WorldWideScience

Sample records for spectrum generating algebras

  1. Towards classical spectrum generating algebras for f-deformations

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  2. Equations of motion for a spectrum-generating algebra: Lipkin-Meshkov-Glick model

    Rosensteel, G; Rowe, D J; Ho, S Y

    2008-01-01

    For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 10 6 , computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point

  3. Jacobi algebra and potentials generated by it

    Lutsenko, I.M.

    1993-01-01

    It is shown that the Jacobi algebra QJ(3) generates potentials that admit exact solution in relativistic and nonrelativistic quantum mechanics. Being a spectrum-generating dynamic symmetry algebra and possessing the ladder property, QJ(3) makes it possible to find the wave functions in the coordinate representation. The exactly solvable potentials specified in explicit form are regarded as a special case of a larger class of exactly solvable potentials specified implicitly. The connection between classical and quantum problems possessing exact solutions is obtained by means of QJ(3). 13 refs

  4. On prime ideals and associated spectrum of BCK-algebras

    Ahsan, J.; Thaheem, A.B.; Deeba, E.Y.

    1989-07-01

    In this paper we study prime ideals and define the spectrum of a bounded commutative BCK-algebra. We also obtain a characterization of minimal prime (lattice) ideals of these algebras. (author). 8 refs, 4 tabs

  5. Generators for finite depth subfactor planar algebras

    The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra of depth k, it is shown there that a single 2k-box generates P. It is natural to ask what the smallest s is such that a single s-box generates P. While ...

  6. On the spectrum in max algebra

    Müller, Vladimír; Peperko, A.

    2015-01-01

    Roč. 485, November (2015), s. 250-266 ISSN 0024-3795 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : non-negativ matrices * max algebra * eigenvalues Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015 http://www.sciencedirect.com/science/article/pii/S0024379515004139

  7. The structure of relation algebras generated by relativizations

    Givant, Steven R

    1994-01-01

    The foundation for an algebraic theory of binary relations was laid by De Morgan, Peirce, and Schröder during the second half of the nineteenth century. Modern development of the subject as a theory of abstract algebras, called "relation algebras", was undertaken by Tarski and his students. This book aims to analyze the structure of relation algebras that are generated by relativized subalgebras. As examples of their potential for applications, the main results are used to establish representation theorems for classes of relation algebras and to prove existence and uniqueness theorems for simple closures (i.e., for minimal simple algebras containing a given family of relation algebras as relativized subalgebras). This book is well written and accessible to those who are not specialists in this area. In particular, it contains two introductory chapters on the arithmetic and the algebraic theory of relation algebras. This book is suitable for use in graduate courses on algebras of binary relations or algebraic...

  8. Semiprojectivity of universal -algebras generated by algebraic elements

    Shulman, Tatiana

    2012-01-01

    Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....

  9. Generating loop graphs via Hopf algebra in quantum field theory

    Mestre, Angela; Oeckl, Robert

    2006-01-01

    We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number

  10. Evolution algebras generated by Gibbs measures

    Rozikov, Utkir A.; Tian, Jianjun Paul

    2009-03-01

    In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)

  11. Non-freely generated W-algebras and construction of N=2 super W-algebras

    Blumenhagen, R.

    1994-07-01

    Firstly, we investigate the origin of the bosonic W-algebras W(2, 3, 4, 5), W(2, 4, 6) and W(2, 4, 6) found earlier by direct construction. We present a coset construction for all three examples leading to a new type of finitely, non-freely generated quantum W-algebras, which we call unifying W-algebras. Secondly, we develop a manifest covariant formalism to construct N = 2 super W-algebras explicitly on a computer. Applying this algorithm enables us to construct the first four examples of N = 2 super W-algebras with two generators and the N = 2 super W 4 algebra involving three generators. The representation theory of the former ones shows that all examples could be divided into four classes, the largest one containing the N = 2 special type of spectral flow algebras. Besides the W-algebra of the CP(3) Kazama-Suzuki coset model, the latter example with three generators discloses a second solution which could also be explained as a unifying W-algebra for the CP(n) models. (orig.)

  12. Clifford Algebra Implying Three Fermion Generations Revisited

    Krolikowski, W.

    2002-01-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √p 2 → Γ (N) ·p works, leading to a sequence N=1, 2, 3, ... of Dirac-type equations, where four Dirac-type matrices Γ (N) μ are embedded into a Clifford algebra via a Jacobi definition introducing four ''centre-of-mass'' and (N - 1) x four ''relative'' Dirac-type matrices. These define one ''centre-of-mass'' and N - 1 ''relative'' Dirac bispinor indices. Secundo, the ''centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while N - 1 ''relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ''relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1, 3, 5 in the case of N odd, and two with N = 2, 4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3 x 3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is m τ = 1776.80 MeV, when the input of experimental m e and m μ is used. (author)

  13. Clifford Algebra Implying Three Fermion Generations Revisited

    Krolikowski, Wojciech

    2002-09-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.

  14. IDEALS GENERATED BY LINEAR FORMS AND SYMMETRIC ALGEBRAS

    Gaetana Restuccia

    2016-01-01

    Full Text Available We consider ideals generated by linear forms in the variables X1 : : : ;Xn in the polynomial ring R[X1; : : : ;Xn], being R a commutative, Noetherian ring with identity. We investigate when a sequence a1; a2; : : : ; am of linear forms is an ssequence, in order to compute algebraic invariants of the symmetric algebra of the ideal I = (a1; a2; : : : ; am.

  15. Questions Concerning Matrix Algebras and Invariance of Spectrum

    Let and be unital Banach algebras with a subalgebra of . Denote the algebra of all × matrices with entries from by M n ( A ) . In this paper we prove some results concerning the open question: If is inverse closed in , then is M n ( A ) inverse closed in M n ( B ) ? We also study related questions in the setting ...

  16. On the Structure of С*-Algebras Generated by Representations of the Elementary Inverse Semigroup

    S.A. Grigoryan

    2016-06-01

    Full Text Available The class of С*-algebras generated by the elementary inverse semigroup and being deformations of the Toeplitz algebra has been introduced and studied. The properties of these algebras have been investigated. All their irreducible representations and automorphism groups have been described. These algebras have been proved to be Z-graded С*-algebras. For a certain class of algebras in the family under consideration the compact quantum semigroup structure has been constructed.

  17. Algebra

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  18. Algebra

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  19. Constant curvature algebras and higher spin action generating functions

    Hallowell, K.; Waldron, A.

    2005-01-01

    The algebra of differential geometry operations on symmetric tensors over constant curvature manifolds forms a novel deformation of the sl(2,R)-bar R 2 Lie algebra. We present a simple calculus for calculations in its universal enveloping algebra. As an application, we derive generating functions for the actions and gauge invariances of massive, partially massless and massless (for both Bose and Fermi statistics) higher spins on constant curvature backgrounds. These are formulated in terms of a minimal set of covariant, unconstrained, fields rather than towers of auxiliary fields. Partially massless gauge transformations are shown to arise as degeneracies of the flat, massless gauge transformation in one dimension higher. Moreover, our results and calculus offer a considerable simplification over existing techniques for handling higher spins. In particular, we show how theories of arbitrary spin in dimension d can be rewritten in terms of a single scalar field in dimension 2d where the d additional dimensions correspond to coordinate differentials. We also develop an analogous framework for spinor-tensor fields in terms of the corresponding superalgebra

  20. Algebra

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  1. Asymptotics of bivariate generating functions with algebraic singularities

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  2. An algebra for spatio-temporal information generation

    Pebesma, Edzer; Scheider, Simon; Gräler, Benedikt; Stasch, Christoph; Hinz, Matthias

    2016-04-01

    When we accept the premises of James Frew's laws of metadata (Frew's first law: scientists don't write metadata; Frew's second law: any scientist can be forced to write bad metadata), but also assume that scientists try to maximise the impact of their research findings, can we develop our information infrastructures such that useful metadata is generated automatically? Currently, sharing of data and software to completely reproduce research findings is becoming standard, e.g. in the Journal of Statistical Software [1]. The reproduction (e.g. R) scripts however convey correct syntax, but still limited semantics. We propose [2] a new, platform-neutral way to algebraically describe how data is generated, e.g. by observation, and how data is derived, e.g. by processing observations. It starts with forming functions composed of four reference system types (space, time, quality, entity), which express for instance continuity of objects over time, and continuity of fields over space and time. Data, which is discrete by definition, is generated by evaluating such functions at discrete space and time instances, or by evaluating a convolution (aggregation) over them. Derived data is obtained by inputting data to data derivation functions, which for instance interpolate, estimate, aggregate, or convert fields into objects and vice versa. As opposed to the traditional when, where and what semantics of data sets, our algebra focuses on describing how a data set was generated. We argue that it can be used to discover data sets that were derived from a particular source x, or derived by a particular procedure y. It may also form the basis for inferring meaningfulness of derivation procedures [3]. Current research focuses on automatically generating provenance documentation from R scripts. [1] http://www.jstatsoft.org/ (open access) [2] http://www.meaningfulspatialstatistics.org has the full paper (in review) [3] Stasch, C., S. Scheider, E. Pebesma, W. Kuhn, 2014. Meaningful

