) spin-orbit partner (1/2 - ) of the ground state (3/2 - ) could be found. (author)
Interplay of single particle and collective excitations in antimony nuclei
International Nuclear Information System (INIS)
Stan-Sion, C.
1987-01-01
The antimony nuclei are considered classical examples for coexisting spherical and well-deformed structures. The electromagnetic moment measurements presented in this paper provide direct evidence for shape coexistence. 8 refs., 3 figs. (M.F.W.)
Experimental and modeling studies of small molecule chemistry in expanding spherical flames
Santner, Jeffrey
Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well
Zhang, Xuebo; Zeng, Shaoju; Zhang, Xinwen; Zuo, Mingxue
2011-09-12
Songbirds can produce a remarkable diversity of songs, which is well-characterized learned behavior that reflects the basic processes of language learning in humans. As song control nuclei governing song behavior has been identified, bird song provides an excellent model to address the relationship between brain areas and their controlling behavior. The Mongolian lark (Melanocorypha mongolica), a species of the Alaudidae family, is well known for its elaborate singing and ability to learn new songs, even in adulthood. Here, we studied the singing behavior and underlying neural structures of the Mongolian lark in both sexes. We found that the sizes of song bouts and song phrases (song repertoires) in male Mongolian larks are extremely large, and that each song repertoire or phrase has a complex structure, comprising several different syllables that seldom appear in other types of song bouts. In accordance with these complex songs, Mongolian lark song control nuclei are well developed and can be easily detected by Nissl staining. In contrast to male Mongolian larks, females were not observed to sing. However, they possess significant song control nuclei with abundant neural connectivity within them despite their small sizes compared with males. These data provide new evidence that help further clarify the mechanisms by which songbirds sing. Our results also have implications for the evolution of complex birdsongs and song control nuclei in oscine birds. Copyright © 2011 Elsevier B.V. All rights reserved.
A study on conceptual design of tritium production fusion reactor based on spherical torus
International Nuclear Information System (INIS)
He Kaihui; Huang Jinhua
2003-01-01
Conceptual design of an advanced tritium production reactor based on spherical torus (ST), which is an intermediate application of fusion energy, is presented. Different from traditional Tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST are used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can do within vacuum vessel in order to produce certain amount of excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR is presented. Based on systematical analysis, design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (authors)
Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas
International Nuclear Information System (INIS)
Kanki, T.; Nagata, M.; Uyama, T.
2004-01-01
Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)
Study of boundary effect of brightness variations of spherical star with two hot precessing spots
International Nuclear Information System (INIS)
Kyurkchieva, D.P.; Shkodrov, V.G.
1984-01-01
In order to determine the low governing the total brightness variation of a spherical star for the period α<=Ωt<=π-α', the spots behaviour in the intervals 0<=Ωt<=α', π-α'<=Ωt<=π has to be investigated. The article contains an analysis of the boundary effects at which the hot spots are projected as parts of an ellipse on the star's visible disc. The area of the projections of the hot spots on the tangential plane toward the celestial sphere in the above intervals is determined. The equation obtained is sufficient for the determination of the relative light variation of the star. The equation is applied to the parameters of SS433
Study of a spherical gaseous detector for research of rare events at low energy threshold
International Nuclear Information System (INIS)
Dastgheibi-Fard, Ali
2014-01-01
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of a particle detector, with a broad range of applications. Its main features include a very low energy threshold which is independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel. SEDINE, a low background detector installed at the underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at a very low energy threshold, around 40 eV. The sensitivity for the rare events detection at low energy is correlated to the detector background and to the decreasing the level of energy threshold, which was the main point of this thesis. A major effort has been devoted to the operating of the experimental detector. Several detection parameters were optimized: the electric field homogeneity in the sphere, keeping clear of sparks, the electronic noise level and the leak rate of the detector. The detector is optimized for operation with a high pressure stable gain. The modification of the shield, cleanings of the detector and the addition of an anti-Radon tent have significantly reduced the background of SEDINE. Progress has increased the sensitivity of the detector at low energy up to a value comparable to the results other underground research experiences for the low mass WIMPs. We will present the results with a measured background in the region of keV, which has allowed us to show a competitive figure of exclusion for the production of light dark matter. (author) [fr
Study of the Unbound Nuclei $^{10}$Li and $^{7}$He at REX ISOLDE
2002-01-01
% IS367\\\\ \\\\ We propose to study the two unbound nuclei $^{10}$Li and $^{7}$He produced in simple one-neutron pick-up reactions induced by intense beams of $^{9}$Li and $^{6}$He from REX ISOLDE in $^{9}$Be and CD$_{2}$ targets.\\\\ \\\\The unbound nucleus $^{10}$Li is a binary subsystem of the two-neutron halo nucleus $^{11}$Li and its structure is of key importance for theoretical investigations of the halo structure. We propose two different reactions, which together would give an unambiguous determination of lowest $\\textit{s-}$ and $\\textit{p-}$wave resonances in the ($^{9}$Li+n) system.\\\\ \\\\Similarly $^{7}$He plays an important role in the dissociation of $^{8}$He, a drip-line nucleus with an $\\alpha$+4n five-body structure. The aim of our investigation is to search for an excited 1/2$^{-}$ state above the $^{7}$He 3/2$^{-}$ ground state in order to investigate its cluster structure. \\\\ \\\\
Experimental study of the (n,alpha) reaction on a set of light nuclei
International Nuclear Information System (INIS)
Khryachkov, V.A.; Bondarenko, I.P.; Kuzminov, B.D.; Semenova, N.N.; Sergachev, A.I.; Giorginis, G.
2011-01-01
An experimental setup based on an ionization chamber with Frisch grid and waveform digitizer was used for (n,α) cross-section measurements. The use of digital signal processing has allowed us to select a gaseous cell inside the sensitive area of the ionisation chamber with high accuracy. This kind of approach provides a powerful method to suppress background from detector components and parasitic reactions on the working gas. The new method is especially interesting for the study of reactions on elements for which solid target preparation is difficult (e.g. noble gases). Additionally it has the advantage of an accurate determination of the number of nonradioactive nuclei in the selected gas cell. In the present experiments a set of working gases was used, which contained admixtures of nitrogen, oxygen, neon, argon and boron. Fission of "2"3"8U was used as neutron flux monitor. The cross-section of the (n,α) reaction for "1"6O, "1"4N, "2"0Ne, "3"6Ar, "4"0Ar and the branching ratio α_0/α_1 of the "1"0B(n,α_0) to "1"0B(n,α_1) reactions were measured for neutron energies between 1.5 and 7 MeV. (authors)
Report of study meeting on dynamics of quarks-hadrons in atomic nuclei
International Nuclear Information System (INIS)
1992-09-01
This meeting was held for three days from June 11 to 13, 1992, in Research Center for Nuclear Physics, Osaka University. The lectures were given on is the sea of quarks in nucleons isospin symmetry, quark exchange current in nuclei, monopole condensation and color confinement, confinement-deconfinement transition at finite temperature in infrared effective dual QCD, Monte Carlo study of abelian projected QCD, a static baryon and a static meson in a dual abelian effective theory of QCD, susceptibility to number of quarks at finite temperature and density, weakness of finite temperature QCD phase transition, instanton-induced interaction in strange system, effect of weak interaction to K meson condensed phase in high density nuclear substances, compressible bag model and dibaryon stars, research using effective model of saturation property of strange substance system, hydrodynamical model for fluctuation in rapidity distribution, hadron formation through mixed phase from quarks, gluons and plasma, entropy formation in high energy nucleus collision and 15 other themes. (K.I.)
Microscopic studies of electric dipole resonances in 1p shell nuclei
International Nuclear Information System (INIS)
Kissener, H.R.; Rotter, I.; Goncharova, N.G.
1986-05-01
Recent data on total and partial photonuclear cross sections in the GDR region of the nuclei 6 Li to 16 O are compared with theoretical predictions, mostly from shell model and continuum shell model studies. The influence of the size of the configuration space, of the adopted residual interaction and of the continuous spectrum on the isovector E1 response is discussed to some detail. The observed trends of the localization, the shape and width, the isospin and the configurational structure of the GDR with increasing 1p shell occupation are related to the microscopic structure of the nuclear ground state. Particular attention is given to the partial (γ, N/sub i/) disintegration channels. Complex-particle emission and isospin mixing in the nuclear states are discussed for a few cases. An attempt is made to bring some systematics also in the evidence on excited-state giant resonances through the 1p shell region. The photonuclear GDR is compared with other giant multipole excitations, mostly for the example of the 14 C nucleus. (author)
Exclusive study of the formation and the decay of hot nuclei in the intermediate energy domain
International Nuclear Information System (INIS)
Saint-Laurent, F.
1990-01-01
A brief review of exclusive measurements performed at GANIL in order to study hot nuclei will be given. Heavy-ion induced reactions on heavy targets have been investigated over a wide range of incident energy, using various techniques: - fission fragment angular correlations. - 4 π neutron multiplicity measurements. - light charged particle correlations. In each case, a selection of the most violent collisions can be achieved. For central collisions induced by 40 Ar, a same excitation energy of about 650 MeV is deduced from the totally different and independent sets of data, corresponding to an average temperature of 5 MeV. At 60 MeV/u, this value is quite low as compare to the total available energy for central collisions A tentative explanation based on Landau-Vlasov simulations will be proposed: the excitation energy dissipated in the system could be stored in a highly excited compression mode as well as under a thermal form. Some recent results on the Kr+Au system at 32 MeV/u will be presented indicating that heavier projectiles than 40 Ar can lead to a temperature of the hot system approaching 7 MeV
International Nuclear Information System (INIS)
Breton, Vincent
1990-01-01
We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr
International Nuclear Information System (INIS)
Epperlein, E.M.
1992-01-01
Preliminary 1-D studies of nonlocal heat transport in spherical plasmas based on the Fokker-Planck code SPARK indicate significant levels of electron preheat and radial heat flux across a spherical heat sink surface kept at fixed temperature. However, the diffusive approximation to the Fokker-Planck equation is shown to be particularly sensitive to the nature of the inner surface boundary condition chosen. A suggested remedy is the inclusion of a target capsule in future simulations studies with SPARK
Spectral distribution study of nuclei in 2p-1f shell
International Nuclear Information System (INIS)
Haq, R.; Parikh, J.C.
1975-01-01
Systematics of nuclei in the beginning of fp-shell are investigated using the spectral distribution method of French. The centroid energies and widths for various distributions are evaluated using the interaction of Kuo with the modification suggested by McGrory et al. The two moment distributions are used to determine ground state energies, fractional occupancy of the single particle orbits for ground states and low lying spectra of various nuclei in this shell. The results are compared with the deformed configuration mixing calculations of Dhar et al. The goodness of Wigner SU(4) symmetry in these nuclei has been investigated. The mixing of various SU(4) representations near the ground state provides a measure of symmetry mixing and the substantial admixture in most of the cases shows that it is badly broken, largely due to the single particle spin orbit coupling. (author)
International Nuclear Information System (INIS)
Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene
1995-09-01
This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)
Exotic nuclei and radioactive beams
International Nuclear Information System (INIS)
Chomaz, P.
1996-01-01
The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs
Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei
Shamami, S. Rahimi; Pahlavani, M. R.
2018-01-01
A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.
A study of the ''young'' states of particles in p-, d-, and α-nuclei interactions
International Nuclear Information System (INIS)
Sarycheva, L.I.
1977-01-01
Experimental data on leading particle generation in p-, d- and α-nuclei interactions are compared with calculations within the framework of a simple classical model of scattering. Data show that deuterons and α-particles in inelastic interactions retain their individuality in some case, even after loosing from 10 to 30% of their energy and scattering on considerable angles. Comparison between the experimental data and the calculations made in terms of simplified model shows, that there exists a sufficiently high probability for 8.4 GeV/c deuterons and 16.8 GeV/c α-particles to undergo more than one interaction in the same nuclei
International Nuclear Information System (INIS)
Perelygin, V.P.; Petrova, R.I.; Stetsenko, S.G.; Brandt, R.; Vater, P.; Rebetez, M.; Spohr, R.; Vetter, J.; Perron, C.
1999-01-01
A new approach to the problem of investigation of charge and energy spectra of ultra heavy Galactic cosmic ray nuclei, based on fossil track study of extraterrestrial olivine crystals has been developed. The results of an investigation of ultra heavy Galactic cosmic ray nuclei (Z=50-92) in meteoritic olivine crystals are presented. The technique was based on calibration of olivine crystals with accelerated Xe, Au, Pb and U ions and well-controlled partial annealing of 'fresh' and 'fossil' tracks. It allows us to determine the charge spectra and abundances of cosmic ray nuclei based on fossil track length study in meteoritic and Moon crystals. The comparative studies of the spectra of ''fossil' tracks and tracks due to 208 Pb and 238 U nuclei have shown that the group of 210 μm 'fossil' tracks, first observed in 1980 at JINR is due to Th-U nuclei-products of recent r-process nucleosyntesis in our Galaxy. The method in principle allows one to resolve Pt-Pb peaks in fossil tracks, to establish the upper limit of the abundance of Z>110 nuclei in the Galactic cosmic rays at the level ≤10 -3 to the abundance of actinide nuclei and to get information on the history of Z>50 cosmic ray nuclei in time interval up to 220 M.Y
A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei
International Nuclear Information System (INIS)
Volpe, M.C.
1997-01-01
Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for 208 Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author)
International Nuclear Information System (INIS)
Bengtsson, R.; Krumlinde, J.; Moeller, P.; Nix, J.R.; Zhang, J.
1983-01-01
We study nuclear potential-energy surfaces, ground-state masses and shapes calculated by use of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential for 4023 nuclei ranging from 16 O to 279 112. We discuss extensively the transition from spherical to deformed shapes and study the relation between shape changes and the mass corresponding to the ground-state minimum. The calculated values for the ground-state mass and shape show good agreement with experimental data throughout the periodic system, but some discrepancies remain that deserve further study. We also discuss the effect of deformation on Gamow-Teller #betta#-strength functions
Cloud Condensation Nuclei Measurements During the First Year of the ORACLES Study
Kacarab, M.; Howell, S. G.; Wood, R.; Redemann, J.; Nenes, A.
2016-12-01
Aerosols have significant impacts on air quality and climate. Their ability to scatter and absorb radiation and to act as cloud condensation nuclei (CCN) plays a very important role in the global climate. Biomass burning organic aerosol (BBOA) can drastically elevate the concentration of CCN in clouds, but the response in droplet number may be strongly suppressed (or even reversed) owing to low supersaturations that may develop from the strong competition of water vapor (Bougiatioti et al. 2016). Understanding and constraining the magnitude of droplet response to biomass burning plumes is an important component of the aerosol-cloud interaction problem. The southeastern Atlantic (SEA) cloud deck provides a unique opportunity to study these cloud-BBOA interactions for marine stratocumulus, as it is overlain by a large, optically thick biomass burning aerosol plume from Southern Africa during the burning season. The interaction between these biomass burning aerosols and the SEA cloud deck is being investigated in the NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study. The CCN activity of aerosol around the SEA cloud deck and associated biomass burning plume was evaluated during the first year of the ORACLES study with direct measurements of CCN concentration, aerosol size distribution and composition onboard the NASA P-3 aircraft during August and September of 2016. Here we present analysis of the observed CCN activity of the BBOA aerosol in and around the SEA cloud deck and its relationship to aerosol size, chemical composition, and plume mixing and aging. We also evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics.
