WorldWideScience

Sample records for spent catalyst processing

  1. Options and processes for spent catalyst handling and utilization.

    Science.gov (United States)

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  2. Processing of spent nickel catalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    Ibrahim Nasir, Mohammad

    2002-06-01

    Full Text Available Spent nickel catalyst (SNC have the potential of insulting the quality of the environment in a number of ways. The disposal of SNC will have a pollution effect. Optimum recovery of fat from SNC , could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents that are considered safer have been evaluated. Hexane, isopropanol, ethanol, and heptane were examined using soxhlet extraction. While hexane was more efficient in oil recovery from SNC, isopropanol proved to be very good, to clarifying separation of oil from waste material and also provide high solvent recovery compared to other solvents. Isopropanol extraction with chill provided separation of miscella into two phases: lower oil–rich and an upper solvent – rich. It saved much energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.El catalizador agotado de níquel (SNC tiene el potencial de dañar la calidad del medio ambiente de diversas formas. El depósito de SNC tendrá un efecto de polución. La recuperación óptima de la grasa a partir del SCN, podría conservar el medio ambiente y reducir la pérdida de aceite. El hexano ha sido el disolvente elegido para la extracción del aceite. También se han evaluado disolventes alternativos que son considerados seguros. Se han examinado hexano, isopropanol, etanol y heptano usando extracción con soxhlet. Mientras que el hexano fue el mas eficaz en la recuperación del aceite, el isopropanol demostró ser muy bueno para aclarar la separación del aceite a partir de la materia residual y también proporcionó una alta recuperación del disolvente en comparación con los otros

  3. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  4. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    International Nuclear Information System (INIS)

    Mishra, Debaraj; Kim, Dong J.; Ralph, David E.; Ahn, Jong G.; Rhee, Young H.

    2008-01-01

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO 3 . Bioleach residues were characterized by EDX and XRD

  5. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  6. Recycling of spent noble metal catalysts with emphasis on pyrometallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, C. [Degussa Huels AG, Hanau (Germany)

    1999-09-01

    Precious metal catalysts for catalytic Naphta Reforming, Isomerization, Hydrogenation and other chemical and petrochemical processes are valuable assets for oil refineries and chemical companies. At the end of the service life of a reactor load of catalyst, the efficient and reliable recovery of the precious metals contained in the catalyst is of paramount importance. More than 150 years of technological advances at Degussa-Huels have resulted in refining methods for all kinds of precious metal containing materials which guarantee an optimum technical yield of the precious metals included. The refining of catalysts today is one of the important activities in the precious metals business unit. In the state-of-the-art precious metal refinery at Hanau in the centre of Germany, a wide variety of processes for the recovery of all precious metals is offered. These processes include accurate preparation, sampling and analysis as well as both wet-chemical and pyrometallurgical recovery techniques. Special emphasis in this presentation is laid on the advantages of pyrometallurgical processes for certain kinds of catalysts. To avoid any risks during transport, sampling and treatment of the spent catalyst, all parties involved in the recycling chain strictly have to follow the relevant safety regulations. Under its commitment to 'Responsible Care' standard procedures have been developed which include pre-shipment samples, safety data sheets/questionnaires and inspection of spent catalysts. These measures not only support a safe and environmentally sound catalyst recycling but also enable to determine the most suitable and economic recovery process - for the benefit of the customer. (orig.)

  7. Separation of Metals From Spent Catalysts Waste by Bioleaching Process

    OpenAIRE

    Sirin Fairus, Tria Liliandini, M.Febrian, Ronny Kurniawan

    2010-01-01

    A kind of waste that hard to be treated is a metal containing solid waste. Leaching method is one thealternative waste treatment. But there still left an obstacle on this method, it is the difficulty to find theselective solvent for the type of certain metal that will separated. Bioleaching is one of the carry ablealternative waste treatments to overcome that obstacle. Bioleaching is a metal dissolving process orextraction from a sediment become dissolve form using microorganisms. On this met...

  8. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  9. Processing of spent NiW/Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Paulino, Jessica Frontino; Afonso, Julio Carlos, E-mail: julio@iq.ufrj.br [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, RJ (Brazil); Cunha, Jose Waldemar Silva Dias da [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RJ (Brazil). Departamento de Quimica e Materiais Nucleares

    2013-09-01

    Spent oxidized (500 deg C, 5 h) commercial NiW/Al{sub 2}O{sub 3} catalysts were processed using two different routes: a) fusion with NaOH (650 deg C, 1 h), the roasted mass was leached in water; b) leaching with HCl or H{sub 2}SO{sub 4} (70 deg C, 1-3 h). HCl was the best leachant. In both routes, soluble tungsten was extracted at pH 1 with Alamine 336 (10 vol.% in kerosene) and stripped with 2 mol L{sup -1} NH{sub 4}OH (25 deg C, one stage, aqueous/organic ratio = 1 v/v). Tungsten was isolated as ammonium paratungstate at very high yield (> 97.5%). The elements were better separated using the acidic route. (author)

  10. Aqueous processing of nickel spent catalyst for a value added product

    International Nuclear Information System (INIS)

    Sheik, Abdul Rauf; Ghosh, Malay Kumar; Sanjay, Kali; Subbaiah, Tondepu; Mishra, Barada Kanta; Baba, Abdullahi Aalafara

    2013-01-01

    Nickel was recovered from a fertilizer industry spent catalyst by leaching with nitric acid followed by nickel hydroxide precipitation. The optimization of temperature, initial acid concentration and particle size for leaching of the spent catalyst was done through 2 3 factorial design. A maximum extraction of 91.9% was achieved at 90 .deg. C, 1.5M HNO 3 and 62.5 µm particle size. Temperature and acid concentration showed positive effect, while particle size showed no effect. A regression equation was developed and employed to predict conditions for 100% extraction which were experimentally tested. Nickel hydroxide was electrochemically precipitated from the leach liquor and its maximum discharge capacity was found to be 155 mAh/g. A 3-stage counter current leaching circuit was designed to obtain a leach liquor of suitable pH. XRD characterization of the precipitated Ni(OH) 2 shows to consist of both α- and β-forms

  11. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  12. Recycling of spent hydroprocessing catalysts: EURECAT technology

    Energy Technology Data Exchange (ETDEWEB)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. (EURECAT-European Reprocessing Catalysts, La Voulte sur Rhone (France))

    1994-04-01

    Disposal of spent catalyst is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and there are State recommendations to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in the oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium, and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 2 tabs.

  13. Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4

    International Nuclear Information System (INIS)

    Busnardo, Roberto Giovanini; Busnardo, Natalia Giovanini; Salvato, Gustavo Nascimento; Afonso, Julio Carlos

    2007-01-01

    This work describes a route for processing spent commercial hydrorefining (HDR) catalysts (CoMo and NiMo/Al 2 O 3 ), containing support additives, for recovering active phase and support components. Samples were used as catalysts in diesel hydrotreaters. They had neither been submitted to mechanical stresses nor overheating while under operation. The route is based on fusion of samples with KHSO 4 . Four experimental parameters were optimized: reaction time, sample/flux mass ratio, temperature, and sample physical characteristics (ground/non-ground). After fusion, the solid was dissolved in water (90-100 deg. C); the insoluble matter presented low crystallization. Several phases were identified: silicates, spinel-like compounds and aluminosilicates. Cobalt, nickel, molybdenum and aluminum were recovered by conventional precipitation techniques or selective solvent-extraction procedures, with at least 85 wt.% yield. Final liquid colorless effluents are obtained as neutral solutions of alkali sulfates or chlorides and a water insoluble solid after fusion, which can be either sent to industrial dumps or co-processed. Fusion with KHSO 4 was shown to be applicable to the catalysts of the present study, and the optimized experimental parameters are much less drastic than the conventional pyrometallurgical routes proposed in the literature

  14. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  15. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  16. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  17. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.

    Science.gov (United States)

    Reddy, B Ramachandra; Raju, B; Lee, Jin Young; Park, Hyung Kyu

    2010-08-15

    Spent catalysts from automobile industry contain environmentally critical and economically valuable metals such as Pt, Pd, Fe, Ni, Mn, and Cr. In this paper, we present a process for the selective separation and complete recovery of palladium (Pd) and platinum (Pt) from hydrochloric acid leach liquors of spent automobile catalyst employing solvent extraction method. Typical composition of leach liquor used for the present study contains (mg/L): Pd-150, Pt-550, Mn-500, Ni-1000, Fe-1500, Cr-100 and 3 M HCl. Selective separation of Pd from the leach liquor is achieved with 0.5 vol.% LIX 84I (2-hydroxy-5-nonylacetophenone oxime in a mixture with a high flash point hydrocarbon diluent) in kerosene at an aqueous to organic (A/O) ratio of 3 in 2 stages, with an enrichment factor of three. Quantitative stripping of Pd from loaded organic is achieved with 0.5 M thiourea and 1 M HCl. Co-extraction of Fe and Pt with 5 vol.% Alamine 336 (tertiary amine of mixed tri-octyl/decyl amine) in kerosene followed by selective scrubbing of Fe with dilute HCl and complete stripping of Pt from loaded organic was proposed with 0.5 M thiourea and 0.1 M HCl. Purity of Pd and Pt strip solutions are 99.7%. Finally, the present process can solve environmental related issues and at the same time recover valuable metals in pure form. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst

    International Nuclear Information System (INIS)

    Rabah, M.A.; Hewaidy, I.F.; Farghaly, F.E.

    1996-01-01

    Free powders as well as compact shapes of molybdenum and cobalt have been successfully recovered from spent hydrogenation and desulphurization catalysts. A process flow sheet was followed involving crushing, milling, particle sizing, hydrometallurgical acid leaching roasting of the obtained salts in an atmospheric oxygen to obtain the respective oxides. These were reduced by hydrogen gas at 110 degree C and 900 degree C respectively. Parameters affecting the properties of the products and the recovery efficiency value such as acid concentration, particle diameter of the solid catalyst, temperature time under a constant mass flow rate the hydrogen gas, have been investigated. A mixture of concentration.sulphuric and nitric acids (3:1 by volume) achieved adequate recovery of both metals. The latter increased with the increase in acid concentration, time up 10 3 hours and temperature: 100 degree C and with the decrease in particle diameter of the spent catalyst. The PH of the obtained filtrate was adjusted to 2 with ammonia to precipitate insoluble ammonium molybdate and a solution of cobalt sulphate. Cobalt hydroxide can be precipitate from the latter solution at a PH = 7.6 using excess ammonium hydroxide solution. The obtained results showed that the metallic products are technically pure meeting the standard specifications. Compact shapes of molybdenum acquire density values increasing with the increase of the pressing load whereby a maximum density value of 2280 kg/m 3 is attained at 0.75 MPa. Maximum recovery efficiency amounts to 96%. 10 figs., 3 tabs

  19. Leaching behavior of lanthanum, nickel and iron from spent catalyst using inorganic acids

    Science.gov (United States)

    Astuti, W.; Prilitasari, N. M.; Iskandar, Y.; Bratakusuma, D.; Petrus, H. T. B. M.

    2018-01-01

    Highly technological applications of rare earth metals (REs) and scarcity of supply have become an incentive torecover the REs from various resources, which include high grade and low grade ores, as well as recycledwaste materials. Spent hydrocracking catalyst contain lanthanum and a variety of valuable metals such as nickel and iron. This study investigated the recovery of lanthanum, nickel and iron from spent hydrocracking catalyst by leaching using various inorganic acid (sulfuric acid, hydrochloric acid, and nitric acid). The effect of acid concentration, type of acid and leaching temperature was conducted to study the leaching behavior of each valuable metal from spent-catalyst. It has been shown that it is possible to recover more than 90% of lanthanum, however the leaching efficiency of nickel and iron in this process was very low. It can be concluded that the leaching process is selective for lanthanum recovery from hydrocracking spent-catalyst.

  20. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  1. Recycling of waste spent catalyst in road construction and masonry blocks.

    Science.gov (United States)

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    Directory of Open Access Journals (Sweden)

    García, Diego Juan

    2001-02-01

    Full Text Available Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to fix the most advantageous conditions using industrial application criterion and verifying that the process is difusión controlled. The work is completed by developing an industrial leaching cycle simulation with the aim of reproducing real performance of spent catalyst, proposing operating conditions, and verifying the non-toxic character of the final residue obtained.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en los catalizadores agotados procedentes de la fabricación del ácido sulfúrico, planteando un proceso industrial multietapa para el tratamiento de estos residuos, evitando su deposición o vertido directos. La caracterización de las muestras de catalizadores agotados disponibles confirmó los valores encontrados en la bibliografía. Se estudiaron las variables que influyen en el proceso de lixiviación (tipo de agente de lixiviación y concentración del mismo, relación S/L, velocidad de agitación y temperatura definiendo las condiciones más adecuadas desde el punto de vista industrial y verificando que el proceso está controlado por mecanismos difusionales. El trabajo se completa con la simulación de un ciclo industrial de lavado del catalizador y la verificación de la nula toxicidad de los lixiviados obtenidos por degradación del residuo final. 24 Aplicación de la resistencia de ruido al estudio de pinturas ricas en zinc Noise resistance applied to the study of zinc rich paints

  3. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  4. Identification of nitrogen compounds and amides from spent hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.K.; Gray, M.R. (University of Alberta, Edmonton, AB (Canada). Dept. of Chemical Engineering)

    1991-06-01

    A spent commercial naphtha hydrotreating catalyst was analyzed to identify compounds which had accumulated on the catalyst surface during its active life. The catalyst was extracted with methylene chloride, methanol and pyridine to remove adsorbed organic material, which was rich in nitrogen and oxygen. A series of quinolones were identified in the methanol extract after enrichment with HCl-modified silica gel adsorption and subsequent silica gel chromatography. Tetra- and hexahydroquinolones with alkyl substituents up to C{sub 3} were identified. Similar amides have been identified in asphaltenes, and are very resistant to hydrogenation. Tetrahydroquinolines and piperidines were detected in the pyridine extract. 36 refs., 8 figs., 2 tabs.

  5. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  6. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  7. Study of the effect of ionizing radiation for utilization of spent cracking catalysts

    International Nuclear Information System (INIS)

    Kondo, Fernando Mantovani

    2014-01-01

    Catalyst is a substance that changes the rate of a reaction. In the petroleum industry the commonly catalysts are used for Fluid Catalytic Cracking (FCC) and Hydrocatalytic Cracking (HCC), which one applied in a specific stage. These catalysts are used to facilitate the molecular chains cracking which will generate a mixture of hydrocarbons. However, the catalyst gradually loses its activity, either by changing its original molecular structure or by its contamination from other petroleum molecules. The application of ionizing radiation (electron beam and gamma rays) over these spent catalysts was studied to contribute with the extraction of metals or rare-earths of high added-value. Tests carried out with FCC catalysts were used the techniques of 60 Co irradiation and electron beam (EB) and had as a subject the extraction of lanthanum (La 2 O 3 ), regeneration and utilization of these catalysts. However, the use of ionizing radiation has not contributed in these processes. Meanwhile with HCC catalysts the irradiation used was electron beam and had as a subject the extraction of molybdenum (MoO 3 ). In temperature around 750°C, these irradiated catalysts of the lower region have an extraction yield twice higher compared to non-irradiated ones, in other words 57.65% and 26.24% respectively. (author)

  8. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    Science.gov (United States)

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.

  9. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  10. Extraction Of Cobalt From Spent CMB Catalyst Using Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Joo S.-H.

    2015-06-01

    Full Text Available The metal extraction from spent CMB catalyst using supercritical CO2(scCO2 was investigated with single organic system, binary organic system and ternary organic system to extract metal ions. Leaching solution of spent CMB catalyst containing 389 mg L−1 Co2+, 187 mg L−1 Mn2+, 133 mg L−1 Na+, 14.97 mg L−1 Ca2+ and 13.2 mg L−1 Mg2+. The method consists of scCO2/ligands complexation process and metal extraction process at 60°C and 200bar. The result showed the Co and Mn was selectively extracted from Mg, Ca and Na in the ternary system of mixture of Cyanex272, DEA and Alamine304-I.

  11. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    Science.gov (United States)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  12. Low-Waste Recycling of Spent CuO-ZnO-Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Stanisław Małecki

    2018-03-01

    Full Text Available CuO-ZnO-Al2O3 catalysts are designed for low-temperature conversion in the process of hydrogen and ammonia synthesis gas production. This paper presents the results of research into the recovery of copper and zinc from spent catalysts using pyrometallurgical and hydrometallurgical methods. Under reducing conditions, at high temperature, having appropriately selected the composition of the slag, more than 66% of the copper can be extracted in metallic form, and about 70% of zinc in the form of ZnO from this material. Hydrometallurgical processing of the catalysts was carried out using two leaching solutions: alkaline and acidic. Almost 62% of the zinc contained in the catalysts was leached to the alkaline solution, and about 98% of the copper was leached to the acidic solution. After the hydrometallurgical treatment of the catalysts, an insoluble residue was also obtained in the form of pure ZnAl2O4. This compound can be reused to produce catalysts, or it can be processed under reducing conditions at high temperature to recover zinc. The recovery of zinc and copper from such a material is consistent with the policy of sustainable development, and helps to reduce the environmental load of stored wastes.

  13. Method of processing spent ion exchange resins

    International Nuclear Information System (INIS)

    Mori, Kazuhide; Tamada, Shin; Kikuchi, Makoto; Matsuda, Masami; Aoyama, Yoshiyuki.

    1985-01-01

    Purpose: To decrease the amount of radioactive spent ion exchange resins generated from nuclear power plants, etc and process them into stable inorganic compounds through heat decomposition. Method: Spent ion exchange resins are heat-decomposed in an inert atmosphere to selectively decompose only ion exchange groups in the preceeding step while high molecular skeltons are completely heat-decomposed in an oxidizing atmosphere in the succeeding step. In this way, gaseous sulfur oxides and nitrogen oxides are generated in the preceeding step, while gaseous carbon dioxide and hydrogen requiring no discharge gas procession are generated in the succeeding step. Accordingly, the amount of discharged gases requiring procession can significantly be reduced, as well as the residues can be converted into stable inorganic compounds. Further, if transition metals are ionically adsorbed as the catalyst to the ion exchange resins, the ion exchange groups are decomposed at 130 - 300 0 C, while the high molecular skeltons are thermally decomposed at 240 - 300 0 C. Thus, the temperature for the heat decomposition can be lowered to prevent the degradation of the reactor materials. (Kawakami, Y.)

  14. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    Science.gov (United States)

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  15. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst.

    Science.gov (United States)

    Dai, Zejun; Wang, Lele; Tang, Hao; Sun, Zhijun; Liu, Wei; Sun, Yi; Su, Sheng; Hu, Song; Wang, Yi; Xu, Kai; Liu, Liang; Ling, Peng; Xiang, Jun

    2018-09-01

    This study investigated heavy metal chemical speciation and leaching behavior from a board-type spent selective catalytic reduction (SCR) catalyst containing high concentrations of vanadium, chromium, nickel, copper, zinc, and lead. A three-step sequential extraction method, standard toxicity characteristic leaching procedure (TCLP), and leaching characteristic tests have been performed. It was found that the mobility of six heavy metals in the spent SCR catalyst was significantly different. The mobility of the six heavy metals exhibited the following order: Ni > Zn > V > Cr > As > Cu. Meanwhile, TCLP test results revealed relatively high Zn and Cr leaching rate of 83.20% and 10.35%, respectively. It was found that leaching rate was positively correlated with available contents (sum of acid soluble, reducible and oxidizable fractions). Leaching characteristics tests indicated that pH substantially affected the leaching of these heavy metals. In particular, the leaching of Cr, Ni, Cu, and Zn was positively influenced by strong acid, while V and As were easily released in the presence of strong acid and strong alkali (pH 11). In terms of kinetics, the leaching of Cr, Ni, Cu, Zn, and As within the spent catalyst was dominated by erosion and dissolution processes, which were rapid reaction processes. V was released in large amounts within 1 h, but its leaching amount sharply decreased with time due to readsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  17. Potential for preparation of hot gas cleanup sorbents from spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Biagini, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Labs.

    1996-01-01

    Three spent-decoked hydroprocessing catalysts and two corresponding fresh catalysts were tested as hot gas clean-up sorbents and compared with the zinc ferrite using a simulated coal gasification gas mixture. The catalysts deposited only by coke exhibited relatively good cleaning efficiency. The catalyst deposited by coke and metals such as vanadium and nickel was less efficient. The useful life of the spent hydroprocessing catalysts may be extended if utilized as hot gas clean-up sorbents. 12 refs., 3 figs., 4 tabs.

  18. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  19. A review of metal recovery from spent petroleum catalysts and ash.

    Science.gov (United States)

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Processing of spent nickelcatalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    NASIR Mohammad Ibraim

    2001-01-01

    Full Text Available Spent nickel catalyst (SNC has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from SNC, isopropanol proved to be very good in clear separation of oil from waste material and also provides high solvent recovery compared to other solvents. Isopropanol extraction with chill separation of miscella into lower oil-rich phase, and an upper, solvent-rich recyclable phase save mush energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.

  1. The importance of pre-treatment of spent hydrotreating catalysts on metals recovery

    Directory of Open Access Journals (Sweden)

    Alexandre Luiz de Souza Pereira

    2011-01-01

    Full Text Available This work describes a three-step pre-treatment route for processing spent commercial NiMo/Al2O3 catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L-1 sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate.

  2. The importance of pre-treatment of spent hydrotreating catalysts on metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Alexandre Luiz de Souza; Silva, Cristiano Nunes da; Afonso, Julio Carlos, E-mail: julio@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica; Mantovano, Jose Luiz [Instituto de Engenharia Nuclear (CNEN/IEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Quimica e Materiais Nucleares

    2011-07-01

    This work describes a three-step pre-treatment route for processing spent commercial Ni Mo/Al{sub 2}O{sub 3} catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L{sup -1} sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo) during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate. (author)

  3. Recovery of Ni Metal from Spent Catalyst with Emulsion Liquid Membrane Using Cyanex 272 as Extractant

    Science.gov (United States)

    Yuliusman; Huda, M.; Ramadhan, I. T.; Farry, A. R.; Wulandari, P. T.; Alfia, R.

    2018-03-01

    In this study was conducted to recover nickel metal from spent nickel catalyst resulting from hydrotreating process in petroleum industry. The nickel extraction study with the emulsion liquid membrane using Cyanex 272 as an extractant to extract and separate nickel from the feed phase solution. Feed phase solution was preapred from spent catalyst using sulphuric acid. Liquid membrane consists of a kerosene as diluent, a Span 80 as surfactant, a Cyanex 272 as carrier and sulphuric acid solutions have been used as the stripping solution. The important parameters governing the permeation of nickel and their effect on the separation process have been studied. These parameters are surfactant concentration, extractant concentration feed phase pH. The optimum conditions of the emulsion membrane making process is using 0.06 M Cyanex 272, 8% w/v SPAN 80, 0.05 M H2SO4, internal phase extractant / phase volume ratio: 1/1, and stirring speed 1150 rpm for 60 Minute that can produce emulsion membrane with stability level above 90% after 4 hours. In the extraction process with optimum condition pH 6 for feed phase, ratio of phase emulsion/phase of feed: 1/2, and stirring speed 175 rpm for 15 minutes with result 81.51% nickel was extracted.

  4. Tungsten Recovery from Spent SCR Catalyst Using Alkaline Leaching and Ion Exchange

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wu

    2016-10-01

    Full Text Available The recovery of tungsten (W from a honeycomb-type spent selective catalytic reduction (SCR catalyst using an alkaline leaching–ion exchange method was investigated. Spent SCR catalyst mainly consists of TiO2 and other oxides (6.37% W, 1.57% vanadium (V, and 2.81% silicon (Si, etc.. The ground catalyst was leached at the optimal conditions, as follows: NaOH concentration of 0.3 kg/kg of catalyst, pulp density of 3%, leaching temperature of 70 °C, particle size of −74 μm, and leaching time of 30 min. In this study, the leaching rate values of V and W under the above conditions were 87 wt %, and 91 wt %, respectively. The pregnant solution was then passed through a strong base anion exchange resin (Amberlite IRA900. At high pH conditions, the use of strong base anion exchange resin led to selective loading of divalent WO42− from the solution, because the fraction of two adjacent positively-charged sites on the IRA900 resin was higher and separate from the coexisting VO43−. The adsorbed W could then be eluted with 1 M NaCl + 0.5 M NaOH. The final concentrated W solution had 8.4 g/L of W with 98% purity. The application of this process in industry is expected to have an important impact on the recovery of W from secondary sources of these metals.

  5. Formation of nitrogen compounds from nitrogen-containing rings during oxidative regeneration of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Nielsen, M.; Jurasek, P. [CANMET, Ottawa, ON (Canada). Energy Research Laboratories

    1995-05-01

    Commercial CoMo and NiMo catalysts in an oxidic and sulfided form and a {gamma}-alumina were deposited with pyrrole, pyridine, and quinoline. The deposited catalysts and two spent hydroprocessing catalysts were pyrolyzed and oxidized under conditions typical of regeneration of hydroprocessing catalysts. The formation of NH{sub 3} and HCN, as well as selected cases of N{sub 2}O and NO, was monitored during the experiments. NH{sub 3} and HCN were formed during pyrolysis of pyrrole-deposited catalysts whereas only NH{sub 3} was formed during that of pyridine-and quinoline-deposited catalysts. For all deposited catalysts, both NH{sub 3} and HCN were formed during temperature programmed oxidation in 2% O{sub 2}. For spent catalysts, a small amount of N{sub 2}O was formed in 2 and 4% O{sub 2}. For pyrrole-deposited catalysts, large yields of N{sub 2}O were formed in 4% O{sub 2}. Under the same conditions, N{sub 2}O yields for pyridine- and quinoline-deposited catalysts were very small. 13 refs., 12 figs., 6 tabs.

  6. Metal recovery from spent refinery catalysts by means of biotechnological strategies

    International Nuclear Information System (INIS)

    Beolchini, F.; Fonti, V.; Ferella, F.; Veglio, F.

    2010-01-01

    A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.

  7. Metal recovery from spent refinery catalysts by means of biotechnological strategies

    Energy Technology Data Exchange (ETDEWEB)

    Beolchini, F., E-mail: f.beolchini@univpm.it [Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Fonti, V. [Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ferella, F.; Veglio, F. [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio, 67040 L' Aquila (Italy)

    2010-06-15

    A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.

  8. NO formation during burnoff of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zaitlin, L.; Laugher, R. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1993-11-01

    Temperature-programmed oxidation (from room temperature to 600[degree]C) was performed on operating forms of aged CoMo (extrudate) and NiMo (chestnut bur-like) as well as powder forms, with continuous on-line analysis for NO, CO, CO[sub 2] and SO[sub 2]. For all catalysts, NO formation was delayed by that of CO and CO[sub 2], indicating either a strong interaction of nitrogen-containing compounds with the catalyst surface or a lower reactivity of nitrogen during burnoff compared with that of carbon. The existence of diffusion effects during burnoff was quite evident. These effects were influenced by the catalyst structure and the level of catalyst deactivation. 18 refs., 6 figs., 1 tab.

  9. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  10. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  11. Recovery of vanadium (V) from spent catalysts used in sulfuric acid production units by acid or alkaline leaching

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Stas, J.; Shino, O.; Asaad, K.; Al-Kassemi, H.; Al-Qabani, F.

    2008-01-01

    The present paper, studies the recovery of vanadium from the spent catalyst by using acidic or alkaline leaching technique. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 20%(w/w) of sulfuric acid is the most suitable for leaching process at 70 Centigrade. The precipitation of vanadium using some alkaline media (Na 2 CO 3 , (NH 4 )CO 3 and NH 4 OH) has been also studied, it has been shown that ammonium hydroxide was the best at 60 degree, and iron was co-precipitated with vanadium which pollute the obtained red cake. So it is necessary to use liquid-liquid extraction technique for the separation between vanadium and iron and to have iron free red cake. (author)

  12. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  13. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  14. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  15. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Shin, Young Joon; Cho, S. H.; You, G. S.

    2001-04-01

    Currently, the economic advantage of any known approach to the back end fuel cycle of a nuclear power reactor has not been well established. Thus the long term storage of the spent fuel in a safe manner is one of the important issues to be resolved in countries where the nuclear power has a relatively heavy weight in power production of that country. At KAERI, as a solution to this particular issue midterm storage of the spent fuel, an alternative approach has been developed. This approach includes the decladding and pulverization process of the spent PWR fuel rod, the reducing process from the uranium oxide to a metallic uranium powder using Li metal in a LiCl salt, the continuous casting process of the reduced metal, and the recovery process of Li from mixed salts by the electrolysis. We conducted the laboratory scale tests of each processes for the technical feasibility and determination for the operational conditions for this approach. Also, we performed the theoretical safety analysis and conducted integral tests for the equipment integration through the Mock-up facility with non-radioactive samples. There were no major issues in the approach, however, material incompatibility of the alkaline metal and oxide in a salt at a high temperature and the reactor that contains the salt became a show stopper of the process. Also the difficulty of the clear separation of the salt with metals reduced from the oxide became a major issue

  16. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A; Briand, Y

    1997-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  17. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  18. Oil removal of spent hydrotreating catalyst CoMo/Al{sub 2}O{sub 3} via a facile method with enhanced metal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu, Shengming, E-mail: smxu@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China); Li, Zhen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wang, Jianlong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China); Zhao, Zhongwei [School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan (China); Xu, Zhenghe, E-mail: zhenghe.xu@ualberta.ca [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada)

    2016-11-15

    Highlights: • A novel approach for oil removal from spent hydrotreating catalysts has been developed. • Oil removal possibility is analyzed through surface characteristics. • Oil is successfully removed from spent catalysts via aqueous surfactant solution. • Over 98% Mo can be leached after oil removal and thermal treatment. • The proposed deoiling method helps to avoid detrimental impurity generation (CoMoO{sub 4}) and enhance metal recovery. - Abstract: Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO{sub 4} or NiMoO{sub 4}) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90 °C, 0.1 wt% SDS, 2.0 wt% NaOH and 10 ml/g L/S ratio for 4 h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO{sub 4} is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts.

  19. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  20. Treatment of spent catalyst from the nitrogenous fertilizer industry-A review of the available methods of regeneration, recovery and disposal

    International Nuclear Information System (INIS)

    Singh, Bina

    2009-01-01

    Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste. The recovery of metals from these catalysts is an important economic aspect as most of these catalysts are supported, usually on alumina/silica with varying percent of metal; metal concentration could vary from 2.5 to 20%. Metals like Ni, Mo, Co, Rh, Pt, Pd, etc., are widely used as a catalyst in chemical and petrochemical industries and fertilizer industries. They are generally supported on porous materials like alumina and silica through precipitation or impregnation processes. Many workers have adapted pyrometallurgy and Hydrometallurgy process for recovery of precious metals. Many workers have studied the recovery of nickel from a spent catalyst in an ammonia plant by leaching it in sulphuric acid solution (Hydrometallurgy). Ninety-nine percent of the nickel was recovered as nickel sulphate when the catalyst, having a particle size of 0.09 mm was dissolved in an 80% sulphuric acid solution for 50 min in at 70 deg. C. Many researcher have studied the extraction of metals from spent catalyst by roasting-extraction method (Pyrometallurgy). Chelating agents are the most effective extractants, which can be introduced in the soil washing fluid to enhance heavy metal extraction from contaminated soils. The advantages of chelating agents in soil cleanup include high efficiency of metal extraction, high thermodynamic stabilities of the metal complexes formed, good solubilities of the metal complexes, and low adsorption of the chelating agents on soils, But very few workers have attempted chelating agent to extract metals from spent catalyst.

  1. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; Li, Zhen; Wang, Jianlong; Zhao, Zhongwei; Xu, Zhenghe

    2016-11-15

    Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO4 or NiMoO4) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90°C, 0.1wt% SDS, 2.0wt% NaOH and 10ml/gL/S ratio for 4h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO4 is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  3. Evaluation of malt spent rootlets biochar as catalyst for biodiesel production.

    Science.gov (United States)

    Pantiora, Dimitra

    2014-05-01

    Evaluation of malt spent rootlets biochar as catalyst for biodiesel production. Dimitra Pantiora1, Hrissi K. Karapanagioti1, Ioannis D. Manariotis2, Alexis Lycourghiotis1, Christos Kordulis1,3 (1) University of Patras, Department of Chemistry, GR 26500, Patras, Greece, (2) University of Patras, Department of Civil Engineering, Patras, Greece, (3) Institute of Chemical Engineering Science (FORTH/ ICE-HT), Stadiou Str., Platani, GR 26500, Patras, Greece Biodiesel is an attractive renewable fuel, environmentally friendly, and can readily be synthesized from the triglycerides found in animal fats and vegetable oils. It can be used in existing engines. Biodiesel consists of fatty acid alkyl esters. Conversion of triglycerides to biodiesel fuel is commonly achieved through a series of transesterification reactions involving the reaction of an alkoxy group of an ester (i.e., mono-, di-, or triglyceride) with that of a small alcohol (usually methanol). This reaction is traditionally catalyzed by homogeneous catalysts, such as bases or mineral acids. Basic catalysts have been proved to be much more active than acidic ones. However, due to environmental (waste water) and economic concerns (catalyst separation and product and by-product cleaning), heterogeneous catalysts are much more desirable. In the present study we have evaluated the use of biochar, produced from malt spent rootlets, as a potential basic catalyst, for transesterification of triglycerides using triacetin as a probe molecule. The biochar used in this study was prepared by heating malt spent rootlets in an oxygen-limited environment. It is a carbon rich material, containing 66% C, 22% O, 0.45% Mg, 0.86% Si, 5.7% K, 1.5% Cl, 0.61% Ca, and 2.4% P. Aqueous suspension of this material equilibrates at pH= 10. This is probably due to high K content. Furthermore, it exhibits high specific surface area (SSA= 183 m2g-1). The above described characteristics make this material very promising catalyst for

  4. Recovery by solvent extraction of vanadium from spent catalysts leaching solutions using Primene 81R

    Directory of Open Access Journals (Sweden)

    Lozano, L. J.

    2001-10-01

    Full Text Available Recovery of vanadium contained in solutions coming from spent catalysts leaching process by means of solvent extraction techniques using primary amine Primene 81R, has been studied in this work, resulting in an industrial multistage process for the treatment of these effluents. Results obtained allows to propose an extraction mechanism for vanadium(V with this amine in acidic media, verifying the great influence of pH on the process and fix adequate ranges for variables: O/A ratio, organic phase composition, pH, stirring speed and phase separation speed. These values were simulated in industrial conditions. Vanadium is finally recovered by means of precipitation as ammonium metavanadate and later calcination to obtain vanadium pentoxide of commercial grade.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en soluciones procedentes del proceso de lixiviación de catalizadores agotados, por medio de la técnica de extracción con disolventes, empleando la amina primaria PRIMENE 81R, planteando un proceso industrial multietapa para el tratamiento de estos efluentes. Los resultados obtenidos permiten proponer un mecanismo de extracción para el vanadio(V, con esta amina en medio ácido, verificando la gran influencia del pH en el proceso y Ajando los rangos adecuados para las siguientes variables: relación O/A, composición de la fase orgánica, pH, velocidad de agitación y velocidad de separación de fases. Esos valores se simularon en condiciones industriales. El vanadio se recupera finalmente precipitándolo como metavanadato amónico y posterior calcinación para obtener pentóxido de vanadio de calidad comercial.

  5. Oxidation catalysts and process for preparing same

    International Nuclear Information System (INIS)

    1980-01-01

    Compounds particularly suitable as oxidation catalysis are described, comprising specified amounts of uranium, antimony and tin as oxides. Processes for making and using the catalysts are described. (U.K.)

  6. A study on the properties of blended regenerated spent catalyst and cement sandcrete blocks

    International Nuclear Information System (INIS)

    Amissah, Emmanuel Kofi

    2016-07-01

    Sandcrete is widely used as building material. Its properties greatly depend on the properties and proportions of its constituents. The main binder material to produce sandcrete is the Portland cement. The uncertainty about future availability of commonly used Portland materials concomitantly with the environmental problems such as greenhouse gases emissions and high cost of clinker consumption are highlighting the need of identifying other materials for the construction industry, which will aid in minimizing the clinker consumption and reduce the greenhouse gas emissions and cost in the production of cement. The purpose of this study is to examine the properties of sandcrete blocks produced with blended Regenerated Spent Catalyst and cement. In this work, two different series of sandcrete mixtures in which cement was partially replaced with Regenerated Spent Catalyst(RSC) within the range of 5% to 20% (by mass) with an increment of 5%. 100% cement sandcrete was also prepared as reference sandcrete. The physical properties studied were compressive strength, water absorption and setting time. Chemical property studied was chloride content. Comparison of data between the control and that of cement with additives were made. The results obtained in this study clearly indicated that substituting Portland cement up to 20wt. % RSC gave sandcrete strengths higher than the 32.5N/mm 2 , which corresponds to that of Portland cement. The replacement of Portland cement with 10 wt. % of RSC gave the highest strength of 34.0 N/mm 2 . Thus, Regenerated Spent Catalyst may be utilized as effective mineral additive for designing durable sandcrete structures. The optimum amount of RSC recommended to be added as an additive to the Portland cement is 10%. (au)

  7. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method

    International Nuclear Information System (INIS)

    Park, Kyung Ho; Mohapatra, D.; Reddy, B. Ramachandra

    2006-01-01

    The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na 2 CO 3 and H 2 O 2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L -1 Na 2 CO 3 , 6 vol.% H 2 O 2 , room temperature, 1 h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH 4 OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO 3 product of 99.4% purity was achieved

  8. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  9. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  10. Electrochemical processing of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions.