  3. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  4. On central ideals of finitely generated binary (-1,1)-algebras

    Pchelintsev, S V

    2002-01-01

    In 1975 the author proved that the centre of a free finitely generated (-1,1)-algebra contains a non-zero ideal of the whole algebra. Filippov proved that in a free alternative algebra of rank ≥4 there exists a trivial ideal contained in the associative centre. Il'tyakov established that the associative nucleus of a free alternative algebra of rank 3 coincides with the ideal of identities of the Cayley-Dickson algebra. In the present paper the above-mentioned theorem of the author is extended to free finitely generated binary (-1,1)-algebras. Theorem. The centre of a free finitely generated binary (-1,1)-algebra of rank ≥3 over a field of characteristic distinct from 2 and 3 contains a non-zero ideal of the whole algebra. As a by-product, we shall prove that the T-ideal generated by the function (z,x,(x,x,y)) in a free binary (-1,1)-algebra of finite rank is soluble. We deduce from this that the basis rank of the variety of binary (-1,1)-algebras is infinite

  5. On identities of free finitely generated alternative algebras over a field of characteristic 3

    Pchelintsev, S V

    2001-01-01

    In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent

  6. Algebraic structures of the fermion mass spectrum and the phenomenon of the quark mixing

    Plankl, J.

    1990-01-01

    In the present thesis algebraic structures of the fermion mass spectrum are considered, whereby especially a possible connection with the phenomenon of the flavor mixing is looked for. After a presentation of the relevant theoretical and experimental foundations arguments are given, which call for the hypothesis of a relation of the mass and mixing parameters. We discuss the populary approaches of the mass matrices of the quarks. A main topic of this thesis form studies on the 'democratic' mass matrix. For this approximation, which corresponds to a matrix of the rank one, specific corrections are proposed, which have a breaking of chiral permutation symmetries as consequence, from which the masses of the first two generations result. The generation of possible small neutrino masses follows by the see-saw mechanism, which in generalized form serves also for the foundation of the smallness of the masses of the first two families. The mass hierarchy becomes understandable, if the corrections to the rank-1-matrix are of radiative nature. In this connection we especially enter the model of the 'see-saw democracy' more closely. The second main topic represents another access to the present theme, whic is given by the mixing matrix of the quarks. We diagonalize the mixing matrix for two and three families. Furthermore we define eigenstates of the weak interaction and give for the real 3x3 matrix a geometrical interpretation of the flavor mixing. Beyond we obtain in the current eigen base in the case of a decoupled third generation for the first two families mass matrices with democratic structure. (orig.) [de

  7. Automatic generation of Fortran programs for algebraic simulation models

    Schopf, W.; Rexer, G.; Ruehle, R.

    1978-04-01

    This report documents a generator program by which econometric simulation models formulated in an application-orientated language can be transformed automatically in a Fortran program. Thus the model designer is able to build up, test and modify models without the need of a Fortran programmer. The development of a computer model is therefore simplified and shortened appreciably; in chapter 1-3 of this report all rules are presented for the application of the generator to the model design. Algebraic models including exogeneous and endogeneous time series variables, lead and lag function can be generated. In addition, to these language elements, Fortran sequences can be applied to the formulation of models in the case of complex model interrelations. Automatically the generated model is a module of the program system RSYST III and is therefore able to exchange input and output data with the central data bank of the system and in connection with the method library modules can be used to handle planning problems. (orig.) [de

  8. Field algebras in quantum theory with indefinite metric. III. Spectrum of modular operator and Tomita's fundamental theorem

    Dadashyan, K.Yu.; Khoruzhii, S.S.

    1987-01-01

    The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved

  9. Flattening of the resonance spectrum of hadrons from κ-deformed Poincare algebra

    Dey, J.; Ferreira, P.L.; Tomio, L.; Choudhury, R.R.

    1994-02-01

    It was recently defined by Lukierski a κ-deformed Poincare algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ε ≡ 1/κ < 1 fm. It is shown that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ε ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum. (author)

  10. Lie algebras and applications

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  11. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra.

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-11-14

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.

  12. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

    Zhang Yu-Feng; Tam, Honwah

    2016-01-01

    In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

  13. Algebraic partial Boolean algebras

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  14. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    Marquette, Ian

    2013-01-01

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently

  15. The derivation of the conventional basis for the classical Lie algebra generators

    Karadayi, H.R.

    1982-01-01

    The explicit construction of the classical Lie algebra generators in the conventional Gell-Mann basis is derived for all irreducible unitary representations of all classical groups. The main framework is based on a description of the simple roots of the classical Lie algebras such that the inter-relations implied by the Cartan matrix of the group among these simple roots are explicit within this description. (author)

  16. The Switching Generator: New Clock-Controlled Generator with Resistance against the Algebraic and Side Channel Attacks

    Jun Choi

    2015-06-01

    Full Text Available Since Advanced Encryption Standard (AES in stream modes, such as counter (CTR, output feedback (OFB and cipher feedback (CFB, can meet most industrial requirements, the range of applications for dedicated stream ciphers is decreasing. There are many attack results using algebraic properties and side channel information against stream ciphers for hardware applications. Al-Hinai et al. presented an algebraic attack approach to a family of irregularly clock-controlled linear feedback shift register systems: the stop and go generator, self-decimated generator and alternating step generator. Other clock-controlled systems, such as shrinking and cascade generators, are indeed vulnerable against side channel attacks. To overcome these threats, new clock-controlled systems were presented, e.g., the generalized alternating step generator, cascade jump-controlled generator and mutual clock-controlled generator. However, the algebraic attack could be applied directly on these new systems. In this paper, we propose a new clock-controlled generator: the switching generator, which has resistance to algebraic and side channel attacks. This generator also preserves both security properties and the efficiency of existing clock-controlled generators.

  17. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  18. Generating function for Clebsch-Gordan coefficients of the SUq(2) quantum algebra

    Avancini, S.S.; Menezes, D.P.

    1992-05-01

    Some methods have been developed to calculate the s u q (2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating function through the use of quantum algebraic coherent states. Calculating the s u q (2) CGC by means of this generating function is an easy and straight-forward task. (author)

  19. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  20. Algebras Generated by Geometric Scalar Forms and their Applications in Physics and Social Sciences

    Keller, Jaime

    2008-01-01

    The present paper analyzes the consequences of defining that the geometric scalar form is not necessarily quadratic, but in general K-atic, that is obtained from the K th power of the linear form, requiring {e i ;i = 1,...,N;(e i ) K = 1} and d-vector Σ i x i e i . We consider the algebras which are thus generated, for positive integer K, a generalization of the geometric algebras we know under the names of Clifford or Grassmann algebras. We then obtain a set of geometric K-algebras. We also consider the generalization of special functions of geometry which corresponds to the K-order scalar forms (as trigonometric functions and other related geometric functions which are based on the use of quadratic forms). We present an overview of the use of quadratic forms in physics as in our general theory, we have called START. And, in order to give an introduction to the use of the more general K-algebras and to the possible application to sciences other than physics, the application to social sciences is considered.For the applications to physics we show that quadratic spaces are a fundamental clue to understand the structure of theoretical physics (see, for example, Keller in ICNAAM 2005 and 2006).

  1. Automated mass spectrum generation for new physics

    Alloul, Adam; De Causmaecker, Karen; Fuks, Benjamin; Rausch de Traubenberg, Michel

    2013-01-01

    We describe an extension of the FeynRules package dedicated to the automatic generation of the mass spectrum associated with any Lagrangian-based quantum field theory. After introducing a simplified way to implement particle mixings, we present a new class of FeynRules functions allowing both for the analytical computation of all the model mass matrices and for the generation of a C++ package, dubbed ASperGe. This program can then be further employed for a numerical evaluation of the rotation matrices necessary to diagonalize the field basis. We illustrate these features in the context of the Two-Higgs-Doublet Model, the Minimal Left-Right Symmetric Standard Model and the Minimal Supersymmetric Standard Model.