International Nuclear Information System (INIS)
Alenius, N.G.
1975-01-01
For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)
Radioactive ion beams - A tool to study structure of nuclei far from stability
Czech Academy of Sciences Publication Activity Database
Dlouhý, Zdeněk
2006-01-01
Roč. 56, č. 2 (2006), s. 91-94 ISSN 0323-0465 R&D Projects: GA ČR GA202/04/0791 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron-rich nuclei * elactic-scattering * N=20 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.647, year: 2006
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David
2016-03-01
KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.
Study of single-particle correlations in events with the total disintegration of nuclei
International Nuclear Information System (INIS)
Abdinov, O.B.; Bagirov, A.M.; Sulejmanov, M.K.; Anoshin, A.I.; Bogdanowicz, J.; Kuznetsov, A.A.
1997-01-01
New experimental data on the behaviour of the single-particle two-dimensional correlation functions R versus Q (Q is the number of nucleons emitted from nuclei) and A p (A p is the mass of projectile nuclei) are presented. The interactions of π - -mesons (at a momentum of 40 GeV/c), protons, d, 4 He and 12 C nuclei with carbon nuclei (at a momentum of 4.2 A GeV/c) are considered. The values of R are obtained separately for π - -mesons and protons. In so doing, the values of R are normalised so that -1≤R≤1. The value of R=0 corresponds to the case of the absence of correlations. It has been found that the Q- and A p -dependence of R takes place only for weak correlations (R t and have a nonlinear character, that is the regions with different characters of the Q-dependence of R are separated: there is a change of regimes in the Q-dependences of R. The boundary values of Q=Q*, corresponding to the transitions from one dependence region to another, are determined. The correlations weaken with increasing A p , and they become minimum in 12 CC interactions. Simultaneously with weakening the correlations in the region of large Q≥Q*, the character of the Q-dependence of R changes
Fast and slow radioactive beams in study of light nuclei far from stability
International Nuclear Information System (INIS)
Lewitowicz, M.
2003-01-01
Several examples of results of recent experiments performed with the SPIRAL ISOL-type and GANIL high energy radioactive beams on the properties of nuclei far from stability are presented. Future plans of the GANIL/SPIRAL facility related to the SPIRAL II project are shortly discussed. (orig.)
Multifragmentation of hot nuclei
International Nuclear Information System (INIS)
Tamain, B.
1990-10-01
It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established
Isolation of Nuclei and Nucleoli.
Pendle, Alison F; Shaw, Peter J
2017-01-01
Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.
[Theoretical study of pion and kaon photoproduction in nuclei]. Final technical report
International Nuclear Information System (INIS)
Booth, E.C.
1984-01-01
The contract work was initiated by J. Epstein. The emphasis of the proposal was on (a) the continuation of DWIA calculations of the (γ,π +- ) reaction in the Δ(1232) region with the extension to the (γ,π 0 ) reaction and (b) the application of the DWIA approach to the (γ,K) reaction. The (γ,π 0 ) work was intended to be in close collaboration with the experimental studies underway at Bates Linear Accelerator and the (γ,K +- ) calculations are relevant to proposed high duty factor electron accelerators in the 1 to 4 GeV region. DWIA calculations were carried out for coherent (γ,π 0 ) reactions in 12 C. Although the DWIA approach seems less fundamental than the current Δ-hole model calculations, we had hopes that it could be more readily applicable to incoherent reactions leaving the target nucleus in the excited state. Epstein hoped to improve the reliability of the DWIA calculations for coherent (γ,π 0 ) production by better treatment of the Δ propagating in the nuclear medium. In parallel with the (γ,π 0 ) work, Epstein carried on an active collaboration with William Donnelly on the (γ,K +- ) problem. They had succeeded in a relatively complete description of the reaction for 12 C, and were beginning to extend the results to heavy nuclei, when Epstein abruptly resigned his academic post at Boston University (in August 1983) and took an industrial position. Justus Koch of NIKEF, working together with Donnelly, and assisted by modest per diem funds from this grant, the γ,K +- calculations were carried forward. A copy of the talk by Donnelly entitled Photo- and Electron-Production of Kaons and the Study of Hypernuclei given October 29, 1984 at Bad Honnef, Germany is enclosed. The talk covers the results of the work initiated by Epstein and Donnelly, and completed by Koch and Donnelly
Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study
Asa-Awuku, Akua; Moore, Richard H.; Nenes, Athanasios; Bahreini, Roya; Holloway, John S.; Brock, Charles A.; Middlebrook, Ann M.; Ryerson, Thomas B.; Jimenez, Jose L.; Decarlo, Peter F.; Hecobian, Arsineh; Weber, Rodney J.; Stickel, Robert; Tanner, Dave J.; Huey, Lewis G.
2011-06-01
Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (˜100 km × 100 km; CCN/CN is ˜0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter (κ = 0.16 or effective κ ˜ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.
Conceptual design study of the moderate size superconducting spherical tokamak power plant
Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki
2015-06-01
A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.
Study on thermal conductivity of HTR spherical fuel element matrix graphite
International Nuclear Information System (INIS)
Zhang Kaihong; Liu Xiaoxue; Zhao Hongsheng; Li Ziqiang; Tang Chunhe
2014-01-01
Taking the spherical fuel element matrix graphite ball samples as an example, this paper introduced the principle and method of laser thermal conductivity meter, as well as the specific heat capacity, and analyzed the effects of different test methods and sampling methods on the thermal conductivities at 1000 ℃ of graphite material. The experimental results show that the thermal conductivities of graphite materials tested by synchronous thermal analyzer combining with laser thermal conductivity meter were different from that directly by laser thermal conductivity meter, the former was more reliable and accurate than the later; When sampling from different positions, central samples had higher thermal conductivities than edging samples, which was related to the material density and porosity at the different locations; the thermal conductivities had obvious distinction between samples from different directions, which was because the layer structure of polycrystalline graphite preferred orientation under pressure, generally speaking, the thermal conductivities perpendicular to the molding direction were higher than that parallel to the molding direction. Besides this, the test results show that the thermal conductivities of all the graphite material samples were greater than 30 W/(m (K), achieving the thermal performance index of high temperature gas cooled reactor. (authors)
International Nuclear Information System (INIS)
Nosov, V.G.; Kamchatnov, A.M.
A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)
International Nuclear Information System (INIS)
Sinman, S.; Sinman, A.
2003-01-01
The aim of this study is to identify the physical basis of the alternative self-organization mechanism that exists on the STPC-EX machine and to determine complementary features with respect to present compact toroid concepts. In the STPC-EX machine, there exist two solenoids placed inside the central passive floating conductive hollow rod and externally onto flux conserver. These are in a passive state and they do not have an important role in the self-created spherical tokamak plasma (SCSTP) in the STPC-EX machine. In this study, conventional diagnostic tools are used and for photographic recording, the method of open shutter integrated post-fogging is chosen. Two annular coaxial plasma current sheets, one within the other in the same direction, are created and flow on the surface of the central conductive hollow rod. Consequently, the spherical tokamak is configured by a new creation mechanism called the dual-axial z-pinch. High betas of 0.4-0.6 and aspect ratios of up to 1.25 can be obtained. (author)
Thomas-Fermi model of warm nuclei
International Nuclear Information System (INIS)
Buchler, J.R.; Epstein, R.I.
1980-01-01
The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed
Study on proton spin flip in scattering by Ti and Fe nuclei
International Nuclear Information System (INIS)
Korbetskij, E.V.; Prokopenko, V.S.; Sklyarenko, V.D.; Chernievskij, V.K.; Shustov, A.V.
1981-01-01
Spin-orbital effects and mechanisms of inelastic scattering of protons with energy of 6.9 MeV by sup(14, 48)Ti and sup(54, 56, 58)Fe are studied by the analysis of experimental results within the framework of the method of coupled channels. Simultaneously angular dependences of cross sections of elastic and inelastic (two first 2 + levels) scatterings and a probability of spin flip of proton at inelastic scattering are analysed. Experimental data were used for analysis, obtained in the given work, as well as the data published earlier. Targets are used in experiment which are in the form of self-sustaining fine (1-2 mg cm -2 ) films, enriched with corresponding isotope. Cross section determination error is 8% in the average. Obtained angular dependences of spin flip probability for sup(54, 56)Fe at Esub(p)=6.9 MeV are very similar in form and close in value to analogous at Esub(p)= 6 MeV, and differ greatly for 56 Fe at Esub(p)=5.88 MeV. Angular distributions of spin flip probabilities of protons from sup(54, 56)Fe (ppsub(1)) reaction at energies of 10, 11 and 12 MeV show the sufficient energy dependence of their shape and value. Experimental data are described satisfactorily witohin the framework of the cupled channel method namely - differential cross sections of elastic and inelastic scattering and angular dependences of the probability of spin flip at the interaction of protons with 6.9 MeV energy with sup(46, 48)Ti and sup(54, 56, 58)Fe nuclei. Difficulties, appearing in the description of cross sections of elastic scattering in case of sup(46, 48)Ti and of inelastic one for 56 Fe show that indirect processes are of importance in the present energy range and they should be taken into consideration [ru
Systematics of light nuclei in a relativistic model
International Nuclear Information System (INIS)
Price, C.E.
1988-01-01
The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs
In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice.
Directory of Open Access Journals (Sweden)
Hui Chen
Full Text Available OBJECTIVES: Gold nanoparticles (AuNPs of 21 nm have been previously well characterized in vitro for their capacity to target macrophages via active uptake. However, the short-term impact of such AuNPs on physiological systems, in particular resident macrophages located in fat tissue in vivo, is largely unknown. This project investigated the distribution, organ toxicity and changes in inflammatory cytokines within the adipose tissue after mice were exposed to AuNPs. METHODS: Male C57BL/6 mice were injected intraperitoneally (IP with a single dose of AuNPs (7.85 μg AuNPs/g. Body weight and energy intake were recorded daily. Tissues were collected at 1 h, 24 h and 72 h post-injection to test for organ toxicity. AuNP distribution was examined using electron microscopy. Proinflammatory cytokine expression and macrophage number within the abdominal fat pad were determined using real-time PCR. RESULTS: At 72 hours post AuNP injection, daily energy intake and body weight were found to be similar between Control and AuNP treated mice. However, fat mass was significantly smaller in AuNP-treated mice. Following IP injection, AuNPs rapidly accumulated within the abdominal fat tissue and some were seen in the liver. A reduction in TNFα and IL-6 mRNA levels in the fat were observed from 1 h to 72 h post AuNP injection, with no observable changes in macrophage number. There was no detectable toxicity to vital organs (liver and kidney. CONCLUSION: Our 21 nm spherical AuNPs caused no measurable organ or cell toxicity in mice, but were correlated with significant fat loss and inhibition of inflammatory effects. With the growing incidence of obesity and obesity-related diseases, our findings offer a new avenue for the potential development of gold nanoparticles as a therapeutic agent in the treatment of such disorders.
International Nuclear Information System (INIS)
Cheng, E.T.; Cerbone, R.J.; Sviatoslavsky, I.N.; Galambos, L.D.; Peng, Y.-K.M.
2000-01-01
A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device can be complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation three, can produce a neutron wall loading from 0.5 to 5 MW m -2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW year m -2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept
Studies of the shapes of heavy pear-shaped nuclei at ISOLDE
Energy Technology Data Exchange (ETDEWEB)
Butler, P. A., E-mail: peter.butler@liverpool.ac.uk [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)
2016-07-07
For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.
Level structures in Yb nuclei far from stable nuclei
International Nuclear Information System (INIS)
Hashizume, Akira
1982-01-01
Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)
Study of the threshold anomaly in systems involving weakly bound nuclei
International Nuclear Information System (INIS)
Figueira, J.M.; Niello, J.O. Fernandez; Abelof, G.A.; Arazi, A.; Barmak, D.H.; Capurro, O.A.; Carnelli, P.; Fimiani, L.; Marti, G.V.; Heimann, D. Martinez; Negri, A.E.; Pacheco, A.J.; Gomes, P.R.S.; Lubian, J.; Monteiro, D.S.
2009-01-01
Full text: One of the dominant mechanisms in systems involving weakly bound nuclei is the break-up channel; however, the dynamics of this process remains poorly understood. In elastic scattering of strongly bound nuclei it is clearly established that there is always a threshold anomaly (TA) in the optical potential. The TA is characterized by a localized peak in the real part of the potential and by a decrease of the imaginary part of the potential as the bombarding energy decreases towards the Coulomb barrier. But when at least one of the nuclei is weakly bound the results are different for different systems. Three kinds of situations have been reported: the usual TA is observed; the usual TA is not observed because the potentials are almost constant even close to the Coulomb barrier; the so-called Break up Threshold Anomaly (BTA), where the imaginary potential increases as the bombarding energy decreases towards the Coulomb barrier. The BTA is attributed to a strong coupling of the elastic channel with the breakup process, which might have a much larger cross section than fusion at sub-barrier energies. In order to understand how those differences are affected by the system properties it is important to have data of new systems available. In this work we contribute original elastic scattering data of the weakly bound 6,7 Li projectiles on 144 Sm at near coulomb barrier energies. The measurements have been performed at the TANDAR Laboratory using 6 Li and 7 Li beams and a 100 μg/cm 2 thick 144 Sm target. Eleven different bombarding energies between 21 and 42.3 MeV were used for each projectile. The results are analyzed using phenomenological optical potentials and compared with results from other systems involving weakly bound nuclei. (author)
Dynamical correlations in finite nuclei: A simple method to study tensor effects
International Nuclear Information System (INIS)
Dellagiacoma, F.; Orlandini, G.; Traini, M.
1983-01-01
Dynamical correlations are introduced in finite nuclei by changing the two-body density through a phenomenological method. The role of tensor and short-range correlations in nuclear momentum distribution, electric form factor and two-body density of 4 He is investigated. The importance of induced tensor correlations in the total photonuclear cross section is reinvestigated providing a successful test of the method proposed here. (orig.)
The study of initial conditions in collisions of light, intermediate and heavy nuclei
Directory of Open Access Journals (Sweden)
Loctionov A.A.
2017-01-01
Full Text Available The system size dependence for multiparticle processes has been recognized in both cosmic ray (“Stratosphere” collaboration and at accelerator (“EMU” collaboration experiments. The strong enhancement in multiplicity fluctuations for the most central light-light – (C, O, Ne + (C/N/O – collisions has been revealed at JINR-AGS-SPS energies. The sharp difference of light nuclear interactions are interpreted as the sign of intrinsic alpha-clustering in light nuclei.
Studies of yrast and continuum states in A = 140 - 160 nuclei. Progress report for 1985
International Nuclear Information System (INIS)
Daly, P.J.