  11. Electrochemical processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R.

    2008-01-01

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions

  12. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, María V., E-mail: plapimu@yahoo.com.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Falco, Lorena R., E-mail: mlfalco@quimica.unlp.edu.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Peluso, Miguel A., E-mail: apelu@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Sambeth, Jorge E., E-mail: sambeth@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Thomas, Horacio J. [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina)

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  13. Recovery of Cobalt from leach solution of spent oil Hydrodesulphurization catalyst using a synergistic system consisting of VersaticTM10 and Cyanex®272

    Science.gov (United States)

    Yuliusman; Ramadhan, I. T.; Huda, M.

    2018-03-01

    Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.

  14. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  15. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  16. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Wan, Zhong; Xu, Lejin; Wang, Jianlong

    2015-01-01

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe 2+ ] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  17. Management of Purex spent solvents by the alkaline hydrolysis process

    International Nuclear Information System (INIS)

    Srinivas, C.; Manohar, Smitha; Vincent, Tessy; Wattal, P.K.; Theyyunni, T.K.

    1995-01-01

    Various treatment processes were evaluated on a laboratory scale for the management of the spent solvent from the extraction of nuclear materials. Based on the lab scale evaluation it is proposed to adopt the alkaline hydrolysis process as the treatment mode for the spent solvent. The process has advantages over the other processes in terms of simplicity, low cost and ease of disposal of the secondary waste generated. (author)

  18. Processes and Technologies for the Recycling of Spent Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Kujawski Wojciech

    2014-09-01

    Full Text Available The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

  19. Antipollution processing of a used refining catalyst and metal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-04-30

    The used catalyst, containing metals such as vanadium, nickel and iron, is unloaded from the plant and is first processed by stripping; it is then calcined in critical conditions, and the catalyst metals are leached with a sodium hydroxide or sodium carbonate aqueous solution. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  20. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    Directory of Open Access Journals (Sweden)

    Hebé Gurdián

    2014-04-01

    Full Text Available The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  1. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    Science.gov (United States)

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  2. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  3. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  4. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  5. Process and catalysts for the gasification of methanol. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.; Dennis, A.J.; Shevels, T.F.

    1975-02-13

    The invention concerns catalysts and catalytic processes for the gasification of methanol which is used to manufacture methane from methanol. Mixtures of iron and chromium oxide, phosphate, phosphoric acid, tungstate, tungstic acid, aluminium phosphate, aluminium oxide are suitable as dehydrating catalysts. Gasification takes place together with steam and dehydrogenating catalysts at high temperature. The molar ratios steam: methanol are described.

  6. Rejuvenation of residual oil hydrotreating catalysts by leaching of foulant metals. Modelling of the metal leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Kam, E.K.T.; Stanislaus, A.; Absi-Halabi, M. [Petroleum Technology Department, Petroleum, Petrochemicals and Materials Division, Kuwait Institute for Scientific Research, Safat (Kuwait)

    1996-11-19

    Increasing emphasis has been paid in recent years on the development of processes for the rejuvenation of spent residual oil hydroprocessing catalysts, which are deactivated by deposition of metals (e.g. vanadium) and coke. As part of a research program on this subject, we have investigated selective removal of the major metal foulant from the spent catalyst by chemical leaching. In the present paper, we report the development of a model for foulant metals leaching from the spent catalyst. The leaching process is considered to involve two consecutive operations: (1) removal of metal foulants along the main mass transfer channels connected to the narrow pores until the pore structure begins to develop and (2) removal of metal foulants from the pore structure. Both kinetic and mass transfer aspects were considered in the model development, and a good agreement was noticed between experimental and simulated results

  7. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  8. Catalyst study for the plasma exhaust purification process

    International Nuclear Information System (INIS)

    Chabot, J.; Sannier, J.

    1990-01-01

    Several catalysts available from commercial sources have been screened to find out specific catalysts which allow complete methane oxidation and ammonia decomposition at temperature as low as possible in order to minimize tritium loss by permeation through processing equipment walls. Afterwards, an extended kinetic investigation has been performed on the best catalysts to achieve the data necessary to unit calculations. For methane oxidation, a palladium on alumina catalyst shows a very satisfactory low-temperature efficiency while a non-precious metal catalyst made of nickel oxide and alumina was found to be the more efficient for ammonia decomposition

  9. Structural analysis of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Gu, J. H.; Jung, W. M.; Jo, I. J.; Gug, D. H.; Yoo, K. S.

    2003-01-01

    An advanced spent fuel conditioning process (ACP) is developing for the safe and effective management of spent fuels which arising from the domestic nuclear power plants. And its demonstration facility is under design. This facility will be prepared by modifying IMEF's reserve hot cell facility which reserved for future usage by considering the characteristics of ACP. This study presents a basic structural architecture design and analysis results of ACP hot cell including modification of the IMEF. The results of this study will be used for the detail design of ACP demonstration facility, and utilized as basic data for the licensing of the ACP facility

  10. Digital mock-up for the spent fuel disassembly processes

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Kim, Y. H.; Hong, D. H.; Yoon, J. S.

    2000-12-01

    In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembly processes. The system consists of a 3D graphical modeling system, a devices assembling system, and a motion simulation system. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the process involved in the spent fuel handling and disassembly processes are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator which synchronously simulates the motion of the equipment in a real time basis by connecting the device controllers with the graphic server through the TCP/IP network. This simulator can be effectively used for detecting the malfunctions of the process equipment which is remotely operated. Thus, the simulator enhances the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimized process and maintenance process. And the on-line graphic simulator can be an alternative of the conventional process monitoring system which is a hardware based system

  11. Processing of spent nuclear fuel from light water reactors

    International Nuclear Information System (INIS)

    Sraier, V.

    1978-11-01

    A comprehensive review is given of the reprocessing of spent nuclear fuel from LWR's (covering references up to No. 18 (1977) of INIS inclusively). Particular attention is devoted to waste processing, safety, and reprocessing plants. In the addendum, the present status is shown on the example of KEWA, the projected large German fuel reprocessing plant. (author)

  12. Method For Processing Spent (Trn,Zr)N Fuel

    Science.gov (United States)

    Miller, William E.; Richmann, Michael K.

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  13. MSO spent salt clean-up recovery process; TOPICAL

    International Nuclear Information System (INIS)

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-01-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory[1

  14. Method for pre-processing LWR spent fuel

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Ebihara, Hikoe.

    1986-01-01

    Purpose: To facilitate the decladding of spent fuel, cladding tube processing, and waste gas recovery, and to enable the efficient execution of main re-processing process thereafter. Constitution: Spent fuel assemblies are sent to a cutting process where they are cut into chips of easy-to-process size. The chips, in a thermal decladding process, undergo a thermal cycle processing in air with the processing temperatures increased and decreased within the range of from 700 deg C to 1200 deg C, oxidizing zircaloy comprising the cladding tubes into zirconia. The oxidized cladding tubes have a number of fine cracks and become very brittle and easy to loosen off from fuel pellets when even a slight mechanical force is applied thereto, thus changing into a form of powder. Processed products are then separated into zirconia sand and fuel pellets by a gravitational selection method or by a sifting method, the zirconia sand being sent to a waste processing process and the fuel pellets to a melting-refining process. (Yoshino, Y.)

  15. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  16. Processing ix spent resin waste for C-14 isotope recovery

    International Nuclear Information System (INIS)

    Chang, F. H.; Woodall, K. B.; Sood, S. K.; Vogt, H. K.; Krochmainek, L. S.

    1991-01-01

    A process developed at Ontario Hydro for recovering carbon-14 (C-14) from spent ion exchange resin wastes is described. Carbon-14 is an undesirable by-product of CANDU 1 nuclear reactor operation. It has an extremely long (5730 years) half-life and can cause dosage to inhabitants by contact, inhalation, or through the food cycle via photosynthesis. Release of carbon-14 to the environment must be minimized. Presently, all the C-14 produced in the Moderator and Primary Heat Transport (PHT) systems of the reactor is effectively removed by the respective ion exchange columns, and the spent ion exchange resins are stored in suitably engineered concrete structures. Because of the large volumes of spent resin waste generated each year this method of disposal by long term storage tends to be uneconomical; and may also be unsatisfactory considering the long half-life of the C-14. However, purified C-14 is a valuable commercial product for medical, pharmaceutical, agricultural, and organic chemistry research. Currently, commercial C-14 is made artificially in research reactors by irradiating aluminum nitride targets for 4.5 years. If the C-14 containing resin waste can be used to reduce this unnecessary production of C-14, the total global build-up of this radioactive chemical can be reduced. There is much incentive in removing the C-14 from the resin waste to reduce the volume of C-14 waste, and also in purifying the recovered C-14 to supply the commercial market. The process developed by Ontario Hydro consists of three main steps: C-14 removal from spent resins, enrichment of recovered C-14, and preparation of final product. Components of the process have been successfully tested at Ontario Hydro's Research Division, but the integration of the process is yet to be demonstrated. A pilot scale plant capable of processing 4 m 3 of spent resins annually is being planned for demonstrating the technology. The measured C-14 activity levels on the spent resins ranged from 47

  17. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  18. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  19. Pyrolysis of marine biomass to produce bio-oil and its upgrading using a novel multi-metal catalyst prepared from the spent car catalytic converter.

    Science.gov (United States)

    Sabegh, Mahzad Yaghmaei; Norouzi, Omid; Jafarian, Sajedeh; Khosh, Akram Ghanbari; Tavasoli, Ahmad

    2018-02-01

    In order to reduce the economic and environmental consequences caused by spent car catalyst, we herein report for the first time a novel promising multi-metal catalyst prepared from spent car catalytic converters to upgrade the pyrolysis bio-oils. The physico-chemical properties of prepared catalyst were characterized by XRD, EDS, FESEM, and FT-IR analyses. The thermal stability of the multi-metal catalyst was studied with TGA. To investigate the activity of the catalyst, Conversion of Cladophora glomerata (C. glomerata) into bio-products was carried out via a fixed bed reactor with and without catalyst at the temperature of 500°C. Although the catalyst didn't catalyze the gasification reaction, bio-oil was upgraded over the catalyst. The main effect of the catalyst on the bio-oil components is deoxygenating of nitrogen compounds and promotion the ketonization reaction, which converts acid to ketone and declines the corrosive nature of bio-oil. Copyright © 2017. Published by Elsevier Ltd.

  20. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  1. Recovery of platinum-group metals (PGMS from spent automotive catalysts: Part II: Automotive catalysts: Structures and principle of operation

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2015-01-01

    Full Text Available Catalytic converters are incorporated into motor vehicle emission systems (passenger cars, trucks and other motor vehicles, as well as civil and agricultural machines, as of lately to reduce air pollution as well as to meet the emission standards. Their purpose is to convert toxic emissions generated by combustion of liquid fossil fuels into less harmful products. In catalytic converters, rhodium is used for the reduction of gasses, whereas platinum and palladium are used for the oxidation of gasses. This paper presents the structure and operating principle of automotive catalysts in view of the fact that cars are the most prevalent motor vehicles worldwide and due to the fact that the production of cars with gasoline and diesel engines will dominate until at least 2020.

  2. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-01-01

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed

  3. Process for the regeneration of metallic catalysts

    Science.gov (United States)

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  4. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  5. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  6. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  7. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  8. Effect of Rh-based additives on NO and CO formed during regeneration of spent FCC catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulou, E.F.; Efthimiadis, E.A.; Vasalos, I.A. [Aristotle University of Thessaloniki and Center for Research and Technology Hellas, Chemical Process Engineering Research Institute, Department of Chemical Engineering, P.O. Box 1517, 54006 University City, Thessaloniki (Greece); Barth, J.-O.; Lercher, J.A. [Institut fur Technische Chemie, Technische Universitat Munchen, Lichtenbergstrasse 4, D-85748 Garching (Germany)

    2004-02-10

    Regeneration studies of spent FCC catalyst were performed in a bench-scale unit under reaction conditions that sufficiently simulate those in the regenerator of the fluid catalytic cracking (FCC) unit. The effect of a conventional Pt-based CO promoter (CP-3) on the composition of flue gases was examined. As expected addition of CP-3 in the catalytic inventory decreased CO emissions by one order of magnitude, but tripled the NO emissions independently of the concentration of CO promoter used. Addition of a series of Rh-based catalysts modified the composition of flue gases emitted during regeneration. The parameters under study were the catalytic support, the Rh loading on the additive, and the amount of additive used during regeneration. Both a stoichiometric spinel MgO{center_dot}Al{sub 2}O{sub 3} of high crystallinity and a commercial alumina were competent supports. Promotion of the alumina support with Ce or performing regeneration introducing CO did not affect the additive performance significantly. A combined performance of CO oxidation and NO reduction was achieved minimizing both the Rh loading in the additive (0.1wt.%) and the concentration of additive used during regeneration (1wt.%). IR studies suggest that NO reduction by CO over Rh/alumina additives proceeds via the dissociative adsorption of NO, the formation of NCO species on Rh and their migration to the alumina support to finally yield N{sub 2} and CO{sub 2}.

  9. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  10. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  11. Studies on the behaviour of different spent fluidized-bed catalytic cracking catalysts on Portland cement

    Directory of Open Access Journals (Sweden)

    Soriano, L.

    2009-12-01

    Full Text Available The fluidized-bed catalytic cracking catalyst (FCC it is a residue from the industry of the petroleum that shows a high pozzolanic reactivity and, in cementing matrix, it significantly improves their mechanical behaviour as well as durability. In this research a comparative study on residues of catalyst from different sources has been carried out, in order to know if these residues can be used jointly in an indiscriminate way or, on the contrary, it is necessary to classify them according to their characteristics. Thus, a study on five different FCC residues, supplied from different companies, has been carried out, and their physical-chemical characteristics, pozzolanic reactivity by means of thermogravimetric analysis and the evolution of the mechanical strength of mortars were studied. After analyzing all the aspects, it can be concluded that no significant differences among the different tested catalysts were found.El catalizador de craqueo catalítico (FCC es un residuo de la industria del petróleo que posee una elevada reactividad puzolánica y en matrices cementicias mejora de manera importante los aspectos mecánicos así como de durabilidad. En este trabajo se realiza un estudio comparativo sobre residuos de catalizador de distintos orígenes, para poder conocer si se pueden utilizar conjuntamente de forma indiscriminada o por el contrario hay que catalogarlos según su origen. Para ello, se realizó un estudio sobre cinco residuos de catalizador de craqueo catalítico distintos, suministrados por diferentes empresas y se estudiaron sus características fisicoquímicas, reactividad puzolánica a través de estudios termogravimétricos y la evolución de las resistencias mecánicas en morteros. Tras analizar todos los aspectos se concluye que no existen diferencias significativas entre los distintos catalizadores empleados.

  12. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  13. Processing of the spent Li/MnO2 battery

    International Nuclear Information System (INIS)

    Paulino, Jessica Frontino; Busnardo, Natalia Giovanini; Afonso, Julio Carlos

    2007-01-01

    This work presents two recycling processes for spent Li/MnO 2 batteries. After removal of the solvent under vacuum the cathode + anode + electrolyte was submitted to one of the following procedures: (a) it was calcined (500 deg C, 5 h) and the calcined solid was submitted to solvent extraction with water in order to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Manganese was recovered as sulfate; (b) the solid was treated with potassium hydrogen sulfate (500 deg C, 5 h). The solid was dissolved in water and the resulting solution was added dropwise to sodium hydroxide. Manganese was recovered as dioxide. The residual solution was treated with potassium fluoride in order to precipitate lithium fluoride. (author)

  14. The development of spent fuel storage process equipment

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Kim, Ho Dong; Kim, Ki Joon; Kim, Bum Hoe

    1992-02-01

    A nuclear material accounting system were designed to track the transitions of nuclear materials at the spent-fuel technology research facility. It is embedded in a distributed control system real-time structure of the system gives timely on-line accountancy. And performance of AC servo motor with fuzzy logic control and its applicability to spent fuel management were experimentally evaluated. (Author)

  15. METHANE STEAM REACTION OVER NICKEL CATALYSTS IN THE HYNOL PROCESS

    Science.gov (United States)

    The report discusses the reaction of methane-steam over nickel catalysts in the Hynol process, a process that uses biomass and natural gas as feedstocks to maximize methanol yields and minimize greenhouse gas emissions. EPA's APPCD has established a laboratory in which to conduct...

  16. Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process

    International Nuclear Information System (INIS)

    OLGUIN, L.J.

    2000-01-01

    This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work

  17. Spent solvent treatment process at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Akihiro; Saka, Munenori; Araya, Toshiyuki; Kitamura, Tomohiro; Wakamatsu, Toshiyuki

    2005-01-01

    In order to dispose of spent organic solvent and diluent produced by the PUREX method, it is desirable that it should be in stable form for easy handling. For this reason, spent solvent is reduced to powder form and further molded so that it becomes easier to handle for temporary storage at Rokkasho Reprocessing Plant (RRP). In this paper, the treatment unit for reducing spent solvent to powder form and the treatment unit for modeling the powder are introduced as well as their treatment results during Chemical Test. (author)

  18. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  19. Techniques for laser processing, assay, and examination of spent fuel

    International Nuclear Information System (INIS)

    Gray, J.H.; Mitchell, R.C.; Rogell, M.L.

    1981-11-01

    Fuel examination studies were performed which have application to interim spent fuel storage. These studies were in three areas, i.e., laser drilling and rewelding demonstration, nondestructive assay techniques survey, and fuel examination techniques survey

  20. 48 CFR 852.271-72 - Time spent by counselee in counseling process.

    Science.gov (United States)

    2010-10-01

    ... counseling process. 852.271-72 Section 852.271-72 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 852.271-72 Time spent by counselee in counseling process. As prescribed in 871.212, insert the following clause: Time Spent by Counselee in Counseling Process (APR 1984) The contractor agrees that no...

  1. Engineering New Catalysts for In-Process Elimination of Tars

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry G. [Gas Technology Inst., Des Plaines, IL (United States)

    2012-09-30

    The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposed surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported

  2. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  3. Application of Co and Mn for a Co-Mn-Br or Co-Mn-C2H3O2 Petroleum Liquid Catalyst from the Cathode Material of Spent Lithium Ion Batteries by a Hydrometallurgical Route

    Directory of Open Access Journals (Sweden)

    Sung-Ho Joo

    2017-10-01

    Full Text Available We investigated the preparation of CMB (cobalt-manganese-bromide and CMA (cobalt-manganese-acetate liquid catalysts as petroleum liquid catalysts by simultaneously recovering Co and Mn from spent Li-ion battery cathode material. To prepare the liquid catalysts, the total preparation process for the liquid catalysts consisted of physical pre-treatments, such as grinding and sieving, and chemical processes, such as leaching, solvent extraction, and stripping. In the physical pre-treatment process, over 99% of Al was removed from material with a size of less than 0.42 mm. In the chemical process, the leaching solution as obtained under the following conditions: 2 mol/L sulfuric acid, 10 vol % H2O2, 0.1 of solid/liquid ratio, and 60 °C. In the solvent extraction process, the optimum concentration of bis (2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, the equilibrium pH, the degree of saponification, the organic phase/aqueous phase ratio isotherm, and the stripping study for the extraction of Co and Mn were investigated. As a result, Co and Mn were recovered by 0.85 M Cyanex 272 with 50% saponification in counter current two extraction stages. Finally, a CMB and CMA liquid catalyst containing 33.1 g/L Co, 29.8 g/L Mn, and 168 g/L Br and 12.67 g/L Co, 12.0 g/L Mn, and 511 g/L C2H3O2, respectively, was produced by 2 M hydrogen bromide and 50 vol % acetic acid; it was also found that a shortage in the concentration can be compensated with cobalt and manganese salts.

  4. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  5. The obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis

    International Nuclear Information System (INIS)

    Mansurov, M.M.; Lugovenko, A.N.; Mirzoeva, M.M.

    1993-01-01

    Present article is devoted to obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis. The method of synthesis of iron acetate from processed iron comprising catalyst of ammonia synthesis was elaborated. The structure of complex was determined.

  6. Process and system to encapsulate spent nuclear fuel

    International Nuclear Information System (INIS)

    Gunasekaran, Muthian; Fleischer, L.R.

    1980-01-01

    System for encapsulating spent nuclear fuel containing active fission matter and comprised in a metal casing, where concrete covers this casing in a contiguous, uniform and complete manner. It is characterized in that this concrete contains metal fibres to raise the thermal conductivity and polymers for increasing impermeability and that convection facilities are provided for cooling the outer surface of the concrete [fr

  7. Feasibility evaluation of using spent FCC catalyst for metals treatment from industrial waste; Avaliacao do potencial de recuperacao de niquel de catalisadores equilibrados (E-CAT) atraves da tecnica de remediacao eletrocinetica

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Adalberto; Ponte, Haroldo de Araujo [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2004-07-01

    The purpose of this work is to describe the feasibility evaluation using FCC catalyst for treatment from industrial wastes increasing the life time of the spent catalysts and reducing the environmental impact. Evaluated the reutilization of catalyst in process recovery of nickel adsorbed. The technique used was the Electrokinetic Remediation. This technique is based in application of a direct current of low intensity or low potential between the electrodes located in soil. The pollutants are mobilized how loaded species or particles. It used a electrokinetic reactor with approximated volume of 1200 cm{sup 3}, where the residue is placed. In your extremity are adapted two cameras of acrylic, being one anodic, with steel inox 304 electrode, and other cathodic, with lead electrode. In anodic camera, it was injected, with aid a bomb, a solution of sulfuric acid, which work as electrolyte, to a flow rate of 20 ml/h. Was evaluated the desorption of Nickel in the equilibrium catalyst submitting a variation of the conditions of the concentration and potential. (author)

  8. A consolidation process for spent burnable poison rod assemblies

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Harada, M.; Komatsu, Y.

    1985-01-01

    A new consolidation system for the spent burnable poison assembly utilizing a sequence control robot operated under water was proposed. A credible accident in the system was analyzed mainly from the viewpoint of tritium release, based on the diffusion analysis of tritium in borosilicate glass. It was found that the amount of tritium released would be small even after the rupture of burnable poison rods. An experiment on a new consolidation system was performed using spent burnable poison assemblies. The volume of burnable poison assemblies was reduced safely and securely by a factor of 7 to 14 for burnable poison rods and by 22 for hold-down portions. It was proved that the consolidation system is collectively feasible

  9. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  10. Development of Water Detritiation Process Using the Hydrophobic Platinum Catalyst

    International Nuclear Information System (INIS)

    Ahn, D.H.; Paek, S.; Choi, H.J.; Kim, K.R.; Chung, H.; Yim, S.P.; Lee, M.S.

    2006-01-01

    Radioactive emissions and occupational doses by tritium are mainly caused by tritiated water escaping from equipment in the nuclear industry. Improving the leak-tightness of equipment is effective in reducing emissions and internal dose but is not a long-term solution. Water detritiation was consider to be the most effective tritium control option since tritium is removed right from the source. The WTRF (Wolsong Tritium Removal Facility) is under construction now with the completion date of June, 2006 in Korea. It is designed to remove tritium from tritiated heavy water in each of the existing four Candu units at Wolsong site. We developed a hydrophobic platinum catalyst (Pt/SDBC catalyst) that would be used at the LPCE (Liquid Phase Catalytic Exchange) column in the WTRF. The catalytic rate constants of the newly developed catalyst for the deuterium exchange reaction between water vapor and hydrogen gas were measured in a recycle reactor. The catalytic rate constants of the Pt/SDBC catalyst decreased with reaction time and were much greater than that required, 2.0 x 10 -4 mol (D 2 )/s/g(pellet) in the design of the WTRF. Tritium removal efficiency of the WTRF, which is important for a safe and reliable operation of the facility, depends on the design and operating variables. A theoretical model based on the design and operating variables of the LPCE process was set up, and the equations between the parameters were derived. Numerical calculation result from a computer program shows steep increase of the detritiation factor of the LPCE process with respect to temperature increase and mild increase with respect to pressure decrease. The other parametric study shows that the calculated detritiation factors increase as the catalyst efficiency, number of theoretical stages of hydrophilic packing, the detritiation factor of cryogenic distillation system and the total number of sections increase. We also proceeded with the experiments for the hydrogen isotopic exchange

  11. Process for hydroprocessing heavy oils utilizing sepiolite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Auden, C.A.; Yan, T.-Y.

    1986-04-15

    A process is described for demetallizing and desulfurizing a hydrocarbon oil comprising contacting the hydrocarbon oil in the presence of hydrogen and a sepiolite-based catalyst composition under conditions of pressure and temperature sufficient to effect demetallization and desulfurization. The sepiolite-based catalyst composition has been prepared by first contacting the sepiolite with an aqueous solution of a first metal salt, then contacting the resultant metal ion-exchanged sepiolite with an aqueous solution of a compound of a second metal selected from the group consisting of molybdenum, tungsten and vanadium, and finally contacting the resultant metal-exchanged sepiolite product with an aqueous solution of a magnesium compound, thereby effecting a magnesium ion-exchange with the metal-exchanged sepiolite product and neutralizing acid sites on the sepiolite product.

  12. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A., E-mail: carlos.nogueira@lneg.pt [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Paiva, A.P., E-mail: appaiva@fc.ul.pt [Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Oliveira, P.C. [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Costa, M.C., E-mail: mcorada@ualg.pt [Centro de Ciências do Mar, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, A.M. Rosa da, E-mail: amcosta@ualg.pt [Centro de Investigação em Química do Algarve, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal)

    2014-08-15

    Highlights: • A new leaching process based on Cu{sup 2+}/HCl media for recovering Pd and Rh from spent autocatalytic converters is presented. • Palladium and rhodium were efficiently leached, with attained maximum yields of 95% and 86%, respectively. • Temperature, time, and HCl and Cu{sup 2+} concentrations were found to be significant factors in the leaching of Pd and Rh. - Abstract: The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu{sup 2+} concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4 h, [HCl] = 6 M, [Cu{sup 2+}] = 0.3 M)

  13. Thermal processing of spent mushroom compost; Thermische verwerking champost

    Energy Technology Data Exchange (ETDEWEB)

    Stam, A.F.; Erbrink, J.J. [KEMA Technical and Operational Services, Arnhem (Netherlands)

    2008-07-15

    The aim of this study is to conduct an exploratory research of the options of using spent mushroom compost as fuel, possibly combined with other biomass flows, to generate energy. The exploratory study consists of a desk study in which a chemical, physical analysis of the fuel is also conducted and focuses primarily on combustion techniques [Dutch] Het doel van de studie is een verkennend onderzoek uitvoeren naar de mogelijkheden om met champost als brandstof, eventueel samen met andere biomassastromen, in te zetten voor de opwekking van energie. Het verkennend onderzoek is een bureaustudie, waarbij tevens voorzien is in een chemisch fysische analyse van de brandstof en richt zich primair op verbrandingstechnieken.

  14. From trash to resource: recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H 2 production

    KAUST Repository

    Gombac, V.; Montini, T.; Falqui, Andrea; Loche, D.; Prato, M.; Genovese, Alessandro; Mercuri, M. L.; Serpe, A.; Fornasiero, P.; Deplano, P.

    2016-01-01

    The successful production of a nanostructured and highly dispersed Pd-TiO2 photo-catalyst, using [Pd(Me2dazdt)2](I3)2 (Me2dazdt = N,N′-dimethyl-perhydrodiazepine-2,3-dithione) salt, obtained through the selective and safe recovery of palladium from model exhaust three-way catalysts (TWCs), is reported here. The photo-catalyst prepared by the impregnation/photo-reduction of palladium on the support showed improved performance in H2 production from methanol and in glycerol photo-reforming compared to reference photo-catalysts obtained from conventional Pd-salts. The reported results represent a case of successful palladium “recovery and re-employment” and thus constitute an example of green chemistry by providing, in one route, the environmentally friendly recovery of a critical metal and its employment in the renewable energy field.

  15. From trash to resource: recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H 2 production

    KAUST Repository

    Gombac, V.

    2016-01-06

    The successful production of a nanostructured and highly dispersed Pd-TiO2 photo-catalyst, using [Pd(Me2dazdt)2](I3)2 (Me2dazdt = N,N′-dimethyl-perhydrodiazepine-2,3-dithione) salt, obtained through the selective and safe recovery of palladium from model exhaust three-way catalysts (TWCs), is reported here. The photo-catalyst prepared by the impregnation/photo-reduction of palladium on the support showed improved performance in H2 production from methanol and in glycerol photo-reforming compared to reference photo-catalysts obtained from conventional Pd-salts. The reported results represent a case of successful palladium “recovery and re-employment” and thus constitute an example of green chemistry by providing, in one route, the environmentally friendly recovery of a critical metal and its employment in the renewable energy field.

  16. Modelling Methods of Magnetohydrodynamic Phenomena Occurring in a Channel of the Device Used to Wash Out the Spent Automotive Catalyst by a Liquid Metal

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-06-01

    Full Text Available The recovery of precious metals is necessary for environmental and economic reasons. Spent catalysts from automotive industry containing precious metals are very attractive recyclable material as the devices have to be periodically renovated and eventually replaced. This paper presents the method of removing platinum from the spent catalytic converters applying lead as a collector metal in a device used to wash out by using mangetohydrodynamic stirrer. The article includes the description of the methods used for modeling of magnetohydrodynamic phenomena (coupled analysis of the electromagnetic, temperature and flow fields occurring in this particular device. The paper describes the general phenomena and ways of coupling the various physical fields for this type of calculation. The basic computational techniques with a discussion of their advantages and disadvantages are presented.

  17. The miscibility and oxidation study of the simulated metallic spent fuel for the development of an advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. J.; You, G. S.; Ju, J. S.; Lee, E. P.; Seo, H. S.; Ahn, S. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-03-01

    The simulated metallic spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the immiscibility of the some elements with metal uranium. 2 refs., 45 figs. (Author)

  18. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    Buchtela, Karl

    1988-01-01

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m 3 . It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  19. Metals recovery of spent household batteries using a hydrometallurgical process

    International Nuclear Information System (INIS)

    Souza, K.P.; Tenorio, J.A.S.

    2010-01-01

    The objective of the work is to study a method for metals recovery from a sample composed by a mixture of the main types of spent household batteries. Segregation of the main metals is investigated using a treatment route consisting of the following steps: manual identified and dismantling, grinding, electric furnace reduction, acid leaching and selective precipitation with sodium hydroxide with and without hydrogen peroxide. Before and after precipitations the solutions had been analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/OES) and the precipitated analyzed by Scanning Electron Microscopy (SEM) with Spectrometry of Energy Dispersion Spectroscopy (EDS). The results had indicated that the great majority of metals had been precipitated in pHs studied, also had co-precipitation or simultaneous precipitation of metals in some pHs. (author)

  20. FCC catalyst technologies expand limits of process capability

    International Nuclear Information System (INIS)

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  1. Advanced spent fuel processing technologies for the United States GNEP programme

    International Nuclear Information System (INIS)

    Laidler, J.J.

    2007-01-01

    Spent fuel processing technologies for future advanced nuclear fuel cycles are being developed under the scope of the Global Nuclear Energy Partnership (GNEP). This effort seeks to make available for future deployment a fissile material recycling system that does not involve the separation of pure plutonium from spent fuel. In the nuclear system proposed by the United States under the GNEP initiative, light water reactor spent fuel is treated by means of a solvent extraction process that involves a group extraction of transuranic elements. The recovered transuranics are recycled as fuel material for advanced burner reactors, which can lead in the long term to fast reactors with conversion ratios greater than unity, helping to assure the sustainability of nuclear power systems. Both aqueous and pyrochemical methods are being considered for fast reactor spent fuel processing in the current US development programme. (author)

  2. The kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas

    International Nuclear Information System (INIS)

    Khamroev, F.B.

    2016-01-01

    The purpose of the present work is to study the kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas. The experimental equation of steam-carbon methane conversion, heat stability increasing and catalyst efficiency, decreasing of hydrodynamical resistance of catalyst layer were determined.

  3. Recuperação de metais de catalisadores de hidrorrefino usados via fusão com KHSO4 Recovery of elements from spent hydrorefining catalysts after fusion with KHSO4

    Directory of Open Access Journals (Sweden)

    Julio Carlos Afonso

    2006-07-01

    Full Text Available This work describes a process for metal recovery from spent NiMo and CoMo/Al2O3 commercial hydrorefining catalysts. The samples were treated by fusion with potassium hydrogen sulfate (5 h, 600 ºC with a KHSO4/catalyst mass ratio of 10:1. After fusion the solid was solubilized in water (100 ºC, leaving silicon compounds as residue. Losses of nickel and cobalt may reach 16 wt% of the amount present in the sample, depending on the silicon content. Soluble metals were isolated by selective precipitation techniques (nickel, cobalt, aluminum or by solvent extraction with methyl-isobutyl ketone (molybdenum in a hydrochloric acid medium. All metals were recovered in very good yields except for nickel and cobalt in the presence of considerable amounts of silicon. Soluble wastes consist of potassium/sodium sulfates/chlorides. Solid wastes correspond to about 4 wt% of the catalyst and can be discarded in industrial dumps.

  4. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON, R.A.

    2000-03-13

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation.

  5. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    International Nuclear Information System (INIS)

    SEXTON, R.A.

    2000-01-01

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation

  6. Development of the vacuum drying process for the PWR spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chagn Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process)

  7. Development of the spent fuel disassembling process by utilizing the 3D graphic design technology

    International Nuclear Information System (INIS)

    Song, T. K.; Lee, J. Y.; Kim, S. H.; Yun, J. S.

    2001-01-01

    For developing the spent fuel disassembling process, the 3D graphic simulation has been established by utilizing the 3D graphic design technology which is widely used in the industry. The spent fuel disassembling process consists of a downender, a rod extraction device, a rod cutting device, a pellet extracting device and a skeleton compaction device. In this study, the 3D graphical design model of these devices is implemented by conceptual design and established the virtual workcell within kinematics to motion of each device. By implementing this graphic simulation, all the unit process involved in the spent fuel disassembling processes are analyzed and optimized. The 3D graphical model and the 3D graphic simulation can be effectively used for designing the process equipment, as well as the optimized process and maintenance process

  8. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  9. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  10. A study on the polymer catalyst process technology

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Kang, H. S.; Paek, S. W.; Lee, S. H.; Sung, K. W.

    1997-06-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply Korea is scheduled to construct and operate total four pressurized heavy water power plant till the year 1999. Total heavy water make-up for these plants would be 18 Mg/a from the year 1999. Reformed hydrogen processes is considered best suited to Korea. Polymer catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m{sup 3}.HD/m{sup 3} Bed.sec. and heavy water separation process using the catalysis were optimized. (author). 102 refs., 134 tabs., 65 figs.

  11. A study on the polymer catalyst process technology

    International Nuclear Information System (INIS)

    Chung, H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Kang, H. S.; Paek, S. W.; Lee, S. H.; Sung, K. W.

    1997-06-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply Korea is scheduled to construct and operate total four pressurized heavy water power plant till the year 1999. Total heavy water make-up for these plants would be 18 Mg/a from the year 1999. Reformed hydrogen processes is considered best suited to Korea. Polymer catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 .HD/m 3 Bed.sec. and heavy water separation process using the catalysis were optimized. (author). 102 refs., 134 tabs., 65 figs

  12. Zeolites as Catalysts for Fuels Refining after Indirect Liquefaction Processes

    Directory of Open Access Journals (Sweden)

    Arno de Klerk

    2018-01-01

    Full Text Available The use of zeolite catalysts for the refining of products from methanol synthesis and Fisher–Tropsch synthesis was reviewed. The focus was on fuels refining processes and differences in the application to indirect liquefaction products was compared to petroleum, which is often a case of managing different molecules. Processes covered were skeletal isomerisation of n-butenes, hydroisomerisation of n-butane, aliphatic alkylation, alkene oligomerisation, methanol to hydrocarbons, ethanol and heavier alcohols to hydrocarbons, carbonyls to hydrocarbons, etherification of alkenes with alcohols, light naphtha hydroisomerisation, catalytic naphtha reforming, hydroisomerisation of distillate, hydrocracking and fluid catalytic cracking. The zeolite types that are already industrially used were pointed out, as well as zeolite types that have future promise for specific conversion processes.