  2. Generating relations of multi-variable Tricomi functions of two indices using Lie algebra representation

    Nader Ali Makboul Hassan

    2014-01-01

    Full Text Available This paper is an attempt to stress the usefulness of the multi-variable special functions. In this paper, we derive certain generating relations involving 2-indices 5-variables 5-parameters Tricomi functions (2I5V5PTF by using a Lie-algebraic method. Further, we derive certain new and known generating relations involving other forms of Tricomi and Bessel functions as applications.

  3. Universal enveloping algebras of Toda field theories and the light-cone asymmetry parameter

    Itoyama, H.; Moxhay, P.

    1990-01-01

    The generators of the universal enveloping algebras in Toda field theories associated with Lie algebras are constructed. These form spectrum-generating algebras of the system which survive the constraints acting on the larger current algebra structure. It is found that the same generators fail to be a symmetry in the case of affine Toda field theory despite their close relationship with Mandelstam's soliton operators. We introduce the light-cone asymmetry parameter; its significance and utility are demonstrated. (orig.)

  4. Generation and Identification of Ordinary Differential Equations of Maximal Symmetry Algebra

    J. C. Ndogmo

    2016-01-01

    Full Text Available An effective method for generating linear ordinary differential equations of maximal symmetry in their most general form is found, and an explicit expression for the point transformation reducing the equation to its canonical form is obtained. New expressions for the general solution are also found, as well as several identification and other results and a direct proof of the fact that a linear ordinary differential equation is iterative if and only if it is reducible to the canonical form by a point transformation. New classes of solvable equations parameterized by an arbitrary function are also found, together with simple algebraic expressions for the corresponding general solution.

  5. Hyperon decays and spectrum generating SU(3)

    Teese, R.B.; Boehm, A.

    1976-02-01

    The research program described in this review is aimed at describing the properties of relativistic one-hadron systems by an algebra of observables, in analogy to the nonrelativistic description of atoms. This formalism has recently been applied to the leptonic and semi-leptonic decays of pseudoscalar mesons, and was shown to be capable of predicting both the suppression of strangeness changing decays and the value of the form factor ratio xi in K/sub l 3 / decay. A preliminary description of the leptonic decays of hyperons indicates that second class matrix elements are predicted as a consequence of a precise formulation of SU(3) symmetry breaking. A chi 2 -fit to the experimental data indicates that this preliminary model is an improvement over the usual Cabibbo model, and points the way for further theoretical work. It is hoped that this program will lead to a model for the leptonic decays of hadrons which improves upon the results of the Cabibbo model and which explains some of the assumptions of that model

  6. Generation of solar spectrum by using LEDs

    Lu, Pengzhi; Yang, Hua; Pei, Yanrong; Li, Jing; Xue, Bin; Wang, Junxi; Li, Jinmin

    2016-09-01

    Light emitting diode (LED) has been recognized as an applicable light source for indoor and outdoor lighting, city beautifying, landscape facilities, and municipal engineering etc. Conventional LED has superior characteristics such as long life time, low power consumption, high contrast, and wide viewing angle. Recently, LED with high color-rendering index and special spectral characteristics has received more and more attention. This paper is intended to report a solar spectrum simulated by multichip LED light source. The typical solar spectrum of 5500k released by CIE was simulated as a reference. Four types of LEDs with different spectral power distributions would be used in the LED light source, which included a 430nm LED, a 480nm LED, a 500nm LED and a white LED. In order to obtain better simulation results, the white LED was achieved by a 450nm LED chip with the mixture of phosphor. The phosphor combination was prepared by mixing green phosphor, yellow phosphor and red phosphor in a certain proportion. The multichip LED light source could provide a high fidelity spectral match with the typical solar spectrum of 5500k by adjusting injection current to each device. The luminous flux, CIE chromaticity coordinate x, y, CCT, and Ra were 104.7 lm, 0.3337, 0.3681, 5460K, and 88.6, respectively. Because of high color-rendering index and highly match to the solar spectrum, the multichip LED light source is a competitive candidate for applications where special spectral is required, such as colorimetric measurements, visual inspection, gemstone identification and agriculture.

  7. Wavelets and quantum algebras

    Ludu, A.; Greiner, M.

    1995-09-01

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  8. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

    Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

    2008-01-01

    Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

  9. Language Analysis and Generation in Algebra Tutorial Dialogues for Language-Based Intelligent Tutoring Systems

    Kim, Jung

    2004-01-01

    The North Carolina A&T State University algebra tutoring dialogue project collects and analyzes algebra tutoring dialogues with the aim of describing tutoring strategies and language with enough rigor that they may...

  10. Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex $L_\\infty$

    T. V. Vasylyshyn

    2017-07-01

    Full Text Available It is known that the so-called elementary symmetric polynomials $R_n(x = \\int_{[0,1]}(x(t^n\\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\\infty,$ which is dense in the Fr\\'{e}chet algebra $H_{bs}(L_\\infty$ of all entire symmetric functions of bounded  type on $L_\\infty.$ Consequently, every continuous homomorphism $\\varphi: H_{bs}(L_\\infty \\to \\mathbb{C}$ is uniquely determined by the sequence $\\{\\varphi(R_n\\}_{n=1}^\\infty.$ By the continuity of the homomorphism $\\varphi,$ the sequence $\\{\\sqrt[n]{|\\varphi(R_n|}\\}_{n=1}^\\infty$ is bounded. On the other hand, for every sequence $\\{\\xi_n\\}_{n=1}^\\infty \\subset \\mathbb{C},$ such that the sequence $\\{\\sqrt[n]{|\\xi_n|}\\}_{n=1}^\\infty$ is bounded,  there exists  $x_\\xi \\in L_\\infty$ such that $R_n(x_\\xi = \\xi_n$ for every $n \\in \\mathbb{N}.$ Therefore, for the point-evaluation functional $\\delta_{x_\\xi}$ we have $\\delta_{x_\\xi}(R_n = \\xi_n$ for every $n \\in \\mathbb{N}.$ Thus, every continuous complex-valued homomorphism of $H_{bs}(L_\\infty$ is a point-evaluation functional at some point of $L_\\infty.$ Note that such a point is not unique. We can consider an equivalence relation on $L_\\infty,$ defined by $x\\sim y \\Leftrightarrow \\delta_x = \\delta_y.$ The spectrum (the set of all continuous complex-valued homomorphisms $M_{bs}$ of the algebra $H_{bs}(L_\\infty$ is one-to-one with the quotient set $L_\\infty/_\\sim.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, it is naturally to identify $M_{bs}$ with the set of all sequences $\\{\\xi_n\\}_{n=1}^\\infty \\subset \\mathbb{C}$ such that the sequence $\\{\\sqrt[n]{|\\xi_n|}\\}_{n=1}^\\infty$ is bounded.We show that the quotient topology is Hausdorffand that $M_{bs}$ with the operation of coordinate-wise addition of sequences forms an abelian topological group.

  11. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  12. Study of the continuous spectrum of 6Li and the reaction t(3He,d)α by the algebraic version of the RGM

    Filippov, G.F.; Lopez Trujillo, A.; Rybkin, I.Yu.

    1992-01-01

    Using the algebraic version of the resonating group method, the continuous spectrum of 6 Li states with zero isospin is studied. The decay channels t+ 3 He and α+α are taken into account. The astrophysical S-factor of the t( 3 He,d)α reaction is calculated. 20 refs.; 6 figs.; 2 tab. (author)

  13. Algebraic mesh generation for large scale viscous-compressible aerodynamic simulation

    Smith, R.E.