1986-02-01
The results of nuclear structure investigations by in-beam γ-ray spectroscopy following heavy ion reactions are summarized. Detailed information is given for the proton-rich nuclei 151 Tm, 152 Tm and 150 Ho, and for nuh/sub 11/2//sup n/ states in heavy tin isotopes. The first experiments performed with the new Compton-suppressed detector array at ATLAS are outlined
International Nuclear Information System (INIS)
Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1983-01-01
Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)
Elkattan, Amal; Mahdy, Amal; Eltomey, Mohamed; Ismail, Radwa
2017-03-01
Knowledge of the effects of healthy aging on brain structures is necessary to identify abnormal changes due to diseases. Many studies have demonstrated age-related volume changes in the brain using MRI. 60 healthy individuals who had normal MRI aged from 20 years to 80 years were examined and classified into three groups: Group I: 21 persons; nine males and 12 females aging between 20-39 years old. Group II: 22 persons; 11 males and 11 females aging between 40-59 years old. Group III: 17 persons; eight males and nine females aging between 60-80 years old. Volumetric analysis was done to evaluate the effect of age, gender and hemispheric difference in the caudate and putamen by the slicer 4.3.3.1 software using 3D T1-weighted images. Data were analyzed by student's unpaired t test, ANOVA and regression analysis. The volumes of the measured and corrected caudate nuclei and putamen significantly decreased with aging in males. There was a statistically insignificant relation between the age and the volume of the measured caudate nuclei and putamen in females but there was a statistically significant relation between the age and the corrected caudate nuclei and putamen. There was no significant difference on the caudate and putamen volumes between males and females. There was no significant difference between the right and left caudate nuclei volumes. There was a leftward asymmetry in the putamen volumes. The results can be considered as a base to track individual changes with time (aging and CNS diseases). Clin. Anat. 30:175-182, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)
2012-11-15
The proton elastic scattering data on some light exotic nuclei, namely, {sup 6,} {sup 8}He, {sup 9,} {sup 11}Li, and {sup 10,} {sup 11,} {sup 12}Be, at energies below than 100MeV/nucleon are analyzed using the single folding optical model. The real, imaginary, and spin-orbit parts of the optical potential (OP) are constructed only from the folded potentials and their derivatives using M3Y effective nucleon-nucleon interaction. These OP parts, their renormalization factors and their volume integrals are studied. The surface and spin-orbit potentials are important to fit the experimental data. Three model densities for halo nuclei are used and the sensitivity of the cross-sections to these densities is tested. The imaginary OP within high-energy approximation is used and compared with the single folding OP. This OP with few and limited fitting parameters, which have systematic behavior with incident energy, successfully describes the proton elastic scattering data with exotic nuclei. (orig.)
International Nuclear Information System (INIS)
Anon.
1995-01-01
The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to
Cosmological Studies with Galaxy Clusters, Active Galactic Nuclei, and Strongly Lensed Quasars
Rumbaugh, Nicholas Andrew
The large-scale structure (LSS) of the universe provides scientists with one of the best laboratories for studying Lambda Cold Dark Matter (LambdaCDM) cosmology. Especially at high redshift, we see increased rates of galaxy cluster and galaxy merging in LSS relative to the field, which is useful for studying the hierarchical merging predicted by LambdaCDM. The largest identified bound structures, superclusters, have not yet virialized. Despite the wide range of dynamical states of their constituent galaxies, groups, and clusters, they are all still actively evolving, providing an ideal laboratory in which to study cluster and galaxy evolution. In this dissertation, I present original research on several aspects of LSS and LambdaCDM cosmology. Three separate studies are included, each one focusing on a different aspect. In the first study, we use X-ray and optical observations from nine galaxy clusters at high redshift, some embedded in larger structures and some isolated, to study their evolutionary states. We extract X-ray gas temperatures and luminosities as well as optical velocity dispersions. These cluster properties are compared using low-redshift scaling relations. In addition, we employ several tests of substructure, using velocity histograms, Dressler-Shectman tests, and centroiding offsets. We conclude that two clusters out of our sample are most likely unrelaxed, and find support for deviations from self-similarity in the redshift evolution of the Lx-T relation. Our numerous complementary tests of the evolutionary state of clusters suggest potential under-estimations of systematic error in studies employing only a single such test. In the second study, we use multi-band imaging and spectroscopy to study active galactic nuclei (AGN) in high-redshift LSS. The AGN were identified using X-ray imaging and matched to optical catalogs that contained spectroscopic redshifts to identify members of the structures. AGN host galaxies tended to be associated with the
Thürling, M; Hautzel, H; Küper, M; Stefanescu, M R; Maderwald, S; Ladd, M E; Timmann, D
2012-09-01
The first aim of the present study was to extend previous findings of similar cerebellar cortical areas being involved in verbal and spatial n-back working memory to the level of the cerebellar nuclei. The second aim was to investigate whether different areas of the cerebellar cortex and nuclei contribute to different working memory tasks (n-back vs. Sternberg tasks). Young and healthy subjects participated in two functional magnetic resonance imaging (fMRI) studies using a 7 T MR scanner with its increased signal-to-noise ratio. One group of subjects (n=21) performed an abstract and a verbal version of an n-back task contrasting a 2-back and 0-back condition. Another group of subjects (n=23) performed an abstract and a verbal version of a Sternberg task contrasting a high load and a low load condition. A block design was used. For image processing of the dentate nuclei, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied (Diedrichsen et al., 2011). Whereas activated areas of the cerebellar cortex and dentate nuclei were not significantly different comparing the abstract and verbal versions of the n-back task, activation in the abstract and verbal Sternberg tasks was significantly different. In both n-back tasks activation was most prominent at the border of lobules VI and Crus I, within lobule VII, and within the more caudal parts of the dentate nucleus bilaterally. In Sternberg tasks the most prominent activations were found in lobule VI extending into Crus I on the right. In the verbal Sternberg task activation was significantly larger within right lobule VI compared to the abstract Sternberg task and compared to the verbal n-back task. Activations of rostral parts of the dentate were most prominent in the verbal Sternberg task, whereas activation of caudal parts predominated in the abstract Sternberg task. On the one hand, the lack of difference between abstract and verbal n-back tasks and the lack of
Energy Technology Data Exchange (ETDEWEB)
Geissel, H
1997-03-01
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.
International Nuclear Information System (INIS)
Henley, E.M.
1987-01-01
Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs
International Nuclear Information System (INIS)
Laget, J.M.
1988-01-01
This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed
Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.
2017-12-01
Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.
Transitional nuclei near shell closures
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)
2014-08-14
High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.
International Nuclear Information System (INIS)
Chandrasekaran, P.; Cheralathan, M.; Velraj, R.
2015-01-01
The present study aims to investigate the solidification characteristics of water, as the PCM (phase change material), due to the effect of fill volume of PCM in a spherical capsule. The experiments were conducted with the spherical capsule, filling it with water of 80, 85, 90, 92 and 95 percentage of its full volume and immersing it in a constant temperature bath maintained at various temperatures. It was observed that the increase in fill volume had a significant influence in reducing the degree of supercooling and it was eliminated with 95% fill volume. Further, the increase in fill volume had a considerable effect in advancing the commencement of solidification. Increasing the temperature potential enhanced the heat flux during the solidification of first 50% of PCM mass and its effect was more pronounced at higher fill volumes. The heat flux was increased several fold particularly at 95% fill volume making it highly suitable for applications that demand large cooling load in a short duration. Hence the proper selection of fill volume and temperature driving potential is essential to achieve overall energy efficiency while designing the CTES (cool thermal energy storage) system. - Highlights: • Supercooling was eliminated with 95% fill volume at all surrounding bath temperature. • The effect of higher fill volume is more pronounced with higher temperature potential. • 50% mass is solidified in 10% of solidification duration with 95% fill volume at −12 °C. • Several fold increase in heat flux is achieved with 95% fill volume at −12 °C. • Combination of fill volume and temperature potential is essential for good design.
The study of structure in 224–234 thorium nuclei within the framework IBM
Directory of Open Access Journals (Sweden)
Lee Su Youn
2017-01-01
Full Text Available An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3 limit of the interacting boson model(IBM in the algebraic nuclear model. Furthermore, 224−232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5 symmetry. However, as 226−230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3 limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5 limit to the SU(3 Hamiltonian in IBM. We compared the results with experimental data of 224−234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224−234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.
Study of nuclei far from stability with AYE-Ball array
International Nuclear Information System (INIS)
Carpenter, M.P.
1996-01-01
The coupling of a Compton-suppressed Ge (CsGe) detector array to a recoil mass separator (RMS) has seen limited use in the past due to the low efficiency for measuring recoil-γ ray coincidences (< 0.1%). With the building of new generation recoil separators and gamma-ray arrays, a substantial increase in detection efficiency has been achieved. This allows for the opportunity to measure excited states in nuclei with cross-sections approaching 100 nb. In this paper, results from the coupling of a modest array of CsGe detectors (AYE-Ball) with a recoil separator (FMA) will be presented
Contributions to the study of heavy and superheavy nuclei stability in alpha-decay
International Nuclear Information System (INIS)
Silisteanu, I.
1978-01-01
Alpha-decay is treated in this work on the complete analogy of transfer reactions by means of nuclear shell models with continuous spectrum nucleons. Certain phenomenologically obtained or microscope evaluated data on low energy interactions between alpha-particles and nuclei, when related to nuclear structure data within the unified theory of nuclear reactions, allow of an improved accuracy in determining the alpha-particle wave function as well as of an estimation of alpha-probabilities in good keeping with experimental ones. The problem of alpha lifetimes thus narrows to the resolution of some homogeneous and inhomogeneous differential equations systems including the optic potential and the alpha formfactors. (author)
Study of some continuous spectra produced by nuclear reactions with light nuclei
International Nuclear Information System (INIS)
Marquez, L.
1966-01-01
The continuous spectra coming from several nuclear reactions with light nuclei were measured. The spectra can be explained by a two-step reaction mechanism; however, the reactions produced by 6 Li are different. A mechanism was proposed to explain their spectra based on the following assumptions: 6 Li makes a nuclear molecule with the target which subsequently breaks up in such a way that an α particle comes out with the kinetic energy that it has in the molecule. The calculated spectra and those measured are in good agreement. (author) [fr
Study of the joining particle rotation in nuclei of 161-167 Er and 235 U
International Nuclear Information System (INIS)
Fernandez L, M.
1996-01-01
The residual quadrupole pairing and spin-spin interactions among the nucleons, in presence of the rotational motion, lead to additional terms in the particle-rotation coupling which attenuate the effects of the Coriolis interaction. These couplings are determined by using the density matrix formalism, under the consideration of the exact conservation of the nuclear angular moment. Finally the energy levels of the rotational bands and the mixing amplitudes of the BE2 transition probabilities are calculated for some odd deformed nuclei. A very good agreement between the theoretical and experimental energies is obtained. The Coriolis attenuation produced by these interactions shows itself as relevant for explaining the experimental results. (Author)
International Nuclear Information System (INIS)
Gulamov, K.G.
1987-01-01
It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems
International Nuclear Information System (INIS)
Garandeau, S.
1984-01-01
Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr
Experimental Studies of the Mechanism of Photon Absorption on Light Nuclei
Energy Technology Data Exchange (ETDEWEB)
Morrow, Steven A. [Univ. of Edinburgh, Scotland (United Kingdom)
2000-09-13
1st time a comparison between the ^{12}C(γ,p) reaction and the transverse part of ^{12}C(e,e'p) reaction cross section has been made. This comparison suggests that the mechanism of the 2 reactions converge when both are studied in equivalent kinematics resolving the long standing issue of anomalous excitation of the ~ 7 MeV triplet in ^{11}B, following ^{12}C(γ,p), not seen in the ^{12}C(e,e'p) case. In a further use of the (γ,pγ') reaction the relative population of the 4.44 MeV (T = 0) and 15.1 MeV (T = 1) states in ^{12}C, following ^{14}N(γ,pn), have been measured with tagged photons in the range 50.20 < E_{γ} < 71.40 MeV. A strong suppression for population of the T = 1 state in the residual nucleus as compared to the T = 0 state was observed. This is consistent with the picture of photon absorption on T = 0 (^{3}S_{1}) p-n pairs in nuclei. A measurement of the ^{14}N(γ,d) reaction has also been made in which the converse population of states in ^{12}C was observed.
Experimental Studies of the Mechanism of Photon Absorption on Light Nuclei
International Nuclear Information System (INIS)
Steven Morrow
2000-01-01
A measurement of the reaction 12 C(γ,pγ(prime)) has been made with tagged photons in the range 49.47 γ - , 1/2 + , 5/2 + ) at E ex ≅ 7 MeV in the residual nucleus 11 B, following the reaction 12 C(γ,p), has been made by directly resolving their de-excitation γ-ray decay to the ground state of 11 B. This measurement constitutes the highest resolution ever achieved in determining the excitation function of the residual nucleus after a (γ,p) reaction (∼ 48 keV FWHM at E ex ≅ 7 MeV). Comparison has been made with the data of Kuzin et al, who also measured the relative populations with a resolution of ∼ 270 keV at E ex ≅ 7 MeV. The 7/2 - state at 6.74 MeV has been observed to be the most strongly excited state of the triplet in agreement with Kuzin et al. Disagreement has been found for the relative strengths of the 1/2 + and 5/2 + states in the triplet. An estimation of the maximum effect of angular correlations between the ejected proton and de-excitation γ-ray has been included in the analysis. This effect increases the disagreement between the measurements. A study of the reaction 12 C(e,e(prime)p) has been made in the missing momentum region 260 m L and W T . The experimental data have been compared with Complete Distorted Wave Impulse Approximation calculations and Random Phase Approximation calculations. The latter when including virtual photon absorption on 2-body currents (Meson Exchange Currents + Isobar Currents) are seen to describe the reduced cross sections better than 1-body current or Complete Distorted Wave Impulse Approximation calculations. For the 1st time a comparison between the 12 C(γ,p) reaction and the transverse part of 12 C(e,e(prime)p) reaction cross section has been made. This comparison suggests that the mechanism of the 2 reactions converge when both are studied in equivalent kinematics resolving the long standing issue of anomalous excitation of the ∼ 7 MeV triplet in 11 B, following 12 C(γ,p), not seen in the 12 C
Studies of new modes of radioactive decay by spontaneous emission of complex nuclei
International Nuclear Information System (INIS)
Barwick, S.W.; Hulet, E.K.; Moody, K.; Price, P.B.; Ravn, H.L.
1990-01-01
Impressive progress has been made in the two years since Rose and Jones first reported the novel spontaneous decay mode 223 Ra → 14 C + 209 Pb. Since then, the isotopes 222 Ra, 224 Ra, and 226 Ra have been observed to emit 14 C, and stringent upper limits have been set on branching ratios B( 14 C/α) for 221 Ra and 225 Ac. The discoveries of emission of 24 Ne from 232 U, and 231 Pa, and 233 U show that the phenomenon of heavy ion emission is a general one. A goal of recent experiments by the authors collaboration is to test models that differ by as much as 10 5 in predicted half-lives for the emission of complex nuclei with Z ≥ 12. Due to small branching ratios B approx-lt 10 -14 , and large fission background, they are developing new techniques to insure reliable identification of such rare decay modes. Experimental support for the unified models of alpha decay, complex nuclei emission, and spontaneous fission are addressed
Deformed model Sp(4) model for studying pairing correlations in atomic nuclei
Georgieva, A I; Sviratcheva, K
2002-01-01
A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom
Experimental study on p-wave neutron strength functions for light nuclei
International Nuclear Information System (INIS)
Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.