  13. Simulation of spent fuel reprocessing processes: Realizations and prospects

    International Nuclear Information System (INIS)

    Boullis, B.

    1986-12-01

    The separation of uranium and plutonium in the Purex process is very complex and for the extension of reprocessing plants optimization of the process requires mathematical modelling. The development of this model is reviewed [fr

  14. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  15. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  16. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  17. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  18. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal

  19. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    Directory of Open Access Journals (Sweden)

    Widiyadi Aditya

    2018-01-01

    Full Text Available Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD to determine type of crystal and scanning electron microscopy (SEM to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  20. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    Science.gov (United States)

    Widiyadi, Aditya; Guspiani, Gema Adil; Riady, Jeffry; Andreanto, Rikky; Chaiunnisa, Safina Dea; Widayat

    2018-02-01

    Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD) to determine type of crystal and scanning electron microscopy (SEM) to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  1. ARTIST process. A novel chemical process for treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    2001-10-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock all actinides (Ans) as two groups, uranium (U) and a mixture of transuranics (TRU), to preserve their resource value and to dispose solely fission products (FPs). The process is composed of two main steps, an U exclusive isolation and a total recovery of TRU; which copes with the nuclear non-proliferation measures, and additionally of Pu separation process and soft N-donor process if requested, and optionally of processes for separation of long-lived FPs. These An products: U-product and TRU-product, are to be solidified by calcination and allowed to the interim stockpile for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the performance of both the branched alkyl monoamides in extracting U and suppressing the extraction of tetravalent Ans due to the steric effect and the diglycolic amide (TODGA) in thorough extraction of all TRU by tridentate fashion. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator - Driven System (ADS) for transmutation, Pu (Np) or Am-Cm (Np) are to be extracted from the TRU-product. (author)

  2. Development of Voloxidation Process for Treatment of LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Jung, I. H.; Shin, J. M. (and others)

    2007-08-15

    The objective of the project is to develop a process which provides a means to recover fuel from the cladding, and to simplify downstream processes by recovering volatile fission products. This work focuses on the process development in three areas ; the measurement and assessment of the release behavior for the volatile and semi-volatile fission products from the voloxidation process, the assessment of techniques to trap and recover gaseous fission products, and the development of process cycles to optimize fuel cladding separation and fuel particle size. High temperature adsorption method of KAERI was adopted in the co-design of OTS for hot experiment in INL. KAERI supplied 6 sets of filter for hot experiment. Three hot experiment in INL hot cell from the 25th of November for two weeks with attaching 4 KAERI staffs had been carried out. The results were promising. For example, trapping efficiency of Cs was 95% and that of I was 99%, etc.

  3. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  4. Implementation process and deployment initiatives for the regionalized storage of DOE-owned spent nuclear fuel

    International Nuclear Information System (INIS)

    Dearien, J.A.; Smith, N.E.L.

    1995-01-01

    This report describes how DOE-owned spent nuclear fuel (SNF) will be stored in the interim 40-year period from 1996 to 2035, by which time it is expected to be in a National Nuclear Repository. The process is described in terms of its primary components: fuel inventory, facilities where it is stored, how the fuel will be moved, and legal issues associated with the process. Tools developed to deploy and fulfill the implementation needs of the National Spent Nuclear Fuel Program are also discussed

  5. Crud in the solvent extraction process for spent fuel reprocessing

    International Nuclear Information System (INIS)

    Chen Jing

    2004-01-01

    The crud occurred in Purex process is caused by the degradations of extractant and solvent and the existence of insoluble solid particle in the nuclear fuel reprocessing. The crud seriously affects the operation of the extraction column. The present paper reviews the study status on the crud in the Purex process. It is generally accepted that in the Purex process, particularly in the first cycle, the crud occurrence is related to the capillary chemistry phenomena resulting from the deposits of Zr with TBP degradation products HDBP, H 2 MBP, H 3 PO 4 and the insoluble particle RuO 2 and Pd. The occurrence of deposits and the type of crud are tightly related to the molar ratio of HDBP and Zr, and the aqueous pH. In addition, the effect of degradation products from the diluent, such as kerosene, is an unnegligible factor to cause the crud. The crud can be discharged from the extraction equipment with Na 2 CO 3 or oxalic acid. In the study on simulating the crud, the effects of the deposits of Zr with TBP degradation products HDBP, H 2 MBP and H 2 PO 4 , and the insoluble particle RuO 2 and Pd should be considered at the same time. (authors)

  6. A closed loop process for recycling spent lithium ion batteries

    Science.gov (United States)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  7. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  8. Development of spent solvent treatment process by a submerged combustion technique

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide; Chida, Mitsuhisa

    1994-01-01

    An experimental study using a bench-scale equipment of 1 kg-simulated spent solvents per hour has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of tri-n-butyl phosphate and/or n-dodecane, and on the distribution behaviors of combustion products such as phosphoric acid, Ru, I, Zr and lanthanides as TRU simulants in the submerged combustion process. Also the experimental results of TRU separation from phosphoric acid solution by co-precipitation using bismuth phosphate are reported. It was shown that the submerged combustion technique was applicable to the treatment of spent solvents including the distillation residues of the solvent. Based on the experimental data, a new treatment process of spent solvent was proposed which consisted of submerged combustion, co-precipitation using bismuth phosphate, ceramic membrane filtration, cementation of TRU lean phosphate, and vitrification of TRU rich waste. (author)

  9. Removal of uranium from spent salt from the moltensalt oxidation process

    International Nuclear Information System (INIS)

    Summers, L.; Hsu, P.C.; Holtz, E.V.; Hipple, D.; Wang, F.; Adamson, M.

    1997-03-01

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  10. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Process and device for change of catalyst in tube reactors

    International Nuclear Information System (INIS)

    Fedders, H.; Cremer, P.; Erben, R.

    1985-01-01

    The change of catalyst in narrow reactor tubes with a height: diameter ratio of at least 30:1 is done by the catalyst filling being driven out against the force of gravity using a pulsating liquid flow. Pauses in the flow of between 0.1 to 1 sec between flow periods of 2 to 20 secs are useful. (orig./PW) [de

  12. Apparatus and Process for Controlled Nanomanufacturing Using Catalyst Retaining Structures

    Science.gov (United States)

    Nguyen, Cattien (Inventor)

    2013-01-01

    An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.

  13. Performance characterization of hydrogen isotope exchange and recombination catalysts for tritium processing

    International Nuclear Information System (INIS)

    Suppiah, S.; Ryland, D.; Marcinkowska, K.; Boniface, H.; Everatt, A.

    2010-01-01

    AECL's hydrogen isotope exchange catalyst and recombination catalysts have been successfully applied to a wide range of industrial tritium-removal applications. The catalysts are used for Liquid Phase Catalytic Exchange (LPCE) and for gas-phase and trickle-bed recombination of hydrogen isotopes and have led to process simplification, improved safety and operational advantages. Catalyst performance design equations derived from laboratory testing of these catalysts have been validated against performance under industrial conditions. In a Combined Electrolysis and Catalytic Exchange (CECE) demonstration plant analyses of LPCE and recombiner efficiency were carried out as a function of catalyst activity over a wide range of operation. A steady-state process simulation used to model and design the hydrogen-water isotopic exchange processes, such as the CECE detritiation plant, was validated using the results of this demonstration. Catalyst development for isotope-exchange and recombination applications has continued over the last decade. As a result, significant improvements in catalyst performance have been achieved for these applications. This paper outlines the uniqueness of AECL's specialized catalysts and process designs for these applications with examples from laboratory and industrial case studies.

  14. Conceptual structure design of experimental facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Joo, J. S.; Koo, J. H.; Jung, W. M.; Jo, I. J.; Kook, D. H.; Yoo, K. S.

    2003-01-01

    A study on the advanced spent fuel conditioning process (ACP) is carring out for the effective management of spent fuels of domestic nuclear power plants. This study presents basic shielding design, modification of IMEF's reserve hot cell facility which reserved for future usage, conceptual and structural architecture design of ACP hot cell and its contents, etc. considering the characteristics of ACP. The results of this study will be used for the basic and detail design of ACP demonstration facility, and utilized as basic data for the safety evaluation as essential data for the licensing of the ACP facility

  15. The PILO process: zeolites and titanates in the treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Thegerstroem, C.; Forberg, S.; Westermark, T.; Faelt, L.

    1981-01-01

    Spent ion exchange resins from power reactor operation contain more than 95% of the total radioactivity of wet reactor wastes. Cementation and bituminization are the two methods applied in Sweden up to now for the immobilization of spent resins. Over the last years, however, research and development work has resulted in a proposed process (PILO), where > 99.9 % of cesium and strontium and around 90 % of other radioactive nuclides are eluted from the spent resins and sorbed in zeolites and titanates in a chromatographic process. The inorganic sorbents are dried after loading and sintered to yield long-term stable products, while the treated resins may be incinerated to give ash residues of fairly short-lived activity. The development work has included production, characterization and testing of different zeolites and titanates, bench-scale optimization of the chromatographic process using actual spent resins, heat treatment of the loaded inorganic sorbents, and resin incineration. Over-all system design studies including transport requirements, integrated process flowsheets, and cost estimates are now in progress. The aim is to have a sufficient basis during spring 1982 to decide on the merits of a PILO plant at the planned repository for low and medium level waste (SFR), to be commissioned in 1988. (Auth.)

  16. Demonstration test of the spent fuel rod cutting process with tube cutter mechanism

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Jung, Jae Hoo; Hong, Dong Hee; Yoon, Ji Sup; Lee, Eun Pyo

    2001-03-01

    In this paper, the verification by computer graphics technology for the spent fuel rod cutting devise which belongs to the spent fuel disassembly processes, the performance tests of the real device, and the demonstration tests with tube cutter mechanism are described. The graphical design system is used throughout the design stages from conceptual design to motion analysis like collision detection. By using this system, the device and the process are optimized. The performance test of the real device and the demonstration test using the tube cutter mechanism in the hot cell are carried out. From these results, the spent fuel rod cutting device is improved based on the considerations of circularity of the rod cross-section, debris generation, and fire risk etc. Also, this device is improved to be operated automatically via remote control system considering later use in closed environment like Hot-cell (radioactive area) and the modulization in the structure of this device makes maintenance easy. The result of the performance test and the demonstration in this report is expected to contribute to the optimization of the pre-treatment processes for the reuse of the spent fuel like DUPIC process and the final disposal

  17. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters.

    Science.gov (United States)

    Nogueira, C A; Paiva, A P; Oliveira, P C; Costa, M C; da Costa, A M Rosa

    2014-08-15

    The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu(2+) concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4h, [HCl] = 6M, [Cu(2+)] = 0.3M). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-01-01

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels

  19. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  20. Performance Evaluation of the Neutron Coincidence Counter for the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Menlove, Howard O.; Kim, H.D.; Ko, W.I.; Park, S.W.

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyrochemical dry reprocessing technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, which could decrease the burden of safety and economics. In this study, MCNPX code calculations were carried out to estimate the performance of a neutron coincidence counter designed for measruement of the process materials in the pilot-scale ACP facility. To verify the design requirement, the singles and doubles counting rates of the detectors were simulated with the latest coincidence capability of the MCNPX code. Then, the precision of the coincidence measurements were evaluated on various process materials from the ACP. It was verified that the performance of the neutron coincidence counter could meet the design criteria for all samples in the ACP, and the material accounting system for the pilot-scale ACP facility could meet the IAEA safeguards goals.

  1. Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process.

    Science.gov (United States)

    Codignole Luz, Fábio; Volpe, Maurizio; Fiori, Luca; Manni, Alessandro; Cordiner, Stefano; Mulone, Vincenzo; Rocco, Vittorio

    2018-05-01

    This study reports the implications of using spent coffee hydrochar as substrate for anaerobic digestion (AD) processes. Three different spent coffee hydrochars produced at 180, 220 and 250 °C, 1 h residence time, were investigated for their biomethane potential in AD process inoculated with cow manure. Spent coffee hydrochars were characterized in terms of ultimate, proximate and higher heating value (HHV), and their theoretical bio-methane yield evaluated using Boyle-Buswell equation and compared to the experimental values. The results were then analyzed using the modified Gompertz equation to determine the main AD evolution parameters. Different hydrochar properties were related to AD process performances. AD of spent coffee hydrochars produced at 180 °C showed the highest biomethane production rate (46 mL CH 4 /gVS . d), a biomethane potential of 491 mL/gVS (AD lasting 25 days), and a biomethane gas daily composition of about 70%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Initial cathode processing experiences and results for the treatment of spent fuel

    International Nuclear Information System (INIS)

    Westphal, B.R.; Laug, D.V.; Brunsvold, A.R.; Roach, P.D.

    1996-01-01

    As part of the spent fuel treatment demonstration at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a batch operation termed ''cathode processing.'' Cathode processing is performed in a retort furnace which enables the production of a stable uranium product that can be isotopically diluted and stored. To date, experiments have been performed with two distillation units; one for prototypical testing and the other for actual spent fuel treatment operations. The results and experiences from these initial experiments with both units will be discussed as well as problems encountered and their resolution

  3. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    International Nuclear Information System (INIS)

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs

  4. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  5. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  6. Development of advanced spent fuel management process / criticality safety analysis for integrated mockup and metallized spent fuel storage

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Shin, Hee Sung; Shin, Young Joon; Bae, Kang Mok

    1999-02-01

    Benchmark calculation for SCALE4.3 CSAS6 module and burnup credit criticality analysis performed by CSAS6 module are described in this report. Calculation biases by the SCALE4.3 CSAS6 module for PWR spent fuel, metallized spent fuel and aqueous nuclear materials have been determined on the basis of the benchmark to be 0.011, 0.023 and 0.010, respectively. The maximum allowable multiplication factor for an integrated mockup and metallized spent fuel storage is conservatively determined to be 0.927. With the aid of this code system, K eff values as a function of metallization ratio for the integrated mockup have been calculated. The maximum values of K eff for normal and hypothetical accident conditions are 0.346 and 0.598, respectively, much less than the maximum allowable multiplication factor of 0.927. Besides, burnup credit criticality analysis has been performed for infinite arrays of square and hexagonal canisters containing metallized spent fuel rods with different canister wall thickness, canister surface-to-surface distance and water content. It is revealed that the effective multiplication factor for canister arrays as mentioned above is well below the subcritical limit regardless of external conditions when its wall thickness is over 9 mm. (Author). 37 refs., 27 tabs., 64 figs

  7. Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer`s spent grains (BSG)

    Energy Technology Data Exchange (ETDEWEB)

    Ezeonu, F.C.; Okaka, A.N.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Applied Biochemistry

    1996-12-31

    The process kinetics of optimized anaerobic batch digestion of brewer`s spent grains (BSG) reveal that biomethanation is essentially a first order reaction interrupted intermittently by mixed order reactions. An apparent cellulose degradation efficiency of approximately 60% and a lignin degradation efficiency of about 40% was observed in the optimized process. Using the Ken and Hashimoto model, the operational efficiency of the digester was determined to be 26%. (author)

  8. Alternatives for recovering metals from spent catalysts for hydrotreating of heavy hydrocarbons: a case study; Alternativas para la recuperacion de metales a partir de catalizadores gastados del hidrotratamiento de hidrocarburos pesados: un caso de estudio

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Fernando; Ramirez, Sergio; Ancheyta, Jorge; Mavil, Martha [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)]. E-mail: jancheyt@imp.mx

    2008-05-15

    The increasing production of spent hydrotreating catalysts used for processing heavy hydrocarbons and the problems related to their disposal are described in this work. These catalysts contain important amounts of heavy metals such as molybdenum (Mo), nickel (Ni), cobalt (Co) and vanadium (V), which can be recovered and hence an economical benefit may be obtained. The results of experimental tests for alkaline leaching (NaOH) to recover V and Mo, and the effect of operating conditions on metal recovery are also presented. The results show that, in general, the highest recovery of Mo is obtained at pH 8.5 and leaching time of 12 hours, while in the case of V, the highest recovery is observed at pH 9.0 and 8 hours. In both cases, the leaching solution contained 10 wt % alkaline. Based on the experimental information and data from a commercial plant, a preliminary economy study was developed, in which the expected economical benefits of metals recovery from spent catalysts used for hydrotreating heavy hydrocarbon are estimated. [Spanish] En el presente trabajo se describe la problematica de la creciente produccion de catalizadores gastados de los procesos de hidrotratamiento de hidrocarburos pesados. Estos catalizadores contienen cantidades importantes de metales pesados como molibdeno (Mo), niquel (Ni), cobalto (Co) y vanadio (V), que son susceptibles de recuperarse y obtener con ello un beneficio economico. Tambien se presentan resultados de pruebas experimentales de lixiviacion alcalina (NaOH) para la recuperacion de V y Mo, y el efecto de las variables de operacion sobre la recuperacion de metales. En general, se encontro que las mejores recuperaciones de Mo fueron a pH de 8.5 y 12 h, mientras que para el V fueron a pH de 9.0 y 8 h, ambos a una concentracion del agente lixiviante de 10% en peso. Con base en la informacion experimental obtenida y datos de una planta industrial se presenta un estudio economico preliminar, en el que se estiman los beneficios

  9. Radioactive spent resins conditioning by the hot super-compaction process

    International Nuclear Information System (INIS)

    Roth, Andreas; Centner, Baudouin; Lemmens, Alain

    2007-01-01

    Spent ion exchanger media are considered to be problematic waste that, in many cases, requires special approaches and precautions during its immobilization to meet the acceptance criteria for disposal. The waste acceptance criteria define, among others, the quality of waste forms for disposal, and therefore will sometimes define appropriate treatment options. The selection of treatment options for spent ion exchange materials must consider their physical and chemical characteristics. Basically, the main methods for the treatment of spent organic ion exchange materials, following to pretreatment methods are: - Direct immobilization, producing a stable end product by using Cement, Bitumen, Polymer or High Integrity Containers, - The destruction of the organic compounds by using Thermochemical processes or Oxidation to produce an inorganic intermediate product that may or may not be further conditioned for storage and/or disposal, - The complete removal of the resin inner structural water by a thermal process. After a thorough technical economical analysis, Tractebel Engineering selected the Resin Hot Compaction Process to be installed at Tihange Nuclear Power Plant. The Resin Hot Compaction Process is used to make dense homogenous organic blocks from a wide range of particulate waste. In this process spent resins are first dewatered and dried to remove the inner structural water content. The drying takes place in a drying vessel that holds the contents of two 200 L drums (Figure). In the oil heated drying and mixing unit, the resins are heated to the necessary process temperature for the hot pressing step and then placed into special metal drums, which are automatically lidded and immediately transferred to a high force compactor. After high force compaction the pellets are transferred to a measuring unit, where the dose rate, height and weight are automatically measured and recorded. A volume reduction factor of approximately up to four (depending on the type of

  10. Processing of spent pickling liquor formed during treatment of titanium products

    Science.gov (United States)

    Bykovsky, N. A.; Rahman, P. A.; Puchkova, L. N.; Fanakova, N. N.

    2017-10-01

    The article presents the research findings on processing of spent acid pickling liquor (SAPL) formed during etching of titanium products. The processing includes neutralizing the SAPL with alkali, filtering, drying and calcining the titanium hydroxide precipitate as well as electrochemical processing of the filtrate in an ion-exchange membrane cell. The proposed SAPL processing procedure allows obtaining titanium dioxide, sodium hydroxide and a mixture of acids. Titanium dioxide can be used in paint-and-varnish industry. The alkali can be used in neutralizing the SAPL. A mixture of acids is suitable for use in etching process of titanium products.

  11. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    Science.gov (United States)

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  12. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.

    Science.gov (United States)

    Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois

    2016-10-01

    Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simulation codes of chemical separation process of spent fuel reprocessing. Tool for process development and safety research

    International Nuclear Information System (INIS)

    Asakura, Toshihide; Sato, Makoto; Matsumura, Masakazu; Morita, Yasuji

    2005-01-01

    This paper reviews the succeeding development and utilization of Extraction System Simulation Code for Advanced Reprocessing (ESSCAR). From the viewpoint of development, more tests with spent fuel and calculations should be performed with better understanding of the physico-chemical phenomena in a separation process. From the viewpoint of process safety research on fuel cycle facilities, it is important to know the process behavior of a key substance; being highly reactive but existing only trace amount. (author)

  14. Hot Experiment on Fission Gas Release Behavior from Voloxidation Process using Spent Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Song, K. C.

    2007-08-01

    Quantitative analysis of the fission gas release characteristics during the voloxidation and OREOX processes of spent PWR fuel was carried out by spent PWR fuel in a hot-cell of the DFDF. The release characteristics of 85 Kr and 14 C fission gases during voloxidation process at 500 .deg. C is closely linked to the degree of conversion efficiency of UO 2 to U 3 O 8 powder, and it can be interpreted that the release from grain-boundary would be dominated during this step. Volatile fission gases of 14 C and 85 Kr were released to near completion during the OREOX process. Both the 14 C and 85 Kr have similar release characteristics under the voloxidation and OREOX process conditions. A higher burn-up spent fuel showed a higher release fraction than that of a low burn-up fuel during the voloxidation step at 500 .deg. C. It was also observed that the release fraction of semi-volatile Cs was about 16% during a reduction at 1,000 .deg. C of the oxidized powder, but over 90% during the voloxidation at 1,250 .deg. C

  15. Management of the acceptance process of RTR aluminide type spent fuel

    International Nuclear Information System (INIS)

    Auziere, P.; Thomasson, J.

    2002-01-01

    A wide range of Research Test Reactor aluminide type spent fuel is already received for treatment conditioning at the La Hague reprocessing complex. Such a diversity calls for an utmost attention to be paid to all safety-related systems and technical aspects, to all regulatory and administrative constraints. Despite of such multiple data inputs and rigid constraints, a close cooperation between the Research Reactor operator and COGEMA enables to reach adequate and cost effective solutions also relevant to spent fuel having had an uneven history. The acceptance process is primarily based on the client descriptive data and status declaration issued by the Research Reactor (RR) operator under QA. This acceptance process is a key step, to be keenly scheduled as it is directly interactive with the RR evacuation plans and the La Hague industrial plant program. It is also governed by the reviews conducted by the French Safety Authority and generally translated into operational authorisations. Concerned by maintaining high safety standards, reliable and proven operational levels of its nuclear services performed in the La Hague facilities COGEMA includes, all through this acceptance process, the operating, regulatory and administrative requirements. This paper sets forth an overview of the approach implemented in the COGEMA organisation for the management of the acceptance process of RTR aluminide type spent fuel. (author)

  16. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  17. A novel process for heavy residue hydroconversion using a recoverable pseudo-homogenous catalyst PHC system

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.M.; Rhodey, W.G. [Mobis Energy Inc., Calgary, AB (Canada)

    2008-10-15

    This paper described a pseudo-homogenous catalyst (PHC) designed to refine heavy hydrocarbon residues containing sulfur, nitrogen, metals, and asphaltene impurities known to clog pores and deactivate traditional hydrocrackers. The heavy residue hydroconversion (HRH) process incorporated a single particle, chemically generated PHC uniformly distributed in the feed. Thermal decomposition within the reaction system of a water-in-oil emulsion containing ammonium paramolybdate was used to form molybdenum oxide, which was then sulfided within the feed in order to create an ultra-dispersed suspension of catalytically active molybdenum disulfide particles measuring between 2 and 9 nm. A proprietary online catalyst recovery and regeneration step was used to maintain high catalyst activity. The molybdenum was then recovered from a purge stream and then reintroduced to the catalyst preparation area as a catalyst precursor. After being conditioned, the feed was combined with hydrogen and a water-oil catalyst emulsion and introduced into a furnace. Heavy components were cracked, hydrogenated and converted to lighter products. The high performance catalyst system was able to convert 95 per cent of residues at pressures below 7.3 Mpa and at reaction temperatures ranging between 400 and 460 degrees C. The catalyst was tested at a pilot plant using Athabasca vacuum bottoms. It was concluded that the HRH process is now being successfully used to produce 200 barrels of heavy oil per day. Designs for commercial installations are now being prepared. 4 refs., 2 tabs., 2 figs.

  18. Measurement techniques in dry-powdered processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Bowers, D. L.; Hong, J.-S.; Kim, H.-D.; Persiani, P. J.; Wolf, S. F.

    1999-01-01

    High-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICPMS) detection, α-spectrometry (α-S), and γ-spectrometry (γ-S) were used for the determination of nuclide content in five samples excised from a high-burnup fuel rod taken from a pressurized water reactor (PWR). The samples were prepared for analysis by dissolution of dry-powdered samples. The measurement techniques required no separation of the plutonium, uranium, and fission products. The sample preparation and analysis techniques showed promise for in-line analysis of highly-irradiated spent fuels in a dry-powdered process. The analytical results allowed the determination of fuel burnup based on 148 Nd, Pu, and U content. A goal of this effort is to develop the HPLC-ICPMS method for direct fissile material accountancy in the dry-powdered processing of spent nuclear fuel

  19. Studies of the Influence of Water Radiolysis to the Spent Fuel Matrix Dissolution Process

    International Nuclear Information System (INIS)

    Quinones, J.; Serrano, J.

    2001-01-01

    The disposal of high level radioactive waste in geological deep repositories relies on the long term stability of spent fuel matrix, which must be assured for thousands of years. One of these factors considered within the studies of performance assessment on spent fuel under final repository conditions is the effect of the radiation on its leaching behaviour. Due to the radiation from spent fuel can modify some properties of both solid phase and leachant and therefore it would alter the chemical behaviour of the near field. Particularizing in the effect of the radiation on the leachant, it will cause generation of radiolytic species that could change the redox potential of the environment and therefore may bring on variations in the leaching process. In this work, we compiled the leaching experiments performed in an irradiation facility (Nayade), in order to emulate γ radiation field of a spent fuel at different cooling times. Initial dose rate used was 0.014 (Gy/s) using source of ''60 Co. The spent fuel chemical analogue utilised was SIMFUEL (natural UO 2 doped with non-radioactive elements simulating fission products) and the leachant selected were saline and granite bentonite waters both under initial anoxic conditions. Preliminary results indicate that radiation produces an increase of the uranium dissolution rate, being the concentrations measured close to those obtained in oxic atmosphere without radiation field. In addition the solubility solid phases from experimental conditions were calculated, for both granite bentonite water and 5 m NaCl media. On the other hand, a tentative approach to model the role of γ radiolysis in these SIMFUEL tests has been carried out as well. (Author)

  20. Numerical simulation of minor actinide recovery behaviour in batch processing of spent metallic fuel by electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Nawada, H P; Bhat, N P [Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramanian, G R [Atomic Energy Commission, Mumbai (India)

    1994-06-01

    Numerical simulation of electro-transport of fuel actinides (FAs), minor actinides (MAs) and rare earths (REs) in the electro-refiner (ER) for pyrochemical reprocessing of a typical spent IFR metallic fuel has been attempted based on improved thermo-chemical model developed for application to multi-component system in the ER. Optimization of MA recovery and decontamination factors (DFs) for MAs and REs in batch processing is presented. (author). 7 refs., 4 figs., 1 tab.

  1. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  2. Radiation-resistant requirements analysis of device and control component for advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tai Gil; Park, G. Y.; Kim, S. Y.; Lee, J. Y.; Kim, S. H.; Yoon, J. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    It is known that high levels of radiation can cause significant damage by altering the properties of materials. A practical understanding of the effects of radiation - how radiation affects various types of materials and components - is required to design equipment to operate reliably in a gamma radiation environment. When designing equipment to operate in a high gamma radiation environment, such as will be present in a nuclear spent fuel handling facility, several important steps should be followed. In order to active test of the advanced spent fuel management process, the radiation-resistant analysis of the device and control component for active test which is concerned about the radiation environment is conducted. Also the system design process is analysis and reviewed. In the foreign literature, 'threshold' values are generally reported. the threshold values are normally the dose required to begin degradation in a particular material property. The radiation effect analysis for the device of vol-oxidation and metalization, which are main device for the advanced spent fuel management process, is performed by the SCALE 4.4 code. 5 refs., 4 figs., 13 tabs. (Author)

  3. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels

    International Nuclear Information System (INIS)

    Wolf, S. F.

    1999-01-01

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns

  4. Quantum-CEP processing spent ion exchange resins from nuclear power stations

    International Nuclear Information System (INIS)

    Kaczmarsky, Myron

    1997-01-01

    Quantum-CEP (Q-CEP) is an innovative and proprietary technology developed by Molten Metal Technology, Inc, which can process radioactive and mixed waste streams to decontaminate and recover resources of commercial value while achieving significant volume reduction and radionuclide stabilization. A Q-CEP facility, located in Oak Ridge, Tennessee, processes low-level radioactive spent ion exchange resins (IER) from U.S commercial nuclear power plants. The first campaign processing low level radioactive spent IER was successfully completed in December 1996. Other milestones, since December, include operating parallel Trains A and B simultaneously and processing 25,000 lb. dry resin (50,000 lb. wet resin) or six equivalent High Integrity Containers (HICs) in one batch campaign, in March; and processing 50,000 lb. dry resin or 12 equivalent HICs in one batch campaign in May. This paper presents results from the March campaign (97-008) in which 25,000 lb. of dry spent IER from five nuclear power stations were processed. This campaign has been selected since it is representative of campaigns completed during the first five months of operation. Key highlights for this campaign include processing six HICs in batch campaign while achieving a volume reduction of 24: 1. Key performance targets for the facility are to process an average of six HICs per campaign batch and achieve a volume reduction of 30: 1. The average batch size and other performance parameters have steadily improved during the initial operating period with radioactive resin. The progress was dramatically demonstrated by the May campaign during which 12 HICs were processed - achieving a volume reduction estimated to exceed 50: 1. The campaigns in March and May demonstrate that the facility's design and technology are capable of achieving and even exceeding the facility's key target performance parameters

  5. The nature of the process of alkylation of isobutane by butenes in zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Patrilyak, K.I.; Bayburskiy, V.L.; Bortyshevskiy, V.A.; Galich, P.N.; Gutyrya, V.S.; Manza, I.A.

    1983-01-01

    The change in the concentration of butenes is studied in a reaction of alkylation of isobutane by butenes in a zeolite catalyst (Kt) in individual zones of a reactor relative to the length of the process. It is shown that the system is characterized by the presence of a period of development of the catalyst, whose length is a function of the conditions of catalyst activation and is from 15 to 20 minutes to 1 hour. Isomerization of butene-1 into butene-2 is discovered. It is shown that the most obvious isomerization is expressed for a catalyst sample active in nonoptimal conditions. The change in the concentration of the butenes in time in individual zones of the catalyst has a wavy nature.

  6. Comprehensive Utilization of Filter Residue from the Preparation Process of Zeolite-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2016-05-01

    Full Text Available A novel utilization method of filter residue from the preparation process of zeolite-based catalysts was investigated. Y zeolite and a fluid catalytic cracking (FCC catalyst were synthesized from filter residue. Compared to the Y zeolite synthesized by the conventional method, the Y zeolite synthesized from filter residue exhibited better thermal stability. The catalyst possessed wide-pore distribution. In addition, the pore volume, specific surface area, attrition resistance were superior to those of the reference catalyst. The yields of gasoline and light oil increased by 1.93 and 1.48 %, respectively. At the same time, the coke yield decreased by 0.41 %. The catalyst exhibited better gasoline and coke selectivity. The quality of the cracked gasoline had been improved.

  7. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    International Nuclear Information System (INIS)

    Handayani, Prima Astuti; Abdullah; Hadiyanto, Dan

    2015-01-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form

  8. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Prima Astuti [Department of Chemical Engineering, Diponegoro University (Indonesia); Chemical Engineering Program, Faculty of Engineering, Semarang State University (Indonesia); Abdullah; Hadiyanto, Dan, E-mail: hadiyanto@live.undip.ac.id [Department of Chemical Engineering, Diponegoro University (Indonesia)

    2015-12-29

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  9. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed

  10. Preliminary assessment of safeguardability on the concepture design of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yoon; Ha, Jang Ho; Ko, Won Il; Song, Dae Yong; Kim, Ho Dong

    2003-04-01

    In this report, a preliminary study on the safeguardability of ACP (Advanced spent fuel Conditioning Process) was conducted with Los Alamos National Laboratory. The proposed ACP concept is an electrometallurgical treatment technique to convert oxide-type spent nuclear fuels into metal forms, which can achieve significant reduction of the volume and heat load of spent fuel to be stored and disposed of. For the safeguardability analysis of the ACP facility, sub-processes and their KMPs (Key Measurement Points) were defined first, and then their material flows were analyzed. Finally, the standard deviation of the Inventory Difference (ID) value of the facility was estimated with assumption by assuming international target values for the uncertainty of measurement methods and their uncertainty. From the preliminary calculation, we concluded that if the assumptions regarding measurement instruments can be achieved in a safeguards system for the ACP facility, the safeguards goals of International Atomic Energy Agency (IAEA) could be met. In the second phase of this study, further study on sensitivity analyses considering various factors such as measurement errors, facility capacities, MBA periods etc. may be needed.

  11. Use of rice rusk ash and spent catalyst as a source of raw material for the production and characterization of soda-lime silicate glasses destined for packaging

    International Nuclear Information System (INIS)

    Araujo, Mariana Silva de

    2016-01-01

    In this study, the use of two industrial solid wastes (ISW), generated in large quantities in Brazil, were presented in production of soda-lime silicate glasses destined for packaging. The evaluated wastes were rice husk ash (RHA) and the spent catalyst at the Petrochemical Fluid Catalytic Cracking units (ECAT), both may be classified as a class II solid waste according to NBR 10.004. This new proposal for the allocation of such wastes is an alternative to current provisions, seeking not only to minimize environmental impacts, but also enrich them as raw materials. For the samples production, besides ISW were used melting oxide (Na 2 CO 3 ) and stabilizer oxide (CaO).The results demonstrate that both can be used in their raw form (without treatment) replacing important raw materials, sources of Al 2 O 3 and SiO 2 , essential for glass formation. The samples obtained presented amber color due to the presence of nickel (Ni² + ion) from ECAT and 18% of optical transmittance. They also showed a good homogeneity, i.e., absence of bubbles and striae and 1,33 x 10 -8 g/cm²·day of hydrolytic resistance according to ISO695-1984. Thus, the obtained glass is suitable for applications requiring low light transmittance such as colored glasses containers in general, which does not require perfect visibility and transparency. The incorporation in the final composition was approximately 78% in mass. (author)

  12. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  13. Study on Public and Stakeholder Engagement Process for Spent Nuclear Fuel Management

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kim, Youn Ok; Han, Ji Woong; Jeong, Mi Seon; Kang, Chul Hyung

    2007-07-01

    To take lessons from foreign cases, Canada, Britain, and France which conducted their PSE programs successfully, the report examined their whole PSE process with their reports. Based on the advantageous factors from those countries, and also considering the other facts which are only applied to the Korean case, we developed the Korean version of PSE program. This PSE program created through this study is expected to be used as a possible example of PSE process for the Spent Nuclear Fuel Management in the near future

  14. Bread: CDC 7600 program that processes Spent Fuel Test Climax data

    International Nuclear Information System (INIS)

    Hage, G.L.

    1983-04-01

    BREAD will process a family of files copied from a data tape made by Hewlett-Packard equipment employed for data acquisition on the Spent Fuel Test-Climax at NTS. Tapes are delivered to Livermore approximately monthly. The process at this stage consists of four steps: read the binary files and convert from H-P 16-bit words to CDC 7600 60-bit words; check identification and data ranges; write the data in 6-bit ASCII (BCD) format, one data point per line; then sort the file by identifier and time

  15. The GC computer code for flow sheet simulation of pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Geyer, H.K.

    1996-01-01

    The GC computer code has been developed for flow sheet simulation of pyrochemical processing of spent nuclear fuel. It utilizes a robust algorithm SLG for analyzing simultaneous chemical reactions between species distributed across many phases. Models have been developed for analysis of the oxide fuel reduction process, salt recovery by electrochemical decomposition of lithium oxide, uranium separation from the reduced fuel by electrorefining, and extraction of fission products into liquid cadmium. The versatility of GC is demonstrated by applying the code to a flow sheet of current interest

  16. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  17. Dehydrating process experiment on spent ion-exchange resin sludge by Funda Filter

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Ishino, Kazuyuki

    1977-01-01

    In nuclear power plants, Funda Filters are employed to dehydrate spent powdery ion-exchange resin sludge. The Funda Filter is very effective for eliminating small rust components contained in spent powdery resin slurry; however, in the drying process, the complete drying of spent powdery resin is very difficult because the filter cake of resin on the horizontal filter leaf is likely to crack and let out steam and hot air through the cracks. This paper deals with the results of experiments conducted to clarify the detailed phenomena of dehydration so the above problem could be solved. The above experiments were made on the precoating and drying of granular ion-exchange resin slurry that had not yet been put to practical use. The experiments were composed of one fundamental and one operational stage. In the fundamental experiment, the dehydration properties and dehydration mechanism of resins were made clear, and the most effective operational method was established through the operational experiments conducted using large-scale Funda Filter test equipment under various conditions. (auth.)