    1984-01-01

    Viscous-compressible aerodynamic simulation is the numerical solution of the compressible Navier-Stokes equations and associated boundary conditions. Boundary-fitted coordinate systems are well suited for the application of finite difference techniques to the Navier-Stokes equations. An algebraic approach to boundary-fitted coordinate systems is one where an explicit functional relation describes a mesh on which a solution is obtained. This approach has the advantage of rapid-precise mesh control. The basic mathematical structure of three algebraic mesh generation techniques is described. They are transfinite interpolation, the multi-surface method, and the two-boundary technique. The Navier-Stokes equations are transformed to a computational coordinate system where boundary-fitted coordinates can be applied. Large-scale computation implies that there is a large number of mesh points in the coordinate system. Computation of viscous compressible flow using boundary-fitted coordinate systems and the application of this computational philosophy on a vector computer are presented

  14. Operator algebras for general one-dimensional quantum mechanical potentials with discrete spectrum

    Wuensche, Alfred

    2002-01-01

    We define general lowering and raising operators of the eigenstates for one-dimensional quantum mechanical potential problems leading to discrete energy spectra and investigate their associative algebra. The Hamilton operator is quadratic in these lowering and raising operators and corresponding representations of operators for action and angle are found. The normally ordered representation of general operators using combinatorial elements such as partitions is derived. The introduction of generalized coherent states is discussed. Linear laws for the spacing of the energy eigenvalues lead to the Heisenberg-Weyl group and general quadratic laws of level spacing to unitary irreducible representations of the Lie group SU(1, 1) that is considered in detail together with a limiting transition from this group to the Heisenberg-Weyl group. The relation of the approach to quantum deformations is discussed. In two appendices, the classical and quantum mechanical treatment of the squared tangent potential is presented as a special case of a system with quadratic level spacing

  15. SLAM, a Mathematica interface for SUSY spectrum generators

    Marquard, Peter; Zerf, Nikolai

    2013-09-01

    We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m h max and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.

  16. SLAM, a Mathematica interface for SUSY spectrum generators

    Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zerf, Nikolai [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics

    2013-09-15

    We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m{sub h}{sup max} and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.

  17. Microcanonical ensemble and algebra of conserved generators for generalized quantum dynamics

    Adler, S.L.; Horwitz, L.P.

    1996-01-01

    It has recently been shown, by application of statistical mechanical methods to determine the canonical ensemble governing the equilibrium distribution of operator initial values, that complex quantum field theory can emerge as a statistical approximation to an underlying generalized quantum dynamics. This result was obtained by an argument based on a Ward identity analogous to the equipartition theorem of classical statistical mechanics. We construct here a microcanonical ensemble which forms the basis of this canonical ensemble. This construction enables us to define the microcanonical entropy and free energy of the field configuration of the equilibrium distribution and to study the stability of the canonical ensemble. We also study the algebraic structure of the conserved generators from which the microcanonical and canonical ensembles are constructed, and the flows they induce on the phase space. copyright 1996 American Institute of Physics

  18. Introduction to W-algebras

    Takao, Masaru

    1989-01-01

    We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)

  19. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  20. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  1. Color Algebras

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  2. A new technique for generating spectrum compatible accelerogram

    Gosh, A.K.; Muralidharan, N.

    1985-01-01

    A new technique for generating spectrum compatible earthquake accelerogram is presented. Simplified linearised schemes are used to determine the weights of the modulated sinewaves used to represent the ground acceleration in conformity with the instants of time of attaining the maximum responses of the SDOFs. Some typical numerical results are presented in the paper. (orig.)

  3. Generation and reception of spread-spectrum signals

    Moser, R.

    1983-05-01

    The term 'spread-spectrum' implies a technique whereby digitized information is added to a pseudo-random number sequence and the resultant bit stream changes some parameter of the carrier frequency in discrete increments. The discrete modulation of the carrier frequency is usually realized either as a multiple level phase shift keyed or frequency shift keyed signal. The resultant PSK-modulated frequency spectrum is referred to as direct sequence spread-spectrum, whereas the FSK-modulated carrier frequency is referred to as a frequency hopped spread spectrum. These can be considered the major subsets of the more general term 'spread-spectrum'. In discussing signal reception, it is pointed out that active correlation methods are used for channel synchronization when the psuedo random sequences are long or when the processing gain is large, whereas the passive methods may be used for either short pseudo-random noise generation codes or to assist in attaining initial synchronization in long sequence spread-spectrum systems.

  4. On Associative Conformal Algebras of Linear Growth

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  5. Standard integral table algebras generated by non-real element of small degree

    Muzychuk, Mikhail

    2002-01-01

    This book is addressed to the researchers working in the theory of table algebras and association schemes. This area of algebraic combinatorics has been rapidly developed during the last decade. The volume contains further developments in the theory of table algebras. It collects several papers which deal with a classification problem for standard integral table algebras (SITA). More precisely, we consider SITA with a faithful non-real element of small degree. It turns out that such SITA with some extra conditions may be classified. This leads to new infinite series of SITA which has interesting properties. The last section of the book uses a part of obtained results in the classification of association schemes. This volume summarizes the research which was done at Bar-Ilan University in the academic year 1998/99.

  6. An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    Daniel J. Dougherty

    2010-03-01

    Full Text Available Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation.

  7. Basic algebra

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  8. Linear algebra

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  9. Brauer algebras of type B

    Cohen, A.M.; Liu, S.

    2011-01-01

    For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  10. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    Matone, Marco

    2016-01-01

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)

  11. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    Matone, Marco [Universita di Padova, Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Padua (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padua (Italy)

    2016-11-15

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)

  12. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  13. Generating matrix elements of the hamiltonian of the algebraic version of resonating group method on intrinsic wave functions with various oscillator lengths

    Badalov, S.A.; Filippov, G.F.

    1986-01-01

    The receipts to calculate the generating matrix elements of the algebraic version of resonating group method (RGM) are given for two- and three-cluster nucleon systems, the center of mass motion being separeted exactly. For the Hamiltonian with Gaussian nucleon-nucleon potential dependence the generating matrix elements of the RGM algebraic version can be written down explictly if matrix elements of the corresponding system on wave functions of the Brink cluster model are known

  14. Generating higher-order Lie algebras by expanding Maurer-Cartan forms

    Caroca, R.; Merino, N.; Salgado, P.; Perez, A.

    2009-01-01

    By means of a generalization of the Maurer-Cartan expansion method, we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher-order Maurer-Cartan equations for the case G=V 0 +V 1 are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher-order Maurer-Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories.

  15. Wn(2) algebras

    Feigin, B.L.; Semikhatov, A.M.

    2004-01-01

    We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

  16. Computer algebra and operators

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  17. A Note on Some Uniform Algebra Generated by Smooth Functions in the Plane

    Raymond Mortini

    2012-01-01

    Full Text Available We determine, via classroom proofs, the maximal ideal space, the Bass stable rank as well as the topological and dense stable rank of the uniform closure of all complex-valued functions continuously differentiable on neighborhoods of a compact planar set and holomorphic in the interior ∘ of . In this spirit, we also give elementary approaches to the calculation of these stable ranks for some classical function algebras on .

  18. Pulsed White Spectrum Neutron Generator for Explosive Detection

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-01-01

    Successful explosive material detection in luggage and similar sized containers is a critical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designed and fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set of parallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80-120 kV. First experiments demonstrated ion source operation and successful beam pulsing

  19. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  20. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    Zhaoyuan Yu

    2015-12-01

    Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  1. Algebraic geometry

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  2. Grassmann algebras

    Garcia, R.L.

    1983-11-01

    The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

  3. Groups of integral transforms generated by Lie algebras of second-and higher-order differential operators

    Steinberg, S.; Wolf, K.B.

    1979-01-01

    The authors study the construction and action of certain Lie algebras of second- and higher-order differential operators on spaces of solutions of well-known parabolic, hyperbolic and elliptic linear differential equations. The latter include the N-dimensional quadratic quantum Hamiltonian Schroedinger equations, the one-dimensional heat and wave equations and the two-dimensional Helmholtz equation. In one approach, the usual similarity first-order differential operator algebra of the equation is embedded in the larger one, which appears as a quantum-mechanical dynamic algebra. In a second approach, the new algebra is built as the time evolution of a finite-transformation algebra on the initial conditions. In a third approach, the algebra to inhomogeneous similarity algebra is deformed to a noncompact classical one. In every case, we can integrate the algebra to a Lie group of integral transforms acting effectively on the solution space of the differential equation. (author)

  4. Vertex algebras and algebraic curves

    Frenkel, Edward

    2004-01-01

    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  5. Implicative Algebras

    Tadesse

    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  6. Monomial algebras

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  7. Bicovariant quantum algebras and quantum Lie algebras

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  8. The Boolean algebra and central Galois algebras

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  9. On Dunkl angular momenta algebra

    Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2015-11-17

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  10. Quadratic algebras

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  11. Groebner Finite Path Algebras

    Leamer, Micah J.