1988-01-01
Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)
The study of the properties of nuclei far from the beta stability line
International Nuclear Information System (INIS)
Lizurej, H.I.
1980-01-01
A complex of setups for measuring the lifetime of excited states of nuclei by the method of delayed electron-gamma and gamma-gamma coincidences in the range 10 -10 -10 -6 s is presented. The methods allowing for a substantial increase in the accuracy and efficiency of obtaining experimental data are developed. The procedures of measuring and analysing the multicomponent beta spectra with taking into account the instrumental effect which distorts the measured spectra are developed. Results of investigating the positron decay and determining the mass difference Qsub(B)+ for nuclei with Tsub(1/2)>20 min by the method of measuring the positron end-point energy are presented. The nano- and subnanosecond isomers for short-lived isotopes far from the beta stability line have been investigated. Probabilities of the electromagnetic transitions which depopulate the low-lying excited states in 151 Tb, 153 Dy, 160 Tm, sup(157,159,161)Er have been determined and analysed. (author)
Energy Technology Data Exchange (ETDEWEB)
Pasechnik, M V
1978-01-01
Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.
A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory
Energy Technology Data Exchange (ETDEWEB)
Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)
1997-03-01
We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)
A systematic fast-timing study of even-even nuclei in the well deformed A 170-180 region
Energy Technology Data Exchange (ETDEWEB)
Jolie, J.; Regis, J.M.; Dannhoff, M.; Gerst, R.B.; Karayonchev, V.; Mueller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Blazhev, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Department of Physics, University of Surrey (United Kingdom)
2016-07-01
At the Cologne Tandem accelerator we are performing a systematic study of lifetimes in the ground state bands of well deformed even-even nuclei in order to increase the precision of the ns-ps lifetimes and to solve inconsistencies in the literature. The measurements are done using Orange spectrometers, LaBr{sub 3}(Ce) scintillators and Ge detectors. The data are analyzed using the slope and the generalized centroid difference method. The latter allows the measurement of lifetimes down to 5 ps. First results on Yb, Hf and W isotopes are presented.
Study on neutron interactions with protons and carbon nuclei at p=4.2 GeV/c
International Nuclear Information System (INIS)
Bekmirzaev, R.N.; Muminov, M.M.; Sultanov, M.U.; Grishina, O.V.; Dolejsi, J.; Tas, P.; Trka, Z.
1988-01-01
The production of neutrons with p=4.2 GeV/c in d(C 3 H 8 ) collisions and their interaction with proton and carbon nuclei are studied. The experimental material has been obtained using the 2m propane bubble chamber irradiated by deuterons with p=4.2 GeV/c per nucleon at the Dubna synchrophasotron, JINR. The data on multiplicity and momentum characteristics of secondary particles in np and nC interactions compared with the calculations on the LUND model are obtained
Proton scattering from unstable nuclei 20O, 30S, 34Ar: experimental study and models
International Nuclear Information System (INIS)
Khan, Elias
2000-01-01
Elastic and inelastic proton scattering from the unstable nuclei 20 O, 30 S and 34 Ar were measured in inverse kinematics at the Grand Accelerateur National d'Ions Lourds. Secondary beams of 20 O at 43 MeV/A, 30 S at 53 MeV/A and 34 Ar at 47 MeV/A impinged on a (CH 2 ) n target. Recoiling protons were detected in the silicon strip array MUST. Energies and angular distributions of the first 2 + and 3 - states were measured. A phenomenological analysis yields values of the deformation parameters β 2 and β 3 of 0.55 (6) and 0.35 (5) for 20 O, 0.32 (3) and 0.22 (4) for 30 S, 0.27 (2) and 0.39 (3) for 34 Ar, respectively, and allows the extraction of the ratio of neutron to proton transition matrix elements (M n /M p )/(N/Z) for 2 + states: 2.35 (37) for 20 O, 0.93 (20) for 30 S and 1.35 (28) for 34 Ar. Therefore the proton rich nuclei 30 S and 34 Ar show a 2 + excitation of isoscalar character whereas the excitation of 20 O is of isovector character. In order to perform a microscopic analysis of the data, we have developed a QRPA model, using three Skyrme interaction: SIII, SG2, SLy4. This model reproduces measured B(EL) values for the oxygen, sulfur and argon isotopic chains, whereas RPA calculations, which do not take pairing into account, underestimate these values. In the case of the QRPA model the energies of the first 2 + state are overestimated by about 1 MeV, but the evolution along the isotopic chains is well reproduced. (M n /M p )/(N/Z) ratios for the first 2 + state deduced from the microscopic analysis using QRPA are 1.98 for 20 O, 1.05 for 30 S and 1.00 for 34 Ar, in agreement with the conclusions of the phenomenological analysis. However important discrepancies are observed between the two types of analysis for other isotopes, in particular neutron rich argon and sulfur nuclei. (author)
Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics
Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.
2018-05-01
Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.
International Nuclear Information System (INIS)
Carraz, L.-C.
1974-01-01
Chemical separation techniques have been developed which make it possible to obtain a certain number of isotopes presenting anomalies in the fission efficiencies (near the magic shell N=82). A short description is given of the fission phenomenon by analysing the selection of isotopes investigated; it is shown how it was possible to explain the results by means of computers and the various chemical separations perfected are described. Thus a study was made of the 144 La direct γ spectrum. It was shown that the anomalies in the fission efficiencies of certain nuclei are apparent only. Hence, it is the presence of isomers and the distribution of the corresponding efficiency between two isomers which are the cause of the apparent weakness of the efficiency of 134 I, 136 I and 136 Cs, and of certain isotopes of Nb(Z=41). The nuclear spectrometry of nuclei of the area N=82 has made it possible to extend the existence of a metastable state to 136 Xe and 138 Ba. The value of the energies of the first 2 + , 4 + , 6 + levels and the half life duration of the 6 + metastable state are given. The discussion of the results and of the models show that the interpretation of the 0 + , 2 + , 4 + of the 82 neutron nuclei by means of a two quasi-particle (protons) model gives a fairly satisfactory description of the various experimental events: elastic scattering, gamma spectrometry and proton transfer reactions; on the other hand the interpretation of higher energy levels, requires the use of more complicated configurations [fr
Low-energy kaon-nucleon/nuclei interaction studies at DAΦNE by AMADEUS
Directory of Open Access Journals (Sweden)
Tucaković Ivana
2015-01-01
Full Text Available The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DAΦNE collider at LNF-INFN, fundamental to respond to longstanding open questions in the non-perturbative QCD in the strangeness sector. One of the most interesting aspects is to understand how hadron masses and interactions change in the nuclear environment. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would imply a strongly attractive antikaon-nucleon potential. AMADEUS step 0 consists in the analysis of 2004/2005 KLOE data, exploring K− absorptions in H, 4He, 9Be and 12C present in setup materials. The status of the various preliminary analyses is presented, together with future perspectives.
Study of the (p,α)-reaction on sd-shell nuclei and their microscopic analysis
International Nuclear Information System (INIS)
Hoyler, F.
1982-01-01
In the present thesis the (p,α) reaction on the 2s-1d-shell nuclei 23 Na, 24 Mg, 26 Mg, 27 Al, 35 Cl, 37 Cl, and 39 K was measured. The experiments were performed at the isochronous cyclotron JULIC of the Institute for Nuclear Physics of the Nuclear Research Facility Juelich and at the Emperor Van-de-Graaff accelerator of the Max Planck Institute for Nuclear Physics Heidelberg. Angular distributions for transitions to several residual nucleus states were evaluated in the energy range between 18 and 45 MeV incident proton energy. By the application of magnetic spectrometers as detection device an energy resolution between 25 and 45 keV could be reached. (orig./HSI) [de
Parity violation in nuclei: studies of the weak nucleon-nucleon interaction
International Nuclear Information System (INIS)
Mcdonald, A.B.
1980-03-01
The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21 Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)
Stability and production of superheavy nuclei
International Nuclear Information System (INIS)
Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.
1997-01-01
Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation
Study of 11Li and 10,11Be nuclei through elastic scattering and breakup reactions
Gaidarov, M. K.; Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Antonov, A. N.; Lukyanov, K. V.; Spasova, K.
2016-01-01
The hybrid model of the microscopic optical potential (OP) is applied to calculate the 11Li+p, 10,11Be+p, and 10,11Be+12C elastic scattering cross sections at energies E energy approximation (HEA) theory. For the 11Li+p elastic scattering, the microscopic large-scale shell model (LSSM) density of 11Li is used, while the density distributions of 10,11Be nuclei obtained within the quantum Monte Carlo (QMC) model and the generator coordinate method (GCM) are utilized to calculate the microscopic OPs and cross sections of elastic scattering of these nuclei on protons and 12C. The depths of the real and imaginary parts of OP are fitted to the elastic scattering data, being simultaneously adjusted to reproduce the true energy dependence of the corresponding volume integrals. Also, the cluster models, in which 11Li consists of 2n-halo and the 9Li core having its own LSSM form of density and 11Be consists of a n-halo and the 10Be core, are adopted. Within the latter, we give predictions for the longitudinal momentum distributions of 9Li fragments produced in the breakup of 11Li at 62 MeV/nucleon on a proton target. It is shown that our results for the diffraction and stripping reaction cross sections in 11Be scattering on 9Be, 93Nb, 181Ta, and 238U targets at 63 MeV/nucleon are in a good agreement with the available experimental data.
Study of 11Li and 10,11Be nuclei through elastic scattering and breakup reactions
Directory of Open Access Journals (Sweden)
Gaidarov M. K.
2016-01-01
Full Text Available The hybrid model of the microscopic optical potential (OP is applied to calculate the 11Li+p, 10,11Be+p, and 10,11Be+12C elastic scattering cross sections at energies E < 100 MeV/nucleon. The OP’s contain the folding-model real part (ReOP with the direct and exchange terms included, while its imaginary part (ImOP is derived within the high-energy approximation (HEA theory. For the 11Li+p elastic scattering, the microscopic large-scale shell model (LSSM density of 11Li is used, while the density distributions of 10,11Be nuclei obtained within the quantum Monte Carlo (QMC model and the generator coordinate method (GCM are utilized to calculate the microscopic OPs and cross sections of elastic scattering of these nuclei on protons and 12C. The depths of the real and imaginary parts of OP are fitted to the elastic scattering data, being simultaneously adjusted to reproduce the true energy dependence of the corresponding volume integrals. Also, the cluster models, in which 11Li consists of 2n-halo and the 9Li core having its own LSSM form of density and 11Be consists of a n-halo and the 10Be core, are adopted. Within the latter, we give predictions for the longitudinal momentum distributions of 9Li fragments produced in the breakup of 11Li at 62 MeV/nucleon on a proton target. It is shown that our results for the diffraction and stripping reaction cross sections in 11Be scattering on 9Be, 93Nb, 181Ta, and 238U targets at 63 MeV/nucleon are in a good agreement with the available experimental data.
A detailed study of nucleon structure function in nuclei in the valence quark region
Energy Technology Data Exchange (ETDEWEB)
Bianchi, N. [INFN-Laboratori, Nazionali di Frascati (Italy)
1994-04-01
The so called {open_quotes}EMC effect{close_quotes} discovered during the 1980`s, has caused a big controversy in the community of nuclear and high energy physicists; during the last ten years, five experiments have been performed in different laboratories and several hundreds of papers about the possible interpretation of the modification of the nucleon structure function inside nuclei have been published. However, from the experimental point of view, the main goal of four experiments (EMC, BCDMS, NMC, FNAL) has been to emphasize the region of low x{sub b}, where shadowing effects appear. In the region of valence quarks and nuclear effects (x{sub b} > 0.1 - 0.2) the most reliable data presently available are from the SLAC E139 experiment performed in 1983 with only 80 hours of beam time. New precise data in the valence quark region are necessary to measure separate structure functions F{sub 2}(x{sub b}, Q{sup 2}) and R{sup lt}(x{sub b},Q{sup 2}) = {sigma}{sub l}/{sigma}{sub t}, and to investigate the real A-dependence of the ratio between bound and free-nucleon structure functions which is not completely defined by the SLAC data. Moreover, from the nuclear physics point of view, a measurement on some unexplored nuclei, like {sup 3}He and {sup 48}Ca, would be of great interest. The intermediate scaling region (0.1 < x{sub b} < 0.7) would be accessible at CEBAF if the machine energy will reach 6-8 GeV, as suggested by all the tests performed on the RF cavities. This physics program has been already presented in two letter of intents.
International Nuclear Information System (INIS)
Schroeder, W.U.; Huizenga, J.R.
1988-08-01
The effect of successively increasing gradients of the potential energy surface on mass and charge transport was studied experimentally and theoretically with a series of damped reactions induced by 48 Ca, 64 Ni, 58 Ni, and 40 Ca projectiles on 238 U targets. Combined transport-evaporation calculations that were performed for the interpretation of data demonstrate a systematic deficiency of quantitative reaction theory. A new type of experimental method has been employed to study several moments of the energy partition in damped reactions, measuring multiplicity correlations of neutrons emitted from the asymptotic fragments with a specially designed, directionally sensitive multiplicity counter. First results indicate significant departures of damped reaction systems from thermal equilibrium. Employing realistic Monte Carlo simulation of published experiments, it was demonstrated that the directions of net mass transfer and energy deposit are uncorrelated in damped reactions. Evaporative and preequilibrium neutron emission has been studied for the asymmetric heavy-ion system 139 La + 40 Ar. The disequilibrium energy transport phenomena observed in the experiment are quantitatively reproduced by model calculations. A strong impact-parameter dependence of preequilibrium emission is demonstrated. The emission patterns of α particles evaporated from high spin compound nuclei, previously attributed to exotic nuclear shapes, have been explained in realistic statistical model calculations for nuclei with conventional shapes. A new octal digital delay module has been designed and tested
Medium energy hadron scattering from nuclei
International Nuclear Information System (INIS)
Ginocchio, J.N.; Wenes, G.
1986-01-01
The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154 Sm and 154 Gd. 27 refs., 5 figs., 1 tab
Influence of quasi-spherical polarization on results of bioelectromagnetic studies.