  18. Spent nuclear fuel. A review of properties of possible relevance to corrosion processes

    International Nuclear Information System (INIS)

    Forsyth, R.

    1995-04-01

    The report reviews the properties of spent fuel which are considered to be of most importance in determining the corrosion behaviour in groundwaters. Pellet cracking and fragment size distribution are discussed, together with the available results of specific surface area measurements on spent fuel. With respect to the importance of fuel microstructure, emphasis is placed on recent work on the so called structural rim effect, which consists of the formation of a zone of high porosity, and the polygonization of fuel grains to form many sub-grains, at the pellet rim, and appears to be initiated when the average pellet burnup exceeds a threshold of about 40 MWd/kgU. Due to neutron spectrum effects, the pellet rim is also associated with the buildup of plutonium and other actinides, which results in an enhanced local burnup and specific activity of both beta-gamma and alpha radiation, thus representing a greater potential for radiolysis effects in ingressed groundwater. The report presents and discusses the results of quantitative determination of the radial profiles of burnup and alpha activity on spent fuel with average burnups from 21.2 to 49 MWd/kgU. In addition to the radial variation of fission product and actinide inventories due to the effects mentioned above, migration, redistribution and release of some fission products can occur during reactor irradiation and the report concludes with a short review of these processes

  19. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  20. Quantitative Analysis of Kr-85 Fission Gas Release from Dry Process for the Treatment of Spent PWR Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Cho, Kwang Hun; Lee, Dou Youn; Lee, Jung Won; Park, Jang Jin; Song, Kee Chan

    2007-01-01

    As spent UO 2 fuel oxidizes to U 3 O 8 by air oxidation, a corresponding volume expansion separate grains, releasing the grain-boundary inventory of fission gases. Fission products in spent UO 2 fuel can be distributed in three major regions : the inventory in fuel-sheath gap, the inventory on grain boundaries and the inventory in UO 2 matrix. Release characteristic of fission gases depends on its distribution amount in three regions as well as spent fuel burn-up. Oxidation experiments of spent fuel at 500 .deg. C gives the information of fission gases inventory in spent fuel, and further annealing experiments at higher temperature produces matrix inventory of fission gases on segregated grain. In previous study, fractional release characteristics of Kr- 85 during OREOX (Oxidation and REduction of Oxide fuel) treatment as principal key process for recycling spent PWR fuel via DUPIC cycle have already evaluated as a function of fuel burn-up with 27.3, 35 and 65 MWd/tU. In this paper, new release experiment results of Kr-85 using spent fuel with burn- up of 58 GWd/tU are included to evaluate the fission gas release behavior. As a point of summary in fission gases release behavior, the quantitative analysis of Kr- 85 release characteristics from various spent fuels with different burn-up during voloxidation and OREOX process were reviewed

  1. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Bok Agnieszka

    2014-12-01

    Full Text Available The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides. The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  2. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  3. Complexes of metal chlorides with proton donors — promising polyfunctional catalysts for electrophilic processes

    Science.gov (United States)

    Minsker, Karl S.; Ivanova, S. R.; Biglova, Raisa Z.

    1995-05-01

    The Bronsted acids formed as a result of the interaction of aluminium chlorides with Group I and II metal chlorides in the presence of proton-donating compounds are promising polyfunctional catalysts for electrophilic processes (polymerisation, depolymerisation and degradation of macromolecules, alkylation, desulfurisation, and hydrogenation). The factor determing the electrophilic activity and selectivity of the action of the catalysts is their acidity. This makes it possible to predict the direction of the changes in the activity and selectivity of the catalyst in specific chemical processes in conformity with the opposite variation rule: with increase in the acidity of the electrophilic catalyst, their activity increases but the selectivity of their action diminishes. The bibliography includes 72 references.

  4. Moessbauer study on the formation process of Fe-K composition in iron-based catalyst for dehydrogenation of ethylbenzene

    International Nuclear Information System (INIS)

    Jiang Keyu; Zhao Zhenjie; Yang Xielong

    2001-01-01

    Fe-K spinel structure is the predecessor of active phase of potassium promoted iron-based catalyst for dehydrogenation of ethylbenzene. Moessbauer spectroscopy has been used to study the formation process of Fe-K spinel structure which depends on the catalyst composition and preparing condition. The results may prove useful for production of industrial catalyst

  5. Use of Pillared Clay-Based Catalysts for Wastewater Treatment through Fenton-Like Processes

    OpenAIRE

    J. Herney-Ramírez; Luis M. Madeira

    2010-01-01

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on ...

  6. Radioisotopic investigations of catalyst motion in the process of fluidal catalytic cracking

    International Nuclear Information System (INIS)

    Dalecki, W.; Bazaniak, Z.; Palige, J.; Michalik, J.

    1981-01-01

    By radioisotopic method the dynamic characteristics of reactor and regenerator of fluidal mode of catalytic cracking have been determined. Average times of catalyst staying, distribution of residence times, mass of catalyst circulating in installation, mass intensity of flow and height of fluidal bed have been estimated. It has been found a considerable participation of process of ideal mixing in the operation of both aggregates, what is particularly disadvantageous in the case of regenerator. (author)

  7. Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition

    Directory of Open Access Journals (Sweden)

    Urko Izquierdo

    2018-01-01

    Full Text Available This work studies Ni-based catalyst deactivation and regeneration processes in the presence of H2S under a biogas tri-reforming process for hydrogen production, which is an energy vector of great interest. 25 ppm of hydrogen sulfide were continuously added to the system in order to provoke an observable catalyst deactivation, and once fully deactivated two different regeneration processes were studied: a self-regeneration and a regeneration by low temperature oxidation. For that purpose, several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on alumina modified with CeO2 and ZrO2 were used as well as a commercial Katalco 57-5 for comparison purposes. Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 catalysts almost recovered their initial activity. For these catalysts, after the regeneration under oxidative conditions at low temperature, the CO2 conversions achieved—79.5% and 86.9%, respectively—were significantly higher than the ones obtained before sulfur poisoning—66.7% and 45.2%, respectively. This effect could be attributed to the support modification with CeO2 and the higher selectivity achieved for the Reverse Water-Gas-Shift (rWGS reaction after catalysts deactivation. As expected, the bimetallic Rh-Ni/Ce-Al2O3 catalyst showed higher resistance to deactivation and its sulfur poisoning seems to be reversible. In the case of the commercial and Ni/Zr-Al2O3 catalysts, they did not recover their activity.

  8. Separation process of isobutene and 1-butene from spent C4 fraction

    International Nuclear Information System (INIS)

    Araki, M.; Okamura, M.; Deguchi, T.; Higashio, H.

    1987-01-01

    The following is the summary of characteristics of Sumitomo's MTBE process for C 4 separation: 1) High purity isobutylene and 1-butene are economically separated from spent C 4 . 2) No solvents or chemicals are used and little by-product is generated. Therefore, the process is simple and results in relatively low plant capital investment and running cost. 3) No special acid-resistant materials are required for the equipment and facilities of the process. 4) Since reactions in the process are made under mild conditions, no special high temperature or pressure is required. 5) Operation and maintenance work are easy. The process can be operated by a relatively small number of operators

  9. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.

    Science.gov (United States)

    Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan

    2016-11-01

    In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Catalysts macroporosity and their efficiency in sulphur sub-dew point Claus tail gas treating processes

    Energy Technology Data Exchange (ETDEWEB)

    Tsybulevski, A.M.; Pearson, M. [Alcoa Industrial Chemicals, 16010 Barker`s Point Lane, Houston, TX (United States); Morgun, L.V.; Filatova, O.E. [All-Russian Research Institute of Natural Gases and Gas Technologies VNIIGAZ, Moscow (Russian Federation); Sharp, M. [Porocel Corporation, Westheimer, Houston, TX (United States)

    1996-10-08

    The efficiency of 4 samples of alumina catalyst has been studied experimentally in the course of the Claus `tail gas` treating processes at the sulphur sub-dew point (TGTP). The samples were characterized by the same chemical and crystallographic composition, the same volume of micropores, the same surface area and the same catalytic activity but differed appreciably in the volume of macropores. An increase in the effective operation time of the catalysts before breakthrough of unrecoverable sulphur containing compounds, with the increasing macropore volume has been established. A theoretical model of the TGTP has been considered and it has been shown that the increase in the sulphur capacity of the catalysts with a larger volume of macropores is due to an increase in the catalysts efficiency factor and a slower decrease in their diffusive permeability during filling of micropores by sulphur

  11. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    Science.gov (United States)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  12. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin [Shihezi University, Shihezi (China)

    2013-02-15

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO{sub 4}. Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H{sub 2}O{sub 2}/sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively.

  13. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    International Nuclear Information System (INIS)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin

    2013-01-01

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO 4 . Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H 2 O 2 /sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively

  14. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  15. Mobis HRH process residue hydroconversion using a recoverable nano-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.; Rhodey, G. [Mobis Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described a newly developed pseudo-homogeneous catalyst (PHC) for hydroconversion of heavy hydrocarbon feeds with high levels of sulphur, nitrogen, resins, asphaltenes and metals. An active catalyst is formed in the reaction system, consisting of particles that are 2-9 nm in size and whose properties resemble those of a colloid solution at both room and reaction temperature. Residue processing with this pseudo-homogeneous catalyst system results in better cracking and hydrogenation at lower process severity. The PHC system in heavy residue hydroconversion (HRH) process achieves up to 95 per cent residue conversion at pressures below 7.3 MPa, reaction temperatures between 400 to 460 degrees C, and with feed space velocity between 1 to 2 per hour, thus rendering the PHC catalyst system suitable for deep conversion of hydrocarbon residues. As much as 95 per cent of the catalyst can be recovered and regenerated within the process. Pilot plants are in operation for the hydroconversion of Athabasca vacuum bottoms using this technology. The use of the HRH process in oilsands and refinery operations were discussed along with comparative yields and economics. tabs., figs.

  16. Implementation of Agile project management in spent nuclear fuel characterization process

    International Nuclear Information System (INIS)

    Vinas Pena, P.

    2015-01-01

    Full text of publication follows. Spent nuclear fuel characterization (SNFC) is a complex process that covers different areas of analysis and whose final goal is to provide an accurate description of spent nuclear fuel (SNF) status for its future classification for storage and transport. The need to reduce the SNFC processing time maintaining the quality of the product has motivated ENUSA to research and implement Agile project management and human performance techniques. The Agile management techniques are focused in accommodate changes or new requirements in the project during the elaboration process without suffering delays or lose of quality. For its SNF projects ENUSA uses 2 complementary techniques: SCRUM and Kanban. SCRUM methodology is based on divide the process into activities blocks. Each block is a finished part of the final product which allows periodical deliveries of the product and the easy introduction of changes if they are necessary. The characterization process is formed by blocks of activities based on different analysis for every fuel assembly as the existence of leaking rods; the analysis of the structural integrity considering the existence of missing rods, broken or missing grids or grid straps or grid springs...; the corrosion phenomenon on the rod that could affect its integrity during the storage and transport; the burnup of the fuel assembly; the analysis of the rod internal pressure and its effect on rod failure mechanism as creep or on the material embrittlement due to the radial hydride precipitation; the compatibility with the container to avoid operational problems during cask loading and unloading, and any new input based on the regulatory evolution and the industry state of the art. The different analysis can be developed at the same time as they are independent. Kanban methodology consists in a visual representation of the evolution of the process. In a chart, the different activities needed to perform any of the analysis

  17. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  18. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.

    Science.gov (United States)

    Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen

    2017-09-01

    In the present study, cathode materials (C/LiCoO 2 ) of spent lithium-ion batteries (LIBs) and waste polyvinyl chloride (PVC) were co-processed via an innovative mechanochemical method, i.e. LiCoO 2 /PVC/Fe was co-grinded followed by water-leaching. This procedure generated recoverable LiCl from Li by the dechlorination of PVC and also generated magnetic CoFe 4 O 6 from Co. The effects of different additives (e.g. alkali metals, non-metal oxides, and zero-valent metals) on (i) the conversion rates of Li and Co and (ii) the dechlorination rate of PVC were investigated, and the reaction mechanisms were explored. It was found that the chlorine atoms in PVC were mechanochemically transformed into chloride ions that bound to the Li in LiCoO 2 to form LiCl. This resulted in reorganization of the Co and Fe crystals to form the magnetic material CoFe 4 O 6 . This study provides a more environmentally-friendly, economical, and straightforward approach for the recycling of spent LIBs and waste PVC compared to traditional processes. Copyright © 2017. Published by Elsevier Ltd.

  19. The site selection process for a spent fuel repository in Finland. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. [EnvirosQuantiSci (United Kingdom); Aeikaes, T. [Posiva Oy, Helsinki (Finland)

    2000-12-01

    This Summary Report describes the Finnish programme for the selection and characterisation of potential sites for the deep disposal of spent nuclear fuel and explains the process by which Olkiluoto has been selected as the single site proposed for the development of a spent fuel disposal facility. Its aim is to provide an overview of this process, initiated almost twenty years ago, which has entered its final phase. It provides information in three areas: a review of the early site selection criteria, a description of the site selection process, including all the associated site characterisation work, up to the point at which a single site was selected and an outline of the proposed work, in particular that proposed underground, to characterise further the Olkiluoto site. In 1983 the Finnish Government made a policy decision on the management of nuclear waste in which the main goals and milestones for the site selection programme for the deep disposal of spent fuel were presented. According to this decision several site candidates, whose selection was to be based on careful studies of the whole country, should be characterised and the site for the repository selected by the end of the year 2000. This report describes the process by which this policy decision has been achieved. The report begins with a discussion of the definition of the geological and environmental site selection criteria and how they were applied in order to select a small number of sites, five in all, that were to be the subject of the preliminary investigations. The methods used to investigate these sites and the results of these investigations are described, as is the evaluation of the results of these investigations and the process used to discard two of the sites and continue more detailed investigations at the remaining three. The detailed site investigations that commenced in 1993 are described with respect to the overall strategy followed and the investigation techniques applied. The

  20. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  1. Licensing process characteristics of Small Modular Reactors and spent nuclear fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Söderholm, Kristiina, E-mail: kristiina.soderholm@fortum.com [Fortum Power (Finland); Tuunanen, Jari, E-mail: jari.tuunanen@fortum.com [Fortum Power (Finland); Amaba, Ben, E-mail: baamaba@us.ibm.com [IBM Complex Systems (United States); Bergqvist, Sofia, E-mail: sofia.bergqvist@se.ibm.com [IBM Rational Software (Sweden); Lusardi, Paul, E-mail: plusardi@nuscalepower.com [NuScale Power (United States)

    2014-09-15

    Highlights: • We examine the licensing process challenges of modular nuclear facilities. • We compare the features of Small Modular Reactors and spent nuclear fuel repository. • We present the need of nuclear licensing simplification. • Part of the licensing is proposed to be internationally applicable. • Systems engineering and requirements engineering benefits are presented. - Abstract: This paper aims to increase the understanding of the licensing processes characteristics of Small Modular Reactors (SMR) compared with licensing of spent nuclear fuel repository. The basis of the SMR licensing process development lies in licensing processes used in Finland, France, the UK, Canada and the USA. These countries have been selected for this study because of their various licensing processes and recent actions in the new NPP construction. Certain aspects of the aviation industry licensing process have also been studied and selected practices have been investigated as possibly suitable for use in nuclear licensing. Suitable features for SMR licensing are emphasized and suggested. The licensing features of the spent nuclear fuel deep repository along with similar features of SMR licensing are discussed. Since there are similar types of challenges of lengthy licensing time frames, as well as modular features to be taken into account in licensing, these two different nuclear industry fields can be compared. The main SMR features to take into account in licensing are: • Standardization of the design. • Modularity. • Mass production. • Serial construction. Modularity can be divided into two different categories: the first category is simply a single power plant unit constructed of independently engineered modules (e.g. construction process for Westinghouse AP-1000 NPP) and the second one a power plant composed of many reactor modules, which are manufactured in factories and installed as needed (e.g. NuScale Power SMR design). The deep underground repository

  2. Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update

    International Nuclear Information System (INIS)

    1994-09-01

    The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF ampersand WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal

  3. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Dae, Dongsun [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Whitehouse, Andrew I. [Applied Photonics Ltd., Unit 8 Carleton Business Park, Skipton, North Yorkshire BD23 2DE (United Kingdom)

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  4. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-01-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  5. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  6. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    International Nuclear Information System (INIS)

    2012-12-01

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  7. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  8. Analysis of the Processes in Spent Fuel Pools in Case of Loss of Heat Removal due to Water Leakage

    Directory of Open Access Journals (Sweden)

    Algirdas Kaliatka

    2013-01-01

    Full Text Available The safe storage of spent fuel assemblies in the spent fuel pools is very important. These facilities are not covered by leaktight containment; thus, the consequences of overheating and melting of fuel in the spent fuel pools can be very severe. On the other hand, due to low decay heat of fuel assemblies, the processes in pools are slow in comparison with processes in reactor core during LOCA accident. Thus, the accident management measures play a very important role in case of some accidents in spent fuel pools. This paper presents the analysis of possible consequences of fuel overheating due to leakage of water from spent fuel pool. Also, the accident mitigation measure, the late injection of water was evaluated. The analysis was performed for the Ignalina NPP Unit 2 spent fuel pool, using system thermal hydraulic code for severe accident analysis ATHLET-CD. The phenomena, taking place during such accident, are discussed. Also, benchmarking of results of the same accident calculation using ASTEC and RELAP/SCDAPSIM codes is presented here.

  9. Recovery of vanadium (V) from used catalysts in sulfuric acid production units by oxalic acid

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Shino, O.

    2009-07-01

    Vanadium penta oxide (V 2 O 5 ), is used, in large quantities as a catalyst for the oxidation of SO 2 to SO 3 in sulfuric acid production units, during the oxidation process the level of the oxidation declines with the time because of catalyst poisoning. So the spent catalyst is usually through out in a specified special places by General Fertilizer Company which causes a pollution of the land. The present paper, studies the recovery of vanadium from the spent catalyst by using the oxalic acid. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 2%(w/w) of oxalic acid is the most suitable for leaching process at 70 degree centigrade. The precipitation of vanadium using some alkaline media NH 4 OH has been also studied, it has been shown that ammonium hydroxide was the best at 50 degree centigrade. (author)

  10. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The results of the study of simulated radwaste, spent ion-exchange resins, borates/evaporator-concentrates and animal ashes, in bituminized form, are presented and discussed. Distilled and oxidized bitumen were used for characterizing the crude material and simulated wastes-bitumen mixtures of varying weight composition 30, 40, 50, 60% by weight the dry waste material. The asphaltine and parafin contents in the bitumens were determined. Some additives and clays were used aiming best characteristics of solidified wastes. For leaching studies, granular ion-exchange resins were loaded with Cs 134 and mixtures of resins-bitumens were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. It was used a conventional screw-extruder, used in plastic industry, to determine operational conditions and process difficulties. Mixtures resins-bitumen and concentrate-bitumen in differents operational condition were prepared and analysed. (Author) [pt

  11. The development of technical database of advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Byeon, Kee Hoh; Song, Dae Yong; Park, Seong Won; Shin, Young Jun

    1999-03-01

    The purpose of this study is to develop the technical database system to provide useful information to researchers who study on the back end nuclear fuel cycle. Technical database of advanced spent fuel management process was developed for a prototype system in 1997. In 1998, this database system is improved into multi-user systems and appended special database which is composed of thermochemical formation data and reaction data. In this report, the detailed specification of our system design is described and the operating methods are illustrated as a user's manual. Also, expanding current system, or interfacing between this system and other system, this report is very useful as a reference. (Author). 10 refs., 18 tabs., 46 fig.

  12. The development of technical database of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Byeon, Kee Hoh; Song, Dae Yong; Park, Seong Won; Shin, Young Jun

    1999-03-01

    The purpose of this study is to develop the technical database system to provide useful information to researchers who study on the back end nuclear fuel cycle. Technical database of advanced spent fuel management process was developed for a prototype system in 1997. In 1998, this database system is improved into multi-user systems and appended special database which is composed of thermochemical formation data and reaction data. In this report, the detailed specification of our system design is described and the operating methods are illustrated as a user's manual. Also, expanding current system, or interfacing between this system and other system, this report is very useful as a reference. (Author). 10 refs., 18 tabs., 46 fig

  13. Hydroprocessing Catalysts. Utilization and Regeneration Schemes Catalyseurs d'hydrotraitement. Schémas d'utilisation et de régénération

    OpenAIRE

    Furimsky E.

    2006-01-01

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be perform...

  14. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m 3 ) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF

  15. Use characterisation of a diatomite catalyst impregnated with iron in the heterogeneous catalytic ozonization process

    International Nuclear Information System (INIS)

    Garcia Herrera, Walter

    2014-01-01

    Advanced oxidation processes have had a promising option in the treatment of wastewater, mainly in the presence of emerging and persistent pollutants. Among these processes have highlighted the catalytic ozonization, which has showed positive results in water treatment. Heterogeneous catalytic ozonization was characterized using diatomite impregnated with iron at the Universidad de Costa Rica. Contaminant degradation model was quantified (spectrophotometrically) for ozonization process and catalytic ozonization with the catalyst studied (1.000 g / L) at three different pH 4, 7 and 10. The effect of the catalyst concentration in the solution (0.250, 0.500, 1000, 1500 and 2.000 g/L) was determined under the conditions of pH with better performance of the catalyst. Runs in the presence of tert-butyl alcohol (TBA), known hydroxyl radical scavenger were performed to evaluate the effect on ozone indirect reactions. The degree of mineralization obtained was measured in the catalytic process.The variation of the COD of the solution was quantified under the best working conditions obtained. Finally, the performance of the catalyst in 4 cycles of reuse was studied by monitoring the leached iron of the catalyst, which has turned out to be 12%. Most degradation of contaminant model in ozonization process was obtained at pH 10, in accordance with the above theory (Buhler, Stachelin, & Hoigne, 1984). In contrast, at pH 4 the catalyst has presented the best efficiency, to the 3 minutes the noncatalytic process was curettaged 35% of dye, while the catalytic process by 60% in the same time. The degradation of the contaminant was improved even in the case of noncatalytic process at pH 10, which the 3 minutes was degradated to 44%. The presence of the catalyst at initial pH of 7 and 10, has showed without significant improvements in the process. The solution concentration of catalyst has presented the best efficiency of degradation has been 2,000 g/L, which has increased 70% to 3

  16. Green catalysis by nanoparticulate catalysts developed for flow processing? case study of glucose hydrogenation

    NARCIS (Netherlands)

    Gericke, D.; Ott-Reinhardt, D.; Matveeva, V.; Sulman, E.M.; Aho, A.; Murzin, D.Y.; Roggan, S.; Danilova, L.; Hessel, V.; Löb, P.; Kralisch, D.

    2015-01-01

    Heterogeneous catalysis, flow chemistry, continuous processing, green solvents, catalyst immobilization and recycling are some of the most relevant, emerging key technologies to achieve green synthesis. However, a quantification of potential effects on a case to case level is required to provide a

  17. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  18. Computing the correlation between catalyst composition and its performance in the catalysed process

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Steinfeldt, N.; Baerns, M.; Štefka, David

    2012-01-01

    Roč. 43, 10 August (2012), s. 55-67 ISSN 0098-1354 R&D Projects: GA ČR GA201/08/0802 Institutional support: RVO:67985807 Keywords : catalysed process * catalyst performance * correlation measures * estimating correlation value * analysis of variance * regression trees Subject RIV: IN - Informatics, Computer Science Impact factor: 2.091, year: 2012

  19. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  20. Recovery process of cathode material of the spent lithium-ion batteries using Pechini methods

    International Nuclear Information System (INIS)

    Polo Fonseca, C.; Prado, R.M.; Santos Junior, G.A.; Marques, E.C.; Neves, S.

    2010-01-01

    This work proposes a new process of recovering LiCoO 2 from spent Li-ion batteries (LIBs) by a combination of acid leaching and Pechini synthesis, as an alternative process to improve the recovery efficiency of LiCoO 2 and reduce energy consumption and pollution. The effects of calcination temperature and lithium acetate addition in the synthesis on the structure and morphology of LiCoO 2 powders were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. According to the analysis, the crystallinity of LiCoO 2 powders depends on the calcination temperature. The results indicate the layered HT-LiCoO 2 powders can be obtained at 750 deg C for 24 h in oxygen with lithium salt addition. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V for the LiCoO 2 obtained with lithium addition in the synthesis and irreversible redox process for the LiCoO 2 obtained without lithium addition. (author)

  1. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  2. Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption.

    Science.gov (United States)

    Dashtban, Mehdi; Gilbert, Allan; Fatehi, Pedram

    2014-04-01

    Hemicelluloses and lignin present in the spent liquor (SL) of neutral sulfite semichemical (NSSC) pulping process can potentially be converted into value-added products such as furfural, hydroxymethylfurfural, levulinic acid, phenols and adhesives. However, the direct conversion of hemicelluloses and lignin of SL into value-added products is uneconomical due to the dilute nature of the SL. To have a feasible downstream process for utilizing lignocelluloses of SL, the lignocelluloses should initially be separated from the SL. In this study, an adsorption process (via applying activated carbon) was considered for isolating the dissolved lignin and hemicelluloses from the SL of an NSSC pulping process. Under the optimal conditions of pH, SL/AC weight ratio, time and temperature of 5.7, 30, 360 min and 30 °C, the maximum lignin and hemicellulose adsorptions were 0.33 and 0.25 g/g on AC. The chemical oxygen demand (COD) and turbidity of the SL were decreased by 11% and 39%, respectively, as a result of lignocellulose adsorption on AC. Also, the incineration behavior of the SL-treated AC was studied with a thermo-gravimetric analysis (TGA). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Applications of genetic algorithms to optimization problems in the solvent extraction process for spent nuclear fuel

    International Nuclear Information System (INIS)

    Omori, Ryota, Sakakibara, Yasushi; Suzuki, Atsuyuki

    1997-01-01

    Applications of genetic algorithms (GAs) to optimization problems in the solvent extraction process for spent nuclear fuel are described. Genetic algorithms have been considered a promising tool for use in solving optimization problems in complicated and nonlinear systems because they require no derivatives of the objective function. In addition, they have the ability to treat a set of many possible solutions and consider multiple objectives simultaneously, so they can calculate many pareto optimal points on the trade-off curve between the competing objectives in a single iteration, which leads to small computing time. Genetic algorithms were applied to two optimization problems. First, process variables in the partitioning process were optimized using a weighted objective function. It was observed that the average fitness of a generation increased steadily as the generation proceeded and satisfactory solutions were obtained in all cases, which means that GAs are an appropriate method to obtain such an optimization. Secondly, GAs were applied to a multiobjective optimization problem in the co-decontamination process, and the trade-off curve between the loss of uranium and the solvent flow rate was successfully obtained. For both optimization problems, CPU time with the present method was estimated to be several tens of times smaller than with the random search method

  4. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    International Nuclear Information System (INIS)

    2009-03-01

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  5. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  6. Final disposal of spent nuclear fuels - regulations and the roles of different stakeholders during the decision making process

    International Nuclear Information System (INIS)

    2007-05-01

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  7. A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST

    DEFF Research Database (Denmark)

    2009-01-01

    A catalyst comprising a mixture of metal A selected from the group of Fe, Co and Ni and metal B selected from the group of Zn and Ga, and a support material, wherein the two metals are present in an intermetallic composition; A method for the manufacture of the catalyst; and the use of above...

  8. Process development for fabrication of zircaloy- 4 of dissolver assembly for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.; Jairaj, R.N.; Ravi Shankar, A.; Kamachi Mudali, U.; Raj, Baldev

    2010-01-01

    Spent fuel reprocessing for fast breeder reactor (FBR) requires a dissolver made of a material which has resistance to corrosion as the process involves Nitric Acid as the process medium. Various materials to achieve minimum corrosion rates have been tried for this operation. Particularly the focus was on the use of advanced materials with high performance (corrosion rate and product life) for high concentrations greater than 8 N and temperatures (boiling and vapour) of Nitric Acid employed in the dissolver unit. The different commercially available materials like SS316L , Pure Titanium, Ti - 5% Ta and Ti - 5% Ta - 1.8% Nb were tried and the corrosion behavior of these materials was studied in detail. As this is continuous process of evolution of new materials, it was decided to try out zircaloy - 4 as the material of construction for construction due to its excellent corrosion resistance properties in Nitric Acid environment. The specifications were stringent and the geometrical configurations of the assembly were very intricate in shape. On accepting the challenge of fabrication of dissolver, NFC has made different fixtures for Electron Beam Welding and TIG Welding. Various trials were carried out for optimization of various operating parameter like beam current, Acceleration voltage, welding speed to get adequate weld penetration. Both EB welding and TIG welding process were standardized and qualified by carrying out a number of trials and testing these welds by various weld qualification procedures like radiography, Liquid dye penetrant testing etc. for different intricate weld geometries. All the welds were simulated with samples to optimize the weld parameters. Tests such as include metallographic (for microstructure and HAZ), mechanical (for weld strength) and chemical (material analysis for gases) were conducted and all the weld samples met the acceptable criteria. Finally the dissolver was made meeting stringent specifications. All the welds were checked

  9. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    Science.gov (United States)

    Abad, E.; Kozak, J. J.

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0 characteristic Ω =0 and Ω =2 . The results obtained allow a characterization of catalyst deactivation processes on planar surfaces and on catalyst pellets where only a single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g., acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find that such deviations display a significant dependence on the topological details of the surface (for fixed values of N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis we extract results for the two limiting cases s ≈1 and s ≈0 , corresponding respectively to weak and strong catalyst poisoning (decreasing s leads to a monotonic decrease in the efficiency of catalytic conversion). The results for the s ≈0 case are relevant for the dual problem of light-energy conversion via trapping of excitations in the chlorophyll antenna network. Here, decreasing the probability of excitation

  10. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  11. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.

    Science.gov (United States)

    Buzatu, Traian; Popescu, Gabriela; Birloaga, Ionela; Săceanu, Simona

    2013-03-01

    Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn-C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2M H2SO4, 1h, 80°C). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  13. Guidelines and cost analysis for catalyst production in biocatalytic processes

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Lima Ramos, Joana; Nordblad, Mathias

    2011-01-01

    Biocatalysis is an emerging area of technology, and to date few reports have documented the economics of such processes. As it is a relatively new technology, many processes do not immediately fulfill the economic requirements for commercial operation. Hence, early-stage economic assessment could...

  14. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    International Nuclear Information System (INIS)

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  15. Investigations of physicochemical properties of dusts generated in mechanical reclamation process of spent moulding sands with alkaline resins

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2014-03-01

    Full Text Available Mechanical reclamation processes of spent moulding sands generate large amounts of post-reclamation dusts mainly containing rubbed spent binding agents and quartz dusts. The amount of post-reclamation dusts, depending in the reclamation system efficiency and the reclaim dedusting system, can reach 5%-10% in relation to the total reclaimed spent moulding sand. The proper utilization of such material is a big problem facing foundries these days. This study presents the results of investigations of physicochemical properties of post- reclamation dusts. All tested dusts originated from various Polish cast steel plants applying the mechanical reclamation process of moulding sands with alkaline resins, obtained from different producers. Different dusts, delivered from foundries, were tested to determine their chemical composition, granular characterization, physicochemical and energetic properties. Presented results confirmed assumptions that it is possible to utilize dusts generated during mechanical reclamation of used sands with organic resins as a source of energy.

  16. SKI's engagement in the process for siting a spent nuclear fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Paeivioe Jonsson, Josefin; Westerlind, Magnus [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2006-09-15

    In Sweden, issues concerning the disposal of nuclear waste historically required co-operation among primarily two main actors: The nuclear industry and the state. Municipalities involved in SKB's feasibility studies objected to the fact that they lacked resources to keep the people in the municipality informed about the ongoing work. As a result the Parliament decided that municipalities involved in SKB's siting process should receive money from the nuclear waste fund for their engagement. Since 2005 resources also have been made available for NGO's participating in SKB's ongoing EIA-process. In total they can yearly receive up to 2.5 million Swedish kronor. The fact that new actors continuously have been engaged in disposal of spent nuclear fuel has meant that 'old' actors, particularly SKB, the regulators (the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI) have had to evaluate, develop and clarify their roles and strategies for dialogue and regulatory oversight. This paper presents the effects the increased engagement has had on SKI's regulatory activities. Looking back it is possible to identify two well-defined break points in SKI's views on communication and active participation in the siting process. The first was the so-called DIALOGUE-project, which was initiated by SKI in the early 1990s. In this research project there were participants from e.g. SKI and SSI, municipalities and environmental organisations. The two most important conclusions for SKI were firstly that regulators can and should participate already in the early stages of a siting process, and that this can be done without loosing credibility as an independent reviewer of a licence application and secondly that actors (in the siting process) with conflicting interests and views can reach agreement on the basis for decisions. The second break point occurred in the mid 1990s when SKB announced that the

  17. Extraction of caustic potash from spent tea for biodiesel Production

    Science.gov (United States)

    Sulaiman, Sarina; Faiz Che Fisol, Ahmad; Sharikh, Atikah Mohamed; Noraini Jimat, Dzun; Jamal, Parveen

    2018-01-01

    Biodiesel is an alternative to non-renewable fossil fuels due to its low gas emission and economical value. This study aims to extract caustic potash (KOH) from spent tea and to optimize the transesterfication process based on parameters such as amount of catalyst, reaction temperature and methanol to oil ratio. The spent tea was first dried at 60°C prior to calcination at 600°C for two hours. Caustic Potash were extracted from the calcined spent tea. The transesterification process was done based on Design of Experiments (DOE) to study the effects of amount of catalyst ranging from 0.5 wt % to 2.5 wt %, reaction temperature from 55°C to 65°C and methanol to oil ratio from 6:1 to 12:1 at a constant agitation rate of 300 rpm for three hours. The calcined spent tea produced was recorded the highest at 54.3 wt % and the extracted catalyst was 2.4 wt %. The optimized biodiesel yield recorded was 56.95% at the optimal conditions of 2.5 wt % amount of catalyst, 65°C reaction temperature and 9:1 methanol to oil ratio.

  18. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  19. The advanced CECE process for enriching tritium by the chemical exchange method with a hydrophobic catalyst

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Masui, Takashi.

    1992-01-01

    The monothermal chemical exchange process with electrolysis, i.e., CECE process, was an effective method for enriching and removing tritium from tritiated water with low to middle level activity. The purpose of this study is to propose the theoretical background of the two-parameter evaluation method, which is based on a two-step isotope exchange reaction between hydrogen gas and liquid water, for improvement of the performance of a hydrophobic catalyst by a trickle bed-type column. Finally, a two-parameter method could attain the highest performance of isotope separation and the lowest liquid holdup for a trickle bed-type column. Therefore, this method will present some effective and practical procedures in scaling up a tritium enrichment process. The main aspect of the CECE process in engineering design and system evaluation was to develop the isotope exchange column with a high performance catalyst. (author)

  20. Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder

    Science.gov (United States)

    Petersen, Elspeth M.

    2016-01-01

    The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.

  1. Transient response and radiation dose estimates for breaches to a spent fuel processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Charles W., E-mail: soltechco@aol.com; Pope, Chad; Andrus, Jason

    2014-08-15

    Highlights: • We model doses received from a nuclear fuel facility from boundary leaks due to an earthquake. • The supplemental exhaust system (SES) starts after breach causing air to be sucked into the cell. • Exposed metal fuel burns increasing pressure and release of radioactive contamination. • Facility releases are small and much less than the limits showing costly refits are unnecessary. • The method presented can be used in other nuclear fuel processing facilities. - Abstract: This paper describes the analysis of the design basis accident for Idaho National Laboratory Fuel Conditioning Facility (FCF). The facility is used to process spent metallic nuclear fuel. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  2. Transient response and radiation dose estimates for breaches to a spent fuel processing facility

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Pope, Chad; Andrus, Jason

    2014-01-01

    Highlights: • We model doses received from a nuclear fuel facility from boundary leaks due to an earthquake. • The supplemental exhaust system (SES) starts after breach causing air to be sucked into the cell. • Exposed metal fuel burns increasing pressure and release of radioactive contamination. • Facility releases are small and much less than the limits showing costly refits are unnecessary. • The method presented can be used in other nuclear fuel processing facilities. - Abstract: This paper describes the analysis of the design basis accident for Idaho National Laboratory Fuel Conditioning Facility (FCF). The facility is used to process spent metallic nuclear fuel. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities

  3. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  4. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Process report

    International Nuclear Information System (INIS)

    Gribi, Peter; Johnson, Lawrence; Suter, Daniel; Smith, Paul; Pastina, Barbara; Snellman, Margit

    2008-01-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is placed in a perforated steel cylinder prior to emplacement; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100-300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the main processes potentially affecting the long-term safety of the system, covering radiation-related, thermal, hydraulic, mechanical, chemical (including microbiological) and radionuclide transport-related processes. The process descriptions deal sequentially with the main sub-systems: fuel/cavity in canister, cast iron insert and copper canister, buffer and other bentonite components, supercontainer

  5. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Process report

    Energy Technology Data Exchange (ETDEWEB)

    Gribi, Peter; Johnson, Lawrence; Suter, Daniel; Smith, Paul; Pastina, Barbara; Snellman, Margit

    2008-01-15

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is placed in a perforated steel cylinder prior to emplacement; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100-300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the main processes potentially affecting the long-term safety of the system, covering radiation-related, thermal, hydraulic, mechanical, chemical (including microbiological) and radionuclide transport-related processes. The process descriptions deal sequentially with the main sub-systems: fuel/cavity in canister, cast iron insert and copper canister, buffer and other bentonite components, supercontainer

  6. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.