    2004-01-01

    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  12. Boolean algebra

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  13. Generation of equipment response spectrum considering equipment-structure interaction

    Lee, Sang Hoon; Yoo, Kwang Hoon

    2005-01-01

    Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method

  14. A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants

    Zhe Dong

    2015-01-01

    Full Text Available Small modular reactors (SMRs are those fission reactors whose electrical output power is no more than 300 MWe. SMRs usually have the inherent safety feature that can be applicable to power plants of any desired power rating by applying the multimodular operation scheme. Due to its strong inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR, which uses helium as coolant and graphite as moderator and structural material, is a typical SMR for building the next generation of nuclear plants (NGNPs. The once-through steam generator (OTSG is the basis of realizing the multimodular scheme, and modeling of the OTSG is meaningful to study the dynamic behavior of the multimodular plants and to design the operation and control strategy. In this paper, based upon the conservation laws of mass, energy, and momentum, a new differential-algebraic model for the OTSGs of the MHTGR-based multimodular nuclear plants is given. This newly-built model can describe the dynamic behavior of the OTSG in both the cases of providing superheated steam and generating saturated steam. Numerical simulation results show the feasibility and satisfactory performance of this model. Moreover, this model has been applied to develop the real-time simulation software for the operation and regulation features of the world first underconstructed MHTGR-based commercial nuclear plant—HTR-PM.

  15. Jordan algebras versus C*- algebras

    Stormer, E.

    1976-01-01

    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  16. Idea and application of spectrum-generating SU(3) and SU(4)

    Bohm, A.; Teese, R.B.

    1978-10-01

    The basic ideas of the spectrum-generating SU(n) approach in particle physics are reviewed and the analogy is shown between this and the spectrum-generating method in atomic and molecular physics. The tests of this framework involving one-hadron processes are outlined and two tests of a fundamental relation of this framework (the Werle relation) are discussed. 32 references

  17. Using Example Generation to Explore Students' Understanding of the Concepts of Linear Dependence/Independence in Linear Algebra

    Aydin, Sinan

    2014-01-01

    Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…

  18. The relation between quantum W algebras and Lie algebras

    Boer, J. de; Tjin, T.

    1994-01-01

    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  19. Generating functional for Donaldson invariants and operator algebra in topological D=4 Yang-Mills theory

    Johansen, A.A.

    1992-01-01

    It is shown, that under the certain constraints the generating functional for the Donaldson invariants in the D=4 topological Yang-Mills theory can be interpreted as a partition function for the renormalizable theory. 20 refs

  20. q-deformed Poincare algebra

    Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1992-01-01

    The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)

  1. On graded algebras of global dimension 3

    Piontkovskii, D I

    2001-01-01

    Assume that a graded associative algebra A over a field k is minimally presented as the quotient algebra of a free algebra F by the ideal I generated by a set f of homogeneous elements. We study the following two extensions of A: the algebra F-bar=F/I oplus I/I 2 oplus ... associated with F with respect to the I-adic filtration, and the homology algebra H of the Shafarevich complex Sh(f,F) (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the A-algebra H in this case is free, and the algebra F-bar is isomorphic to the quotient algebra of a free A-algebra by the ideal generated by a so-called strongly free (or inert) set

  2. On an extension of the Weil algebra

    Palev, Ch.

    An extension of the Weil algebra Wsub(n), generated by an appropriate topology is considered. The topology is introduced in such a way that algebraic operations in Wsub(n) to be continuous. The algebraic operations in Wsub(n) are extended by a natural way to a complement, which is noted as an extended Weil algebra. It turns out that the last algebra contains isomorphically the Heisenberg group. By the same way an arbitrary enveloping algebra of a Lie group may be extended. The extended algebra will contain the initial Lie group. (S.P.)

  3. Currents on Grassmann algebras

    Coquereaux, R.; Ragoucy, E.

    1993-09-01

    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  4. A q-deformed Lorentz algebra

    Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1991-01-01

    We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

  5. Separable algebras

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  6. Supersymmetry in physics: an algebraic overview

    Ramond, P.

    1983-01-01

    In 1970, while attempting to generalize the Veneziano model (string model) to include fermions, I introduced a new algebraic structure which turned out to be a graded Lie algebra; it was used as a spectrum-generating algebra. This approach was soon after generalized to include interactions, yielding a complete model of fermions and boson (RNS model). In an unrelated work in the Soviet Union, it was shown how to generalize the Poincare group to include fermionic charges. However it was not until 1974 that an interacting field theory invariant under the Graded Poincare group in 3 + 1 dimensions was built (WZ model). Supersymmetric field theories turned out to have less divergent ultraviolet behavior than non-supersymmetric field theories. Gravity was generalized to include supersymmetry, to a theory called supergravity. By now many interacting local field theories exhibiting supersymmetry have been built and studied from 1 + 1 to 10 + 1 dimensions. Supersymmetric local field theories in less than 9 + 1 dimensions, can be understood as limits of multilocal (string) supersymmetric theories, in 9 + 1 dimensions. On the other hand, graded Lie algebras have been used in non-relativistic physics as approximate symmetries of Hamiltonians. The most striking such use so far helps comparing even and odd nuclei energy levels. It is believed that graded Lie algebras can be used whenever paired and unpaired fermions excitations can coexist. In this overview of a tremendously large field, I will only survey finite graded Lie algebras and their representations. For non-relativistic applications, all of GLA are potentially useful, while for relativistic applications, only these which include the Poincare group are to be considered

  7. Linear Algebra and Smarandache Linear Algebra

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  8. Spectrum

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  9. Symmetries and stochastic symmetry breaking in multifractal geophysics: analysis and simulation with the help of the Lévy-Clifford algebra of cascade generators..

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2016-12-01

    Multifractal fields, whose definition is rather independent of their domain dimension, have opened a new approach of geophysics enabling to explore its spatial extension that is of prime importance as underlined by the expression "spatial chaos". However multifractals have been until recently restricted to be scalar valued, i.e. to one-dimensional codomains. This has prevented to deal with the key question of complex component interactions and their non trivial symmetries. We first emphasize that the Lie algebra of stochastic generators of cascade processes enables us to generalize multifractals to arbitrarily large codomains, e.g. flows of vector fields on large dimensional manifolds. In particular, we have recently investigated the neat example of stable Levy generators on Clifford algebra that have a number of seductive properties, e.g. universal statistical and robust algebra properties, both defining the basic symmetries of the corresponding fields (Schertzer and Tchiguirinskaia, 2015). These properties provide a convenient multifractal framework to study both the symmetries of the fields and how they stochastically break the symmetries of the underlying equations due to boundary conditions, large scale rotations and forcings. These developments should help us to answer to challenging questions such as the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013), to fully address the question of the limitations of quasi- geostrophic turbulence (Schertzer et al., 2012) and to explore the peculiar phenomenology of turbulent dynamics of the atmosphere or oceans that is neither two- or three-dimensional. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.8183. Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327336. Schertzer, D. & Tchiguirinskaia, I., 2015. Multifractal vector fields and stochastic Clifford algebra

  10. Systematic evaluations of probabilistic floor response spectrum generation

    Lilhanand, K.; Wing, D.W.; Tseng, W.S.

    1985-01-01

    The relative merits of the current methods for direct generation of probabilistic floor response spectra (FRS) from the prescribed design response spectra (DRS) are evaluated. The explicit probabilistic methods, which explicitly use the relationship between the power spectral density function (PSDF) and response spectra (RS), i.e., the PSDF-RS relationship, are found to have advantages for practical applications over the implicit methods. To evaluate the accuracy of the explicit methods, the root-mean-square (rms) response and the peak factor contained in the PSDF-RS relationship are systematically evaluated, especially for the narrow-band floor spectral response, by comparing the analytical results with simulation results. Based on the evaluation results, a method is recommended for practical use for the direct generation of probabilistic FRS. (orig.)

  11. Abstract algebra

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  12. College algebra

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  13. Chiral algebras for trinion theories

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  14. Logarithmic residues and sums of idempotents in the Banach algebra generated by the compact operators and the identity.

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    2001-01-01

    textabstractA logarithmic residue is a contour integral of the (left or right) logarithmic derivative of an analytic Banach algebra valued function. Logarithmic residues are intimately related to sums of idempotents. The present paper is concerned with logarithmic residues and sums of idempotents in

  15. Extended Kac-Moody algebras and applications

    Ragoucy, E.; Sorba, P.

    1991-04-01

    The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs

  16. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  17. P-commutative topological *-algebras

    Mohammad, N.; Thaheem, A.B.