Dlugosz, Tomasz
2015-01-01
One of the most interesting questions in bioelectromagnetic and compatibility studies is differences between results of experiments performed in different labs in "identical" conditions, especially in bioelectromagnetics studies. A reason of these differences may be due to differences in investigated objects, particularly in in vivo experiments. However, the author, as engineer, would like to focus the readers' attention on the technical aspects of exposure systems namely: presence and role of mutual interaction between the object under test and the exposure system, interaction between exposure objects, the role of polarization and the similarity of real-life exposure to those applied in experiments, etc. All these factors may change the results of experiments and lead to false conclusions.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Directory of Open Access Journals (Sweden)
Chao Li
2016-09-01
Full Text Available This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to the positive ions on the flame surface was also established to perform a relevant simulation. Results show that the spherical flame will acquire an elliptical shape with a marked flame stretch in the horizontal direction and a slight inhibition in the vertical direction under a negative DC electric field. Meanwhile, a non-uniform ionic distribution on the flame surface was also detected by the Langmuir probe. The simulation results from the numerical model show good agreement with experimental data. According to the velocity field analysis in simulation, it was found the particular motion of positive ions and neutral molecules on the flame surface should be responsible for the special flame deformation. When a negative DC electric field was applied, the majority of positive ions and colliding neutral molecules will form an ionic flow along the flame surface by a superposition of the electric field force and the aerodynamic drag. The ionic flow was not uniform and mainly formed on the upper and lower sides, so it will lead to a non-uniform ionic distribution along the flame surface. What’s more, this ionic flow will also induce two vortexes both inside and outside of the flame surface due to viscosity effects. The external vortexes could produce an entraining effect on the premixed gas and take away the heat from the flame surface by forced convection, and then suppress the flame propagation in the vertical direction, while, the inner vortexes would scroll the burned zones and induce an inward flow at the horizontal center, which could be the reason for the
A model study of aggregates composed of spherical soot monomers with an acentric carbon shell
Luo, Jie; Zhang, Yongming; Zhang, Qixing
2018-01-01
Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.
International Nuclear Information System (INIS)
Huefner, J.
1975-01-01
Are pions a good tool to study nuclei. If the emphasis of this question rests on ''tool'', the answer must be ''not yet.'' The reason: one does not even understand how a pion interacts with a nucleus. This is part of the many-body problem for strongly interacting particles and its study is a basic problem in physics. One must investigate questions like: Can one understand pion-nucleus interactions from pion-nucleon physics. How does a Δ-resonance look in nuclei. Once one has solved those basic problems, there will be spinoffs in medical, technical and nuclear areas. Then pions can be used as a tool to study nuclear properties
Study of a phase change energy storage using spherical capsules. Part II: Numerical modelling
International Nuclear Information System (INIS)
Bedecarrats, J.P.; Castaing-Lasvignottes, J.; Strub, F.; Dumas, J.P.
2009-01-01
The objective of this work is the numerical study of an industrial process of energy storage which consists in the use of a cylindrical tank filled with encapsulated phase change materials (PCM). A particularity is present in this kind of processes; it concerns the delay of the crystallization of the PCM, called supercooling phenomenon. The development of the model for cold storage with heat transfer fluid flowing enables a detailed analysis of this process. The effects of different parameters on the behaviour of the tank, such as the inlet temperature, the flow rate, are examined when the tank is in vertical position. There is substantial agreement between the prediction and the experimental values already presented in part I.
Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo
2012-01-01
the numerical analysis, which is also reflected in published literature. Rather than moving towards very low triaxiality shearing, work has focused on extracting wide-ranging results for moderate stress triaxiality (T ~ 1), in order to achieve sufficient understanding of the influence of initial porosity, void...... significant straining of the matrix material located on the axis of rotation. In particular, the void surface material is severely deformed during shearing and void surface contact is established early in the deformation process. This 3D effect intensifies with decreasing stress triaxiality and complicates...... shape, void orientation etc. The objective of this work is to expand the range of stress triaxiality usually faced in 3D cell model studies, such that intense shearing is covered, and to bring forward details on the porosity and void shape evolution. The overall material response is presented...
Euclid’s phaenomena a translation and study of a hellenistic treatise in spherical astronomy
Berggren, J L; Thomas, R S D
2006-01-01
The book contains a translation and study of Euclid's Phaenomena, a work which once formed part of the mathematical training of astronomers from Central Asia to Western Europe. Included is an introduction that sets Euclid's geometry of the celestial sphere, and its application to the astronomy of his day, into its historical context for readers not already familiar with it. So no knowledge of astronomy or advanced mathematics is necessary for an understanding of the work. The book shows mathematical astronomy shortly before the invention of trigonometry, which allowed the calculation of exact results and the subsequent composition of Ptolemy's Almagest. The Phaenomena itself begins with an introduction (possibly not by Euclid) followed by eighteen propositions set out in geometrical style about how arcs of the zodiacal circle move across the sky. The astronomical application is to the small arc of that circle occupied by the Sun, but the Sun is not mentioned. This work and the (roughly) contemporaneous treati...
Electron scattering for exotic nuclei
International Nuclear Information System (INIS)
Suda, T.
2013-01-01
An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained
International Nuclear Information System (INIS)
Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu
2005-01-01
New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)
A study of the (p,pn) reaction on 1p shell nuclei at 46 MeV
International Nuclear Information System (INIS)
Miller, C.A.
1974-01-01
The (p,pn) reaction on four 1p shell nuclei, 6 Li, 9 Be, 13 C and 12 C, as well as the 6 Li(p,2p) reaction, have been studied at 46 MeV. The 6 Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in 6 Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the 9 Be and 13 C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons. (author)
Bass, Hank W; Wear, Emily E; Lee, Tae-Jin; Hoffman, Gregg G; Gumber, Hardeep K; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda
2014-06-01
The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Study of the (p,pn) reaction on 1p shell nuclei at 46 MeV
Energy Technology Data Exchange (ETDEWEB)
Miller, C A
1974-01-01
The (p,pn) reaction on four 1p shell nuclei, /sup 6/Li, /sup 9/Be, /sup 13/C and /sup 12/C, as well as the /sup 6/Li(p,2p) reaction, have been studied at 46 MeV. The /sup 6/Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in /sup 6/Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the /sup 9/Be and /sup 13/C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons.
Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70
International Nuclear Information System (INIS)
Longour, Christophe
1999-01-01
Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78 Y, 82 Nb and 86 Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72 Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
Boson forbidden transitions and their manifestation in spherical nuclei
International Nuclear Information System (INIS)
Stoyanov, Ch.
2002-01-01
For the correct description of the 'boson forbidden' transitions it is necessary to go beyond the quasi-boson approximation and to take into account the fermion structure of the phonons. Once it done it is quantitative description of the transitions is possible within the simplest model based on the separable residual interactions. Calculations of the forbidden E1-transitions in 120 Sn, 144 Sm and 144 Nd are presented. Analysis of some low-energy M1-transitions is made using IBM-2. The discussed examples reveal the complex properties of the low-lying excited states
Ground state correlations and structure of odd spherical nuclei
International Nuclear Information System (INIS)
Mishev, S.; Voronov, V. V.
2006-01-01
It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in "1"3"1Ba have been performed.
Ground state correlations and structure of odd spherical nuclei
International Nuclear Information System (INIS)
Mishev, S.; Voronov, V.V.
2008-01-01
It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides, the ground state correlations due to the quasiparticle interaction in the ground state influence the single-particle fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned. As an illustration of our approach, calculations on the structure of the low-lying states in 133 Ba have been performed
Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei
International Nuclear Information System (INIS)
Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.
1988-01-01
The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)
Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum
International Nuclear Information System (INIS)
Bonneau, L.
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)
Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report
Energy Technology Data Exchange (ETDEWEB)
Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)
2016-04-21
Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.
Are Nanoparticles Spherical or Quasi-Spherical?
Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G
2015-07-20
The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Projected shell model study of odd-odd f-p-g shell proton-rich nuclei
International Nuclear Information System (INIS)
Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.
2003-01-01
A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented
International Nuclear Information System (INIS)
Whelan, N.D.
1993-01-01
Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
How do nuclei really vibrate or rotate
International Nuclear Information System (INIS)
Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.
1983-01-01
By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated
International Nuclear Information System (INIS)
Hirata, D.; Sumiyoshi, K.; Tanihata, I.; Sugahara, Y.; Tachibana, T.; Toki, H.
1997-01-01
We apply the relativistic mean field theory to study the ground state properties of about 2000 even-even nuclei from Z=8 to Z=120 up to the proton and neutron drip lines. The calculations have been done under the axial symmetry assumption and a quadratic constraint method in order to obtain all possible ground state configurations. We do not take into account the pairing correlation in the present study. The calculations are performed with the TMA parameter set. We explore the generaI trend of masses, radii and deformations in the whole region of the nuclear chart. Using the masses obtained from RMF theory, we calculate the r-process abundances and the r-process path. (orig.)
Wang, Yinglong; Chen, Chao; Wu, Zhuanhua; Liang, Weihua; Wang, Xiuli; Ding, Xuecheng; Chu, Lizhi; Deng, Zechao; Chen, Jinzhong; Fu, Guangsheng
To investigate the size dependence of the optical properties of the hydrogen-passivated Si nanoparticles (Hp-SiNPs), the energy bands and optical dielectric functions for two types of nanostructures, that is, the spherical Hp-SiNPs (SHp-SiNPs) with various diameters and the cylindrical Hp-SiNPs
Collisions between complex atomic nuclei
International Nuclear Information System (INIS)
Vaagen, J. S.
1977-08-01
The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)
Study of high-spin structure of the nuclei around A∼120 near proton-drip line
International Nuclear Information System (INIS)
Ray, I; Datta Pramanik, U.; Banerjee, P.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Mukherjee, A.; Mukherjee, B.; Saha Sarkar, M.; Basu, S.K.; Bhowmik, R.K.; Rakesh Kumar; Muralithar, S.; Singh, R.P.; Mandal, S.; Ranjet
2005-01-01
It would be interesting to explore the shell structure for nuclei near proton-drip line. The nuclei around A∼ 110-130 region show a wide range of interesting features in high spin states which reflect different types of symmetry breaking mechanisms as well as maintaining symmetries
New developments in the study of the caloric curve for finite nuclei within relativistic models
International Nuclear Information System (INIS)
Menezes, Debora Peres; Providencia, C.
2001-01-01
Relativistic nuclear models have been widely used in describing infinite nuclear matter and finite nuclei properties. With the help of the Thomas Fermi approximation, we have investigated droplet formation in the liquid-gas phase transition in cold and warm asymmetric nuclear matters using the non-linear Walecka model. We have shown that the optimal nuclear size of a droplet in a neutron gas is determined by a delicate balance between nuclear Coulomb and surface energies. On the other hand, the production of several intermediate mass fragments in a short time scale during heavy ion collisions is known as nuclear multifragmentation. In these experiments, the spectator matter has been used to investigate a possible liquid-gas phase transition. The caloric curve, which is given by the excitation energy per nucleon in terms of the thermodynamic temperature is an important quantity to be investigated in the search for a signal of a phase transition. In the present work we obtain the excitation energies of arising droplets in a vapor system, up to T = 6.5 MeV. The droplets are described in terms of a non-linear Walecka-type model with the NL1 parameterization, within the Thomas-Fermi approximation. We conclude that the excitation energies of droplets either corresponding to 150 Sm or 166 Sm, are consistent with the caloric curve in the Fermi gas approximation with a level density parameter A/13. This result agrees with experimental data obtained in heavy-ion collisions at intermediate energies. We have shown that the caloric curve is sensitive to the proton fraction and the inclusion of the Coulomb interaction is important. (author)
New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei
Energy Technology Data Exchange (ETDEWEB)
Broda, R.; Wrzesinski, J.; Pawlat, T. [and others
1996-12-31
The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.
Proton-gamma coincidence experiment on medium mass nuclei at 400MeV and study of reaction mechanisms
International Nuclear Information System (INIS)
Baldit, Alain.
1981-01-01
Previous γ ray production experiments produced by proton on nuclei show important cross sections for residual nuclei corresponding to a four nucleon (2p + 2n) removal. With our (p - γ) coincidence experiment the forward emitted proton reflects the primary interaction and the γ spectra characterizes the final state of the reaction. Protons are detected with a magnetic spectrometer and γ rays are selected with a Ge(Li) diode. Angular and momentum analysis of scattered protons demonstrate a primary quasi free process on nucleons. No indication of knock out reactions on clusters has been seen. The residual nuclei are mainly produced by evaporation processes. A theoretical calculation involving intranuclear cascades and evaporation processes has been performed. The nucleus model is based upon a Fermi gas and nuclear density agrees with diffusion electron experiments. Residual nuclei far from target are well described with a such model. Residual nuclei near the target are sensitive to the nuclear structure [fr
Dynamic polarization of radioactive nuclei
International Nuclear Information System (INIS)
Kiselev, Yu.F.; Lyuboshits, V.L.; )
2001-01-01
Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru
Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-07
GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.
International Nuclear Information System (INIS)
Lopez R, V.; Juarez O, C.; Medina L, A.; Perez C, E.; Garcia L, P.
2007-01-01
The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)
International Nuclear Information System (INIS)
Kanada-En'yo, Y.; Kimura, M.
2005-01-01
To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions
The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase
International Nuclear Information System (INIS)
Glendenning, N.K.
1978-01-01
The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de
Detailed study of the cluster structure of light nuclei in a three-body model. Pt. 3
International Nuclear Information System (INIS)
Kukulin, V.I.; Eramzhyan, R.A.
1990-01-01
The multicluster dynamic model with the Pauli projection (MDMP) for treating light nuclei, developed earlier, is used to study in detail the 6 Li electromagnetic structure including all the measured elastic and inelastic, transverse and longitudinal, isoscalar and isovector electromagnetic form factors of the nucleus and to make some predictions concerning other, not yet measured, form factors. The model is also used to calculate all the measured radiation widths Γ γ0 of the excited 6 Li * states. A proper description has been obtained for most of the known electromagnetic form factors of the nucleus. The reasons for disagreement with experimental data in the case of large momentum transfers in the M1 form factors, both elastic and inelastic, are discussed. The elastic C0 form factor of 6 Li and, probably, of other light nuclei in the region of the secondary maximum is shown to be defined, to a very great extent, by the behaviour of the α-particle charge form factor in the region of its secondary maximum. The radiation widths of the 3 + 0, 2 + 0, and 1 + 0 levels have been found to be highly sensitive to minor impurities of the wavefunction components with higher orbital moments for the excited states, as well as the ground state, of 6 Li. The Siegert theorem is shown to be of great importance when studying the probabilities of transverse electromagnetic transitions. The copious results obtained by the present authors, as well as elsewhere, concerning the diverse aspects of the behaviour of six-nucleon system in the strong, weak, and electromagnetic processes are used to formulate the concept of using the given system as an extremely convenient theoretical laboratory in nuclear physics. The relevant proposals concerning future experiments are formulated. (orig.)
Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model
Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.
2018-04-01
The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.
Symmetry energy and surface properties of neutron-rich exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)
2014-07-23
The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.
International Nuclear Information System (INIS)
Lima, V.