    Science.gov (United States)

    Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles

    2018-06-01

    Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  8. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R.

    1994-11-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl x , UAl x -Al and U 3 O 8 -Al cermets, U-5% fissium, UMo, UZrH x , UErZrH, UO 2 -stainless steel cermet, and U 3 O 8 -stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified

  9. Development of the advanced nuclear materials -A study on the polymer catalyst process technology-

    International Nuclear Information System (INIS)

    Kook, Il Hyun; Jung, Heung Suk; Lee, Han Soo; An, Doh Heui; Kang, Heui Suk; Baek, Seung Woo; Lee, Sung Hoh; Sung, Kee Woong; Kim, Kwang Lak; Kim, Jong Hoh; Koo, Je Hyoo; Park, Tae Keun; Kim, Sang Hwan; Yoo, Ryong; Song, Myung Jae; Son, Soon Hwan; Choi, Jung Kil; Lee, Jae Choon; Jung, Moon Kyoo

    1995-07-01

    Heavy water is used as moderator and coolant in pressurized heavy water power plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water make-up for these plants would be 22 Mg/a from the year 2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m3 HD/m3 Bed.sec. and heavy water separation processes using the catalysts were optimized. 66 figs, 62 tabs, 19 refs. (Author)

  10. Development of the advanced nuclear materials -A study on the polymer catalyst process technology-

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Il Hyun; Jung, Heung Suk; Lee, Han Soo; An, Doh Heui; Kang, Heui Suk; Baek, Seung Woo; Lee, Sung Hoh; Sung, Kee Woong; Kim, Kwang Lak; Kim, Jong Hoh; Koo, Je Hyoo; Park, Tae Keun; Kim, Sang Hwan; Yoo, Ryong; Song, Myung Jae; Son, Soon Hwan; Choi, Jung Kil; Lee, Jae Choon; Jung, Moon Kyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Heavy water is used as moderator and coolant in pressurized heavy water power plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water make-up for these plants would be 22 Mg/a from the year 2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m3 HD/m3 Bed.sec. and heavy water separation processes using the catalysts were optimized. 66 figs, 62 tabs, 19 refs. (Author).

  11. Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel

    Science.gov (United States)

    Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.

    2012-01-01

    An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.

  12. Process and catalyst for the catalytic conversion of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1939-10-27

    A process is disclosed for converting hydrocarbon oils of higher than gasoline end boiling point, into large yields of motor fuel of high anti-knock value and substantial yields of normally gaseous readily polymerizable olefins, which comprises subjecting said hydrocarbon oils at a temperature within the approximate range of 425 to 650/sup 0/C. to contact with a catalytic material comprising hydrated silica and hydrated zirconia substantially free from alkali metal compounds.

  13. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    Science.gov (United States)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  14. Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.L.; Pirola, C.; Boffito, D.C.; Di Fronzo, A. [Univ. degli Studi di Milano (Italy). Dipt. di Chimica Fisica ed Elettrochimica; Di Michele, A. [Univ. degli Studi di Perugia (Italy). Dipt. di Fisica; Vivani, R.; Nocchetti, M.; Bastianini, M.; Gatto, S. [Univ. degli Studi di Perugia (Italy). Dipt. di Chimica

    2011-07-01

    Co-Zn-Al based hydrotalcites have been investigated as catalysts for the well-known Fischer- Tropsch synthesis. A series of ternary hydrotalcites in nitrate form was prepared with the urea method in order to obtain active catalysts for the above mentioned process. The thermal activation at 350 C gives raise to finely dispersed metallic Co on the mixed oxides, so resulting in retaining the metal distribution of the parent compounds. An optimization study concerning the amount of cobalt of the prepared catalysts (range 15-70% mol, metal based) and the reaction temperature (220-260 C) is reported. All the samples have been fully characterized (BET, ICP-OES, XRPD, TG-DTA, FT-IR, SEM and TEM) and tested in a laboratory pilot plant. Tests to evaluate the stability of these materials were carried out in stressed conditions concerning both the activation and the operating temperatures and pressures (up to 350 C and 2.0 MPa). The obtained results suggest the possibility of using synthetic hydrotalcites as suitable Co-based catalysts for the Fischer-Tropsch synthesis. (orig.)

  15. Recycling of spent nickel-cadmium batteries based on bioleaching process

    International Nuclear Information System (INIS)

    Zhu Nanwen; Zhang Lehua; Li Chunjie; Cai Chunguang

    2003-01-01

    Only 1-2 percent of discarded dry batteries are recovered in China. It is necessary to find an economic and environmentally friendly process to recycle dry batteries in this developing country. Bioleaching is one of the few techniques applicable for the recovery of the toxic metals from hazardous spent batteries. Its principle is the microbial production of sulphuric acid and simultaneous leaching of metals. In this study, a system consisting of a bioreactor, settling tank and leaching reactor was developed to leach metals from nickel-cadmium batteries. Indigenous thiobacilli, proliferated by using nutritive elements in sewage sludge and elemental sulphur as substrates, was employed in the bioreactor to produce sulphuric acid. The overflow from the bioreactor was conducted into the settling tank. The supernatant in the settling tank was conducted into the leaching reactor, which contained the anode and cathodic electrodes obtained from nickel-cadmium batteries. The results showed that this system was valid to leach metals from nickel-cadmium batteries, and that the sludge drained from the bottom of the settling tank could satisfy the requirements of environmental protection agencies regarding agricultural use

  16. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  17. Development of a vacuum distillation process for Pu pyro-chemistry spent salts treatment

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Baudrot, C.; Pescayre, L.; Thiebaut, C.

    2004-01-01

    The pyrochemical purification of plutonium has generated spent salts, which are disposed in nuclear facility. To reduce stored quantities, the development of a pyrochemical treatment is in progress. The feed salt, typically composed of various Pu and Am species spread into monovalent or divalent chloride matrix, is first oxidized to convert the actinides into oxides. Then the chlorides are separated from the actinide oxides by vacuum distillation. Temperatures higher than 750 deg C for mono-chloride salts mixture NaCl/KCl and higher than 1100 deg C for divalent CaCl 2 base salts, are required to produce an industrial flow of vaporization. Inactive qualification of the process for NaCl/KCl base salt has been carried with lanthanide surrogates. Then, a pilot equipment, called Distillator has been designed and built for production-scale distillation of NaCl/KCl and CaCl 2 oxidized plutonium salts. Industrial flows of vaporization have been obtained with this pilot equipment: about 4 g/cm 2 /h for NaCl/KCl at 800 - 900 deg C and 1 Pa, and more than 1.5 g/cm 2 /h for CaCl 2 base salts between 1000 - 1200 deg C at 0.1 Pa. The last step will be the integration of the Distillator into a glove box. (authors)

  18. Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)

    2008-04-15

    Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.

  19. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    Science.gov (United States)

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-04-16

    Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in

  20. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.

    Science.gov (United States)

    Li, Li; Bian, Yifan; Zhang, Xiaoxiao; Guan, Yibiao; Fan, Ersha; Wu, Feng; Chen, Renjie

    2018-01-01

    A "grave-to-cradle" process for the recycling of spent mixed-cathode materials (LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 ) has been proposed. The process comprises an acid leaching followed by the resynthesis of a cathode material from the resulting leachate. Spent cathode materials were leached in citric acid (C 6 H 8 O 7 ) and hydrogen peroxide (H 2 O 2 ). Optimal leaching conditions were obtained at a leaching temperature of 90 °C, a H 2 O 2 concentration of 1.5 vol%, a leaching time of 60 min, a pulp density of 20 g L -1 , and a citric acid concentration of 0.5 M. The leaching efficiencies of Li, Co, Ni, and Mn exceeded 95%. The leachate was used to resynthesize new LiCo 1/3 Ni 1/3 Mn 1/3 O 2 material by using a sol-gel method. A comparison of the electrochemical properties of the resynthesized material (NCM-spent) with that synthesized directly from original chemicals (NCM-syn) indicated that the initial discharge capacity of NCM-spent at 0.2 C was 152.8 mA h g -1 , which was higher than the 149.8 mA h g -1 of NCM-syn. After 160 cycles, the discharge capacities of the NCM-spent and NCM-syn were 140.7 mA h g -1 and 121.2 mA h g -1 , respectively. After discharge at 1 C for 300 cycles, the NCM-spent material remained a higher capacity of 113.2 mA h g -1 than the NCM-syn (78.4 mA h g -1 ). The better performance of the NCM-spent resulted from trace Al doping. A new formulation based on the shrinking-core model was proposed to explain the kinetics of the leaching process. The activation energies of the Li, Co, Ni, and Mn leaching were calculated to be 66.86, 86.57, 49.46, and 45.23 kJ mol -1 , respectively, which indicates that the leaching was a chemical reaction-controlled process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Directory of Open Access Journals (Sweden)

    Ga Vin Kim

    2014-01-01

    Full Text Available The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5% > solvent quantity (26.7% > reaction time (17.5% > catalyst amount (8.3%. Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36% > catalyst (28.62% > time (19.72% > temperature (17.32%. The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2, reaction time of 10 hrs (level 2, catalyst amount of 5% (level 3, and biomass to solvent ratio of 1 : 15 (level 2, respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  2. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Science.gov (United States)

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  3. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.

    Science.gov (United States)

    Kim, Ga Vin; Choi, Woonyong; Kang, Dohyung; Lee, Shinyoung; Lee, Hyeonyong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70 °C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  4. Parâmetros operacionais no processamento de zeólitas desativadas por fusão com KHSO4 Experimental parameters for spent zeolites processing via fusion with KHSO4

    Directory of Open Access Journals (Sweden)

    Luciano Aragão de Mendonça

    2007-04-01

    Full Text Available This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4. Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.

  5. Rota hidrometalúrgica de recuperação de molibdênio, cobalto, níquel e alumínio de catalisadores gastos de hidrotratamento em meio ácido Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in acid medium

    Directory of Open Access Journals (Sweden)

    Ivam Macedo Valverde Júnior

    2008-01-01

    Full Text Available This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al2O3. Samples were preoxidized (500 ºC, 5 h in order to eliminate coke and other volatile species present. The calcined solid was dissolved in concentrated H2SO4 and water (1:1 vol/vol at 90 ºC; the insoluble matter was separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines at pH around 1.8. Cobalt (or nickel was separated by addition of aqueous ammonium oxalate at the above pH. Phosphorus was removed by passing the liquid through a strong anion exchange column. Aluminum was recovered by neutralizing the solution with NaOH. The route presented in this work generates less final aqueous wastes because it is not necessary to use alkaline medium during the metal recovery steps.

  6. Uranous nitrate production for purex process applications using PtO2 catalyst and H2/H2-gas mixtures

    International Nuclear Information System (INIS)

    Sreenivasa Rao, K.; Shyamali, R.; Narayan, C.V.; Patil, A.R.; Jambunathan, U.; Ramanujam, A.; Kansara, V.P.

    2003-04-01

    In the Purex process of spent fuel reprocessing. the twin objectives- decontamination and partitioning are achieved by extracting uranium (VI) and plutonium (IV) together in the solvent 30% TBP-dodecane and then selectively reducing Pu (IV) to Pu (III) in which valency it is least extractable in the solvent. Uranous nitrate stabilized with hydrazine nitrate is the widely employed partitioning agent. The conventional method of producing U(IV) is by the electrolytic reduction of uranyl nitrate with hydrazine nitrate as uranous ion stabilizer. Tre percentage conversion of U(VI) to U(IV) obtained in this method is 50 -60 %. The use of this solution as partitioning agent leads not only to the dilution of the plutonium product but also to increase in uranium processing load by each externally fed uranous nitrate batch. Also the oxide coating of the anode, TSIA (Titanium Substrate Insoluble Anode) wears out after a certain period of operation. This necessitates recoating which is quite cumbersome considering the amount of the decontamination involved. An alternative to the conventional electrolytic method of reduction of uranyl nitrate to uranous nitrate was explored at FRD laboratory .The studies have revealed that near 100% uranous nitrate can be produced by reducing uranyl nitrate with H 2 gas or H 2 (8%)- Ar/N 2 gas mixture in presence of PtO 2 catalyst. This report describes the laboratory scale studies carried out to optimize the various parameters. Based on these studies reduction of uranyl nitrate on a pilot plant scale was carried out. The design and operation of the reductor column and also the various studies carried out in the pilot plant studies are discussed. Near 100% conversion of uranyl nitrate to uranous nitrate and also the redundancy of supply of electrical energy make this process a viable alternative to the existing electrolytic method. (author)

  7. Obtaining and characterization catalyst Ki/Al_2O_3 by physical dispersion process via wet

    International Nuclear Information System (INIS)

    Silva, M.C. da; Dantas, J.; Costa, A.C.F.M.; Costa, N.C.O.; Freitas, N.L. de

    2014-01-01

    The aim of this study is the Obtention and characterization of catalysts being supported alumina impregnated with KI by physical dispersion in wet via attritor mill in periods of 30 and 60 minutes. Before and after impregnation the catalysts were characterized by XRD, X ray fluorescence, particle size distribution, textural analysis (BET). The results show the presence of the stable crystalline phase Al_2O_3 in all samples after impregnation and the second phase formed from KI and K_2O. There was a decrease in the agglomerates incorporated with the potassium due to the milling process. It was observed that the highest specific surface area was obtained by the impregnated sample into a 60 min. (author)

  8. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People' s Republic of China (China); Qiu, Keqiang, E-mail: qiuwhs@sohu.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People' s Republic of China (China)

    2011-10-30

    Highlights: {yields} The cathode active materials LiCoO{sub 2} from spent lithium-ion batteries peeled completely from aluminum foils by vacuum pyrolysis and hydrometallurgical process. {yields} The aluminum foils were excellent without damage after vacuum pyrolysis. {yields} The pyrolysis products organic fluorine compounds from organic electrolyte and binder were collected and enriched. {yields} High leaching efficiencies of cobalt and lithium were obtained with H{sub 2}SO{sub 4} and H{sub 2}O{sub 2}. - Abstract: Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO{sub 2} and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600 {sup o}C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2 M sulfuric acid leaching solution at 80 {sup o}C and solid/liquid ratio of 50 g L{sup -1} for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  9. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Liang; Qiu, Keqiang

    2011-01-01

    Highlights: → The cathode active materials LiCoO 2 from spent lithium-ion batteries peeled completely from aluminum foils by vacuum pyrolysis and hydrometallurgical process. → The aluminum foils were excellent without damage after vacuum pyrolysis. → The pyrolysis products organic fluorine compounds from organic electrolyte and binder were collected and enriched. → High leaching efficiencies of cobalt and lithium were obtained with H 2 SO 4 and H 2 O 2 . - Abstract: Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO 2 and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600 o C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2 M sulfuric acid leaching solution at 80 o C and solid/liquid ratio of 50 g L -1 for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  10. Catalysts based on mesoporous aluminosilicates for the hydroisomerization and hydrodearomatization processes

    Energy Technology Data Exchange (ETDEWEB)

    Vilesov, A.S.; Kulikov, A.B. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Ostroumova, V.A.; Baranova, S.V.; Lysenko, S.V.; Kardashev, S.V.; Lasarev, A.V.; Egazaryants, S.V.; Karakhanov, E.A. [Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.; Maximov, A.L. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.

    2011-07-01

    In the present work the activity of bifunctional catalysts based on mesoporous aluminosilicates in the hydroisomerization of n-alkanes and the hydrodearomatization (HDA) process has been investigated. The structured mesoporous aluminosilicates (Si/Al = 5/30) were prepared using hexadecylamine and Pluronic P{sub 123} as templates, with a specific surface area up to 1030 m{sup 2}/g and a pore size from 33 to 84 A. Bifunctional catalysts were prepared in the form of extrudates using boehmite as a binder with the platinum content of 0,5% by mass. The experiment was carried out in a flow reactor. The highest selectivity in the isomerization of n-dodecane and n-hexadecane was shown by catalysts based on mesoporous aluminosilicates with Si/Al =10 and 20. In the hydrogenation of a model feed of 10% (wt.) naphthalene in benzene, it was established that, depending on the module aluminosilicate, the conversion of naphthalene to decalin and tetralin may proceed quantitatively with no conversion of benzene to cyclohexane. Selectivity was in the range from 55 to 90% by decalin, and from 10 to 45% by tetralin. We found the conditions under which the only product of the hydrogenation of naphthalene is tetralin, but the conversion of naphthalene was up to 65%. Also, the activity of such catalysts for hydroisomerization and hydrodearomatization processes on the hydrotreated straight-run diesel fraction was investigated. It was established, that due to hydroisomerization, the maximum filtration temperature goes under -38 C, that allows to use it as a component of winter and arctic diesel fuels. (orig.)

  11. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  12. Conditions of Thermal Reclamation Process Realization on a Sample of Spent Moulding Sand from an Aluminum Alloy Foundry Plant

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-06-01

    Full Text Available The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of organic binders on grain surfaces. This process is spontaneously sustained and decreases the demand for gas. However, due to the significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

  13. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  14. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    International Nuclear Information System (INIS)

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-01-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming

  15. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2012-12-01

    Full Text Available Among the possible renewable energy resources, diesel fuels derived from triglycerides of vegetable oils and animal fats have shown potential as substitutes for petroleum-based diesel fuels. The biodiesel could be produced from vegetable oils over homogeneous catalyst, heterogeneous catalyst, or enzymatic catalyst. In this study, the synthesized SO42-/ZnO catalyst was explored to be used in the heterogeneous biodiesel production by using the vegetable oils and methanol. The study began with the preparation of SO42-/ZnO catalyst followed by the transesterification reaction between vegetable oil with methanol. The independent variables (reaction time and the weight ratio of catalyst/oil were optimized to obtain the optimum biodiesel (fatty acid methyl ester yield. The results of this study showed that the acid catalyst SO42-/ZnO was potential to be used as catalyst for biodiesel production through heterogeneous transesterification of vegetable oils. Optimum operating condition for this catalytic reaction was the weight ratio of catalyst/oil of 8:1 and reaction time of 2.6 h with respect to 75.5% yield of methyl ester products. The biodiesel product was also characterized to identify the respected fatty acid methyl ester components. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 23rd October 2012, Revised: 25th November 2012, Accepted: 25th November 2012[How to Cite: I. Istadi, Didi D. Anggoro, Luqman Buchori, Inshani Utami, Roikhatus Solikhah, (2012. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 150-157. (doi:10.9767/bcrec.7.2.4064.150-157][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4064.150-157 ] | View in 

  16. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    International Nuclear Information System (INIS)

    Paek, Seungwoo; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk; Song, Kyu-Min; Sohn, Soon Hwan

    2007-01-01

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K y a (1 s -1 ), under various operating conditions. K y a increases with the hydrogen flow rates in the range of 0.4-1.6 m s -1 at STP. The height of the catalyst column was determined from these K y a values according to the reaction temperatures and hydrogen flow rates

  17. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: swpaek@kaeri.re.kr; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Sohn, Soon Hwan [Korea Electric Power Research Institute, 103-16 Munji-dong, Yuseong-gu, Daejeon 305-380 (Korea, Republic of)

    2007-10-15

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K{sub y}a (1 s{sup -1}), under various operating conditions. K{sub y}a increases with the hydrogen flow rates in the range of 0.4-1.6 m s{sup -1} at STP. The height of the catalyst column was determined from these K{sub y}a values according to the reaction temperatures and hydrogen flow rates.

  18. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries

    Science.gov (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Prisciandaro, Marina; Medici, Franco; Vegliò, Francesco

    2017-09-01

    The purpose of this work is to describe and review the current status of the recycling technologies of spent NiMH batteries. In the first part of the work, the structure and characterization of NiMH accumulators are introduced followed by the description of the main scientific studies and the industrial processes. Various recycling routes including physical, pyrometallurgical and hydrometallurgical ones are discussed. The hydrometallurgical methods for the recovery of base metals and rare earths are mainly developed on the laboratory and pilot scale. The operating industrial methods are pyrometallurgical ones and are efficient only on the recovery of certain components of spent batteries. In particular fraction rich in nickel and other materials are recovered; instead the rare earths are lost in the slag and must be further refined by hydrometallurgical process to recover them. Considering the actual legislation regarding the disposal of spent batteries and the preservation of raw materials issues, implementations on laboratory scale and plant optimization studies should be conducted in order to overcome the industrial problems of the scale up for the hydrometallurgical processes.

  19. Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process

    Directory of Open Access Journals (Sweden)

    M. A. A. Mohammed

    2013-01-01

    Full Text Available Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites underwent two stages of decomposition during the calcination process. The X-ray diffraction and Fourier-transform infrared spectra analyses showed that thermal treatment of dolomite played a significant role in the disappearance of the CaMg(CO32 phase, producing the MgO-CaO form of dolomite. The scanning electron microscopy microphotographs of dolomite indicated that the morphological properties were profoundly affected by the calcination process, which led to the formation of a highly porous surface with small spherical particles. In addition, the calcination of dolomite led to the elimination of carbon dioxide and increases in the values of the specific surface area and average pore diameter, as indicated by surface area analysis. The results showed that calcined Malaysian dolomites have great potential to be applied as tar-cracking catalysts in the biomass gasification process based on their favorable physical properties.

  20. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  1. Data processing in the integrated data base for spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Morrison, G.W.; Notz, K.J.

    1984-01-01

    The Integrated Data Base (IDB) Program at Oak Ridge National Laboratory (ORNL) produces for the U.S. Department of Energy (DOE) the official spent fuel and radioactive waste inventories and projections for the United States through the year 2020. Inventory data are collected and checked for consistency, projection data are calculated based on specified assumptions, and both are converted to a standard format. Spent fuel and waste radionclides are decayed as a function of time. The resulting information constitutes the core data files called the Past/Present/Future (P/P/F) data base. A data file management system, SAS /sup R/, is used to retrieve the data and create several types of output: an annual report, an electronic summary data file designed for IBM-PC /sup R/ -compatible computers, and special-request reports

  2. Development of corrosion resistant materials for an electrolytic reduction process of a spent nuclear fuel

    International Nuclear Information System (INIS)

    Jong-Hyeon Lee; Soo-Haeng Cho; Jeong-Gook Oh; Eung-Ho Kim

    2008-01-01

    New alloys were designed and prepared to improve their corrosion resistance in an electrolytic reduction environment for a spent oxide fuel on the basis of a thermodynamical assessment. A considerable solubility of Si was confirmed in the Ni alloys and their corrosion resistance was drastically increased with the addition of Si. It was confirmed that a protective oxide layer was formed during a corrosion test due to a reaction among the alloying elements such as Cr, Al and Si. (authors)

  3. The feasibility of modelling coupled processes in safety analysis of spent nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland); Luukkonen, A.; Niemi, A.; Poellae, J. [VTT Communities and Infrastructure, Espoo (Finland); Olin, M. [VTT Chemical Technology, Espoo (Finland)

    1999-07-01

    The potential of applying coupled modelling in the Finnish safety analysis programme has been reviewed. The study focused on the migration of radionuclides escaping from a spent fuel repository planned to be excavated in fractured bedrock. Two effects that can trigger various couplings in and around a spent fuel repository in Finland were studied in detail; namely heat generation in the spent fuel and the presence of deep, saline groundwaters. The latter have been observed in coastal areas. A systematic survey of the requirements of coupled modelling identified features that render such migration calculations a challenging task. In groundwater flow modelling there appears to be wide ranging uncertainty related to conceptualisation of flow systems and to the corresponding input data. In terms of migration related chemistry there appear to be large gaps in the underlying thermodynamic database for geochemical systems. Rock mechanical predictions are heavily dependent on knowing the location, structure and properties of dominant fractures; information which is extremely difficult to obtain. Conduction and convection of heat is understood well in principle. On the basis of this review, it appears that coupled migration modelling may not yet be at the stage of development that would allow its use as a standard modelling tool in performance assessments. However, a firmer basis for the conclusions reached can only be obtained after a systematic modelling exercise on a relevant and real migration problem has been carried out. (orig.)

  4. The feasibility of modelling coupled processes in safety analysis of spent nuclear fuel disposal

    International Nuclear Information System (INIS)

    Rasilainen, K.; Luukkonen, A.; Niemi, A.; Poellae, J.; Olin, M.

    1999-01-01

    The potential of applying coupled modelling in the Finnish safety analysis programme has been reviewed. The study focused on the migration of radionuclides escaping from a spent fuel repository planned to be excavated in fractured bedrock. Two effects that can trigger various couplings in and around a spent fuel repository in Finland were studied in detail; namely heat generation in the spent fuel and the presence of deep, saline groundwaters. The latter have been observed in coastal areas. A systematic survey of the requirements of coupled modelling identified features that render such migration calculations a challenging task. In groundwater flow modelling there appears to be wide ranging uncertainty related to conceptualisation of flow systems and to the corresponding input data. In terms of migration related chemistry there appear to be large gaps in the underlying thermodynamic database for geochemical systems. Rock mechanical predictions are heavily dependent on knowing the location, structure and properties of dominant fractures; information which is extremely difficult to obtain. Conduction and convection of heat is understood well in principle. On the basis of this review, it appears that coupled migration modelling may not yet be at the stage of development that would allow its use as a standard modelling tool in performance assessments. However, a firmer basis for the conclusions reached can only be obtained after a systematic modelling exercise on a relevant and real migration problem has been carried out. (orig.)

  5. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Zeng, Guisheng; Deng, Xiaorong; Luo, Shenglian; Luo, Xubiao; Zou, Jianping

    2012-01-01

    Highlights: ► Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. ► The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. ► A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO 2 ) in this paper. The influence of copper ions on bioleaching of LiCoO 2 by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO 2 underwent a cationic interchange reaction with copper ions to form CuCo 2 O 4 on the surface of the sample, which could be easily dissolved by Fe 3+ .

  6. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guisheng, E-mail: zengguisheng@hotmail.com [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Deng, Xiaorong [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao; Zou, Jianping [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. Black-Right-Pointing-Pointer The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. Black-Right-Pointing-Pointer A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO{sub 2}) in this paper. The influence of copper ions on bioleaching of LiCoO{sub 2} by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO{sub 2} underwent a cationic interchange reaction with copper ions to form CuCo{sub 2}O{sub 4} on the surface of the sample, which could be easily dissolved by Fe{sup 3+}.

  7. Assessment Method of Overheating Degree of a Spent Moulding Sand with Organic Binder, After the Casting Process

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2013-06-01

    Full Text Available A proper management of sand grains of moulding sands requires knowing basic properties of the spent matrix after casting knocking out. This information is essential from the point of view of the proper performing the matrix recycling process and preparing moulding sands with reclaimed materials. The most important parameter informing on the matrix quality - in case of moulding sands with organic binders after casting knocking out - is their ignition loss. The methodology of estimating ignition loss of spent moulding sands with organic binder - after casting knocking out - developed in AGH, is presented in the paper. This method applies the simulation MAGMA software, allowing to determine this moulding sand parameter already at the stage of the production preparation.

  8. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the ion exchange technologies currently used and under development in nuclear industry, in particular for waste management practices, along with the experience gained in their application and with the subsequent handling, treatment and conditioning of spent ion exchange media for long term storage and/or disposal. The increased role of inorganic ion exchangers for treatment of radioactive liquid waste, both in nuclear power plant operations and in the fuel reprocessing sector, is recognised in this report. The intention of this report is to consolidate the previous publications, document recent developments and describe the state of the art in the application of ion exchange processes for the treatment of radioactive liquid waste and the management of spent ion exchange materials

  9. Process economics and safety considerations for the oxidative dehydrogenation of ethane using the M1 catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Baroi, Chinmoy; Gaffney, Anne M.; Fushimi, Rebecca

    2017-12-01

    Olefins or unsaturated hydrocarbons play a vital role as feedstock for many industrially significant processes. Ethylene is the simplest olefin and a key raw material for consumer products. Oxidative Dehydrogenation (ODH) is one of the most promising new routes for ethylene production that can offer a significant advantage in energy efficiency over the conventional steam pyrolysis process. This study is focused on the ODH chemistry using the mixed metal oxide MoVTeNbOx catalysts, generally referred to as M1 for the key phase known to be active for dehydrogenation. Using performance results from the patent literature a series of process simulations were conducted to evaluate the effect of feed composition on operating costs, profitability and process safety. The key results of this study indicate that the ODH reaction can be made safer and more profitable without use of an inert diluent and furthermore by replacing O2 with CO2 as an oxidant. Modifications of the M1 catalyst composition in order to adopt these changes are discussed.

  10. Implementation of hearings in the Swedish process for siting a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus; Wiklund, Aasa

    2001-01-01

    The problem of bringing all stakeholders on the scene to penetrate an issue of great complexity is not unique for nuclear waste management. There are an increasing number of site selection processes for disposal of nuclear waste around the world. During the 90's many of these siting processes have gone into a more decisive phase where public participation and transparency get more and more attention. Municipalities, NGOs and the public do no longer accept ready-made solutions but have legitimate claims to be part of the decision making and siting processes at an early stage. The attempts to increase the level of transparency and public involvement differ from country to country and depend e.g. on culture, history and societal conditions as well as on the precise phase in the siting process. However, many processes include public hearings as one tool to enhance transparency. In general, Sweden has not a long history of using hearings in decision making. In the area of nuclear waste management and disposal hearings have so far been rarely used. In 1997 and 1998 two public hearings were arranged by the Swedish Nuclear Power Inspectorate, SKI, in conjunction with the licensing of the enlargement of the Central Interim Storage for Spent Nuclear Fuel, CLAB. These hearings showed that hearings could improve the decision making process. SKI and SSI strongly believe the effort was worthwhile and that hearings will continue to be used in the nuclear waste programme. The hearings provided a forum for local stakeholders to pose questions and stretch both the implementer and to some extent also the authorities. The hearings managed to focus on relevant issues at this stage of the siting process and gave the audience a chance to evaluate and challenge the trustworthiness of the implementer and authorities. In this respect the hearings contributed to transparent and democratic decision making. Some of the keys to the success were: Unbiased and skilled moderators with capacity to

  11. Some problems of manufacturing and industrial application of CoMo-Al2O3 catalyst

    International Nuclear Information System (INIS)

    Walendziewski, J.

    1991-01-01

    The monograph presents results of studies of some selected problems relating to CoMo-Al 2 O 3 catalyst: method of production alumina support and catalyst; application of catalyst in the selected hydro refining processes; physicochemical properties of the used catalyst; reclamation of metal compounds from the spent catalyst. Results of investigations of catalyst preparation illustrate how the physicochemical properties of alumina support and catalyst, mainly porous structure could be controlled by the selection of raw materials and parameters of aluminum hydroxide precipitation, method of forming and calcination temperature of support. Application of the catalyst of modified porous structure has shown its high activity in hydro refining process of light cracking catalytic oil (over 95% hydrodesulphurization) and mild hydro cracking process of vacuum gas oil (sulphur content in product below 0.03% wt.). As an effect of studying of hydro refining process of aromatic hydrocarbon fraction it has been found that H 2 S concentration in reaction mixture is the main factor influencing process selectivity. Some effect on the selectivity exerts also other process parameters and chemical composition of the catalyst - cobalt molybdenum content ratio and promoters content. Long term exploitation of the domestic CoMo-Al 2 O 3 catalyst in hydrodesulphurization process indicates its satisfied thermal stability although results in deteriorating of mechanical resistance, lowering of specific surface area, increase in mean pore radius and decrease in acidity of catalyst. In the last chapter of the monograph the results of investigations of reclamation of metal compounds (molybdic acid, aluminum hydroxide, cobalt carbonate) from the spent catalyst as well as an original technology of manufacture of the fresh one using these compounds have been presented. (author). 338 refs, 31 figs, 32 tabs

  12. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Cho, Il Je; Kim, Ki Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  13. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  14. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    Science.gov (United States)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  15. Processamento de pilhas do tipo botão Processing of spent button cells

    Directory of Open Access Journals (Sweden)

    Cristiano Nunes da Silva

    2008-01-01

    Full Text Available This work presents hydrometallurgical routes for recovering valuable elements from spent button cells, based on leaching of internal components with sulfuric acid (Li/MnO2 and Zn-air or nitric acid (Ag-Zn, at 90 ºC for 2h. Slow evaporation of the leachate crystallized MnSO4.H2O, whereas lithium was partially recovered as LiF. Mercury present in Zn-air and Ag-Zn samples was precipitated as HgS. Silver was recovered as AgCl before mercury precipitation. Zinc and iron were precipitated as hydroxides. The amount of iron varied according to the intensity of the corrosion of the external cell case. Final wastes are neutral and colorless sodium sulfate/nitrate solutions.

  16. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes.

    Science.gov (United States)

    Chang, Ken-Lin; Chen, Xi-Mei; Sun, Jian; Liu, Jing-Yong; Sun, Shui-Yu; Yang, Zuo-Yi; Wang, Yin

    2017-07-01

    Spent mushroom substrate (SMS) is a bulky waste byproduct of commercial mushroom production, which can cause serious environmental problems and, therefore, poses a significant barrier to future expansion of the mushroom industry. In the present study, we explored the use of SMS as a biochar to improve the quality of bio-fertilizer. Specifically, we performed a series of experiments using composting reactors to investigate the effects of SMS biochar on the physio-chemical properties of bio-fertilizer. Biochar was derived from dry SMS pyrolysed at 500°C and mixed with pig manure and rice straw. Results from this study demonstrate that the addition of biochar significantly reduced electrical conductivity and loss of organic matter in compost material. Nutrient analysis revealed that the SMS-derived biochar is rich in fertilizer nutrients such as P, K, Na, and N. All of these findings suggest that SMS biochar could be an excellent medium for compost.

  17. A study on adsorption onto TODGA resin after electrolytic reduction in ERIX process for reprocessing spent FBR-MOX fuel

    International Nuclear Information System (INIS)

    Hoshi, Harutaka; Arai, Tsuyoshi; Wei, Yuezhou; Kumagai, Mikio; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    For reprocessing spent FBR-MOX fuel, an advanced aqueous reprocessing process ''ERIX process'' has been developed. In this system, hydrazine is used as reduction holding reagent for the valance adjustment of U by electrolytic reduction in nitric acid solution. Therefore, hydrazine is contained in high level liquid waste after separation of U, Pu and Np. Effect of hydrazine on adsorption of FP onto TODGA resin was examined. When hydrazine concentration was less than 0.3 M, effect on the distribution coefficient was negligibly small. After electrolytic reduction, some elements exist as lower valence state. Ru and Tc are most difficult elements to control their behavior in aqueous process. The distribution coefficient of both Ru and Tc onto TODGA decreased after electrolytic reduction, because they are reduced to lower valence. Hence, it is difficult for Ru or Tc to diffuse to allover the process and separation of MA from Tc and Ru was enhanced by electrolytic reduction. (author)

  18. MOLECULAR SIEVES AS CATALYSTS FOR METHANOL DEHYDRATION IN THE LPDMEtm PROCESS; TOPICAL

    International Nuclear Information System (INIS)

    Andrew W. Wang

    2002-01-01

    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME(trademark) (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME(trademark) system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity

  19. Pilot studies of an extraction process for reprocessing of spent fuel from fast reactors: Hardware and process details of extractor selection

    International Nuclear Information System (INIS)

    Anisimov, V.I.; Pavlovich, V.B.; Smetanin, E.Ya.; Glazunov, N.V.; Shklyar, L.I.; Dubrovskii, V.G.; Serov, A.V.; Zakharkin, B.S.; Konorchenko, V.D.; Korotkov, I.A.; Neumoev, N.V.; Renard, E.V.