    1991-07-01

    If P(A) denotes the set of all continuous positive functionals on a unital complete Imc *-algebra and S(A) the extreme points of P(A), and if the spectrum of an element χ Ε A coincides with the set {f(χ): f Ε S(A)}, then A is shown to be P-commutative. Moreover, if A is unital symmetric Frechet Q Imc *-algebra, then this spectral condition is, in fact, necessary. Also, an isomorphism theorem between symmetric Frechet P-commutative Imc *-algebras is established. (author). 12 refs

  18. Algebra of Majorana doubling.

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  19. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  20. Application of Hilbert-Huang Transform in Generating Spectrum-Compatible Earthquake Time Histories

    Ni, Shun-Hao; Xie, Wei-Chau; Pandey, Mahesh

    2011-01-01

    Spectrum-compatible earthquake time histories have been widely used for seismic analysis and design. In this paper, a data processing method, Hilbert-Huang transform, is applied to generate earthquake time histories compatible with the target seismic design spectra based on multiple actual earthquake records. Each actual earthquake record is decomposed into several components of time-dependent amplitude and frequency by Hilbert-Huang transform. The spectrum-compatible earthquake time history ...

  1. Graded and filtrated topological * - algebras. The closure of the positive cone

    Shmudgen, K.

    1979-01-01

    It is shown that for certain graded locally convex topologies on a filtrated *-algebra the closure of the cone of all finite sums of squares is precisely the cone of all infinite (convergent) sums of squares, similar to the case of the test function algebra. The result applies to tensor algebras and symmetrized tensor algebras over involutive nuclear Frechet spaces and to some finitely generated *-algebras such as polynomial algebras, the Weyl algebra and enveloping algebras

  2. Comments on N=4 superconformal algebras

    Rasmussen, J.

    2001-01-01

    We present a new and asymmetric N=4 superconformal algebra for arbitrary central charge, thus completing our recent work on its classical analogue with vanishing central charge. Besides the Virasoro generator and 4 supercurrents, the algebra consists of an internal SU(2)xU(1) Kac-Moody algebra in addition to two spin 1/2 fermions and a bosonic scalar. The algebra is shown to be invariant under a linear twist of the generators, except for a unique value of the continuous twist parameter. At this value, the invariance is broken and the algebra collapses to the small N=4 superconformal algebra. The asymmetric N=4 superconformal algebra may be seen as induced by an affine SL(2 vertical bar 2) current superalgebra. Replacing SL(2 vertical bar 2) with the coset SL(2 vertical bar 2)/U(1), results directly in the small N=4 superconformal algebra

  3. Brauer algebras of simply laced type

    Cohen, A.M.; Frenk, B.J.; Wales, D.B.

    2009-01-01

    The diagram algebra introduced by Brauer that describes the centralizer algebra of the n-fold tensor product of the natural representation of an orthogonal Lie group has a presentation by generators and relations that only depends on the path graph A n - 1 on n - 1 nodes. Here we describe an algebra

  4. Directed Abelian algebras and their application to stochastic models.

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  5. The Boolean algebra of Galois algebras

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  6. A time-domain method to generate artificial time history from a given reference response spectrum

    Shin, Gang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Song, Oh Seop [Dept. of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance.

  7. A time-domain method to generate artificial time history from a given reference response spectrum

    Shin, Gang Sik; Song, Oh Seop

    2016-01-01

    Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance

  8. Algebraic entropy for algebraic maps

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico

    2016-01-01

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  9. Generating a New Higher-Dimensional Coupled Integrable Dispersionless System: Algebraic Structures, Bäcklund Transformation and Hidden Structural Symmetries

    Abbagari, Souleymanou; Bouetou, Thomas B.; Kofane, Timoleon C.

    2013-01-01

    The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention. (general)

  10. Control of generation spectrum of gyrotron with external reflection in mode of several longitudinal modes

    Rozental', R.M.; Ginzburg, N.S.; Zajtsev, N.I.; Ilyakov, E.V.; Kulagin, I.S.

    2006-01-01

    One studies possibility to control the spectrum of multiparticle generation in a gyrotron due to application of external reflections. It is shown that in self-modulation regimes of generation the radiation spectrum lines may be close to the resonance frequencies throughout electrodynamic system covering a part of output waveguide restricted by a reflector. Under the mentioned conditions variation of distance between mode frequencies and, respectively, period of self-modulation may be reached due to varying of position of the reflector. The theory deductions are supported by the results of experimental investigation into 30 GHz region relativistic gyrotron with external reflections [ru

  11. Non-relativistic Bondi-Metzner-Sachs algebra

    Batlle, Carles; Delmastro, Diego; Gomis, Joaquim

    2017-09-01

    We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.

  12. Problems in abstract algebra

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  13. Algebraic computing

    MacCallum, M.A.H.

    1990-01-01

    The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

  14. Linear algebra

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  15. Linear algebra

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  16. Lie algebras

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  17. Constraints on the mass spectrum of fourth generation fermions and Higgs bosons

    Hashimoto, Michio

    2010-01-01

    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model. We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the two Higgs doublet model can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.

  18. Susy Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators

    Skands, P.; Allanach, B.C.; Baer, H.

    2003-11-01

    An accord specifying generic file structures for 1) supersymmetric model specifications and input parameters, 2) electroweak scale supersymmetric mass and coupling spectra, and 3) decay tables is defined, to provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators. (orig.)

  19. Superalgebras with Grassmann algebra-valued structure constants from superfields

    Azcarraga, J.A. de; Lukierski, J.

    1987-05-01

    We introduce generalized Lie algebras and superalgebras with generators and structure constants taking values in a Grassmann algebra. Such algebraic structures describe the equal time algebras in the superfield formalism. As an example we consider the equal time commutators and anticommutators among bilinears made out of the D=1 quantum superfields describing the supersymmetric harmonic oscillator. (author). 10 refs

  20. ALGEBRAIC TOPOLOGY

    tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).

  1. Algebraic stacks

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  2. Algebraic characterizations of measure algebras

    Jech, Thomas

    2008-01-01

    Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008

  3. Very true operators on MTL-algebras

    Wang Jun Tao

    2016-01-01

    Full Text Available The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized and an analogous of representation theorem for very true MTL-algebras is proved. Then, the left and right stabilizers of very true MTL-algebras are introduced and some related properties are given. As applications of stabilizer of very true MTL-algebras, we produce a basis for a topology on very true MTL-algebras and show that the generated topology by this basis is Baire, connected, locally connected and separable. Finally, the corresponding logic very true MTL-logic is constructed and the soundness and completeness of this logic are proved based on very true MTL-algebras.

  4. Macdonald index and chiral algebra

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  5. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    Wang Jiao; Gong Jiangbin

    2010-01-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  6. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    Wang, Jiao; Gong, Jiangbin

    2010-02-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  7. Quantum W-algebras and elliptic algebras

    Feigin, B.; Kyoto Univ.; Frenkel, E.

    1996-01-01

    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  8. On 2-Banach algebras

    Mohammad, N.; Siddiqui, A.H.

    1987-11-01

    The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

  9. Remarks on finite W algebras

    Barbarin, F.; Sorba, P.; Ragoucy, E.

    1996-01-01

    The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)

  10. Lie Algebras and Integrable Systems

    Zhang Yufeng; Mei Jianqin

    2012-01-01

    A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)

  11. Linear operators in Clifford algebras

    Laoues, M.

    1991-01-01

    We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)

  12. Circle Maps and C*-algebras

    Schmidt, Thomas Lundsgaard

    such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...... of these algebras in terms of dynamical properties of $\\phi$. We proceed to consider the situation when the algebras are non-simple, and describe the primitive ideal spectrum in this case. We prove that any irreducible representation factors through the $C^*$-algebra of the reduction of the groupoid to the orbit...

  13. Coset realization of unifying W-algebras

    Blumenhagen, R.; Huebel, R.

    1994-06-01

    We construct several quantum coset W-algebras, e.g. sl(2,R)/U(1) and sl(2,R)+sl(2,R)/sl(2,R), and argue that they are finitely nonfreely generated. Furthermore, we discuss in detail their role as unifying W-algebras of Casimir W-algebras. We show that it is possible to give coset realizations of various types of unifying W-algebras, e.g. the diagonal cosets based on the symplectic Lie algebras sp(2n) realize the unifying W-algebras which have previously been introduced as 'WD -n '. In addition, minimal models of WD -n are studied. The coset realizations provide a generalization of level-rank-duality of dual coset pairs. As further examples of finitely nonfreely generated quantum W-algebras we discuss orbifolding of W-algebras which on the quantum level has different properties than in the classical case. We demonstrate in some examples that the classical limit according to Bowcock and Watts of these nonfreely finitely generated quantum W-algebras probably yields infinitely nonfreely generated classical W-algebras. (orig.)