2004-10-01
In a towing mode reaction the projectile picks up a nucleon from the target and then breaks up by emitting one nucleon. The velocity of the emitted nucleon is boosted by the projectile velocity, leading to the emission of the nucleon in a narrow cone around the direction of the scattered projectile. This work is dedicated to the towing mode in halo nuclei such as Be 11 . The experiment was performed at Ganil facility by bombarding a Ti 48 target with a 41 MeV per nucleon Be 11 beam, the reaction studied is: Ti 48 (Be 11 , Be 10 + n + γ). The first chapter reviews the various nuclear processes that take place when 2 nuclei collide with a particular attention for the towing mode. The second chapter is dedicated to solving the time dependant Schroedinger equation (TDSE) in order to assess the impact of various parameters such as incident energy, target charge or the linking energy of the nucleon, on the towing mode reaction. The third chapter deals with the experimental equipment and set-up including detectors and the data acquisition system. Computerized simulations have been performed in order to assess the efficiency of the detecting system, they are presented in the fourth chapter. A comparison between experimental data and the results from TDSE solving, concerning the energy spectra of the emitted particles, has enabled the author to deduce the spectroscopic factors for the different contributions of the fundamental state of Be 11 , they are presented in the last chapter. The cross-sections of the towing mode are of the magnitude of several tens of milli-barns in the case of weakly bound nuclei like Be 11 which make it an efficient tool to study intern structure of nuclei. (A.C.)
Dynamical effects of successive mergers on the evolution of spherical stellar systems
International Nuclear Information System (INIS)
Lee, H.M.
1987-01-01
Numerical investigations are carried out to study the dynamical effects of high-mass stars formed out of successive mergers among tidally captured binaries on the evolution of spherical stellar systems. It is assumed that all tidally captured systems become mergers in order to maximize these effects. Stellar systems with N greater than about 10 to the 7th are susceptible to merger instability which may lead to the formation of a central black hole. It is shown that globular clusters are likely to achieve postcollapse expansion due to three-body binary heating and stellar evolution, while galactic nuclei can easily be overcome by the merger instability in the core. 25 references
International Nuclear Information System (INIS)
Raharjo, P; Tesfa, B; Gu, F; Ball, A D
2012-01-01
A Self aligning spherical journal bearing is a plain bearing which has spherical surface contact that can be applied in high power industrial machinery. This type of bearing can accommodate a misalignment problem. The journal bearing faults degrade machine performance, decrease life time service and cause unexpected failure which are dangerous for safety issues. Non-intrusive measurements such as surface vibration (SV), airborne sound (AS) and acoustic emission (AE) measurement are appropriate monitoring methods for early stage journal bearing fault in low, medium and high frequency. This paper focuses on the performance comparison using SV, AS and AE measurements in monitoring a self aligning spherical journal bearing for normal and faulty (scratch) conditions. It examines the signals in the time domain and frequency domain and identifies the frequency ranges for each measurement in which significant changes are observed. The results of SV, AS and AE experiments indicate that the spectrum can be used to detect the differences between normal and faulty bearing. The statistic parameter shows that RMS value and peak value for faulty bearing is higher than normal bearing.
International Nuclear Information System (INIS)
Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.
2015-01-01
In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.
Liu Ying Tai
2002-01-01
The approximate angular-momentum-projected Hartree-Fock (PDHF) method is used to study some odd-A nuclei in the 3s-2d-1g shell: sup 1 sup 1 sup 5 sup - sup 1 sup 2 sup 3 I. Their ground bands and low excited bands are calculated. The calculated results agree well with the experimental spectrum
On the distribution of quarks in nuclei
International Nuclear Information System (INIS)
Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.
1984-01-01
On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons
Compound nuclei at high angular momentum. High-spin γ-ray spectroscopy: past successes, future hopes
International Nuclear Information System (INIS)
Diamond, R.M.
1984-01-01
The addition of angular momentum to a nucleus presents a whole new dimension, a new coordinate axis, along which to study changes in nuclear behavior and structure. Nuclei can carry angular momentum in two principal ways: by the collective rotation of a deformed nucleus as a whole and by the alignment along the rotation axis of individual high-j nucleons. For spherical (or near-spherical) nuclei, the latter mode is the only one possible. The levels of 212 Rn illustrate a scheme of particle alignment; it is quite irregular with transitions of a variety of electromagnetic types and with little pattern to the level spacing. On the left, the yrast band of 238 U is shown, a predominantly rotational scheme with only strongly enhanced electric quadrupole transitions and a level spacing that approximates that of a rigid rotor, E = I(I + 1)h 2 /2 J and E/sub γ/ = (4I - 2)h 2 /2 J, where J is the moment of inertia. Most nuclei, however, combine both types of motion, and it is this interplay between collective and single-particle motion that makes the behavior of nuclei along the angular momentum coordinate so fascinating and so rich in variety. Data are shown for Yb isotopes, and Er isotopes are discussed
Chaos in nuclei: Theory and experiment
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
Possible existence of backbending in actinide nuclei
International Nuclear Information System (INIS)
Dudek, J.; Nazarewicz, W.; Szymanski, Z.
1982-01-01
The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur
Nuclei at the limits of particle stability
International Nuclear Information System (INIS)
Mueller, A.C.
1993-01-01
The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab
International Nuclear Information System (INIS)
Alliksaar, T.
2000-01-01
Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)
Energy Technology Data Exchange (ETDEWEB)
Hoellinger Fabien [Institut de Recherches Subatomiques, 23, Rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)
1999-01-13
The nuclear structure study of neutron-rich nuclei was realized with the EUROGAM II array in two different experiments. The first study consisted in the analysis of the product of spontaneous fission of {sup 248}Cm. Three neutron-rich cerium isotopes {sup 147,149,151}Ce were analyzed. A level scheme for {sup 151}Ce is presented for the first time. The yrast structure of the three nuclei does not show alternative parity bands as expected in this region of octupole deformations. We studied the rotational structure of the bands and this leads to suggest Nilsson configurations to some of them. The aim of this second experiment was the study of the nuclei {sup 99}Mo, {sup 101}Tc, {sup 103}Ru. The three nuclei are situated on the neutron-rich side of the nuclear chart and are produced as fission fragments of a heavy-ion induced reaction. Some bands are extended to higher spins and some new bands are observed. The structure of the rotational bands is interpreted by means of the Hartree-Fock-Bogolyubov model. A last experiment intended to study the structure of the proton-rich nucleus {sup 223}Pa has been achieved with the JURO+RITU array located at Jyvaeskylae (Finland). In this proton-rich actinide region, the nuclei develop octupole features around Z{approx_equal}88, N{approx_equal}132. The analysis of this experiment leads to the first assignment of gamma transitions to the {sup 223}Pa. (author) 91 refs., 78 figs., 16 tabs.
From heavy nuclei to super-heavy nuclei
International Nuclear Information System (INIS)
Theisen, Ch.
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
Exotic nuclei: another aspect of nuclear structure
International Nuclear Information System (INIS)
Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.
2002-01-01
This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements
Study of structure of nuclei with neutrons and nuclear data measurements for MFE
International Nuclear Information System (INIS)
Lane, R.O.; Grimes, S.M.
1989-01-01
Measurement and analysis of cross sections for neutron-induced reactions of interest to the fusion energy program have been carried out. Studies have included the neutron-induced reactions of 9 Be, 10 B, 12 C, and 13 C. Level density studies have been carried out for reactions populating 57 Co. Low energy proton elastic scattering has been studied for targets of 54 Fe and 56 Fe. Data for these studies have been analyzed using either R-matrix studies, combined R-matrix and shell model calculations or Hauser-Feshbach calculations. Details of measurements and theoretical studies are given
Directory of Open Access Journals (Sweden)
Klára Štillová
Full Text Available To study the involvement of the anterior nuclei of the thalamus (ANT as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks.We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs elicited by the visual and verbal memory encoding and recognition tasks.P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus.The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.
Energy Technology Data Exchange (ETDEWEB)
Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.
1980-01-01
A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.
Study of some excited states in 21Ne-21Na, 18O-18F and 15N-15O nuclei
International Nuclear Information System (INIS)
Drain, D.
1977-01-01
The study of 21 Ne- 21 Na, 18 O- 18 F and 15 N- 15 O nuclei was performed through proton capture and transfer reactions and allows to determine the spins and parities of some excited states, give the gamma deexcitation schemes of these levels, compute the neutron and proton reduced width γ 2 sub(n) and γ 2 sub(p). The levels studied are: in 21 Na 4.15 20 Ne(p,p), (p,p'), (p,p'γ) and (pγ) reactions) and in 21 Ne: E(exc)=4.73, 5.69 and 5.78 MeV ( 20 Ne (p,p) reaction); in 18 O: E(exc) 17 O(d,p) reaction); in 15 O: 8.92 MeV doublet and 8.98 MeV level (angular correlation 14 N(p,γγ) and in 15 N: 9.05 14 N(d,p) reaction). A comparison with theoretical results is discussed and analog states are pointed out [fr
Directory of Open Access Journals (Sweden)
Nobuo Tanaka
2008-01-01
Full Text Available The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy.
Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2014-04-01
The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.
Energy Technology Data Exchange (ETDEWEB)
Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)
2014-12-01
The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei {sup 162}Yb, {sup 172}Yb, {sup 215}Fr, {sup 224}Th, {sup 248}Cf, {sup 260}Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, {sub γK} (MeV zs){sup -1/2}, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high. (orig.)
Stability of superheavy nuclei
Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.
2018-03-01
The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.
International Nuclear Information System (INIS)
Clark, R.; Wadsworth, B.
1998-01-01
Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many
Hard scattering on light nuclei: a convenient way to study parton correlations
International Nuclear Information System (INIS)
Calucci, G.; Treleani, D.
2011-01-01
The one-body partonic distributions in the hadrons are well investigated using electromagnetic or weak interactions. If we wish to exploit the same procedure to study the two-body distributions we should study the very rare events with multiple electromagnetic or weak interactions on the same hadron.The alternative is to study events with hard QCD double scattering of partons of the same hadron, such events become more and more abundant when the energy of the colliding hadrons grows. In fact at very high energies even the parton at small fractional momentum χ may suffer collisions with momentum transfer large enough to allow a perturbative treatment
Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'
International Nuclear Information System (INIS)
Dudek, Jozef; Melnitchouk, Wally
2016-01-01
GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German ''hub'' for visits of U.S. physicists, while Jefferson Lab served as the corresponding ''hub'' for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.
Li, Liguang; Zhou, Deping; Wang, Yangfeng; Hong, Ye; Cui, Jin; Jiang, Peng
2017-05-01
Characteristics of ice nuclei (IN) number concentrations during three fog-haze weather periods from November 2010 to January 2012 in Shenyang were presented in this paper. A static diffusion chamber was used and sampling of IN aerosols was conducted using a membrane filter method. Sampling membrane filter processing conditions were unified in the activation temperature at - 15 °C under conditions of 20% ice supersaturation and 3% water supersaturation. The variations of natural IN number concentrations in different weather conditions were investigated. The relations between the meteorological factors and the IN number concentrations were analyzed, and relationships between pollutants and IN number concentrations were also studied. The results showed that mean IN number concentration were 38.68 L- 1 at - 20 °C in Shenyang, for all measurements. Mean IN number concentrations are higher during haze days (55.92 L- 1 at - 20 °C) and lower after rain. Of all meteorological factors, wind speed, boundary stability, and airflow direction appeared to influence IN number concentrations. IN number concentrations were positively correlated with particulate matters PM1, PM2.5, and PM10 during haze weather.
International Nuclear Information System (INIS)
Rahmani, A.
1988-12-01
The study of the proton's production differential cross sections, in the collision of relativistic heavy ions, allows to obtain the nuclear-matter temperature and gives information about the nucleons large burst pulses in the nucleus. The chosen thermodynamic model is a generalized approach of the R. Hagedorn model, applied to heavy ions collisions: the nuclear matter is divided in volume elements δV assumed to be in thermal and chemical equilibrium and emitting particles and fragments isotropically, inside their own system. The applied nuclear-matter velocity distribution depended only on the impact parameter and on the relationship between the chemical potential and the temperature. The predictions of this thermodynamic model were compared to the Saturne experimental results, using Diogene detector. The obtained temperature values are similar to those given by D. Hahn and H. Stoker. The proton production cross sections were measured for backward emitting angles. A relationship between the cross sections and the burst pulse distribution in the nuclei was settled [fr
Study of the d+d→4He+X0; production of light nuclei at medium energies
International Nuclear Information System (INIS)
Le Brun, Christian.
1977-01-01
The inclusive study of the d+d→ 4 He+X 0 reaction has been done by several deuteron momenta between 1.8 and 3.8 GeV/c. The alpha momentum spectra were measured with a double focusing magnetic spectrometer. The alphas were identified by both a time-of-flight and a pulse height-discrimination. The application to the reaction of the conservation laws implies X 0 to be a mesonic object with isospin 0. The π 0 production limit for Psub(d)=1.885GeV/c is calculated. This value, five times smaller than the previous one, shows that the isospin conservation law is not violated. The ω 0 , the only I=0 resonance observed, is produced at 0 0 with a differential cross section of 1 nb/sr. The ABC effect clearly dominates the greatest part of the measured spectra. The 0 0 alpha production varies greatly as a function of energy; the angular distribution at 2.5 GeV/c is strongly peaked in the forward direction. The ABC effect is directly related to the constraints set by the nuclei formation. Various models and especially a one-pion-exchange model have been calculated but no one gives, until to-day, quantitatively suitable results [fr
Energy Technology Data Exchange (ETDEWEB)
Schroeder, W.U.
1993-08-01
This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.
Nuclei: a superfluid condensate of α-particles. A study within the interacting boson model
International Nuclear Information System (INIS)
Gambhir, Y.K.; Ring, P.; Schuck, P.
1983-08-01
We study the question whether pairs of neutrons and pairs of protons of the usual superfluid phases do not form a bound state to give rise to a superfluid condensate of ''α-particles''. We indeed find indications for this to be the case from a BCS like study for bosons using the proton-neutron IBM as well as from an even-odd effect in the number of pairs using experimental binding energies
Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP
Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F
We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Study of the (p,px) reaction at 156 MeV on some light nuclei
International Nuclear Information System (INIS)
Bachelier, Daniel
1971-01-01
This research thesis reports the study of four quasi-elastic diffusion reactions of (p,px) type at 156 MeV: 6 Li(p,pd ) 4 He, 6 Li(p,pr) 3 H, 7 Li(p,pt) 4 He and 12 C(p,pd) 10 B. The objectives were to check the quasi-elastic character of these reactions and to describe them by pulse approximations with plane waves, to study their selection rules and to understand their angular correlations with respect to momentum distribution in the target nucleus of ejected substructures (clusters), to compare the probabilities of different configurations corresponding to different models, and, in the case of carbon, to compare the experimental energy spectrum with theoretical predictions. After a discussion of the theoretical expression of the cross-section of a quasi-elastic reaction, and a presentation of the different nuclear models which have been used for this reaction type, the author reports the study of the kinematics of these reactions by defining the conditions under which the knock-out mechanism is promoted. The author describes the beam, targets, detectors and electronic devices used for this study. He addresses the methods used to identify events and to analyse results. Experimental results are presented and compared with theoretical results and with other published experimental results
Experimental Studies of Quark-Gluon Structure of Nucleons and Nuclei
International Nuclear Information System (INIS)
Kyle, Gary
2004-01-01
The NMSU group has a lengthy history in the study of the nucleon structure and in particular its spin structure in terms of its fundamental constituents. This line of research is continuing in our current involvement in experiments at Brookhaven National Lab and the Thomas Jefferson National Accelerator Facility
Study of interactions between hadrons and light nuclei at intermediate energies
International Nuclear Information System (INIS)
Levy, Dominique.