    1992-01-01

    While acknowledging the bold and persistent efforts of U.S. and Russian specialists to develop the concept of pyrochemical reprocessing of spent nuclear fuel from fast reactors on remote-controlled equipment for removal of actinides from the fission products one should recognize that the tasks of reprocessing such fuel can be handled only by using water-extraction technology, especially since the known Purex process continues to be improved to the point that a single-cycle scheme may be developed. This article presents results of pilot studies conducted in hot cells using multistage extractors in continuous counterflow operation; data on various extractor types used in reprocessing spent mixed oxide nuclear fuel; advantages and disadvantages of centrifugal and pulsed column extractor; comparison of column-type and centrifugal extractors; and extraction process

  20. Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.

  1. A direct, single-step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes

    International Nuclear Information System (INIS)

    Feng, X.; Einziger, R.E.; Eschenbach, R.C.

    1997-01-01

    A single-step plasma arc-vitreous ceramic (PAVC) process is described for converting spent nuclear fuel (SNF), SNF sludges, and associated wastes into a vitreous ceramic waste form. This proposed technology is built on extensive experience of nuclear waste form development and nuclear waste treatment using the commercially available plasma arc centrifugal (PAC) system. SNF elements will be loaded directly into a PAC furnace with minimum additives and converted into vitreous ceramics with up to 90 wt% waste loading. The vitreous ceramic waste form should meet the functional requirements for borosilicate glasses for permanent disposal in a geologic repository and for interim storage. Criticality safety would be ensured through the use of batch modes, and controlling the amount of fuel processed in one batch. The minimum requirements on SNF characterization and pretreatment, the one-step process, and minimum secondary waste generation may reduce treatment duration, radiation exposure, and treatment cost

  2. Bioleaching of spent Ni-Cd batteries by continuous flow system: Effect of hydraulic retention time and process load

    International Nuclear Information System (INIS)

    Zhao Ling; Yang Dong; Zhu Nanwen

    2008-01-01

    Spent Ni-Cd batteries bring a severe environmental problem that needs to be solved urgently. A novel continuous flow two-step leaching system based on bioleaching was introduced to dissolve heavy metals in batteries. It consists of an acidifying reactor which was used to culture indigenous thiobacilli and a leaching reactor which was used to leach metals from spent batteries. The indigenous acidophilic thiobacilli in sewage sludge was used as the microorganisms and the sludge itself as culture medium. Bioleaching tests at different hydraulic retention time (HRT) and process load in the leaching reactor were performed. The results showed that the longer the HRT (1, 3, 6, 9 and 15 days) was, the more time required to achieve the complete leaching of Ni, Cd and Co. The maximum dissolution of cadmium and cobalt was achieved at higher pH values (3.0-4.5) while the leaching of nickel hydroxide and nickel in metallic form (Ni 0 ) were obtained separately in different acidity (pH 2.5-3.5). It cost about 25, 30 and more than 40 days to remove all of the three heavy metals with the process load of two, four and eight Ni-Cd batteries under the conditions that the ingoing bio-sulphuric acid was 1 L d -1 and HRT was 3 days

  3. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load.

    Science.gov (United States)

    Zhao, Ling; Yang, Dong; Zhu, Nan-Wen

    2008-12-30

    Spent Ni-Cd batteries bring a severe environmental problem that needs to be solved urgently. A novel continuous flow two-step leaching system based on bioleaching was introduced to dissolve heavy metals in batteries. It consists of an acidifying reactor which was used to culture indigenous thiobacilli and a leaching reactor which was used to leach metals from spent batteries. The indigenous acidophilic thiobacilli in sewage sludge was used as the microorganisms and the sludge itself as culture medium. Bioleaching tests at different hydraulic retention time (HRT) and process load in the leaching reactor were performed. The results showed that the longer the HRT (1, 3, 6, 9 and 15 days) was, the more time required to achieve the complete leaching of Ni, Cd and Co. The maximum dissolution of cadmium and cobalt was achieved at higher pH values (3.0-4.5) while the leaching of nickel hydroxide and nickel in metallic form (Ni0) were obtained separately in different acidity (pH 2.5-3.5). It cost about 25, 30 and more than 40 days to remove all of the three heavy metals with the process load of two, four and eight Ni-Cd batteries under the conditions that the ingoing bio-sulphuric acid was 1Ld(-1) and HRT was 3 days.

  4. Bioleaching of spent Ni-Cd batteries by continuous flow system: Effect of hydraulic retention time and process load

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ling; Yang Dong [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Nanwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: nwzhu@sina.com

    2008-12-30

    Spent Ni-Cd batteries bring a severe environmental problem that needs to be solved urgently. A novel continuous flow two-step leaching system based on bioleaching was introduced to dissolve heavy metals in batteries. It consists of an acidifying reactor which was used to culture indigenous thiobacilli and a leaching reactor which was used to leach metals from spent batteries. The indigenous acidophilic thiobacilli in sewage sludge was used as the microorganisms and the sludge itself as culture medium. Bioleaching tests at different hydraulic retention time (HRT) and process load in the leaching reactor were performed. The results showed that the longer the HRT (1, 3, 6, 9 and 15 days) was, the more time required to achieve the complete leaching of Ni, Cd and Co. The maximum dissolution of cadmium and cobalt was achieved at higher pH values (3.0-4.5) while the leaching of nickel hydroxide and nickel in metallic form (Ni{sup 0}) were obtained separately in different acidity (pH 2.5-3.5). It cost about 25, 30 and more than 40 days to remove all of the three heavy metals with the process load of two, four and eight Ni-Cd batteries under the conditions that the ingoing bio-sulphuric acid was 1 L d{sup -1} and HRT was 3 days.

  5. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product.

    Science.gov (United States)

    Santos, Cátia; Fonseca, João; Aires, Alfredo; Coutinho, João; Trindade, Henrique

    2017-01-01

    The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C 0 (Control), C 10 , C 20 and C 40 , containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C 40 , was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mock-up facilities for the development of an advanced spent fuel management process using molten salt technology

    International Nuclear Information System (INIS)

    Young-Joon Shin; Ik-Soo Kim; Seung-Chul Oh; Soo-Haeng Cho; Yo-Taik Song; Hyun-Soo Park

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) has investigated a new approach to spent fuel storage technology that would reduce the total storage volume and the amount of decay heat. The technology utilizes the reduction of oxide fuel to a metal to reduce the volume and preferentially removing the fission products to reduce the decay heat. The uranium oxide is reduced to uranium metal by Li metal in a molten LiCl salt bath. During the reduction process, fission products are dissolved into the LiCl bath and some of the highly radioactive elements, such as Sr and Cs, are preferentially removed from the bath. The reduced uranium metal is cast into an ingot, put into a storage capsule, and stored using conventional storage methods. The fission products are treated as high level radioactive wastes. Each process of the technology has been studied and analyzed for technical feasibility, and has come to the point for designing and constructing of the mock-up for a demonstration of the technology. This paper presents the detailed design of the mock-up of the system and operational characteristics, along with all the details of the equipment for the system. KAERI plans to use the mock-up for the demonstration using an in-active spent fuel specimen. (authors)

  7. Use of rice rusk ash and spent catalyst as a source of raw material for the production and characterization of soda-lime silicate glasses destined for packaging

    International Nuclear Information System (INIS)

    Araujo, M.S.; Martinelli, J.R.; Genova, L.A.; Prado, U.S. do

    2016-01-01

    Study on the use of rice husk ash (RHA) and waste catalyst (ECAT), two industrial solid waste generated in large quantities in Brazil, getting soda-lime glass for the production of packaging. Both the waste may be classified as class II waste according to NBR 10,004. Samples were produced adding Na_2CO_3 and CaO to obtain a composition within the range of commercial soda-lime glasses. The results showed that both can be used as received (without any previous treatment) replacing important raw materials, source of Al_2O_3 and SiO2, necessary for glass formation. The produced samples were amber due to the presence of nickel (Ni2+ ions) from the ECAT and optical transmittance of 18%. These also showed good homogeneity, i.e., absence of bubbles and striae and dissolution rate higher than a commercial soda-lime glass. In general, the samples are presented suitable for applications that require low transmittance such as colored glass containers, which does not require perfect visibility and transparency. Finally, the waste level of incorporation was approximately 78 mass%. (author)

  8. Microwave process employed to study the immobilization feasibility of spent ion exchange resins in polymeric matrices

    Energy Technology Data Exchange (ETDEWEB)

    Caratin, Reinaldo L.; Araujo, Sumair G. de; Landini, Liliane; Neves, Sabrina C.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: rcaratin@ipen.br, E-mail: sgaraujo@ipen.br, E-mail: llandini@ipen.br, E-mail: scneves@ipen.br, E-mail: ablugao@ipen.br

    2007-07-01

    Nuclear activities generate radioactive wastes in several physical states, radioactive levels and kinds of radioactive emission. Hence, a lot of techniques have been developed and optimized to do the immobilization of these materials, according to local and international regulations to protect human being and environment. Another great concern is the indiscriminate disposal of used polymeric materials (such as plastic and rubber) or production leftovers in landfills, which remain for many years before they are naturally decomposed. In this work, it was studied the possibility of carrying out the immobilization of spent ion exchange resins (contaminated with ionising radiation), by using polymeric matrices of bitumen and rubber (as solidification materials for the storage of low level radioactive waste). The samples were mixed at different percentages and were heated in a microwave device (2,450 MHz) at IPEN/CNEN-SP, varying the irradiation time and power. The objective of the immobilization is converting the wastes into forms that are leach resistant and physically and chemically stable for disposal. Characterizations of these materials have been performed according to ABNT-NBR standards. The results indicated the previous idea of the necessary minimum temperature to keep the matrix for future embedding of radioactive waste, in solid state. (author)

  9. Melting process to condition decladding hulls generated by the reprocessing of LWR and FBR spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1981-01-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel, and volume reduction factors in the region of 5 to 7, corresponding to the theoretical density of the alloy obtained, are arrived at quite easily. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy, appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. The decreasing of fusion temperature is less spectacular with stainless steel; only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy which reduces the principal oxide components of glasses and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging although they were obtained using artificially contaminated hulls; they should therefore be considered with precaution and be confirmed by further tests in hot cells using real hulls

  10. In-situ Spectroscopic Studies and Modelling of Crystallization Processes of Sulphuric Acid Catalysts

    DEFF Research Database (Denmark)

    Oehlers, C.; Fehrmann, Rasmus; Masters, Stephen Grenville

    1996-01-01

    Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe the crystall......Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe...

  11. Selection of dissolution process for spent fuels and preparation of corrosion test solution simulated to dissolver (contract research)

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Terakado, Shogo; Koya, Toshio; Hamada, Shozo; Kiuchi, Kiyoshi

    2001-03-01

    In order to evaluate the reliability of reprocessing equipment materials used in the Rokkasho Reprocessing Plant, we have proceeded a mock-up test and laboratory tests for getting corrosion parameters. In a dissolver made of zirconium, the simulation of test solutions to the practical solution which includes the high concentration of radioactive elements such as FP and TRU is one of the important issues with respect to the life prediction. On this experiment, the dissolution process of spent fuels and the preparation of test solution for evaluating the corrosion resistance of dissolver materials were selected. These processes were tested in the No.3 cell of WASTEF. The test solution for corrosion tests was prepared by adjusting the uranium and nitric acid concentrations. (author)

  12. Dissolution studies of natural analogues spent fuel and U(VI)-Silicon phases of and oxidative alteration process

    International Nuclear Information System (INIS)

    Perez Morales, I.

    2000-01-01

    In order to understand the long-term behavior of the nuclear spent fuel in geological repository conditions, we have performed dissolution studies with natural analogues to UO 2 as well as with solid phases representatives of the oxidative alteration pathway of uranium dioxide, as observed in both natural environment and laboratory studies. In all cases, we have studied the influence of the bicarbonate concentration in the dissolution process, as a first approximation to the groundwater composition of a granitic environment, where carbonate is one of the most important complexing agents. As a natural analogue to the nuclear spent fuel some uraninite samples from the Oklo are deposit in Gabon, where chain fission reactions took place 2000 millions years ago, as well as a pitchblende sample from the mine Fe ore deposit, in Salamanca (spain) have been studied. The studies have been performed at 25 and 60 deg C and 60 deg C, and they have focussed on the determination of both the thermodynamic and the kinetic properties of the different samples studied, using batch and continuous experimental methodologies, respectively. (Author)

  13. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    Science.gov (United States)

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

  14. Waste into Fuel—Catalyst and Process Development for MSW Valorisation

    Directory of Open Access Journals (Sweden)

    Izabela S. Pieta

    2018-03-01

    Full Text Available The present review paper highlights recent progress in the processing of potential municipal solid waste (MSW derived fuels. These wastes come from the sieved fraction (∅ < 40 mm, which, after sorting, can differ in biodegradable fraction content ranging from 5–60%. The fuels obtained from these wastes possess volumetric energy densities in the range of 15.6–26.8 MJL−1 and are composed mainly of methanol, ethanol, butanol, and carboxylic acids. Although these waste streams are a cheap and abundant source (and decrease the fraction going to landfills, syngas produced from MSW contains various impurities such as organic compounds, nitrogen oxides, sulfur, and chlorine components. These limit its use for advanced electricity generation especially for heat and power generation units based on high temperature fuel cells such as solid oxide fuel cells (SOFC or molten carbonate fuel cells (MCFC. In this paper, we review recent research developments in the continuous MSW processing for syngas production specifically concentrating on dry reforming and the catalytic sorbent effects on effluent and process efficiency. A particular emphasis is placed on waste derived biofuels, which are currently a primary candidate for a sustainable biofuel of tomorrow, catalysts/catalytic sorbents with decreased amounts of noble metals, their long term activity, and poison resistance, and novel nano-sorbent materials. In this review, future prospects for waste to fuels or chemicals and the needed research to further process technologies are discussed.

  15. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  16. On the Way to Improve the Environmental Benignity of Chemical Processes: Novel Catalysts for a Polymerization Process

    Directory of Open Access Journals (Sweden)

    Silvana F. Rach

    2009-03-01

    Full Text Available An example for a process that can, in principle, be improved by the application of a catalyst is the synthesis of poly(2-methyl-propenes (“polyisobutenes”, which are important for numerous industrial applications. Each year several 100,000 t are produced. The production of low-molecular weight polyisobutenes by means of cationic initiation by an excess of Lewis acids is well established. Typically, these initiators require the usage of solvents like chloroform, dichloromethane and ethylene and temperatures far below 0 °C (–100 °C in the case of ethylene as solvent. Solvent stabilized transition metal complexes with weakly coordinating counter anions overcome these drawbacks and thus are not only more efficient, but also more environmentally benign: they can be applied at ambient temperature and in non chlorinated solvents at low concentrations.

  17. Application of Heterogeneous Copper Catalyst in a Continuous Flow Process: Dehydrogenation of Cyclohexanol

    Science.gov (United States)

    Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa

    2016-01-01

    In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…

  18. Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent.

    Science.gov (United States)

    Sasai, Ryo; Kubo, Hisashi; Kamiya, Masahiro; Itoh, Hideaki

    2008-06-01

    To develop a novel nonheating method with lower energy consumption and higher efficiency for recovering both lead and SiO2 glass matrix from spent lead-glass powder, we attempted to treat the spent lead glass by the mechanochemical method using the metal chelate reagent, sodium ethylenediaminetetraacetate (Na2EDTA). As a result of the wet ball-milling treatment of spent lead-glass powder sealed in a polypropylene bottle with zirconia balls, Na2EDTA, and water at room temperature, we found that more than 99 mass % of lead contained in the spentlead-glass powder was extracted as a lead-EDTA species from the solid silica glass network matrix. This separation phenomenon was accelerated by the enlargement of the solid-liquid interface area due to ball-milling atomization and by the high stability constant of lead-EDTA. High extraction yield suggests that Pb-O-Pb bonds in lead glass are weakened or are broken down by the wet ball-milling treatment, i.e., the strong mechanical energy such as the potential and/ or friction energy provided by ball-milling may be high enough to elute lead ions from silica matrix. Moreover, we succeeded in recovering both lead ions as lead sulfate, which is the main compound of anglesite, and the EDTA as sodium-EDTA, which is reusable as the metal chelate reagent in wet chemical process using the ferric sulfate.

  19. PMO-immobilized Au(I)-NHC complexes: Heterogeneous catalysts for sustainable processes

    KAUST Repository

    van der Voort, Pascal

    2017-11-08

    A stable Periodic Mesoporous Organosilica (PMO) with accessible sulfonic acid functionalities is prepared via a one-pot-synthesis and is used as solid support for highly active catalysts, consisting of gold(I)-N-heterocyclic carbene (NHC) complexes. The gold complexes are successfully immobilized on the nanoporous hybrid material via a straightforward acid-base reaction with the corresponding [Au(OH)(NHC)] synthon. This catalyst design strategy results in a boomerang-type catalyst, allowing the active species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active in the latter reaction, and after an acidic work-up, the IPr*-based gold catalyst can be recovered and then reused several times without any loss in efficiency

  20. A process of spent nuclear fuel treatment with the interim storage of TRU by use amidic extractants

    International Nuclear Information System (INIS)

    Tachimori, Shoichi; Suzuki, Shinichi; Sasaki, Yuji

    2001-01-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock separately all actinides, uranium and a mixture of transuranics, and to dispose fission products. The process composed of two main steps, a uranium exclusive isolation and a total recovery of transuranium elements (TRU); which copes with the nuclear non-proliferation measures, and additional processes. Both actinide products are solidified by calcination and allowed to the interim storage for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the experimental results of both the branched-alkyl monoamides in extracting uranium and suppressing the extraction of tetravalent actinides due to the steric effect and the diglycolic amide in thorough extraction of all TRU by tridentate coordination. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator-Driven System (ADS) for transmutation, lanthanides are to be removed from TRU by utilizing a soft nitrogen donor ligand. (author)

  1. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    Science.gov (United States)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  2. The process system analysis for advanced spent fuel management technology (I)

    International Nuclear Information System (INIS)

    Lee, H. H.; Lee, J. R.; Kang, D. S.; Seo, C. S.; Shin, Y. J.; Park, S. W.

    1997-12-01

    Various pyrochemical processes were evaluated, and viable options were selected in consideration of the proliferation safety, technological feasibility and compatibility to the domestic nuclear power system. Detailed technical analysis were followed on the selected options such as unit process flowsheet including physico-chemical characteristics of the process systems, preliminary concept development, process design criteria and materials for equipment. Supplementary analysis were also carried out on the support technologies including sampling and transport technologies of molten salt, design criteria and equipment for glove box systems, and remote operation technologies. (author). 40 refs., 49 tabs., 37 figs

  3. Processamento de pilhas Li/MnO2 usadas Processing of the spent Li/MnO2 battery

    Directory of Open Access Journals (Sweden)

    Jéssica Frontino Paulino

    2007-06-01

    Full Text Available This work presents two recycling processes for spent Li/MnO2 batteries. After removal of the solvent under vacuum the cathode + anode + electrolyte was submitted to one of the following procedures: (a it was calcined (500 ºC, 5 h and the calcined solid was submitted to solvent extraction with water in order to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Manganese was recovered as sulfate; (b the solid was treated with potassium hydrogeno sulfate (500 ºC, 5 h. The solid was dissolved in water and the resulting solution was added dropwise to sodium hydroxide. Manganese was recovered as dioxide. The residual solution was treated with potassium fluoride in order to precipitate lithium fluoride.

  4. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    International Nuclear Information System (INIS)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation

  5. Conceptual design study and evaluation of an advanced treatment process applying a submerged combustion technique for spent solvents

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fijine, Sachio; Chida, Mitsuhisa; Kirishima, Kenji.

    1993-10-01

    An advanced treatment process based on a submerged combustion technique was proposed for spent solvents and the distillation residues containing transuranium (TRU) nuclides. A conceptual design study and the preliminary cost estimation of the treatment facility applying the process were conducted. Based on the results of the study, the process evaluation on the technical features, such as safety, volume reduction of TRU waste and economics was carried out. The key requirements for practical use were also summarized. It was shown that the process had the features as follows: the simplified treatment and solidification steps will not generate secondary aqueous wastes, the volume of TRU solid waste will be reduced less than one tenth of that of a reference technique (pyrolysis process), and the facility construction cost is less than 1 % of the total construction cost of a future large scale reprocessing plant. As for the low level wastes of calcium phosphate, it was shown that the further removal of β · γ nuclides with TRU nuclides from the wastes would be required for the safety in interim storage and transportation and for the load of shielding. (author)

  6. Polystyrene Plastic Waste Conversion into Liquid Fuel with Catalytic Cracking Process Using Al2O3 as Catalyst

    Directory of Open Access Journals (Sweden)

    Nurul Kholidah

    2018-01-01

    Full Text Available The increase in energy consumption and an increase in the plastic waste generation are two major problems that arise along with economic growth and the increase in population. Styrofoam is one type of polystyrene plastic waste that can be processed into liquid fuels by cracking process. In this study, the cracking process of polystyrene plastic waste into liquid fuel carried by the catalytic cracking process using Al2O3 as a catalyst. This study aimed to determine the effect of the catalyst weight, length of cracking time and range of temperature in the catalytic cracking process of polystyrene plastic waste into liquid fuel toward the mass and characteristics of liquid fuels produced and to determine the composition of liquid fuels produced. The catalytic cracking process of polystyrene plastic waste with catalyst was done in the fixed bed type reactor by heating the reactor with a heater, where the process took place at temperature of 150°C, 200°C, 250°C and 300°C and the length of the process was varied into 20, 40, and 60 minutes and the catalyst weight was also varied, which were 4%, 6% and 8%, while the styrofoam weight was 250 grams. From the research, the highest mass of liquid fuel derived from polystyrene catalytic cracking process was in the amount of 48.8 grams and liquid yield percentage of 19.5% at temperature of  250°C, cracking time of 60 minutes and weight of 8% catalyst, while the characteristics of liquid fuel that were approaching the characteristics of gasoline was at temperatures of 250°C, cracking time of 60 minutes and weight of 6% catalyst, in which each value of density of 0.763 g/ml, specific gravity of 0.778 and oAPI gravity of 50.2. While other liquid fuels obtained from the cracking of polystyrene were still within the tolerance range characteristic properties of gasoline. Liquid fuels produced from the catalytic cracking process was analyzed using a GC-MS, in which the analysis results indicated that liquid

  7. Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO-MnO/CeO{sub 2} catalyst using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Istadi,; Amin, Nor Aishah Saidina [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru (81310 Malaysia)

    2006-05-15

    The optimization of process parameters and catalyst compositions for the CO{sub 2} oxidative coupling of methane (CO{sub 2}-OCM) reaction over CaO-MnO/CeO{sub 2} catalyst was developed using Response Surface Methodology (RSM). The relationship between the responses, i.e. CH{sub 4} conversion, C{sub 2} hydrocarbons selectivity or yield, with four independent variables, i.e. CO{sub 2}/CH{sub 4} ratio, reactor temperature, wt.% CaO and wt.% MnO in the catalyst, were presented as empirical mathematical models. The maximum C{sub 2} hydrocarbons selectivity and yields of 82.62% and 3.93%, respectively, were achieved by the individual-response optimization at the corresponding optimal process parameters and catalyst compositions. However, the CH{sub 4} conversion was a saddle function and did not show a unique optimum as revealed by the canonical analysis. Moreover pertaining to simultaneous multi-responses optimization, the maximum C{sub 2} selectivity and yield of 76.56% and 3.74%, respectively, were obtained at a unique optimal process parameters and catalyst compositions. It may be deduced that both individual- and multi-responses optimizations are useful for the recommendation of optimal process parameters and catalyst compositions for the CO{sub 2}-OCM process. (author)

  8. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.

  9. BIOFUEL PRODUCTION FROM PALM OLEIN BY CATALYTIC CRACKING PROCESS USING ZSM-5 CATALYST

    Directory of Open Access Journals (Sweden)

    Rondang Tambun

    2017-06-01

    Full Text Available The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 °C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 °C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.

  10. Obtaining low temperature catalysts for methanol synthesis by no-waste process

    Energy Technology Data Exchange (ETDEWEB)

    Il' ko, E G; Sushchaya, L E; Bondar' , P G

    1982-11-01

    Low temperature production of catalysts for methanol synthesis involves considerable pollution of the environment as well as formation of side products. The authors propose producing such catalysts from joint precipitates of copper and zinc carbonates includiing stabilizers produced by decomposing solvents, then drying, aging and shaping. This method avoids waste water usually formed in scrubbing to remove ions of alkaline metals. Aluminum hydroxide is suggested as a stabilizer. The catalyst tablets prepared in this way were found to have activity like those produced by other methods, and were suitable for industrial use.

  11. Analysis of the hot cell lay-out for the advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Hong, D. H.; Kim, Y. H.; Yoon, J. S

    2003-04-01

    Equipment used for ACP must operate in intense radiation fields enclosed in a hot cell and be remotely maintained. For the reliable remote maintenance operation, several design aspects should be considered. Even though the design results seem to be satisfactory, all the remote operation should be checked prior to the hot demonstration. The best way to check the remote operability is a real mock-up test, but the mock-up test is too expensive and time consuming, and need refabrication of the design to deal with the problem found in the test operation. The 3D graphic simulator gives an alternate solution for this. It can check the remote operability of the process without fabrication of the process equipment. In other words, using a graphic simulator, remote operation task can be simulated in a computer(virtual environment), not the real environment. In this report, for the analysis on the hat cell layout for the ACP process, the verification from the concept of the process to the detailed motion of the equipment and the remote operation devices using virtual prototyping is described. Also, the requirement of the process equipment in the sense of size and remote maintenance, and that of the transportation and handling for the process material are described. Finally, from these results, the hot cell layout alternatives and the bases for the selection of the optimum layout are implemented. The graphical simulator and the results from this analysis can be effectively used not only for optimizing the hot cell layout but also designing the ACP equipment and maintenance process.

  12. Metals, heavy metals and microorganism removal from spent filter backwash water by hybrid coagulation-UF processes

    Directory of Open Access Journals (Sweden)

    Mokhtar Mahdavi

    2018-04-01

    Full Text Available Spent filter backwash water (SFBW reuse has attracted particular attention, especially in countries that experience water scarcity. It can act as a permanent water source until the water treatment plant is working. In this study, the concentrations of Fe, Al, Pb, As, and Cd with total and fecal coliform (TC/FC were investigated in raw and treated SFBW by hybrid coagulation-UF processes. The pilot plant consisted of pre-sedimentation, coagulation, flocculation, clarification, and ultrafiltration (UF units. Poly-aluminum ferric chloride (PAFCL and ferric chloride (FeCl3 were used as pretreatment. The results showed that, at the optimum dose of PAFCl, the average removal of TC and FC was 88 and 79% and with PAFCl-UF process, it reached 100 and 100%, respectively. For FeCl3, removal efficiency of TC and FC were 81 and 72% and by applying FeCl3-UF process, it reached 100 and 100%, respectively. In comparison with FeCl3, PAFCl showed better removal efficiency for Fe, Pb, As, and Cd, except residual Al concentration. Coagulation-UF process could treat SFBW efficiently and treated SFBW could meet the US-EPA drinking water standard. Health risk index values of Fe, AL, Pb, AS, and Cd in treated SFBW indicate no risk of exposure to the use of this water.

  13. Evaluation of Energy Consumption in the Mercury Treatment of Phosphor Powder from Spent Fluorescent Lamps Using a Thermal Process

    Directory of Open Access Journals (Sweden)

    Yong Choi

    2017-11-01

    Full Text Available In a pilot-plant-scale thermal mercury treatment of phosphor powder from spent fluorescent lamps, energy consumption was estimated to control mercury content by the consideration of reaction kinetics. Mercury content was analyzed as a function of treatment temperature and time. The initial mercury content of the phosphor powder used in the thermal process was approximately 3500 mg/kg. The target mercury content in the phosphor powder thermal process of the phosphor powder was 5 mg/kg or less at 400 °C or higher because the target mercury content was recommended by Minamata Convention and Basel Convention. During thermal processing, the reaction rate was represented by a first order reaction with the Arrhenius equation. The reaction rate constant increased with temperature from 0.0112 min−1 at 350 °C to 0.0558 min−1 at 600 °C. The frequency factor was 2.51 min−1, and the activation energy was 6509.11 kcal/kg. Reaction rate constants were used to evaluate the treatment time required to reduce mercury content in phosphor powder to be less than 5 mg/kg. The total energy consumption in a pilot-plant-scale thermal process was evaluated to determine the optimal temperature for removing mercury in phosphor powder.

  14. TRISO-coated spent fuel processing using a Grind-Leach head-end

    International Nuclear Information System (INIS)

    Spencer, Barry B.; Del Cul, Guillermo D.; Mattus, Catherine H.; Collins, Emory D.

    2005-01-01

    Processing of TRISO-coated HTGR fuels with the grind-leach process requires that the fuel be finely pulverized for efficient and effective acid dissolution of the fuel components. Mechanical size reduction of the fuel is being investigated with jet mill technology as the final milling step. Laboratory experiments were performed with surrogates of crushed fuel compacts that indicate that milling to very small particle sizes is feasible. The size distribution of the milled product is sensitive to the solids feed rate, and the distribution may be bimodal which could support an effective solid-solid separation. (author)

  15. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Guo, Chunxiu; Ma, Hongrui; Li, Jiazhu; Zhou, Tao; Cao, Ling; Kang, Duozhi

    2018-05-01

    It is significant to recover metal values from spent lithium ion batteries (LIBs) for the alleviation or prevention of potential risks towards environmental pollution and public health, as well as for the conservation of valuable metals. Herein a hydrometallurgical process was proposed to explore the possibility for the leaching of different metals from waste cathodic materials (LiCoO 2 ) of spent LIBs using organics as reductant in sulfuric acid medium. According to the leaching results, about 98% Co and 96% Li can be leached under the optimal experimental conditions of reaction temperature - 95 °C, reaction time - 120 min, reductive agent dosage - 0.4 g/g, slurry density - 25 g/L, concentration of sulfuric acid-3 mol/L in H 2 SO 4  + glucose leaching system. Similar results (96% Co and 100% Li) can be obtained in H 2 SO 4  + sucrose leaching system under optimized leaching conditions. Despite a complete leaching of Li (∼100%), only 54% Co can be dissolved in the H 2 SO 4  + cellulose leaching system under optimized leaching conditions. Finally, different characterization methods, including UV-Vis, FT-IR, SEM and XRD, were employed for the tentative exploration of reductive leaching reactions using organic as reductant in sulfuric acid medium. All the leaching and characterization results confirm that both glucose and sucrose are effective reductants during leaching, while cellulose should be further degraded to organics with low molecular weights to achieve a satisfactory leaching performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

  17. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference

  18. Basis for the optimum process parameters in the fermentation of hydrolyzates and spent sulfite liquors

    Energy Technology Data Exchange (ETDEWEB)

    Raitseva, M K

    1964-01-01

    Data are presented on technical processes used in hydrolysis plants, and on the carbohydrate compound of the most typical samples of softwood hydrolyzates. The operation of the fermentation equipment and the product quality depend on the dilution factor. Data are also given on the continuous fermentation of sugar into alcohol and on its dependence on the dilution factor.

  19. Metal leaching from refinery waste hydroprocessing catalyst.

    Science.gov (United States)

    Marafi, Meena; Rana, Mohan S

    2018-05-18

    The present study aims to develop an eco-friendly methodology for the recovery of nickel (Ni), molybdenum (Mo), and vanadium (V) from the refinery waste spent hydroprocessing catalyst. The proposed process has two stages: the first stage is to separate alumina, while the second stage involves the separation of metal compounds. The effectiveness of leaching agents, such as NH 4 OH, (NH 4 ) 2 CO 3 , and (NH 4 ) 2 S 2 O 8 , for the extraction of Mo, V, Ni, and Al from the refinery spent catalyst has been reported as a function of reagent concentration (0.5 to 2.0 molar), leaching time (1 to 6 h), and temperature (35 to 60°C). The optimal leaching conditions were achieved to obtain the maximum recovery of Mo, Ni, and V metals. The effect of the mixture of multi-ammonium salts on the metal extraction was also studied, which showed an adverse effect for Ni and V, while marginal improvement was observed for Mo leaching. The ammonium salts can form soluble metal complexes, in which stability or solubility depends on the nature of ammonium salt and the reaction conditions. The extracted metals and support can be reused to synthesize a fresh hydroprocessing catalyst. The process will reduce the refinery waste and recover the expensive metals. Therefore, the process is not only important from an environmental point of view but also vital from an economic perspective.

  20. Process intensification by combination of activated carbon supported catalysts and alternative energy sources

    OpenAIRE

    Calvino Casilda, Vanesa; Pérez-Mayoral, E.

    2014-01-01

    [EN] Activated carbons are well known for their catalytic properties and for being used as a catalyst support in heterogeneous catalysis. Activated carbons possess most of the desired properties of a catalyst support; inertness towards unwanted reactions, stability under regeneration and reaction conditions, suitable mechanical properties, tunable surface area, porosity, and the possibility of being manufactured in different size and shape. On the other hand, the in...

  1. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  2. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  3. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2006-09-28

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

  4. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    International Nuclear Information System (INIS)

    DUNCAN JB

    2006-01-01

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination

  5. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.

    Science.gov (United States)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong; Tian, Qinghua; Sun, Hongyu

    2017-08-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na 2 CO 3 and Na 3 PO 4 as precipitants, lithium is recovered as raw Li 2 CO 3 and pure Li 3 PO 4 , respectively. Under the best reaction condition (both the amounts of Na 2 CO 3 and Li 3 PO 4 vs. the theoretical ones are about 1.1), the corresponding recovery rates of lithium (calculated based on the concentration of the previous stage) are 74.72% and 92.21%, respectively. The raw Li 2 CO 3 containing the impurity of Na 2 CO 3 is used to prepare LiMn 2 O 4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na 2 CO 3 in raw Li 2 CO 3 is controlled less than 10%, the Mn corrosion percentage of LiMn 2 O 4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g -1 . The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li 2 CO 3 in the field of lithium ion sieve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.

    Science.gov (United States)

    Gao, Wenfang; Zhang, Xihua; Zheng, Xiaohong; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-07

    A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H 2 O 2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li 2 CO 3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.

  7. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling

    DEFF Research Database (Denmark)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong

    2017-01-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na2CO3 and Na3PO4 as precipitants, lithium is recovered as raw Li2CO3 and pure Li3PO4...... of Na2CO3 is used to prepare LiMn2O4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na2CO3 in raw Li2CO3 is controlled less than 10%, the Mn corrosion percentage of LiMn2......O4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g-1. The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li2CO3 in the field of lithium ion sieve....

  8. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the

  9. Process for manufacture of a catalyst suitable for the steam reforming of hydrocarbons and for obtaining methane

    Energy Technology Data Exchange (ETDEWEB)

    Golebiowski, A.; Romotowski, T.; Hennel, W.; Wroblewska-Wroblewska, T.; Polanski, A.; Janecki, Z.; Paluch-Paluch, S.

    1982-07-29

    The invention concerns a process for the manufacture of a catalyst suitable for the steam reforming of hydrocarbons or for obtaining methane, by the deposition of the catalytic components on a metal carrier with a large surface area, particularly a process for the manufacture of a solid nickel catalyst, which is suitable for the steam reforming of hydrocarbons, particularly of methane. The following steps of the process are carried out: producing a highly porous layer of spongy metal from Ni powder on the side of a metal wall away from a heat medium, which separates the reaction mixture from the heat medium, then separate application of a non-reducing oxide (Al/sub 2/O/sub 3/) and a reducing oxide (nickel oxide) on the spongy metal by soaking with metal salt solution and then roasting in the temperature range of 400 to 1200/sup 0/C.

  10. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy

    NARCIS (Netherlands)

    Goetze, Joris; Yarulina, I.; Gascon Sabate, J.; Kapteijn, F.; Weckhuysen, Bert M.

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose

  11. A Single-step Process to Convert Karanja Oil to Fatty Acid Methyl Esters Using Amberlyst15 as a Catalyst

    Directory of Open Access Journals (Sweden)

    Arun K. Gupta

    2018-03-01

    Full Text Available Karanja oil was successfully converted to fatty acid methyl esters (FAME in a single- step process using Amberlyst15 as a catalyst. A methanol to oil ratio of 6 was required to retain the physical structure of the Amberlyst15 catalyst. At higher methanol to oil ratios, the Amberlyst15 catalyst disintegrated. Disintegration of Amberlyst15 caused an irreversible loss in catalytic activity. This loss in activity was due to a decrease in surface area of Amberlyst15, which was caused by a decrease in its mesoporous volume. It appeared that the chemical nature of Amberlyst15 was unaffected. Reuse of Amberlyst15 with a methanol to oil ratio of 6:1 also revealed a loss in FAME yield. However, this loss in activity was recovered by heating the used Amberlyst15 catalyst to 393 K. The kinetic parameters of a power law model were successfully determined for a methanol to oil ratio of 6:1. An activation energy of 54.9 kJ mol–1 was obtained.