  14. Color-charge algebras in Adler's chromodynamics

    Cvitanovic, P.; Gonsalves, R.J.; Neville, D.E.

    1978-01-01

    We show that the color-charge algebra in the three-quark sector generated by the matrices of the fundamental representation of U(n) does not have the trace properties required in Adler's extension of chromodynamics. We also discuss a diagrammatic representation of algebras generated by quark and antiquark charges in general, and an embedding of the N-quark algebra in the symmetric group S/sub N/+1

  15. Current algebra

    Jacob, M.

    1967-01-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  16. The algebraic collective model

    Rowe, D.J.; Turner, P.S.

    2005-01-01

    A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei

  17. Generation of spectrum compatible accelerograms for seismic analysis of prototype fast breeder reactor

    Selvaraj, T.; Chellapandi, P.; Chetal, S.C.

    2003-01-01

    For the seismic design of nuclear power plants, time history of earthquake ground motion is required basically to generate time histories at various floors of nuclear island as well as at the component support locations. From such time histories, floor response spectra (FRS) can be generated. The basic input is specified as site dependent response spectra (SDRS), from which a set of uncorrelated time histories is generated whose own response spectrum matches with the design response spectra. These time histories have got a great impact on the structural design and economy. For Kalpakkam, the site for PFBR, the seismic input is defined in terms of SDRS for various damping values and its shapes have been arrived already. Synthetic accelerograms have been generated such that the time-history generated response spectrum (THRS) closely matches the SDRS for 5% of critical damping. Time histories have been developed using CASTEM 2000, a multi purpose FE code. This paper deals with the generation methodology and their compliance with ASCE 4-98. (author)

  18. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  19. Calculating the energy spectrum of neutrons from tritium target of the NG-150 type generator

    Bortash, A.I.; Kuznetsov, V.S.

    1987-01-01

    Calculation procedure of neutron spectra yielding from the NG-150 generator target chamber with regard to deutron moderation is suggested. Using the suggested procedure, neutron spectra for different escape angles formed in the tritium target are calculated. The spectrum of neutrons scattered in cooling water is calculated. The mean energy of neutrons escaping at the angle of 0 deg equalling 14.5 MeV is obtained

  20. Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons

    Bohm, A.; Teese, R.B.

    1977-09-01

    The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed

  1. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  2. Operator theory, operator algebras and applications

    Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya

    2014-01-01

    This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...

  3. Fibered F-Algebra

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  4. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  5. Monte Carlo Depletion with Critical Spectrum for Assembly Group Constant Generation

    Park, Ho Jin; Joo, Han Gyu; Shim, Hyung Jin; Kim, Chang Hyo

    2010-01-01

    The conventional two-step procedure has been used in practical nuclear reactor analysis. In this procedure, a deterministic assembly transport code such as HELIOS and CASMO is normally to generate multigroup flux distribution to be used in few-group cross section generation. Recently there are accuracy issues related with the resonance treatment or the double heterogeneity (DH) treatment for VHTR fuel blocks. In order to mitigate the accuracy issues, Monte Carlo (MC) methods can be used as an alternative way to generate few-group cross sections because the accuracy of the MC calculations benefits from its ability to use continuous energy nuclear data and detailed geometric information. In an earlier work, the conventional methods of obtaining multigroup cross sections and the critical spectrum are implemented into the McCARD Monte Carlo code. However, it was not complete in that the critical spectrum is not reflected in the depletion calculation. The purpose of this study is to develop a method to apply the critical spectrum to MC depletion calculations to correct for the leakage effect in the depletion calculation and then to examine the MC based group constants within the two-step procedure by comparing the two-step solution with the direct whole core MC depletion result

  6. Grassmann, super-Kac-Moody and super-derivation algebras

    Frappat, L.; Ragoucy, E.; Sorba, P.

    1989-05-01

    We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

  7. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

    Toppan, Francesco

    2014-12-01

    Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

  8. Generalized symmetry algebras

    Dragon, N.

    1979-01-01

    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  9. Hom-Novikov algebras

    Yau, Donald

    2011-01-01

    We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

  10. Algebraic functions

    Bliss, Gilbert Ames

    1933-01-01

    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  11. Iterated Leavitt Path Algebras

    Hazrat, R.

    2009-11-01

    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  12. Cluster algebras in mathematical physics

    Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito

    2014-01-01

    This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm

  13. Paragrassmann analysis and covariant quantum algebras

    Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.; Pyatov, P.N.

    1993-01-01

    This report is devoted to the consideration from the algebraic point of view the paragrassmann algebras with one and many paragrassmann generators Θ i , Θ p+1 i = 0. We construct the paragrassmann versions of the Heisenberg algebra. For the special case, this algebra is nothing but the algebra for coordinates and derivatives considered in the context of covariant differential calculus on quantum hyperplane. The parameter of deformation q in our case is (p+1)-root of unity. Our construction is nondegenerate only for even p. Taking bilinear combinations of paragrassmann derivatives and coordinates we realize generators for the covariant quantum algebras as tensor products of (p+1) x (p+1) matrices. (orig./HSI)

  14. Prime alternative algebras that are nearly commutative

    Pchelintsev, S V

    2004-01-01

    We prove that by deforming the multiplication in a prime commutative alternative algebra using a C-operation we obtain a prime non-commutative alternative algebra. Under certain restrictions on non-commutative algebras this relation between algebras is reversible. Isotopes are special cases of deformations. We introduce and study a linear space generated by the Bruck C-operations. We prove that the Bruck space is generated by operations of rank 1 and 2 and that 'general' Bruck operations of rank 2 are independent in the following sense: a sum of n operations of rank 2 cannot be written as a linear combination of (n-1) operations of rank 2 and an arbitrary operation of rank 1. We describe infinite series of non-isomorphic prime non-commutative algebras of bounded degree that are deformations of a concrete prime commutative algebra

  15. Supersymmetry algebra cohomology. I. Definition and general structure

    Brandt, Friedemann

    2010-01-01

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  16. The structure of the super-W∞(λ) algebra

    Bergshoeff, E.; Wit, B. de; Vasiliev, M.

    1991-01-01

    We give a comprehensive treatment of the super-W ∞ (λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin S ≥ 1/2. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W ∞ (λ) algebra from the associative algebra of superspace differential operators. We discuss the structure of this associative algebra and its relation with the so-called wedge algebra, in which the generators for given spin are restricted to finite-dimensional representations of sl(2). From the super-W ∞ (λ) algebra one can obtain a variety of W ∞ algebras by consistent truncations for specific values of λ. Without truncation the algebras are formally isomorphic for different values of λ. We present a realization in terms of the currents of a supersymmetric bc system. (orig.)

  17. NULIF: neutron spectrum generator, few-group constant calculator, and fuel depletion code

    Wittkopf, W.A.; Tilford, J.M.; Andrews, J.B. II; Kirschner, G.; Hassan, N.M.; Colpo, P.N.

    1977-02-01

    The NULIF code generates a microgroup neutron spectrum and calculates spectrum-weighted few-group parameters for use in a spatial diffusion code. A wide variety of fuel cells, non-fuel cells, and fuel lattices, typical of PWR (or BWR) lattices, are treated. A fuel depletion routine and change card capability allow a broad range of problems to be studied. Coefficient variation with fuel burnup, fuel temperature change, moderator temperature change, soluble boron concentration change, burnable poison variation, and control rod insertion are readily obtained. Heterogeneous effects, including resonance shielding and thermal flux depressions, are treated. Coefficients are obtained for one thermal group and up to three epithermal groups. A special output routine writes the few-group coefficient data in specified format on an output tape for automated fitting in the PDQ07-HARMONY system of spatial diffusion-depletion codes

  18. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  19. Universal algebra

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  20. Yoneda algebras of almost Koszul algebras

    Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

  1. Open algebraic surfaces

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  2. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  3. Linear algebra

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  4. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  5. Casimir elements of epsilon Lie algebras

    Scheunert, M.

    1982-10-01

    The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)

  6. Novikov-Jordan algebras

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  7. Introduction to relation algebras relation algebras

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  8. Generativity and imagination in autism spectrum disorder: evidence from individual differences in children's impossible entity drawings.