1977-01-01
A theoretical study of the following reactions: πN→πN, πd→πd and Nd→Nπd, at incident energies of a few hundreds MeV is presented. The amplitudes of the πN→πN reaction are studied when at least one of the external particles is off-mass-shell. This study leads to the selection of a model used subsequently. For the πd→πd reaction, the simple scattering model is analyzed in detail then the Glauber and Brueckner double scattering models are compared. In the simple scattering model, the effect of the Fermi motion is examined in detail: a calculation of this effect, taking into account both the deuteron D wave and the nucleon spins is completed. Several approximations to the Fermi integral are also presented and the deficiencies of the models are discussed. In the inelastic Nd→Nπd reaction, the peak observed around 1150 MeV in the invariant mass spectrum of the Nπ final system is studied. This Nπ(1150) effect is explained using a Deck-type model. Other mechanisms that might contribute to the Nd→Nπd reaction, in particular at high transfers, are analyzed [fr
A relativistic mean-field study of magic numbers in light nuclei from ...
Indian Academy of Sciences (India)
the shell gap at N = 6 is larger than at N = 8 and a large gap is observed for N = 16 or 14 for the neutron-rich ... excitation studies [7,8]. Similarly, the ..... positive one-nucleon separation energy defines the drip-line for neutron (or proton). The.
Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation
International Nuclear Information System (INIS)
Kong-A-Siou, D.-H.
1975-01-01
The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr
Study of $\\pi^{-}\\pi^{0}$ production via Primakoff effect on nuclei
2002-01-01
The proposed experiment makes use of the FRAMM spectrometer (experiments NA1 and NA7). The aim of the experiment is to study the reaction $\\pi^{-}$Pb $\\rightarrow \\pi^{-}\\pi^{0}$Pb via Primakoff effect in order to measure the radiative decay width $\\Gamma(\\rho^{-} \\rightarrow \\pi^{-}\\gamma)$ of the $\\rho^{-}$meson and to measure the cross-section of the reaction at threshold. \\\\\\\\The controversial data on $\\Gamma(\\rho^{-} \\rightarrow \\pi^{-}\\gamma)$ and the theoretical importance of this process justify a high statistics study of the reaction in the $\\rho^{-}$ region.\\\\\\\\ The physical interest of the measurement of the $\\pi^{-}\\pi^{0}$ production cross-section at threshold is to check the validity of the low energy theorem for the $\\gamma \\rightarrow 3\\pi$ vertex (Adler, Bell and Jackiw anomalies) and to obtain a direct determination
A Compton-suppressed spectrometer for studies of chaos in nuclei
Energy Technology Data Exchange (ETDEWEB)
Shriner, J.F. Jr. [Tennessee Technological Univ., Cookeville (United States); Bilpuch, E.G. [Duke University Press, Durham, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States); Mitchell, G.E. [Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States); Shriner, J.D. [Triangle Universities Nuclear Lab., Durham, NC (United States); Westerfeldt, C.R. [Duke University Press, Durham, NC (United States)
1995-05-01
One approach to studying chaos in quantum systems utilizes the statistical behavior of eigenvalues. Such analyses require data of very high quality, since both completeness and purity are essential. The design of a Compton-suppressed {gamma}-ray spectrometer for the purpose of establishing a nearly complete level scheme in {sup 30}P via the {sup 29}Si(p, {gamma}) reaction is described. Design criteria and implementation are discussed, and early results from the system are presented. (orig.).
Study of the Structure of Exotic Light Nuclei Produced at the PS
2002-01-01
The results obtained during experiment PS155 have confirmed the existence of an ``island of deformation'' around N=20 for Z=11 and $^{12}$(Na and Mg). The aim of this experiment is to study this effect in more detail, and also the interesting region past N=28 for Z=19 and $^{20}$(K and Ca). \\\\ \\\\ We plan: \\\\ \\\\ $\\textbf{a)}$ To study excited states of daughter Mg and Ca isotopes: \\\\ \\\\- $\\gamma$ spectroscopy will be achieved using high resolution Ge(Li) detectors on Mg isotopes up to 34 and of Ca isotopes up to 52; of particular interest will be the extension of the systematic study of the first 2$^{+}$ level of $e^{-}e$ or Mg isotopes up to 34; \\\\ \\\\- energy spectra of the delayed neutrons emitted from $^{28-31}$Na will be measured with a $^{3}$He proportional counter. \\\\ \\\\ $\\textbf{b)}$ To measure more precisely the deformation of sodium isotopes using our newly determined methods of optical hyperfine spectroscopy: \\\\ \\\\ - high precision determination of the isotopic shifts of the D$_{1}$ line for ...
Study of structure of nuclei with neutrons and nuclear data measurements for MFE
International Nuclear Information System (INIS)
Lane, R.O.; Grimes, S.M.
1990-01-01
Measurements and analysis of cross sections for neutron-induced reactions of interest to the fusion energy program have been carried out. These include neutron elastic and inelastic cross sections for 2 H, 10 B and 13 C as well as cross sections for 54 Fe and 56 Fe (n,z) reactions. Most of these data have been analyzed using either R-matrix studies or Hauser-Feshbach calculations. Details of these measurements and analyses are given. Level density measurements and low energy optical model studies for protons have been completed to improve our understanding of (n,z) reactions. Total cross section measurements have also been analyzed to obtain optical model information. Improvements to the facilities at this laboratory are also described. Modifications to the shell model code have enabled further progress to be made in studies of nuclear structure and reaction mechanisms. A description of the code and summary of the structure and level density calculations now in progress are given
The Spherical Deformation Model
DEFF Research Database (Denmark)
Hobolth, Asgar
2003-01-01
Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...
High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb
International Nuclear Information System (INIS)
Barneoud, D.; Foin, C.; Pinston, J.A.; Monnand, E.
1983-06-01
The ( 7 Li, 5n) and ( 11 B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150 Eu and 152 Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150 Eu and 152 Tb
Systematic of triaxial moment of inertia in even nuclei of mass region A = 90 - 120
International Nuclear Information System (INIS)
Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Singh, Yuvraj; Gupta, K.K.
2011-01-01
The Ru - isotopes with Z > 50 lie in a region of structural change that has been a challenge to theoretical interpretations. The Zr and Sr - isotopes near A ∼ 100 undergo the most rapid spherical deformed transition in heavy nuclei. The rate of change of structure with neutron number becomes more gradual with increasing proton number in Mo, Ru, Pd and Cd - nuclei. The qualitative trend of 'a' versus N p N n are found similar in Ru and Pd isotopes. The present study points out a systematic difference in the rates of growth of collectivity in different regions i.e. particle-particle and hole-hole (P,P and P,H) that seems not to have been noted before in moment of inertia 'a'
A microscopic study of giant resonances in nuclei near drip lines
Sagawa, H; Zhang, X Z
1999-01-01
We study giant resonances using the self-consistent Hartree-Fock calculation plus the random phase approximation with Skyrme interactions. Including simultaneously both the isoscalar and the isovector correlation the RPA response function is calculated in the coordinate space so as to take properly into account the continuum effect. Giant monopole states are discussed in relation with the nuclear compression modulus of the nuclear matter K sub n sub m. The core polarization charges are also discussed in comparison with recent empirical data in sup 1 sup 0 sup 0 Sn region.
A soluble model for the study of saturation in finite nuclei
International Nuclear Information System (INIS)
Grammaticos, B.
1979-01-01
The deviation of very small nuclear systems from saturation is studied. In the framework of a soluble one-dimensional model based on the energy density formalism simple expressions for the density profile, the deviation from nuclear matter density, the Fermi energy as a function of particle number are established. The binding energy of the nucleus is computed and the effect of the departure from saturation is identified as a term exponentially decaying for large A. A comparison with the theory of Krappe and Nix is also presented
On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies
Kaur, Kamaldeep; Kumar, Suneel
2018-05-01
The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.
Target dependence in the study of collective modes in stable and exotic Ni nuclei
Energy Technology Data Exchange (ETDEWEB)
Bleis, T Le; Klimkiewicz, A; Adrich, P; Boretzky, K; Aksouh, F; Aumann, T; Chatillon, A; Emling, H; Ershova, O; Geissel, H; Gorska, M [GSI, Darmstadt (Germany); Rossi, D [University of Mainz (Germany); Alvarez-Pol, H; Benlliure, J; Casarejos, E; Cortina-Gil, D [Uni. Santiago de Compostela (Spain); Boehmer, M [Tech. Uni. Munich (Germany); Chartier, M; Fernandez-Dominguez, B [Uni. Liverpool (United Kingdom); Pramanik, U Datta, E-mail: t.lebleis@gsi.d [SINP Kolkata (India)
2010-01-01
The appearance of the pygmy-dipole-resonance is a recently observed phenomenon that can be related to neutron-matter properties. Its study can be a tool to determine the nuclear symmetry-energy parameters and thus can contribute constraining neutron star models. We present the ({gamma},n) cross sections for different Ni isotopes obtained from a measurement in inverse kinematics at about 500 MeV/u in the LAND reaction setup at GSI. The question of the disentanglement of the Coulomb and nuclear contributions is addressed.
Study of the odd mass transition nuclei: 185Hg, 187Hg, 189Hg and 183Ir
International Nuclear Information System (INIS)
Zerrouki, A.
1979-01-01
The radioactive decay of 185 Tl, 186 Tl, 187 Tl has been studied on the isotope separator Isocele II working on line with the Orsay synchrocyclotron from Au( 3 He,xn) reactions: the emitted α lines have been measured and the main γ lines belonging to the 187 Tl→ 187 Hg decay have been identified. The 185 Hg, 187 Hg, 189 Hg high spin states have been studied using the following (HI,xn) reactions obtained on the Strasbourg MP Tandem: 168 Er( 24 Mg,xn) 187 Hg, 188 Hg, 166 Er( 24 Mg,xn) 185 Hg, 186 Hg, 157 Gd( 32 S,xn) 184 Hg, 185 Hg, 158 Gd( 32 S,5n) 185 Hg and 175 Lu( 19 F,5n) 189 Hg. The excitation functions are indicated and a high spin level scheme of 189 Hg is proposed: it is compared to the 'quasiparticle + triaxial rotor' model predictions. A level scheme of 183 Ir is proposed from the data collected at Isolde II (CERN) by Dr. SCHUCK: it is analysed within the framework of the same theoretical model used above [fr
Optical properties of spherical gold mesoparticles
DEFF Research Database (Denmark)
Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.
2012-01-01
Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...
Modeling mantle convection in the spherical annulus
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
International Nuclear Information System (INIS)
Bouldjedri, A.
1992-06-01
This work is concerned with the study of exotic nuclei located on both sides of the stability-line and known as neutron rich and neutron deficient respectively. For the former, produced by alpha particle-induced fission, an on-line isotope separation with an ion guide (IGISOL) has been developed and submitted to several off-line and on-line optimization tests showing capacity to spectroscopic studies. In the case of neutron deficient nuclei near the magicity Z=82, 182 Tl(3s) has been identified and its decaying modes and those of 183 Tl ground state, studied, using the on-line separator ISOLDE. On the other hand, the β decay of 172,175 Ir produced in 32 S induced reaction is studied using a helium jet system on the SARA accelerator. Existence of isomers is derived from half-lives measurements
Rapid continuous chemical methods for studies of nuclei far from stability
Trautmann, N; Eriksen, D; Gaggeler, H; Greulich, N; Hickmann, U; Kaffrell, N; Skarnemark, G; Stender, E; Zendel, M
1981-01-01
Fast continuous separation methods accomplished by combining a gas-jet recoil-transport system with a variety of chemical systems are described. Procedures for the isolation of individual elements from fission product mixtures with the multistage solvent extraction facility SISAK are presented. Thermochromatography in connection with a gas-jet has been studied as a technique for on-line separation of volatile fission halides. Based on chemical reactions in a gas-jet system itself separation procedures for tellurium, selenium and germanium from fission products have been worked out. All the continuous chemical methods can be performed within a few seconds. The application of such procedures to the investigation of nuclides far from the line of beta -stability is illustrated by a few examples. (16 refs).
Studies of heavy ion reactions and transuranic nuclei. Progress report, August 1, 1979-July 31, 1980
International Nuclear Information System (INIS)
Huizenga, J.R.
1980-07-01
The study of heavy-ion reaction mechanisms at the SuperHILAC and LAMPF is reported. Preprints of five articles and manuscripts of four recent conference papers are given, along with complete citations of publications and a list of personnel. Significant work was performed in the following areas: the bombarding energy dependence of the 209 Bi + 136 Xe reaction; the fragment yields for specific Z and A for projectile-like fragments produced in the reaction of 8.3-MeV/u 56 Fe ions with targets of 56 Fe, 165 Ho, 209 Bi, and 238 U; and time distributions of fragments from delayed fission after muon capture for muonic 235 U, 238 U, 237 Np, 239 Pu, and 242 Pu
Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei
Tel, E.; Yiğit, M.; Tanır, G.
2012-04-01
The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.
Studies on the decoupled rotation bands in the nuclei 79Rb, 81Rb, and 79Kr
International Nuclear Information System (INIS)
Panqueva Alvarez, J.H.
1982-01-01
High spin states in 79 Rb, 81 Rb, and 79 Kr were studied by means of the following reactions: 63 Cu( 19 F,p2n) 79 Rb, 70 Ge( 12 C,p2n) 79 Rb, 65 Cu( 16 O,2n) 79 Rb, 65 Cu( 19 F,p2n) 81 Rb, 63 Cu( 19 F,2pn) 79 Kr, and 70 Ge( 12 C,2pn) 79 Kr. On the base of γ single spectra, excitation functions, γ angular distributions, γγ and nγ coincidences, RDDS- and DSA lifetime measurements a level scheme of 79 Rb with 13 new found excited states is proposed. Also a series of stretched E2-transitions between posivite parity states in 79 Kr could be identified. The observed M1 and E2 transition probabilities, which were obtained via the experimental determination of the lifetime as well the branching ratio of 26 excited states, form the base for a comprehensive discussion of the nuclear structure of the studied isotopes. For this reason theoretical calculations with the asymmetric rotor-plus-quasiparticle with variable moment of inertia (AROVMI) as well with the interacting boson-fermion (IBVM) model were performed. The good agreement between experiment and theory permits to relate the decrease of the B(E2)-values in 79 Rb to a finite dimensional (N=8) boson space, to cancel the discrepancies stated by Friederichs et.al., and to analyze 79 Kr the influence of a gsub(9/2) neutron on the deformation of the 78 Kr core. (orig./HSI) [de
Nuclear orientation as a tool for studying the structure of very unstable nuclei
International Nuclear Information System (INIS)
Wood, J.L.