  12. Influence of process variables on the continuous alkylation of isobutane with 2-butene on superacid sulfated zirconia catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Corma, A.; Martinez, A.; Martinez, C. [Instituto de Tecnologia Quimica, Valencia (Spain)

    1994-09-01

    Two sulfated zirconia catalysts have been prepared by impregnation of zirconium hydroxide with H{sub 2}SO{sub 4} 0.3 N and 1 N. Both samples showed superacid sites as shown by a desorption temperature peak in the NH{sub 3} TPD at ca. 813 K. The activity and selectivity of these catalysts have been studied for the alkylation of isobutane with trans-2 butene in a computer-controlled continuous fixed bed reactor coupled with a sampling system which allows to make differential analysis of the products from very short reaction times. In this way, the influence of the main process variables, i.e, time on stream, reaction temperature, olefin WHSV, and isoparaffin/olefin ratio, on the 2-butene conversation and product distribution has been investigated. Cracking of larger carbocations and alkylation of isobutane with 2-butene to give trimethylpentanes were the predominant reactions occurring on the superacid catalyst in the initial stages of the reaction. The alkylation/cracking ratio increased when decreasing reaction temperature. A fast catalyst decay with time on stream was also observed, and this was accompanied by an increase in the oligomerization of butene. 23 refs., 5 figs., 4 tabs.

  13. THE USE OF TIO2-ZEOLIT AS A CATALYST ON THE DEGRADATION PROCESS OF ERIONIL RED DYE

    Directory of Open Access Journals (Sweden)

    Agustin Sumartono

    2010-06-01

    Full Text Available Degradation of erionil red dye using photo catalytic processes with TiO2-zeolit as a catalyst was carried out. Degradation of the dye was observed in 10 L volume, and erionil red dye was used as a model of organic pollutant. The parameters examinated were  intensity of the spectrum, the decrease of pH, percentage of degradation, and the efectifity TiO2-zeolit  as a catalyst. The use of UV lamp and TiO2-zeolit as a catalyst showed a good results because the dye could be degraded. This could be seen from the decreasing of the intensity of the spectrum  24 h after illumination. The pH of erionil red increased from around 4 into 5.5 which is still acidic. Effectivity of TiO2 composit as a catalyst could be used only two times. The compound resulted from degradation that could be detected using HPLC was oxalic acid.   Keywords: dye, erionil red, photocatalytic, TiO2

  14. Strategy for verification and demonstration of the sealing process for canisters for spent fuel

    International Nuclear Information System (INIS)

    Mueller, Christina; Oeberg, Tomas

    2004-08-01

    Electron beam welding and friction stir welding are the two processes now being considered for sealing copper canisters with Sweden's radioactive waste. This report outlines a strategy for verification and demonstration of the encapsulation process which here is considered to consist of the sealing of the canister by welding followed by quality control of the weld by non-destructive testing. Statistical methodology provides a firm basis for modern quality technology and design of experiments has been successful part of it. Factorial and fractional factorial designs can be used to evaluate main process factors and their interactions. Response surface methodology with multilevel designs enables further optimisation. Empirical polynomial models can through Taylor series expansions approximate the true underlying relationships sufficiently well. The fitting of response measurements is based on ordinary least squares regression or generalised linear methods. Unusual events, like failures in the lid welds, are best described with extreme value statistics and the extreme value paradigm give a rationale for extrapolation. Models based on block maxima (the generalised extreme value distribution) and peaks over threshold (the generalised Pareto distribution) are considered. Experiences from other fields of the materials sciences suggest that both of these approaches are useful. The initial verification experiments of the two welding technologies considered are suggested to proceed by experimental plans that can be accomplished with only four complete lid welds each. Similar experimental arrangements can be used to evaluate process 'robustness' and optimisation of the process window. Two series of twenty demonstration trials each, mimicking assembly-line production, are suggested as a final evaluation before the selection of welding technology. This demonstration is also expected to provide a data base suitable for a baseline estimate of future performance. This estimate can

  15. Strategy for verification and demonstration of the sealing process for canisters for spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Christina [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Oeberg, Tomas [Tomas Oeberg Konsult AB, Lyckeby (Sweden)

    2004-08-01

    Electron beam welding and friction stir welding are the two processes now being considered for sealing copper canisters with Sweden's radioactive waste. This report outlines a strategy for verification and demonstration of the encapsulation process which here is considered to consist of the sealing of the canister by welding followed by quality control of the weld by non-destructive testing. Statistical methodology provides a firm basis for modern quality technology and design of experiments has been successful part of it. Factorial and fractional factorial designs can be used to evaluate main process factors and their interactions. Response surface methodology with multilevel designs enables further optimisation. Empirical polynomial models can through Taylor series expansions approximate the true underlying relationships sufficiently well. The fitting of response measurements is based on ordinary least squares regression or generalised linear methods. Unusual events, like failures in the lid welds, are best described with extreme value statistics and the extreme value paradigm give a rationale for extrapolation. Models based on block maxima (the generalised extreme value distribution) and peaks over threshold (the generalised Pareto distribution) are considered. Experiences from other fields of the materials sciences suggest that both of these approaches are useful. The initial verification experiments of the two welding technologies considered are suggested to proceed by experimental plans that can be accomplished with only four complete lid welds each. Similar experimental arrangements can be used to evaluate process 'robustness' and optimisation of the process window. Two series of twenty demonstration trials each, mimicking assembly-line production, are suggested as a final evaluation before the selection of welding technology. This demonstration is also expected to provide a data base suitable for a baseline estimate of future performance

  16. Strategy for verification and demonstration of the sealing process for canisters for spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Christina [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Oeberg, Tomas [Tomas Oeberg Konsult AB, Lyckeby (Sweden)

    2004-08-01

    Electron beam welding and friction stir welding are the two processes now being considered for sealing copper canisters with Sweden's radioactive waste. This report outlines a strategy for verification and demonstration of the encapsulation process which here is considered to consist of the sealing of the canister by welding followed by quality control of the weld by non-destructive testing. Statistical methodology provides a firm basis for modern quality technology and design of experiments has been successful part of it. Factorial and fractional factorial designs can be used to evaluate main process factors and their interactions. Response surface methodology with multilevel designs enables further optimisation. Empirical polynomial models can through Taylor series expansions approximate the true underlying relationships sufficiently well. The fitting of response measurements is based on ordinary least squares regression or generalised linear methods. Unusual events, like failures in the lid welds, are best described with extreme value statistics and the extreme value paradigm give a rationale for extrapolation. Models based on block maxima (the generalised extreme value distribution) and peaks over threshold (the generalised Pareto distribution) are considered. Experiences from other fields of the materials sciences suggest that both of these approaches are useful. The initial verification experiments of the two welding technologies considered are suggested to proceed by experimental plans that can be accomplished with only four complete lid welds each. Similar experimental arrangements can be used to evaluate process 'robustness' and optimisation of the process window. Two series of twenty demonstration trials each, mimicking assembly-line production, are suggested as a final evaluation before the selection of welding technology. This demonstration is also expected to provide a data base suitable for a baseline estimate of future performance. This estimate can

  17. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1987-01-01

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author) [pt

  18. Evaluation of helium impurity impacts on Spent Nuclear Fuel project processes (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    SHERRELL, D.L.

    1999-09-21

    This document identifies the types and quantities of impurities that may be present within helium that is introduced into multi-canister overpacks (MCO)s by various SNF Project facilities, including, but not limited to the Cold Vacuum Drying (CVD) Facility (CVDF). It then evaluates possible impacts of worst case impurity inventories on MCO drying, transportation, and storage processes. Based on the evaluation results, this document: (1) concludes that the SNF Project helium procurement specification can be a factor-of-ten less restrictive than a typical vendor's standard offering (99.96% pure versus the vendor's 99.997% pure standard offering); (2) concludes that the CVDF's current 99.5% purity requirement is adequate to control the quality of the helium that is delivered to the MCO by the plant's helium distribution system; and (3) recommends specific impurity limits for both of the above cases.

  19. Evaluation of helium impurity impacts on Spent Nuclear Fuel project processes (OCRWM)

    International Nuclear Information System (INIS)

    SHERRELL, D.L.

    1999-01-01

    This document identifies the types and quantities of impurities that may be present within helium that is introduced into multi-canister overpacks (MCO)s by various SNF Project facilities, including, but not limited to the Cold Vacuum Drying (CVD) Facility (CVDF). It then evaluates possible impacts of worst case impurity inventories on MCO drying, transportation, and storage processes. Based on the evaluation results, this document: (1) concludes that the SNF Project helium procurement specification can be a factor-of-ten less restrictive than a typical vendor's standard offering (99.96% pure versus the vendor's 99.997% pure standard offering); (2) concludes that the CVDF's current 99.5% purity requirement is adequate to control the quality of the helium that is delivered to the MCO by the plant's helium distribution system; and (3) recommends specific impurity limits for both of the above cases

  20. Reprocessing of spent plasma

    International Nuclear Information System (INIS)

    Pierini, G.

    1981-01-01

    This invention relates to a process for removing helium and other impurities from a mixture containing deuterium and tritium, a deuterium/tritium mixture when purified in accordance with such a process and, more particularly, to a process for the reprocessing of spent plasma removed from a thermofusion reactor. (U.K.)

  1. Encyclopaedia of Features, Events and Processes (FEPs) for the Swedish SFR and Spent Fuel Repositories. Preliminary Version

    International Nuclear Information System (INIS)

    Miller, Bill; Savage, Dave; McEwen, Tim; White, Matt

    2002-08-01

    This is an 'Encyclopaedia' providing descriptions of Features, Events and Processes (FEPs) that are relevant to the Swedish repository for low and intermediate-level wastes (the SFR) and the proposed Swedish repository for spent fuel. Although the FEPs and their descriptions found in this encyclopaedia are specific to these two repository concepts, many of the descriptions will also be relevant to other repository designs and concepts, although they have not been written to be inclusive of the features of other repositories. As such, this encyclopaedia may be of interest to a wide range of individuals and organisations involved in repository safety assessment around the world. The purpose of this encyclopaedia is to describe, in qualitative terms, the various FEPs which have been identified as being relevant to the two Swedish repository designs. These descriptions may be used in a variety of ways. One important role will be to support quantitative performance assessments (PAs) by describing the conceptual understanding of the various components of the repository (e.g. the barriers, the rock and the groundwater) and their evolution: this conceptual understanding is crucial because it is the foundation upon which the mathematical analysis is based. The descriptions have been written at a level of detail appropriate for a scientifically literate reader without specialist knowledge of radioactive waste disposal technology or assessment procedures. As such, the descriptions avoid the use of specialist terms, acronyms and equations. Many of the FEP descriptions relate to issues which are the focus of ongoing research and, thus, they reflect the current state of knowledge and may require updating at regular intervals, either to include more recent technical information or procedures for treating the FEP in mathematical safety assessment. When attempting to predict the future behaviour of a repository for radioactive wastes, it is sensible to use a systematic approach to

  2. Encyclopaedia of Features, Events and Processes (FEPs) for the Swedish SFR and Spent Fuel Repositories. Preliminary Version

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bill; Savage, Dave; McEwen, Tim; White, Matt [QuantiSci Ltd, Melton Mowbray (United Kingdom)

    2002-08-01

    This is an 'Encyclopaedia' providing descriptions of Features, Events and Processes (FEPs) that are relevant to the Swedish repository for low and intermediate-level wastes (the SFR) and the proposed Swedish repository for spent fuel. Although the FEPs and their descriptions found in this encyclopaedia are specific to these two repository concepts, many of the descriptions will also be relevant to other repository designs and concepts, although they have not been written to be inclusive of the features of other repositories. As such, this encyclopaedia may be of interest to a wide range of individuals and organisations involved in repository safety assessment around the world. The purpose of this encyclopaedia is to describe, in qualitative terms, the various FEPs which have been identified as being relevant to the two Swedish repository designs. These descriptions may be used in a variety of ways. One important role will be to support quantitative performance assessments (PAs) by describing the conceptual understanding of the various components of the repository (e.g. the barriers, the rock and the groundwater) and their evolution: this conceptual understanding is crucial because it is the foundation upon which the mathematical analysis is based. The descriptions have been written at a level of detail appropriate for a scientifically literate reader without specialist knowledge of radioactive waste disposal technology or assessment procedures. As such, the descriptions avoid the use of specialist terms, acronyms and equations. Many of the FEP descriptions relate to issues which are the focus of ongoing research and, thus, they reflect the current state of knowledge and may require updating at regular intervals, either to include more recent technical information or procedures for treating the FEP in mathematical safety assessment. When attempting to predict the future behaviour of a repository for radioactive wastes, it is sensible to use a systematic

  3. Hydrometallurgical Processing and Recovery of Nickel from Spent Cathode Ray Tubes

    Directory of Open Access Journals (Sweden)

    Coman V.

    2013-04-01

    Full Text Available Scientific and technological progress required for more and more advanced electrical and electronic equipment (EEE. Therefore, EEE manufacturing became one of the most important world activities, generating at the same time huge amounts of waste. In the last decades the accumulation of waste electrical and electronic equipment (WEEE has become a global problem (Widmer et al., 2005; Babu et al., 2007; Robinson, 2009. These wastes are a threat for the environment due to their high content of toxic materials and, at the same time, they are an important source of recyclable materials, and especially valuable metals (e.g. Au, Ag, Pd, Cu, Ni, Zn. Nowadays there are various approaches for the treatment and recycling of WEEE, involving pyro-, hydro- and bio-metallurgical processes (Cui and Zhang, 2008. Among WEEE, cathode ray tubes (CRT displays, used mainly in computer monitors and television sets, are regarded as the most polluting fraction of all WEEE (Nnorom et al., 2011. CRT recycling represents a challenge due to their high accumulation rate, proportional to the evolution of modern technologies (flat panel displays, their high content of toxic and noxious substances (heavy metals and organic compounds, improper storage, and the lack of a complete, pollution-free recycling solution. Previous studies have shown that some CRT metallic components (electron gun - EG, shadow mask contain important amounts of Ni (25 – 45% and Fe (50 – 70%, and small quantities of Mn, Co and Cr (Robotin et al., 2011. Ni and Ni alloys play an important role in modern technology, especially due to their magnetic and anticorrosion properties. Unfortunately, when exposed inappropriately, Ni can have negative environmental effects and can be harmful to human health (Denkhaus and Salnikow, 2002. In this context, Ni recycling from electronic waste is important for environmental and health reasons, and, at the same time, Ni recycling could be financially sustainable due to an

  4. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process.

    Science.gov (United States)

    Kante, Karifala; Nieto-Delgado, Cesar; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2012-01-30

    Activated carbons were prepared from spent ground coffee. Zinc chloride was used as an activation agent. The obtained materials were used as a media for separation of hydrogen sulfide from air at ambient conditions. The materials were characterized using adsorption of nitrogen, elemental analysis, SEM, FTIR, and thermal analysis. Surface features of the carbons depend on the amount of an activation agent used. Even though the residual inorganic matter takes part in the H(2)S retention via salt formation, the porous surface of carbons governs the separation process. The chemical activation method chosen resulted in formation of large volume of pores with sizes between 10 and 30Å, optimal for water and hydrogen sulfide adsorption. Even though the activation process can be optimized/changed, the presence of nitrogen in the precursor (caffeine) is a significant asset of that specific organic waste. Nitrogen functional groups play a catalytic role in hydrogen sulfide oxidation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.

    Science.gov (United States)

    Chen, Xiangping; Zhou, Tao

    2014-11-01

    In this paper, a hydrometallurgical process has been proposed to recover valuable metals from spent lithium-ion batteries in citric acid media. Leaching efficiencies as high as 97%, 95%, 94%, and 99% of Ni, Co, Mn, and Li were achieved under the optimal leaching experimental conditions of citric acid concentration of 2 mol L(-1), leaching temperature of 80 °C, leaching time of 90 min, liquid-solid ratio of 30 ml g(-1), and 2 vol. % H2O2. For the metals recovery process, nickel and cobalt were selectively precipitated by dimethylglyoxime reagent and ammonium oxalate sequentially. Then manganese was extracted by Na-D2EHPA and the manganese-loaded D2EHPA was stripped with sulfuric acid. The manganese was recovered as MnSO4 in aqueous phase and D2EHPA could be reused after saponification. Finally, lithium was precipitated by 0.5 mol L(-1) sodium phosphate. Under their optimal conditions, the recovery percentages of Ni, Co, Mn, and Li can reach 98%, 97%, 98%, and 89%, respectively. This is a relatively simple route in which all metal values could be effectively leached and recovered in citric acid media. © The Author(s) 2014.

  6. Development and application of special instrumentation for materials accountancy and process control in spent fuel recycle plants

    International Nuclear Information System (INIS)

    Clark, P.A.; Gardner, N.; Merrill, N.H.; Whitehouse, K.R.

    1996-01-01

    Safe and optimum operations of spent fuel recycle plants rely on the availability of real time measurement systems at key points in the process. More than thirty types of special instrument systems have been developed and commissioned on the THORP reprocessing plant at Sellafield. These systems are compiled together with the associated information on measurement purpose, measurement technique and plant performance. A number of these measurement systems are of interest to support Safeguards arrangements on the plant. A more detailed overview of two such instrument systems respectively within the Head End and Product Finishing Stages of THORP is provided. The first of these is the Hulls Monitor, based on high resolution gamma spectrometry, as well as active and passive neutron measurements, of the basket of leached fuel cladding. This provides vital data for criticality assurance, nuclear material accountancy and inventory determination for ultimate disposal of the cladding waste. The second system is the Plutonium Inventory Monitoring System (PIMS) which employs passive neutron counting from a distributed array of neutron detectors within the Pu Finishing Line. This provides a near real time estimate of Pu inventories both during operations and at clean out of the Finishing Line. Both the Hulls Monitor and PIMS technologies are applicable to MOX Fuel recycle. Both systems enhance the control of fissile material in key areas of the recycle process which are of interest to the Safeguards authorities. (author)

  7. Separation and Recycling of Spent Carbon Cathode Blocks in the Aluminum Industry by the Vacuum Distillation Process

    Science.gov (United States)

    Yaowu, Wang; Jianping, Peng; Yuezhong, Di

    2018-04-01

    Aluminum is the second most produced metal after iron. China is the top producer of primary aluminum with a production capacity of 41,000 kt and an output in 2016 of 32,000 kt. A large amount of spent carbon cathode block (SCCB) is produced after electrolytic pot failure. SCCB consists of carbon, fluorides, alkali metals, carbides, nitrides, cyanides, and oxides, and is considered to be a hazardous material because it contains significant concentrations of toxic and soluble cyanides and fluorides. There is no economical and efficient process for the treatment of SCCB and is most commonly disposed in landfill. In this study, the vacuum distillation process (VDP) has been used to separate and recycle SCCB. The results show that Na3AlF6, NaF, and sodium metal can be effectively separated from SCCB by VDP, and the distillation ratio is above 80% at a distillation temperature of 1200°C. The carbon content in the distilled SCCB is above 91% and the impurities are mainly CaF2 and Al2O3.

  8. Mathematical modeling of processes of acetoxysilane of ethylene in the domestic catalyst

    Directory of Open Access Journals (Sweden)

    D. V. Arapov

    2018-01-01

    Full Text Available Vinyl acetate monomer (VA serves for the production of polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, copolymers with ethylene and propylene. The world production of vinyl acetate is more than 4 million tons per year. At the present stage of industrial development, vinyl acetate is mainly produced by the catalytic synthesis of ethylene, acetic acid (OC and oxygen in a ratio of approximately 8:4:1. The conversion rate for one pass is 8 %; 18 %; 45 %. The selectivity for vinyl acetate is 91-92%. The main by-product is carbon dioxide, ethyl acetate, ethylidene diacetate – all not more than 1%. Because of its extreme fire and explosiveness, the process is relatively small. There are approximately 30 such installations in the world. In the Russian Federation, there is only one such production with a capacity of 50,000 tons per year for vinyl acetate (Lukoil, Stavrolen, which was purchased in 1975 under the license of Bayer FRG. To exclude dependence on expensive import supplies, it is important to switch this production to a domestic catalyst or produced in the CIS countries. In this connection, the authors carried out structural and parametric identification and obtained experimental data. In this paper, we present the results of the experiments performed, namely, a dynamic mathematical model for the rate of formation of the target viniacetate (activity and the secondary-carbon dioxide (DU of products, which has a fractional-nonlinear structure. It was assumed that the reaction of obtaining the VA proceeds according to the first order, and the formation of the DM is one-and-a-half. To use the model in managing a real production process, parametric identification of the most significant regression coefficients is required.

  9. A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system.

    Science.gov (United States)

    Deng, Aojie; Lin, Qixuan; Yan, Yuhuan; Li, Huiling; Ren, Junli; Liu, Chuanfu; Sun, Runcang

    2016-09-01

    A feasible approach was developed to produce furfural from the pre-hydrolysis liquor of corncob via biochar catalysts as the solid acid catalyst in a new biphasic system with dichloromethane (DCM) as the organic phase and the concentrated pre-hydrolysis liquor (CPHL) containing NaCl as the aqueous phase. The biochar catalyst possessing many acidity groups (SO3H, COOH and phenolic OH groups) was prepared by the carbonization and sulfonation process of the corncob hydrolyzed residue. The influence of the catalytic condition on furfural yield and selectivity was comparatively studied. It was found that 81.14% furfural yield and 83.0% furfural selectivity were obtained from CPHL containing 5wt% xylose using this biochar catalyst in the CPHL-NaCl/DCM biphasic system at 170°C for 60min. In addition, with the regeneration process, this catalyst displayed the high performance and excellent recyclability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of electroremediation application in the structure and contaminants of spent catalytics: Evaluation using NMR, EPR, DRX and XRF; Efeito da aplicacao da eletrorremediacao na estrutura e nos contaminantes de catalisador desativado: avaliacao por tecnicas de RMN, RPE, DRX e FRX

    Energy Technology Data Exchange (ETDEWEB)

    Leonel, R.F.; Valt, R.B.G.; Godoi, L.; Ponte, M.J.J.S.; Ponte, H.A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico

    2015-07-01

    The electrokinetic remediation process, through the application of electric potential and different electrolytes, aimed at mobilizing and removing contaminant metals in spent catalytic cracking catalysts. In this study, FCC spent catalysts were studied after the remediation process with three different electrolytes (solutions of sodium citrate, sulfuric acid or citric acid). The techniques of XRD, XRF, NMR and EPR were used in order to evaluate the changes. The results indicated that the electrokinetic remediation tends to reorganize the internal structure of the catalyst, recovering part of the crystallinity and removing a percentage of the contaminants. (author)

  11. On-Line Monitoring for Process Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plants

    International Nuclear Information System (INIS)

    Bryan, S.; Levitskaia, T.; Casella, A.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has established international safe- guards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and re- source burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using ultra-violet and visible, near infrared and Raman spectroscopy. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid solvent extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion, and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating with the PUREX flowsheet. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of

  12. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  13. The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process

    International Nuclear Information System (INIS)

    Widayat; Roesyadi, A.; Rachimoellah, M.

    2009-01-01

    Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m 2 /gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation both as feed. The operation condition is 150 deg. C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

  14. Carbon material@Chitosan composite as catalyst on the synthesis of FAME from used-cooking oil with electrocatalytic process

    Science.gov (United States)

    Syah Putra, Rudy; Antono, Yudi; Pratama, Kharis

    2017-07-01

    The conversion of fatty acid methyl ester (FAME) from soybean oil with a carbon@chitosan composite as alkaline catalyst using electrolysis process had been investigated. The carbon was added onto chitosan through sol-gel method. Carbon material@chitosan, featured with high electrical conductivity and large surface area and Scanning electron microscopy equipped with an energy dispersive spectroscope (EDS) detector was performed to characterize the microstructures as-prepared alcolgels composite. The evaluation of the synthesis process was followed by GC-MS, determining the fatty acid methyl ester (FAME) ratio at different operation variables (e.g oil:MeOH molar ratio at 1:6, THF:MeOH ratio at 1:1 v/v, 10 V and 60 mins). The results showed that the incorporation of carbon resulted in an observable change in the porous structure and an obvious increase in the conductivity strength. When compared with graphite@chitosan composite as catalyst, the carbon@chitosan composite exhibits remarkably FAME yields of 100% in 20 wt.% catalyst loading. The application of those processes was also evaluated when using used-cooking oil as a feedstock of biodiesel production.

  15. BBD Optimization of K-ZnO Catalyst Modification Process for Heterogeneous Transesterification of Rice Bran Oil to Biodiesel

    Science.gov (United States)

    Kabo, K. S.; Yacob, A. R.; Bakar, W. A. W. A.; Buang, N. A.; Bello, A. M.; Ruskam, A.

    2016-07-01

    Environmentally benign zinc oxide (ZnO) was modified with 0-15% (wt.) potassium through wet impregnation and used in transesterification of rice bran oil (RBO) to form biodiesel. The catalyst was characterized by X-Ray powder Diffraction (XRD), its basic sites determined by back titration and Response Surface Methodology (RSM) Box-Behnken Design (BBD) was used to optimize the modification process variables on the basic sites of the catalyst. The transesterification product, biodiesel was analyzed by Nuclear Magnetic Resonance (NMR) spectroscopy. The result reveals K-modified ZnO with highly increased basic sites. Quadratic model with high regression R2 = 0.9995 was obtained from the ANOVA of modification process, optimization at maximum basic sites criterion gave optimum modification conditions of K-loading = 8.5% (wt.), calcination temperature = 480 oC and time = 4 hours with response and basic sites = 8.14 mmol/g which is in close agreement with the experimental value of 7.64 mmol/g. The catalyst was used and a value of 95.53% biodiesel conversion was obtained and effect of potassium leaching was not significant in the process

  16. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  17. Development of CuxFe/Al2O3 catalysts for the hydrogenation of carbon monoxide guided by magnetic methods, Moessbauer and infrared spectroscopy

    International Nuclear Information System (INIS)

    Boellaard, E.; Geus, J.W.; Bruggen, J.M. van; Kraan, A.M. van der

    1993-01-01

    A copper-iron catalyst for the hydrogenation of carbon monoxide has been prepared using a supported stoichiometric cyanide complex. Conversion of the cyanide precursor to a metallic catalyst appeared to be a precious process. Copper and iron in the bimetallic particles easily separate by thermal treatment and upon exposure to carbon monoxide, as revealed from Moessbauer and infrared spectroscopy. During Fischer-Tropsch reaction the catalyst exhibits a rapid decline of activity. Magnetisation measurements on spent catalysts indicate that the deactivation is caused by a fast conversion of metallic iron to initially unstable carbides which transform ultimately to more stable carbides. (orig.)

  18. Review and comment on the advanced spent fuel management process (1): Technical aspects and non-proliferation concerns

    International Nuclear Information System (INIS)

    Song, Yo Taik

    2001-01-01

    Efforts are made to analyze the project, the Advanced Spent Fuel Management Technology (ASFMT), which is currently carried out at Korea Atomic Energy Research Institute, on the technical feasibility and validity as well as on the nuclear non-proliferation concerns. The project is a part of a program under the 'Long and Midterm Nuclear Development Program'. On the technical analysis, reviewed the papers presented at the national and international meetings on the subject by KAERI staffs, and also participated to various technical discussions on the 'Mock-up Test', currently in progress. On the non-proliferation concerns, the ASFMT project was reviewed and analyzed in reference to various programs currently in progress or in a formulation stages in US, such as the DOE TOPS and ATW. Further reviewed the past JASNEC process and programs for possible application of the ASFMT project for JASNEC project. Provided a few thoughts for effectively carrying out the ASFMT project, and a plan for the next phase is presented

  19. Review and comment on the advanced spent fuel management process (1): Technical aspects and non-proliferation concerns

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yo Taik

    2001-01-01

    Efforts are made to analyze the project, the Advanced Spent Fuel Management Technology (ASFMT), which is currently carried out at Korea Atomic Energy Research Institute, on the technical feasibility and validity as well as on the nuclear non-proliferation concerns. The project is a part of a program under the 'Long and Midterm Nuclear Development Program'. On the technical analysis, reviewed the papers presented at the national and international meetings on the subject by KAERI staffs, and also participated to various technical discussions on the 'Mock-up Test', currently in progress. On the non-proliferation concerns, the ASFMT project was reviewed and analyzed in reference to various programs currently in progress or in a formulation stages in US, such as the DOE TOPS and ATW. Further reviewed the past JASNEC process and programs for possible application of the ASFMT project for JASNEC project. Provided a few thoughts for effectively carrying out the ASFMT project, and a plan for the next phase is presented.

  20. Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Haithem Bel Hadjltaief

    2018-06-01

    Full Text Available This paper describes a simple and low-cost process for the degradation of 4-Chlorophenol (4-CP from aqueous solution, using natural Tunisian Hematite (M1 and Siderite (M2. Two natural samples were collected in the outcroppings of the Djerissa mining site (Kef district, northwestern Tunisia. Both Hematite and Siderite ferrous samples were characterized using several techniques, including X-Ray Diffraction (XRD, Nitrogen Physisorption (BET, Infrared Spectroscopy (FTIR, H2-Temperature Programmed Reduction (H2-TPR, Scanning Electronic Microscopy (SEM linked with Energy Dispersive X-ray (EDS and High-Resolution Transmission Electron Microscopy (HRTEM. Textural, structural and chemical characterization confirmed the presence of Hematite and Siderite phases with a high amount of iron on the both surface materials. Their activity was evaluated in the oxidation of 4-CP in aqueous medium under heterogeneous photo-Fenton process. Siderite exhibited higher photocatalytic oxidation activity than Hematite at pH 3. The experimental results also showed that 100% conversion of 4-CP and 54% TOC removal can be achieved using Siderite as catalyst. Negligible metal leaching and catalyst reutilization without any loss of activity point towards an excellent catalytic stability for both natural catalysts.

  1. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  2. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  3. PROCESS FOR HYDROGENOLYSIS OF ALPHA-HYDROXY ESTERS OR ACIDS USING A HETEROGENEOUS CATALYST

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for hydrogenolysis of alpha-hydroxy esters or acids, comprising reacting the alpha-hydroxy ester or acid in the presence of a heterogeneous catalyst. The present invention also relates to a method for producing propionic acid ester, and the use of any...

  4. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  5. PMO-immobilized Au(I)-NHC complexes: Heterogeneous catalysts for sustainable processes

    KAUST Repository

    van der Voort, Pascal; De Canck, Els; Nahra, Fady; Bevernaege, Kevin; Vanden Broeck, Sofie; Ouwehand, Judith; Maes, Diederick; Nolan, Steven P.

    2017-01-01

    species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active

  6. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    International Nuclear Information System (INIS)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas; Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc; Grassi, Gabriele

    2015-01-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the 137 Cs and 134 Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a 137 Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional 3 He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  7. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    Energy Technology Data Exchange (ETDEWEB)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc [AREVA NC, La Hague plant - Nuclear Measurement Team, F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  8. Recent advances in the development of a cobalt dicarbollide based solvent extraction process for the separation of Cs and Sr from spent fuel

    International Nuclear Information System (INIS)

    Law, Jack D.; Todd, Terry A.; Peterman, D.R.; Herbst, R.S.; Tillotson, R.D.

    2004-01-01

    As part of the Advanced Fuel Cycle Initiative (AFCI), a chlorinated cobalt dicarbollide (CCD)/polyethylene glycol (PEG) based solvent extraction process is being developed for the separation of Cs and Sr from leached spent light water reactor (LWR) fuel. The separation of Cs and Sr would significantly reduce the short-term heat generation of spent nuclear fuel requiring geological disposal. Recent advances in the development of a CCD/PEG process will be presented. The data presented will include acid dependency data, results of batch contact testing using simulant feeds traced with 137 Cs, 90 Sr and 241 Am as well as results of testing to evaluate extractant composition. The impacts of other separation process in an advanced aqueous separation flow sheet on the effectiveness of the CCD/PEG process will be detailed. (authors)

  9. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  10. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  11. Synthesis and field emission properties of carbon nanotubes grown in ethanol flame based on a photoresist-assisted catalyst annealing process

    International Nuclear Information System (INIS)

    Yang Xiaoxia; Fang Guojia; Liu Nishuang; Wang Chong; Zheng Qiao; Zhou Hai; Zhao Dongshan; Long Hao; Liu Yuping; Zhao Xingzhong

    2009-01-01

    Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.

  12. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  13. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al_2O_3 catalyst

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mao, Ran; Tong, Yating; Lan, Huachun; Zhang, Gong; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • TCAA was efficiently removed by Pd-In/Al_2O_3 based electro-reductive process. • The active species for TCAA electroreduction involved electron (e"−) and atomic H*. • The atomic H* played a major contribution to TCAA removal. - Abstract: Electrochemical reduction treatment was found to be a promising method for dechlorination of Trichloroacetic acid (TCAA), and acceleration of electron transfer or enhancement of the concentration of atomic H* significantly improve the electrochemical dechlorination process. Bimetallic Pd-based catalysts have the unique property of simultaneously catalyzing the production of atomic H* and reducing target pollutants. Herein, a bimetallic Pd–In electrocatalyst with atomic ratio of 1:1 was evenly deposited on an Al_2O_3 substrate, and the bimetallic Pd-In structure was confirmed via X-ray photoelectron spectroscopy (XPS). Electrochemical removal of trichloroacetic acid (TCAA) by the Pd-In/Al_2O_3 catalyst was performed in a three-dimensional reactor. 94% of TCAA with the initial concentration of 500 μg L"−"1 could be degraded within 30 min under a relatively low current density (0.9 mA cm"−"2). In contrast to the presence of refractory intermediates (dichloroacetic acid (DCAA)) found in the Pd/Al_2O_3 system, TCAA could be thoroughly reduced to monochloroacetic acid (MCAA) using Pd-In/Al_2O_3 catalysts. According to scavenger experiments, an electron transfer process and atomic H* formation function both existed in the TCAA reduction process, and the enhanced indirect atomic H* reduction process (confirmed by ESR signals) played a chief role in the TCAA removal. Moreover, the synergistic effects of Pd and In were proven to be able to enhance both direct electron transfer and indirect atomic H* formation, indicating a promising prospect for bimetallic electrochemical reduction treatment.

  14. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study

    Science.gov (United States)

    Li, Li; Bian, Yifan; Zhang, Xiaoxiao; Xue, Qing; Fan, Ersha; Wu, Feng; Chen, Renjie

    2018-02-01

    An economical effective method is developed for recycling spent LiNi1/3Co1/3Mn1/3O2 cathodes, where more than 98% Li, Co, Ni and Mn can be leached out with different organic acids, and resynthesized to LiNi1/3Co1/3Mn1/3O2. The leaching mechanism is investigated at macro- and micro-scales. The particles undergo a loosening-breaking-shrinking change for two acids, while the FTIR and UV-vis spectra indicate different coordination reactions. The performance of LiNi1/3Co1/3Mn1/3O2 resynthesized from the leachate of the acetic acid leaching (NCM-Ac) and maleic acid leaching (NCM-Ma) are compared. The first discharge capacity of NCM-Ma and NCM-Ac at 0.2C are 151.6 and 115.0 mA h g-1, respectively. The much better performance of NCM-Ma than NCM-Ac results from the different coordination of the two acids in the sol-gel process, where the maleic acid can esterify to establish a stable network to chelate metal ions, while the weak chelation of acetic acid leads to the formation of impurities. The economics analysis including the cost of leaching acid and energy consumption shows that the price of organic acids and reducing agents, short leaching time, low temperature and high-valued products are the effective way to increase recycling and environmental benefits, which shows advantages in terms of resources cost and added value.

  15. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  16. The silver catalyst process for converting methanol to formaldehyde - kinetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1

    1998-12-31

    In pre-experiments a tubular reactor was checked whether it is suitable for kinetic measurement on the system of the silver-catalysed partial oxidation of methanol to formaldehyde. Detrimental effects of heat-transfer and mass-transfer on the experimental results were ruled out. Investigations on the characteristics of the reaction showed that it is possible to manipulate the composition of the product mixture by changing the inlet concentration of the reactants. A modified power-law model was established to describe the reaction kinetics. It considers the preadsorption step of oxygen on the catalysts surface and fits the experimental data quite well. During the rapid oxidation the catalysts surface undergoes a drastic change. It gets coarse and has an adsorption capacity of 11 m{sup 2}/g after being exposed to the reaction mixture. (orig.)

  17. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  18. Investigations of Physicochemical Properties and Thermal Utilisation of Dusts Generated in the Mechanical Reclamation Process of Spent Moulding Sands

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2015-04-01

    Full Text Available The after reclamation dusts originated from various foundry plants, applying moulding sands with organic binding agents, mostly resins, are characterised by different properties in dependence of the used binders, reclamation systems, spent sands overheating degree and the efficiency of the system dedusting the reclaimed material operating in individual foundry plants.

  19. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  20. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Ruan, Hao [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Feng, Maoqi [Chemistry & Chemical Engineering Division, Southwest Research Institute, San Antonio TX 78238 USA; Qin, Yuling [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Job, Heather [Pacific Northwest National Laboratory, 902 Battelle Blvd Richland WA 99354 USA; Luo, Langli [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Kuhn, Erik [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-03-16

    The synthesis of high-efficiency and low-cost multifunctional catalysts for hydrodeoxygenation (HDO) of waste lignin into advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low molecular weight gaseous side-products. Among all the prepared catalysts, Ru-Cu/HY showed the best HDO performance, giving the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably due to the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all the bifunctional catalysts were proven to be superior over the combination catalysts of Ru/Al2O3 and HY zeolite, and this could be attributed to the “intimacy criterion”. The practical use of the designed catalysts would be promising in lignin valorization.

  1. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst.

    Science.gov (United States)

    Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi

    2014-03-01

    A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.

  2. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  3. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    International Nuclear Information System (INIS)

    Bjarnadottir, H.; Hilding-Rydevik, T.

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented. Our perception of

  4. The Influence of a Catalyst on Variables of Process: Research on Coatingof Silicon Carbide

    International Nuclear Information System (INIS)

    Sudjoko, Dwiretnani; Hidayati; Elin-Nuraini; Imam-Dahroni

    2000-01-01

    It was conducted the research on the coating of SiC by CVD method, usingfluidized reactor of quarts glass equipped with temperature measurement,heater and flow meter. The coating material were deposited by pyrolysis ofethyl trichlorosilane in an excess of hydrogen with catalyst ferro carbonyl.Coating deposited at temperature from 800 o C - 1000 o C and the ratio offerro carbonyl to ethyl trichlorosilane were 0.5%, 1 % dan 1.5%. Within therange of variable studied the effect of temperature showed that thetemperature increases the coating rate, whereas increases the ratio of ferrocarbonyl- ethyl trichlorosilane increases the coating rate. (author)

  5. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  6. Effects of the gas-liquid ratio on the optimum catalyst quantity for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ushida, A.; Yamamoto, I.

    2008-01-01

    In order to improve the separative performance of a combined electrolysis catalytic exchange (CECE) process, we have carried out experimental studies on hydrogen isotope separation by a CECE process using a liquid phase catalytic exchange (LPCE) column of trickle-type packed beds. Two types of trickle beds were tested in our previous study. One was the layered bed, where layers of Kogel catalysts and Dixon gauze rings were alternately filled in the column. The other was the homogeneous bed, where Kogel catalysts and Dixon gauze rings were homogeneously mixed and filled in the column. We found that (1) the homogeneously packed bed was more efficient than the layered packed bed, and (2) the catalyst quantity was optimal, which resulted in the highest separative performance. In this study, the effect of the gas-liquid ratio (G/L) on the optimum catalyst quantity was studied experimentally in a homogeneously packed bed. When the value of G/L was 1.7, total separation factors were relatively small and the optimum catalyst quantity could not be determined. On the other hand, when the values of G/L were 0.9 and 0.7, the values of the total separation factors had maximums and the optimal quantities of the catalyst were clearly obtained

  7. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  8. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.

    Science.gov (United States)

    Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping

    2014-08-01

    Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Nanobiotechnology for the production of biofuels from spent tea ...

    African Journals Online (AJOL)

    Bioenergy is the only alternative and cheap source of energy which can be made easily available to the world. The present experiment included three steps for the conversion of spent tea (Camellia sinensis) into biofuels. In the first step, spent tea was gasified using Co nano catalyst at 300°C and atmospheric pressure.

  10. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  11. Effects of the gas-liquid ratio on the optimal quantity of the catalyst for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Ushida, A.; Sugiyama, T.; Yamamoto, I.

    2007-01-01

    In order to improve the separative performance of a CECE (Combined Electrolysis Catalytic Exchange) process we have been carried out experimental studies on hydrogen isotope separation by a CECE process using with a LPCE (Liquid Phase Catalytic Exchange) column of trickle-type bed. Two types of trickle beds were tested in our previous study. One was the layered bed where layers of Kogel catalysts and that of Dixon gauze rings were filled in the column alternately. The other was the homogeneous bed where Kogel catalysts and Dixon gauze rings were mixed and filled in the column homogeneously. We found two major points: 1) the homogeneous bed was more efficient than the layered bed and 2) there was an optimal quantity of the catalyst for both types of beds to obtain the largest separation factor. The optimal quantity of the catalyst is affected by various factors such as catalytic activity, flow rates of fluid, temperature and so on. In this study we focused on an effect of the gasliquid ratio. The purpose of the present study is to investigate experimentally the effect of the gas-liquid ratio on the optimal quantity of the catalyst using with a homogeneous bed. The column is a Pyrex glass tube with 25 mm internal diameter and 60 cm length. The column is filled with Kogel catalysts (1.0 wt% Pt deposited) and Dixon gauze rings. A catalyst packed-ratio is defined as a ratio of the grain-volume of catalyst to the grain volume of the whole packings, where grain volumes mean the volume of a sphere with average diameter of the Kogel catalyst and the volume of a cylinder which has the outer shape same as a Dixon gauze ring. Hydrogen-deuterium isotope separation with the CECE equipment was performed at 101 kPa, 343 K for various values of the catalyst packed-ratio and for various values of the gas-liquid ratio. Hydrogen gas was generated by the Solid Polymer Electrolysis (SPE) electrolyzer. Maximum production rate and purity of hydrogen gas are 1 m3/h and 99.99%. The

  12. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.

    Science.gov (United States)

    Wang, Hongliang; Ruan, Hao; Feng, Maoqi; Qin, Yuling; Job, Heather; Luo, Langli; Wang, Chongmin; Engelhard, Mark H; Kuhn, Erik; Chen, Xiaowen; Tucker, Melvin P; Yang, Bin

    2017-04-22

    The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2 O 3 and HY zeolite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Swaidan, Raja [Department of Chemical Engineering, Cooper Union, New York, NY 10003 (United States); Cui, Guofeng [School of Chemistry and Chemical Engineering, Sun-Yat Sen University, Guangzhou 510275 (China)

    2007-10-11

    Well-dispersed ternary PtRuSn catalysts of various atomic ratios (60:30:10, 60:20:20 and 60:10:30) were deposited onto carbon using modified alcohol-reduction process for electrochemical oxidation of ethanol. The alloy phase structure and surface morphology for each variation of the PtRuSn/C catalysts were determined by XRD and HRTEM. In order to evaluate the contributions of Ru and Sn in the different stages of ethanol oxidation, electrochemical oxidations of adsorbed CO, ethanol, acetaldehyde and acetic acid were performed on each PtRuSn/C catalyst. The results indicated that the Ru-rich PtRuSn/C catalyst (60:30:10) exhibited the lowest onset potential for the electrooxidations of adsorbed CO, ethanol and acetaldehyde, revealing that the removal through oxidation of the intermediate C{sub 1} and C{sub 2} species from Pt sites is primarily attributed to the Ru and Pt{sub 3}Sn alloy structures. However, for the overall oxidation of ethanol, the Sn-rich PtRuSn/C catalyst (60:10:30) containing PtSn phase and SnO{sub 2} structure is favorable for the activation of C-C bond breaking, thereby generating higher current density (mass activity) at higher potentials. Moreover, in the electrooxidation of acetic acid, a remarkable improvement for oxidizing acetic acid to C{sub 1} species was observed in the Sn-rich PtRuSn/C catalyst (60:10:30), while the Ru-rich PtRuSn/C catalyst (60:30:10) was almost incapable of breaking the C-C bond to further oxidize acetic acid. The possible reasons for the different reactivities on the studied PtRuSn/C catalysts were discussed based on the removal of intermediates and activation of the C-C bonds on the different surfaces. (author)

  15. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  16. Report on financing the disposal of commercial spent nuclear fuel and processed high-level radioactive waste

    International Nuclear Information System (INIS)

    Benny, R.I.; Sprecher, W.M.

    1983-06-01

    Projected revenues generated from the 1.0 mill per kWh fee mandated by the Act are sufficient to cover the full range of reference case program costs, assuming 3% annual inflation and nuclear installed capacity of 165 gigawatts-electric by the year 2000. Total estimated costs of the reference waste disposal program, encompassing either spent nuclear fuel disposal or reprocessing waste disposal, range between $18 to 20 billion in constant 1982 dollars. Sensitivity case analyses established upper and lower program cost bounds of $28 billion and $16 billion, respectively (in 1982 dollars). In terms of discounted levelized unit costs, the disposal of spent fuel equates to $122 to 125 per kilogram (uranium) compared with $115 to 119 per kilogram for the reprocessing waste equivalent. The levelized unit costs for reprocessing exclude the solidification of liquid wastes. Such costs are estimated to be $8 per kilogram. Discounted levelized unit costs corresponding to the upper and lower limits of the sensitivity cases equate to $176 per kilogram and $107 per kilogram. The 1.0 mill per kWh fee will be reviewed annually and adjusted, if necessary, to accommodate changes in program costs due to inflation and program shifts. When adjustments are made for applicable discount rates, inflation, repository design changes, and other factors, levelized unit costs for the reference case presented in this analysis agree closely with the results of two previous Department of Energy studies concerning charges for spent fuel storage and disposal services provided by the Federal government. The cost estimates developed for the program were based on the best available data

  17. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  18. Optimization of Charcoal Production Process from Woody Biomass Waste: Effect of Ni-Containing Catalysts on Pyrolysis Vapors

    Directory of Open Access Journals (Sweden)

    Jon Solar

    2018-05-01

    Full Text Available Woody biomass waste (Pinus radiata coming from forestry activities has been pyrolyzed with the aim of obtaining charcoal and, at the same time, a hydrogen-rich gas fraction. The pyrolysis has been carried out in a laboratory scale continuous screw reactor, where carbonization takes place, connected to a vapor treatment reactor, at which the carbonization vapors are thermo-catalytically treated. Different peak temperatures have been studied in the carbonization process (500–900 °C, while the presence of different Ni-containing catalysts in the vapor treatment has been analyzed. Low temperature pyrolysis produces high liquid and solid yields, however, increasing the temperature progressively up to 900 °C drastically increases gas yield. The amount of nickel affects the vapors treatment phase, enhancing even further the production of interesting products such as hydrogen and reducing the generated liquids to very low yields. The gases obtained at very high temperatures (700–900 °C in the presence of Ni-containing catalysts are rich in H2 and CO, which makes them valuable for energy production, as hydrogen source, producer gas or reducing agent.

  19. The role of fission products (noble metal particles) in spent fuel corrosion process in a failed container

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L., E-mail: lwu59@uwo.ca [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada); Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada); Univ. of Western Ontario, Surface Science Western, London, Ontario (Canada)

    2013-07-01

    The corrosion/dissolution of simulated spent fuel has been studied electrochemically. Fission products within the UO{sub 2} matrix are found to have significant effect on the anodic dissolution behaviour of the fuel. It is observed that H{sub 2}O{sub 2}oxidation is accelerated on the surfaces of doped noble metal (ε) particles existing in the fuel matrix. It is concluded that H{sub 2}O{sub 2} decomposition rather than UO{sub 2} corrosion should be the dominant reaction under high H{sub 2}O{sub 2} concentrations. (author)

  20. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  1. Technical-and-economic analysis and optimization of the full flow charts of processing of radioactive wastes on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of fast reactors

    Science.gov (United States)

    Gupalo, V. S.; Chistyakov, V. N.; Kormilitsyn, M. V.; Kormilitsyna, L. A.; Osipenko, A. G.

    2015-12-01

    When considering the full flow charts of processing of radioactive wastes (RAW) on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of NIIAR fast reactors, we corroborate optimum technical solutions for the preparation of RAW for burial from a standpoint of heat release, dose formation, and technological storage time with allowance for technical-and-economic and ecological indices during the implementation of the analyzed technologies and equipment for processing of all RAW fluxes.

  2. Two-step process of regeneration of acid(s) from ZrF{sub 4} containing spent pickle liquor and recovery of zirconium metal

    Energy Technology Data Exchange (ETDEWEB)

    Nersisyan, Hayk [Graduate School of Department of Materials Science & Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon (Korea, Republic of); RASOM, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Han, Seul Ki; Choi, Jeong Hun [Graduate School of Department of Materials Science & Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon (Korea, Republic of); Graduate School of Energy Science & Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Young-Jun; Yoo, Bung Uk [Graduate School of Energy Science & Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Ri, Vladislav E. [Graduate School of Department of Materials Science & Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Department of Materials Science & Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon (Korea, Republic of); Graduate School of Energy Science & Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); RASOM, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-01

    In this paper we describe a progressive two-step process that allows zirconium fluoride (ZrF{sub 4}) contained in spent baths for etched zirconium alloys to be effectively recycled on a pilot scale and produce a high purity regenerated pickling acid. In the first step, a spent pickling liquor is treated by a BaF{sub 2} suspension to produce water insoluble Ba{sub 2}ZrF{sub 8}. After filtration of Ba{sub 2}ZrF{sub 8} more than 99.9 wt % purity pickling acid is regenerated. The precipitation mechanism of Ba{sub 2}ZrF{sub 8} is discussed and the role of BaF{sub 2} particles size on the precipitation process is demonstrated. In the second step the as-precipitated Ba{sub 2}ZrF{sub 8} is mixed with Mg and Cu metal powders and heat-treated at 1200 °C (or above) to produce CuZr alloy ingot. The characteristics of the ingot are discussed in regard to Cu concentration and the heating temperature. - Highlights: •Two-step process for recycling ZrF{sub 4} containing pickling acid on a pilot scale is developed. •Water insoluble Ba{sub 2}ZrF{sub 8} is precipitated by mixing spent pickling liquor with BaF{sub 2}. •The recycled pickling acid demonstrates more than 99.9 wt % purity. •The processing of Ba{sub 2}ZrF{sub 8} with Cu and Mg metals at 1200 °C yielded CuZr alloy. •The recovery depth of Zr was more than 95 wt%.

  3. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  4. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  5. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  6. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.

    Science.gov (United States)

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2016-05-01

    Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features. Copyright © 2015. Published by Elsevier Ltd.

  7. Optimisation of the FeMn and ZnO production from spent pyrolised primary batteries. Feasibility of a DC-submerged arc furnace process

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alvarado, R.; Friedrich, B. [RWTH Aachen (Germany). IME Process Metallurgy and Metal Recycling

    2008-07-01

    In the present work the feasibility to produce a Fe-Mn-alloy and a ZnO-concentrate from spent pyrolised primary batteries has been investigated based on fundamental research, already reported in 'World of Metallurgy' - ERZ-METALL 1/2007. Through a carbothermic reduction in a Direct Current Submerged Arc Furnace process (DC-SAF) at IME Aachen, several laboratory-scale as well as semi-pilot scale tests were conducted with three different slag-compositions using solid- and hollow-electrode technique. The process was theoretically modelled with the thermochemical package FactSage 5.3.1. The effect of the process parameters temperature, slag composition and carbon addition were analysed. The results show that it is possible to recycle spent primary batteries through the submerged arc route to obtain a Fe-Mn alloy with a ratio Mn/Fe>1 and a ZnO concentrate as a separated product, reaching recycling quotes for Mn between 44 and 62%, for Fe between 56 and 96% and for zinc of more than 90%. (orig.)

  8. Modeling of the fatigue damage accumulation processes in the material of NPP design units under thermomechanical unstationary effects. Estimation of spent life and forecast of residual life

    International Nuclear Information System (INIS)

    Kiriushin, A.I.; Korotkikh, Yu.G.; Gorodov, G.F.

    2002-01-01

    Full text: The estimation problems of spent life and forecast of residual life of NPP equipment design units, operated at unstationary thermal force loads are considered. These loads are, as a rule, unregular and cause rotation of main stress tensor platforms of the most loaded zones of structural elements and viscoelastic plastic deformation of material in the places of stresses concentrations. The existing engineering approaches to the damages accumulation processes calculation in the material of structural units, their advantages and disadvantages are analyzed. For the processes of fatigue damages accumulation a model is proposed, which allows to take into account the unregular pattern of deformation multiaxiality of stressed state, rotation of main platforms, non-linear summation of damages at the loading mode change. The model in based on the equations of damaged medium mechanics, including the equations of viscoplastic deformation of the material and evolutionary equations of damages accumulation. The algorithms of spent life estimation and residual life forecast of the controlled equipment and systems zones are made on the bases of the given model by the known real history of loading, which is determined by real model of NPP operation. The results of numerical experiments on the basis of given model for various processes of thermal force loads and their comparison with experimental results are presented. (author)

  9. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  10. Experimental determination and chemical modelling of radiolytic processes at the spent fuel/water interface. Experiments carried out in carbonate solutions in absence and presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Jordi; Cera, Esther; Grive, Mireia; Duro, Lara [Enviros Spain SL (Spain); Eriksen, Trygve [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    2003-01-01

    We report on the recent experimental and modelling results of a research programme that started in 1995. The aim has been to understand the kinetic and thermodynamic processes that control the radiolytic generation of oxidants and reductants at the spent fuel water interface and their consequences for spent fuel matrix stability and radionuclide release. This has been done by carrying out well-controlled dissolution experiments of PWR Ringhals spent fuel fragments in an initially anoxic closed system and by using different solution compositions. Experimental series started with several tests carried out with deionised water as solvent, in a second phase experiments were conducted with 10 mM bicarbonate solutions. New experimental series were set up during the last two years by using the same bicarbonate content in solutions with varying NaCl concentrations in order to ascertain the role of this ligand on the radiolytic products and its consequence for radionuclide release. The selected NaCl concentrations are in the range of 0.1 to 10 mM. Experimental data shows that uranium dissolution at early contact times is controlled by the oxidation of the UO{sub 2} matrix. This process controls the co-dissolution of most of the analysed radionuclides, including Sr, Mo, Tc, Np and surprisingly enough, Cs. In the overall the release rates for U and the matrix associated radionuclides are in the range of 10{sup -6} moles/day with a clear decreasing trend with exposure time and after 2 years the initial release rates have decreased down to 3x10{sup -8} moles/day. The solubility of the released actinides appears to be limited by the formation of An(IV) hydroxide phases, although Np concentrations in solution did not reach solubility levels during the time intervals of the present tests. No secondary solid phase appears to control the solubility of the rest of the elements.

  11. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Energy Technology Data Exchange (ETDEWEB)

    Bjarnadottir, H.; Hilding-Rydevik, T. [Nordregio, Stockholm (Sweden)

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented

  12. A real-time data acquisition and processing system for the analytical laboratory automation of a HTR spent fuel reprocessing facility

    International Nuclear Information System (INIS)

    Watzlawik, K.H.

    1979-12-01

    A real-time data acquisition and processing system for the analytical laboratory of an experimental HTR spent fuel reprocessing facility is presented. The on-line open-loop system combines in-line and off-line analytical measurement procedures including data acquisition and evaluation as well as analytical laboratory organisation under the control of a computer-supported laboratory automation system. In-line measurements are performed for density, volume and temperature in process tanks and registration of samples for off-line measurements. Off-line computer-coupled experiments are potentiometric titration, gas chromatography and X-ray fluorescence analysis. Organisational sections like sample registration, magazining, distribution and identification, multiple data assignment and especially calibrations of analytical devices are performed by the data processing system. (orig.) [de

  13. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    International Nuclear Information System (INIS)

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel

  14. Processing of FRG mixed oxide fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    International Nuclear Information System (INIS)

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Tischer, H.E.

    1980-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment section of the agreement, FRG fuel spheres were recently sent for processing in the Department of Energy sponsored cold pilot plant for High-Temperature Gas-Cooled Reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles. These particles were in turn crushed and burned to recover the fuel-bearing kernels for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated the applicability of the US HTGR fuel treatment flowsheet to FRG fuel processing. 10 figures

  15. Development of supported noble metal catalyst for U(VI) to U(IV) reduction

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Varma, Salil; Bhattacharyya, K.; Tripathi, A.K.; Bharadwaj, S.R.; Jain, V.K.; Sahu, Avinash; Vincent, Tessy; Jagatap, B.N.; Wattal, P.K.

    2015-01-01

    Uranium-plutonium separation is an essential step in the PUREX process employed in spent nuclear fuel reprocessing. This partitioning in the PUREX process is achieved by selective reduction of Pu(IV) to Pu(III) using uranous nitrate as reductant and hydrazine as stabilizer. Currently in our Indian reprocessing plants, the requirement of uranous nitrate is met by electrolytic reduction of uranyl nitrate. This process, however, suffers from a major drawback of incomplete reduction with a maximum conversion of ~ 60%. Catalytic reduction of U(VI) to U(IV) is being considered as one of the promising alternatives to the electro-reduction process due to fast kinetics and near total conversion. Various catalysts involving noble metals like platinum (Adams catalyst, Pt/Al 2 O 3 , Pt/SiO 2 etc.) have been reported for the reduction. Sustained activity and stability of the catalyst under harsh reaction conditions are still the issues that need to be resolved. We present here the results on zirconia supported noble metal catalyst that is developed in BARC for reduction of uranyl nitrate to uranous nitrate. Supported noble metal catalysts with varying metal loadings (0.5 - 2 wt%) were prepared via support precipitation and noble metal impregnation. The green catalysts were reduced either by chemical reduction using hydrazine hydrate or by heating in hydrogen flow or combination of both the steps. These catalysts were characterized by various techniques such as, XRD, SEM, TEM, N 2 adsorption and H 2 chemisorption. Performance of these catalysts was evaluated for U(VI) to U(IV) reduction with uranyl nitrate feed using hydrazine as reductant. The results with the most active catalyst are named as 'BARC-CAT', which was developed in our lab. (author)

  16. From Nanoparticles to Process An Aberration Corrected TEM Study of Fischer Tropsch Catalysts at Various Steps of the Process

    International Nuclear Information System (INIS)

    Braidy, N.; Blanchard, J.; Abatzoglou, N.; Andrei, C.

    2011-01-01

    χThe nanostructure of Fischer-Tropsch (FT) Fe carbides are investigated using aberration-corrected high-resolution transmission electron microscopy (TEM). The plasma-generated Fe carbides are analyzed just after synthesis, following reduction via a H2 treatment step and once used as FT catalyst and deactivated. The as-produced nanoparticles (NPs) are seen to be abundantly covered with graphitic and amorphous carbon. Using the extended information limit from the spherical aberration-corrected TEM, the NPs could be indexed as a mixture of NPs in the θ-Fe 3 C and χ-Fe 5 C 2 phases. The reduction treatment exposed the NPs by removing most of the carbonaceous speSubscript textcies while retaining the χ-Fe 5 C 2 . Fe-carbides NPs submitted to conditions typical to FT synthesis develop a Fe3O4 shell which eventually consumes the NPs up to a point where 3-4 nm residual carbide is left at the center of the particle. Subscript textVarious mechanisms explaining the formation of such a microstructure are discussed. (author)

  17. Local decision-making facing issues of national interest experiences from the swedish siting process for a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Soderberg, O.

    1998-01-01

    It is common knowledge that there are difficulties in convincing the general public and their democratically elected representatives that final disposal of spent nuclear fuel can be made in safe way. Special problems for the decision-makers are created by the demands put on today's generations to make a responsible risk assessment in a area with genuine uncertainties and characterised by any expressions of lack of confidence in social institutions. The current Swedish process for siting a deep repository for spent nuclear fuel has evolved during a period of many years, through inputs by the industry, Government, regulatory authorities and concerned municipalities. It is clear that the nuclear industry, represented by the Swedish Nuclear Fuel and Waste Management CO (SKB), has the full responsibility to find a solution to the waste management problem and to implement the solution - and to for this under the supervision of Government and regulating authorities. But, given the strong tradition of local self-government, the concerned municipalities, the local population in this process. this is simply the following fact: For people who have engaged themselves in local politics - and are prepared to take their responsibility for the well-being and development of their local community - the issue of a possible nuclear repository in the neighbourhood is difficult to handle. A relevant question is: Why should the nation as a whole expect these locally elected representatives to feel a responsibility for an issue of national importance? (author)

  18. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    KAUST Repository

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M.

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained

  19. Preparation of CaO/Fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Saputra, E.; Maulana, R.

    2018-03-01

    A palm fly ash supported calcium oxide (CaO) catalyst was prepared and used in transesterification from off-grade palm oil for biodiesel production. The catalyst synthesized by loading CaO of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) into fly ash through impregnation method. The optimum catalyst preparation conditions were determined by influence of calcination temperature and weight ratio of Ca(NO3)2.4H2O and fly ash. Catalyst with highest catalytic activity was achieved when calcined at 800 °C and proportion of Ca(NO3)2.4H2O to fly ash is 80:20. Under the conditions of oil : methanol ratio of 1:6, catalyst dosage of 6 wt% and temperature of 70 °C for 2 h, the biodiesel yield reaches to 71.77%. CaO, SiO2, Ca(OH)2 and Ca2SiO4 were found in the catalyst through X-ray diffraction (XRD) while the basic strength of the catalyst H_ in the range 9.3 – 11. Surface area of the developed catalyst is 24.342 m2/g through Brunauer-Emmett-Teller (BET). Characteristics of biodiesel such as density, kinematic viscosity, acid value, flash point has been matched with standard for biodiesel specification of Indonesia.

  20. The electrical conductivity of model melts based on LiCl-KCl, used for the processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Salyulev, Alexander; Potapov, Alexei; Khokhlov, Vladimir; Shishkin, Vladimir

    2017-01-01

    During pyrochemical reprocessing of spent nuclear fuel, complex melts based on LiCl-KCl eutectic are formed, but their properties are still not well studied. We measured the electrical conductivity of (LiCl-KCl) eut. − CeCl 3 , (LiCl-KCl) eut. − NdCl 3 and (LiCl-KCl) eut. − UCl 3 quasi-binary melts was up to 40 mol.% CeCl 3 , 40 mol.% NdCl 3 and 10.45 mol.% UCl 3 in a wide temperature span. In addition the electrical conductivity of several compositions, such as (LiCl-KCl) eut. − CeCl 3 + NdCl 3 and (LiCl-KCl) eut. − CeCl 3 + NdCl 3 + UCl 3 was measured. The measurements were carried out in quartz cells of the capillary type. When the total concentration of trivalent ions is less than 12 mol.%, we found that the conductivity of mixtures of arbitrary composition is almost a linear function of CeCl 3 , NdCl 3 , and UCl 3 the overall concentration.

  1. Regeneration of ammonia borane spent fuel

    International Nuclear Information System (INIS)

    Sutton, Andrew David; Davis, Benjamin L.; Gordon, John C.

    2009-01-01

    A necessary target in realizing a hydrogen (H 2 ) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H 2 storage has been dominated by one appealing material, ammonia borane (H 3 N-BH 3 , AB), due to its high gravimetric capacity of H 2 (19.6 wt %) and low molecular weight (30.7 g mol -1 ). In addition, AB has both hydridic and protic moieties, yielding a material from which H 2 can be readily released in contrast to the loss of H 2 from C 2 H 6 which is substantially endothermic. As such, a number of publications have described H 2 release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H 2 storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H 2 depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H 2 released from AB and up to 2.5 equiv. of H 2 can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product, polyborazylene (PB) which can be obtained readily from the decomposition of borazine

  2. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  3. Diagnosis of Catalyst Cooler and Riser in RFCC using Sealed gamma-ray Source

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee; Kim, Jae Ho

    2005-12-01

    With a quantitative growth of the petroleum industry, a lot of budget are spent for the maintenance and repairs of facilities related to the process annually. Among them, the RFCC(residual fluid catalytic cracking) is a highly value-added unit which converts gas oil and heavier streams to lighter, more valuable products such as propylene, gasoline by an injection of atmospheric residue into the fluided catalyst. In this study, field experiments were performed to analyze the reasons of an abnormal operation in the catalyst cooler and the catalyst riser belonged to the RFCC unit respectively and to estimate the amount of seriousness using sealed gamma-ray source( 60 Co). The catalyst cooler functions cooling for the regeneration of a catalyst, which will be used to a new media in the RFCC unit. The catalyst riser, while, plays an important part in transporting to next cyclotron steps by mixing of an oil, steam and a catalyst mechanically. The purposes of this study is what was the condition of catalyst flow pattern and whether the coke was produced in an inside process or not. Gamma radiation counts were measured by the detector(NaI) positioned outside the pipe-wall diametrically opposite to the gamma source with a regular space. From the results, the section different from the distribution pattern of nearby catalyst in a facility was found. And this became the definitive information to a process operator. Diagnosis technique using gamma radiation source is proved to be the effective and reliable method in providing information on the media distribution in a facility

  4. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    Science.gov (United States)

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  5. Product consistency test and toxicity characteristic leaching procedure results of the ceramic waste form from the electrometallurgical treatment process for spent fuel

    International Nuclear Information System (INIS)

    Johnson, S. G.; Adamic, M. L.: DiSanto, T.; Warren, A. R.; Cummings, D. G.; Foulkrod, L.; Goff, K. M.

    1999-01-01

    The ceramic waste form produced from the electrometallurgical treatment of sodium bonded spent fuel from the Experimental Breeder Reactor-II was tested using two immersion tests with separate and distinct purposes. The product consistency test is used to assess the consistency of the waste forms produced and thus is an indicator of a well-controlled process. The toxicity characteristic leaching procedure is used to determine whether a substance is to be considered hazardous by the Environmental Protection Agency. The proposed high level waste repository will not be licensed to receive hazardous waste, thus any waste forms destined to be placed there cannot be of a hazardous nature as defined by the Resource Conservation and Recovery Act. Results are presented from the first four fully radioactive ceramic waste forms produced and from seven ceramic waste forms produced from cold surrogate materials. The fully radioactive waste forms are approximately 2 kg in weight and were produced with salt used to treat 100 driver subassemblies of spent fuel

  6. Improving the performances of hydrophobic catalysts used for tritium recovery and enrichment processes In liquid and gaseous effluents

    International Nuclear Information System (INIS)

    Popescu, Irina; Ionita, Gheorghe; Varlam, Carmen

    2007-01-01

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based also on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: (1) how to improve the characteristics and performance of platinum hydrophobic catalysts; (2) to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references it results that platinum appears to be the most active and efficient catalytic metal while polytetrafluoroethylene is the best wetproofing agent. A new improved hydrophobic Pt-catalyst has been obtained and tests are now underway. The main steps and experimental conditions of preparation are largely discussed. A new wetproofing agent and new binding agents (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising for improving the performance of conventional hydrophobic Pt-catalysts. (authors)

  7. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  8. Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Chen

    2018-02-01

    Full Text Available The co-processing of an unconventional type of Jatropha bio-oil with petroleum distillates over mesoporous alumina-supported CoMo and NiMo sulfide catalysts (denoted CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was studied. Either a stainless-steel high-pressure batch-type reactor or an up-flow fixed-bed reaction system was used under severe reaction conditions (330–350 °C and 5–7 MPa, similar to the conditions of the conventional diesel hydrodesulfurization (HDS process. To understand the catalytic performance of the mesoporous sulfide catalysts for co-processing, we prepared two series of oil feedstocks. First, model diesel oils, consisting of hydrocarbons and model molecules with various heteroatoms (sulfur, oxygen, and nitrogen were used for the study of the reaction mechanisms. Secondly, low-grade oil feedstocks, which were prepared by dissolving of an unconventional type of Jatropha bio-oil (ca. 10 wt % in the petroleum distillates, were used to study the practical application of the catalysts. Surface characterization by gas sorption, spectroscopy, and electron microscopy indicated that the CoMo/γ-Al2O3 sulfide catalyst, which has a larger number of acidic sites and coordinatively unsaturated sites (CUS on the mesoporous alumina framework, was associated with small Co-incorporated MoS2-like slabs with high stacking numbers and many active sites at the edges and corners. In contrast, the NiMo/γ-Al2O3 sulfide catalyst, which had a lower number of acidic sites and CUS on mesoporous alumina framework, was associated with large Ni-incorporated MoS2-like slabs with smaller stacking numbers, yielding more active sites at the brims and corresponding to high hydrogenation (HYD activity. Concerning the catalytic performance, the mesoporous CoMo/γ-Al2O3 sulfide catalyst with large CUS number was highly active for the conventional diesel HDS process; unfortunately, it was deactivated when oxygen- and nitrogen-containing model molecules or Jatropha bio

  9. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al₂O₃ Catalyst Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-03-19

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t -test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.

  10. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  11. Processing of spent Ni-MH batteries for the recovery of cobalt, nickel and rare earth elements bearing materials by means of a chemical and electrochemical sequential process

    Science.gov (United States)

    Delvasto, P.; Orta Rodríguez, R.; Blanco, S.

    2016-02-01

    Rechargeable Ni-MH batteries contain strategic metal values which are worth to be recovered. In the present work, a preliminary sequential chemical and electrochemical procedure is proposed, in order to reclaim materials bearing Ni, Co and rare earth elements (REE) from Ni-MH spent batteries. Initially, spent batteries are disassembled to separate the electrode materials (anode and cathode), which are then leached with an aqueous solution of 5w% sulphuric acid. The metal content of this solution is checked by atomic absorption spectrometry techniques. The obtained solution is pH-adjusted (with NaOH), until pH is between 4.0 and 4.3; then, it is heated up to 70°C to precipitate a rare earth elements sulphate (Nd, La, Pr, Ce), as determined by means of x-ray fluorescence techniques. The solids-free solution is then electrolyzed, in order to recover a Ni-Co alloy. The electrolysis conditions were established through a cyclic voltammetry technique.

  12. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Mochamad Syamsiro

    2014-08-01

    Full Text Available In this study, the performance of several differently treated natural zeolites in a sequential pyrolysis and catalytic reforming of plastic materials i.e. polypropylene (PP and polystyrene (PS were investigated. The experiments were carried out on two stage reactor using semi-batch system. The samples were degraded at 500°C in the pyrolysis reactor and then reformed at 450°C in the catalytic reformer. The results show that the mordenite-type natural zeolites could be used as efficient catalysts for the conversion of PP and PS into liquid and gaseous fuel. The treatment of natural zeolites in HCl solution showed an increase of the surface area and the Si/Al ratio while nickel impregnation increased the activity of catalyst. As a result, liquid product was reduced while gaseous product was increased. For PP, the fraction of gasoline (C5-C12 increased in the presence of catalysts. Natural zeolite catalysts could also be used to decrease the heavy oil fraction (>C20. The gaseous products were found that propene was dominated in all conditions. For PS, propane and propene were the main components of gases in the presence of nickel impregnated natural zeolite catalyst. Propene was dominated in pyrolysis over natural zeolite catalyst. The high quality of gaseous product can be used as a fuel either for driving gas engines or for dual-fuel diesel engine.

  13. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under Microwave Chemical Reactor.

    Science.gov (United States)

    Li, Yihuai; Ye, Bin; Shen, Jiaowen; Tian, Zhen; Wang, Lijun; Zhu, Luping; Ma, Teng; Yang, Dongya; Qiu, Fengxian

    2013-06-01

    A solid base catalyst was prepared by the sodium potassium tartrate doped zirconia and microwave assisted transesterification of soybean oil was carried out for the production of biodiesel. It was found that the catalyst of 2.0(n(Na)/n(Zr)) and calcined at 600°C showed the optimum activity. The base strength of the catalysts was tested by the Hammett indicator method, and the results showed that the fatty acid methyl ester (FAME) yield was related to their total basicity. The catalyst was also characterized by FTIR, TGA, XRD and TEM. The experimental results showed that a 2.0:1 volume ratio of methanol to oil, 65°C reaction temperature, 30 min reaction time and 10 wt.% catalyst amount gave the highest the yield of biodiesel. Compared to conventional method, the reaction time of the way of microwave assisted transesterification was shorter. The catalyst had longer lifetime and maintained sustained activity after being used for four cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Optimization of the reaction parameters of heavy naphtha reforming process using Pt-Re/Al2O3 catalyst system

    Directory of Open Access Journals (Sweden)

    Hussien A. Elsayed

    2017-12-01

    Full Text Available One of the most significant procedures in oil refineries is naphtha catalytic reforming unit in which high octane gasoline is gained. Normally, in oil refineries, flow instability in the composition of feedstock can affect the product quality. The aim of the present work was focused on modifications of the final product flow rate and product’s octane number with respect to the modifications of the feedstock composition. The main three reforming reactions investigated, namely; dehydrogenation, dehydrocyclization, and hydrocracking were conducted employing silica supported bimetallic (Pt-Re patented catalyst. Optimization of the catalytic process reaction conditions, i.e.; temperature, hydrogen pressure and liquid hourly space velocity (LHSV was carried out with regard to conversion and selectivity. The optimization results indicated that heavy naphtha component conversion (paraffin’s and naphthenes increases with an increasing in reaction temperature and pressure while decreases with an increase in LHSV. The kinetic study of catalytic reforming reactions reported helped establishing the reaction model explicitly.

  15. Academic research – a catalyst for the innovation process within companies in Romania

    Directory of Open Access Journals (Sweden)<