1985-01-01
With the availability of modern isotope separator on-line systems it has become possible to make broad and systematic studies of low-energy low-spin nuclear structure. A vital ingredient in such a program is unique spin-parity assignments to all low-lying levels. A most desirable complement to spin-parity information is detailed spectroscopic information. Obtaining such information far from stability is difficult because of low activity production. Nuclear orientation provides a means for obtaining spin assignments using singles measurements. This is less demanding on source intensities than γ-γ angular correlation coincidence measurements. Further, nuclear orientation can provide information on magnetic moments and on multipole mixing ratios. A number of structural problems are discussed: the need for unique spin assignments in systematics schemes; the need to distinguish between E2+E0 and M1 transitions; the importance of measuring E2-M1 mixing ratios; and the value of magnetic moment information. Particular emphasis is placed on the desirability of obtaining such information in the neutron-deficient Pt, Au, Hg, Tl, Pb and Bi isotopes, based upon the experimental program at the UNISOR facility. (Auth.)
In-beam studies of high-spin states of actinide nuclei
International Nuclear Information System (INIS)
Stoyer, M.A.; California Univ., Berkeley, CA
1990-01-01
High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs
Energy Technology Data Exchange (ETDEWEB)
Sigee, D.C.
1983-01-01
The uptake of Ca/sup 45/ into cells of the dinoflagellate Glenodinium foliaceum was investigated using insoluble compound light microscope autoradiography. The distribution of silver grains showed marked localisation to the dinocaryotic nucleus, with a random scatter of grains over the surrounding protoplasm (cytoplasm and supernumerary nucleus). Correction of grain counts for lateral sensitisation from the dinocaryotic nucleus indicated an isotope concentration 16-32 times greater in this organelle compared to the rest of the cell. Cells labelled for varying periods of time showed differences in the pattern of Ca/sup 45/ uptake throughout the sample populations, but no increase in the mean level of uptake per cell. This would suggest a rapid incorporation of isotope within 1-2 hours, with little subsequent uptake. The presence of high levels of label after processing with both additive (glutaraldehyde, paraformaldehyde) and coagulative (acetic alcohol) fixatives indicated that the retention of Ca/sup 45/ in these preparations was not simply a fixation artefact. Although the isotope did not appear to be suitable for (high resolution) electron microscope autoradiography, the intranuclear site of incorporation was demonstrated indirectly using a buffer extraction technique. Prolonged treatment with phosphate buffer resulted in a large scale loss of label from both cytoplasm and dinocaryotic nucleus. The latter appeared to show specific correlation with the loss of (protein) matrix from the chromosomes - as observed under both light and electron microscopy, with no apparent change in either nucleolus or nucleoplasm. This would suggest that incorporated Ca/sup 45/ in the nucleus was largely confined to the condensed chromatin, where it was combined with the acidic proteins which make up the bulk of the chromatin matrix. The results obtained in this investigation are related to previous studies involving X-ray microanalysis and uptake of Ni/sup 63/.
Energy Technology Data Exchange (ETDEWEB)
Arief, Injamamul; Mukhopadhyay, P.K., E-mail: pkm@bose.res.in
2014-06-01
Cubic and spherical Fe{sub 55}Co{sub 45} alloyed microstructures were synthesized by borohydride reduction from aqueous solutions of metallic precursors, using stabilizers and polymer. Monosodium citrate, sodium acetate and PEG 6000 were utilized as electrostatic stabilizers and polymeric surface modifier. Suitable reaction conditions were maintained for synthesis of predominantly larger particles (0.7 µm to 1.2 µm), that facilitates use in magnetorheological fluids. Surface morphological studies by scanning electron microscopy revealed well shaped cubic and spherical geometry for the citrate and polymer-stabilized Fe{sub 55}Co{sub 45} alloys, while the alloy compositions remained nearly the same for both. X-ray diffractions of the as-prepared and annealed samples under various temperatures showed high degree of crystallinity with increasing temperatures. Studies of D.C. magnetization of the systems reveal that the particles have a core–shell structure, with inner magnetic core having a diameter around 30 nm with a log-normal distribution. Magnetorheological studies were performed with 8 vol% suspensions of as-synthesized particles dispersed in silicone oil (viscosity 30 mPa s at 25 °C) under different magnetic fields. Detailed studies of the magnetorheological properties were studied on these systems for practical use.
Fast-timing studies of nuclei below $^{68}$Ni populated in the $\\beta$-decay of Mn isotopes
Jokinen, A; Simpson, G S; Garcia borge, M J; Koester, U H; Georgiev, G P; Fraile prieto, L M; Aprahamian, A
2008-01-01
We intend to investigate structure of nuclei populated in the $\\beta$-decay of Mn isotopes via the ATD $\\beta\\gamma\\gamma$(t) technique. With this method we will measure dynamic moments in Fe isotopes and their daughters in order to characterize the role of particle-hole excitation across the ${N}$=40 sub-shell closure and the development of collectivity.
Czech Academy of Sciences Publication Activity Database
Štillová, K.; Jurák, Pavel; Chládek, Jan; Chrastina, J.; Halámek, Josef; Bočková, M.; Goldemundová, S.; Říha, I.; Rektor, I.
2015-01-01
Roč. 10, č. 11 (2015), e140778:1-13 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : anterior nuclei * thalamus * hippocampus * visual * verbal memory * DBS * P300 * ERP * intracerebral EEG Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.057, year: 2015
Czech Academy of Sciences Publication Activity Database
Štillová, K.; Jurák, Pavel; Chládek, Jan; Chrastina, J.; Halámek, Josef; Bočková, M.; Goldemundová, S.; Říha, I.; Rektor, I.
2015-01-01
Roč. 56, S1 (2015), s. 162 ISSN 0013-9580. [International Epilepsy Congress /31./. 05.09.2015-09.09.2015, Istanbul] Institutional support: RVO:68081731 Keywords : anterior nuclei * thalamus * hippocampus * visual * verbal memory Subject RIV: BH - Optics, Masers, Lasers
Quantum phase transitions in atomic nuclei
International Nuclear Information System (INIS)
Zamfir, N.V.
2005-01-01
Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)
International Nuclear Information System (INIS)
Laurent, Olivier
1999-01-01
This thesis is dedicated to the study of starburst galaxies and active galactic nuclei (AGNs) in the mid-infrared between 3 and 16 μm with the ISOCAM instrument. The study of nearby prototypical galaxies such as NGC 1068 and M 82 lead me to decompose the emission into three components. The star forming regions are characterized by (1) the infrared bands at 6.2, 7.7, 8.6, 11.3 and 12.7 μm originating from the photo-dissociation regions and also by (2) a continuum at 15 μm produced by the very small grains in HII regions. I show that AGNs have (3) strong continuum with an important contribution between 3 and 10 μm arising from hot dust heated to high temperatures of the order of 1000 K. I present two diagnostic diagrams based on the spectral properties of the three components allowing me to distinguish AGNs from starburst regions. In interacting galaxies, I show that some extra-nuclear regions harboring starburst activity can dominate the emission at 15 μm as in the Cartwheel and the Antennae galaxies. Using mid-infrared spectral features, I also define two prototypes of ultra-luminous galaxies dominated either by starburst activity in the case of Arp 220 or by the AGN in the Super-Antennae galaxy (IRAS 19254-7245). I explain how this diagram and the selection criteria evolve according to redshift. Finally, I show how we can develop new diagnostics using filters of the IRAC instrument on board the next infrared space observatory SIRTF. (author) [fr
Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon
International Nuclear Information System (INIS)
Demoulins, M.
1990-02-01
The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross-sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr
Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon
International Nuclear Information System (INIS)
Demoulins, M.
1989-01-01
The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For the argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr
The interacting quasiparticle–phonon picture and odd–even nuclei. Overview and perspectives
Energy Technology Data Exchange (ETDEWEB)
Mishev, S., E-mail: mishev@theor.jinr.ru; Voronov, V. V., E-mail: voronov@theor.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)
2016-11-15
The role of the nucleon correlations in the ground states of even–even nuclei on the properties of low-lying states in odd–even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle–phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even–even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle–phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole–quadrupole interaction modes which have the dominant impact on the lowest-lying states’ structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd-A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.
Nuclei with exotic constituents
International Nuclear Information System (INIS)
Yamazaki, Toshimitsu.
1990-08-01
We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)
International Nuclear Information System (INIS)
Arenhoevel, H.
1977-01-01
The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de
International Nuclear Information System (INIS)
Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.
1991-01-01
The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
International Nuclear Information System (INIS)
Liu, L.C.
1987-01-01
The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model
Collective excitations in nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1998-01-01
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
International Nuclear Information System (INIS)
Ulmer, Paul E.
1998-01-01
This grant covers the period Sept. 1, 1994 to Aug. 31, 1996 with an extension to Dec. 31, 1996. The main activities funded by this research grant include work on the TJNAF (formerly CEBAF) Hall A data analysis software project and other projects in Hall A worked on by my graduate students. All of these projects are necessary for the functioning of Hall A and are therefore directly related to my Hall A research program. The Hall A experimental equipment is still in the commissioning phase with the first experiment expected to be performed in May of 1997. My effort has focused on software development, in particular on analyzing and calibrating the vertical drift chambers (VDCs) which will be used for particle tracking in the high resolution spectrometers. I have written a standalone program to determine calibration constants needed to obtain the ultimate position and angle resolution. High resolution performance will be paramount for much of the Hall A experimental program. In particular, I am spokesman on an experiment to separate the response functions in the d(e,eprimep)n reaction. In order to make meaningful comparisons with theory, this experiment requires accurate determination of the cross sections and it will therefore be crucial to obtain the ultimate performance from the VDCs
Decay and fission of the oriented nuclei
Kadmenskij, S G
2002-01-01
The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...
Nuclear astrophysics of light nuclei
DEFF Research Database (Denmark)
Fynbo, Hans Otto Uldall
2013-01-01
A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...
Particle detection from oriented nuclei
International Nuclear Information System (INIS)
Wouters, J.; Moor, P. de; Schuurmans, P.; Severijns, N.; Vanderpoorten, W.; Vanneste, L.
1992-01-01
A survey is given of particle emission from nuclei that have been spin oriented by cryogenical means. Experiments and recent developments with detectors in the low temperature environment and their on-line application are reviewed. The most recent results are mentioned. Some phenomena to be unraveled in future studies are pointed out. (orig.)
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
2014-11-04
Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...
Study of deep inelastic reactions on sd-shell nuclei with 100 MeV α-particles
International Nuclear Information System (INIS)
Seniwongse, G.
1985-04-01
Energy spectra and angular distributions of light particles (p, d, t, 3 He, α) were measured. As projectiles α-particles with the incident energy of 100 MeV were used. The measurement data result from an inclusive measurement of the reactions on 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si. The double differential cross sections and the angular distributions were analyzed in the framework of the exciton-coalescence model. Thereby model parameters as the initial exciton number n 0 one-particle state density, and coalescence radii were determined. From the model analysis it can be concluded that n 0 =5 describes the data optimally contrarily to earlier results. The proton spectra can be explained by different one-particle state densities with pairing effects. The probability for the formation of complex particles seems to be independent from the structure of the target nuclei studied here. The calculated cross sections agree well with the measured values. This is valid both for the angle-integrated spectra and for the angular distributions. The agreement was especially well for the angle-integrated cross sections of the (α, p) reaction over the whole spectrum. For the complex particles the agreement in the energy of the produced particle was well up to about 60 MeV, i.e. before the superposition from the breakup respectively direct reactions begins. These reactions are indeed not regarded in the model. The measurement data and the calculated angular distributions agree for all types of particles at measurement angles below about 60 0 well. At larger angles the calculated values are too large. The reasons for this are not yet clear. (orig.) [de
Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.
2012-01-01
Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.
International Nuclear Information System (INIS)
El-Samman, H.
1986-03-01
A Multidetector system such as multiplicity filter, set-up for energy γ energy γ correlation measurements and 12 and 14 element modular sum-spectrometers has been built with hexagonal cross-section NaI (T1) detectors. This system is used in studies of continuum γ-ray spectra at high angular momentum to determine the collective J band (2) and effective J eff (2) dynamic moments of inertia in 54≤Z≤60 transitional nuclei. Comparisons between our measurements and calculations in a cranking Nilsson-Strutinsky model show that 128,130 Ba have a pure collective behaviour with pure prolate (γ =0 deg) deformation at high spin while 118,122 Xe are triaxial (γ = 33 deg) with moderate deformation (ε = 0.25). We demonstrate the existence of a secondary minimum at larger deformation (ε = 0.35) in the potential energy surfaces of 128,130 Ba. This minimum is associated with the alignment of h 9/2 and i 13/2 neutrons and produces a shape change in the bariums. The influence of the odd proton in the A = 120 region is also demonstrated by the shape change from triaxial to prolate we observed in 123 Cs at high frequency. Informations on deformation and particle alignement are obtained from measurements of J eff (2) in Xe, Ba, Ce and Nd isotopes. A direct comparison of J band (2) and J eff (2) shows that collective motion and particle alignment participate for about 50 % each in the total increase of angular momentum [fr
International Nuclear Information System (INIS)
Lalazissis, G.A.; Ring, P.
1996-01-01
A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)
International Nuclear Information System (INIS)
Marchix, A.
2007-11-01
The aim of this work is to study the influence of shell correction energy on the deexcitation of superheavy nuclei. For that purpose, a new statistical code, called Kewpie2, which is based on an original algorithm allowing to have access to very weak probabilities, was developed. The results obtained with Kewpie2 have been compared to the experimental data on residue cross sections obtained by cold fusion (Z=108 to Z=113) and by hot fusion (Z=112, Z=114 and Z=116), as well as data on fission times (Z=114, Z=120 and Z=126). Constraints on the microscopic structure of the studied nuclei have been obtained by means of the shell correction energy. By adjusting the intrinsic parameters of the models of fusion in order to reproduce the data on the fusion cross sections, this study shows the necessity of decreasing very strongly the shell correction energy predicted by the calculations of Moller and Nix, during the study of the residues cross sections as well for the nuclei produced by cold fusion as by hot fusion. On the other hand, during the confrontation of the results of Kewpie2 to the data on mean fission times, it is rather advisable to increase it. A shift of the proton shell closure predicted for Z=114 by the calculations of Moller and Nix towards larger Z would allow to explain these opposite conclusions. In this thesis, we also have shown the significant influence of the inclusion of isomeric states on fission times for the superheavy nuclei. (author)
International Nuclear Information System (INIS)
El-Nadi, M.; Yasin El-Bakry, M.N.; Abd El-Halim, S.
1992-10-01
The coherent multiparticle production in π - (340 GeV/c) and in K ± (70 GeV/c) interactions with nuclei is studied using the nuclear emulsion technique. The mean free path and cross-sections of the three prong events are estimated and compared with other data. A Σ sin θ i analysis, pseudorapidity and azimuthal angular distributions are discussed. (author). 42 refs, 8 figs, 2 tabs
Algebraic description of intrinsic modes in nuclei
International Nuclear Information System (INIS)
Leviatan, A.
1989-01-01
We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig
START: the creation of a spherical tokamak
International Nuclear Information System (INIS)
Sykes, Alan
1992-01-01
The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)