    Low, Jason; Goddard, Elizabeth; Melser, Joseph

    2009-06-01

    This study examined the cognitive underpinnings of spontaneous imagination in autism spectrum disorder (ASD) by way of individual differences. Children with ASD (N = 27) and matched typically developing (TD) children were administered Karmiloff-Smith's (1990) imaginative drawing task, along with measures that tapped specific executive functions (generativity, visuospatial planning, and central coherence processing style) and false belief theory of mind (ToM) understanding. The ASD group drawings displayed deficits in imaginative content and a piecemeal pictorial style. ASD participants also showed group deficits in generativity, planning and ToM, and exhibited weak coherence. Individual differences in generativity were related to imaginative drawing content in the ASD group, and the association was mediated through planning ability. Variations in weak coherence were separately related to a piecemeal drawing style in the ASD group. Variations in generativity were also linked with imaginative drawing content in the TD group; the connection unfolded when it received pooled variance from receptive language ability, and thereupon mediated through false belief reasoning to cue imaginative content. Results are discussed in terms of how generativity plays a broad and important role for imagination in ASD and typical development, albeit in different ways.

  9. Banach Synaptic Algebras

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  10. Extension of supercontinuum spectrum generated in photonic crystal fiber by using chirped femtosecond pulses

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2017-08-01

    We present results of experimental and numerical investigation of supercontinuum generation in polarization maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52 nJ energy 110 fs duration pulses at 1030 nm with 76 MHz repetition rate. The nonlinear medium was a 32 cm long polarization maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of supercontinuum. We showed that by chirping pump pulses positively or negatively one can obtain broader supercontinuum spectrum than in case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. In our case the supercontinuum spectrum width was extended by up to 115 nm (at maximum chirp value of +10500 fs2 that we could achieve in our setup) compared to the case of unchirped pump at the same peak power.

  11. Mattson Solomon transform and algebra codes

    Martínez-Moro, E.; Benito, Diego Ruano

    2009-01-01

    In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases ...

  12. C*-algebras of holonomy-diffeomorphisms and quantum gravity: I

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2013-01-01

    A new approach to a unified theory of quantum gravity based on noncommutative geometry and canonical quantum gravity is presented. The approach is built around a *-algebra generated by local holonomy-diffeomorphisms on a 3-manifold and a quantized Dirac-type operator, the two capturing the kinematics of quantum gravity formulated in terms of Ashtekar variables. We prove that the separable part of the spectrum of the algebra is contained in the space of measurable connections modulo gauge transformations and we give limitations to the non-separable part. The construction of the Dirac-type operator—and thus the application of noncommutative geometry—is motivated by the requirement of diffeomorphism invariance. We conjecture that a semi-finite spectral triple, which is invariant under volume-preserving diffeomorphisms, arises from a GNS construction of a semi-classical state. Key elements of quantum field theory emerge from the construction in a semi-classical limit, as does an almost commutative algebra. Finally, we note that the spectrum of loop quantum gravity emerges from a discretization of our construction. Certain convergence issues are left unresolved. This paper is the first of two where the second paper [1] is concerned with mathematical details and proofs concerning the spectrum of the holonomy-diffeomorphism algebra. (paper)

  13. Interference-Aware Spectrum Sharing Techniques for Next Generation Wireless Networks

    Qaraqe, Marwa Khalid

    2011-11-20

    Background: Reliable high-speed data communication that supports multimedia application for both indoor and outdoor mobile users is a fundamental requirement for next generation wireless networks and requires a dense deployment of physically coexisting network architectures. Due to the limited spectrum availability, a novel interference-aware spectrum-sharing concept is introduced where networks that suffer from congested spectrums (secondary-networks) are allowed to share the spectrum with other networks with available spectrum (primary-networks) under the condition that limited interference occurs to primary networks. Objective: Multiple-antenna and adaptive rate can be utilized as a power-efficient technique for improving the data rate of the secondary link while satisfying the interference constraint of the primary link by allowing the secondary user to adapt its transmitting antenna, power, and rate according to the channel state information. Methods: Two adaptive schemes are proposed using multiple-antenna transmit diversity and adaptive modulation in order to increase the spectral-efficiency of the secondary link while maintaining minimum interference with the primary. Both the switching efficient scheme (SES) and bandwidth efficient scheme (BES) use the scan-and-wait combining antenna technique (SWC) where there is a secondary transmission only when a branch with an acceptable performance is found; else the data is buffered. Results: In both these schemes the constellation size and selected transmit branch are determined to minimized the average number of switches and achieve the highest spectral efficiency given a minimum bit-error-rate (BER), fading conditions, and peak interference constraint. For delayed sensitive applications, two schemes using power control are used: SES-PC and BES-PC. In these schemes the secondary transmitter sends data using a nominal power level, which is optimized to minimize the average delay. Several numerical examples show

  14. Quantum cluster algebras and quantum nilpotent algebras

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  15. Upper bound for the length of commutative algebras

    Markova, Ol'ga V

    2009-01-01

    By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer k such that the words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained. Bibliography: 8 titles.

  16. Quantization and representation theory of finite W algebras

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  17. Hecke symmetries and characteristic relations on reflection equation algebras

    Gurevich, D.I.; Pyatov, P.N.

    1996-01-01

    We discuss how properties of Hecke symmetry (i.e., Hecke type R-matrix) influence the algebraic structure of the corresponding Reflection Equation (RE) algebra. Analogues of the Newton relations and Cayley-Hamilton theorem for the matrix of generators of the RE algebra related to a finite rank even Hecke symmetry are derived. 10 refs

  18. GLq(N)-covariant quantum algebras and covariant differential calculus

    Isaev, A.P.; Pyatov, P.N.

    1992-01-01

    GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations are considered. It is that, up to some innessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. 25 refs

  19. GLq(N)-covariant quantum algebras and covariant differential calculus

    Isaev, A.P.; Pyatov, P.N.

    1993-01-01

    We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is discussed. (orig.)

  20. {kappa}-deformed realization of D=4 conformal algebra

    Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)

    1995-07-01

    We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.

  1. Bases in Lie and quantum algebras

    Ballesteros, A; Celeghini, E; Olmo, M A del

    2008-01-01

    Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).

  2. Leavitt path algebras

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  3. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    Gorbatsevich, Vladimir V

    2012-01-01

    The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra is considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.

  4. Algebraic theory of numbers

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  5. Lukasiewicz-Moisil algebras

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  6. Introduction to quantum algebras

    Kibler, M.R.

    1992-09-01

    The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs

  7. Generalized EMV-Effect Algebras

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  8. Families talen en algebra

    Asveld, P.R.J.

    1976-01-01

    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  9. Rudiments of algebraic geometry

    Jenner, WE

    2017-01-01

    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  10. Notes on algebraic invariants for non-commutative dynamical systems

    Longo, R [Rome Univ. (Italy). Istituto di Matematica

    1979-11-01

    We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables

  11. Cylindric-like algebras and algebraic logic

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  12. Categories and Commutative Algebra

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  13. q-deformations of noncompact Lie (super-) algebras: The examples of q-deformed Lorentz, Weyl, Poincare' and (super-) conformal algebras

    Dobrev, V.K.

    1992-01-01

    We review and explain a canonical procedure for the q-deformation of the real forms G of complex Lie (super-) algebras associated with (generalized) Cartan matrices. Our procedure gives different q-deformations for the non-conjugate Cartan subalgebras of G. We give several in detail the q-deformed Lorentz and conformal (super-) algebras. The q-deformed conformal algebra contains as a subalgebra a q-deformed Poincare algebra and as Hopf subalgebras two conjugate 11-generator q-deformed Weyl algebras. The q-deformed Lorentz algebra in Hopf subalgebra of both Weyl algebras. (author). 24 refs

  14. Abstract algebra for physicists

    Zeman, J.

    1975-06-01

    Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)

  15. Combinatorial commutative algebra

    Miller, Ezra

    2005-01-01

    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  16. The classical limit of W-algebras

    Figueroa-O'Farrill, J.M.; Ramos, E.

    1992-01-01

    We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)

  17. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    Cirilo António, N., E-mail: nantonio@math.ist.utl.pt [Centro de Análise Funcional e Aplicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Manojlović, N., E-mail: nmanoj@ualg.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa (Portugal); Departamento de Matemática, F.C.T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro (Portugal); Salom, I., E-mail: isalom@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)

    2014-12-15

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  18. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  19. Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra

    Alvarez-Nodarse, R [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla (Spain); Atakishiyev, N M [Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico (Germany); Costas-Santos, R S [Departamento de Matematicas, EPS, Universidad Carlos III de Madrid, Ave. Universidad 30, E-28911, Leganes, Madrid (Spain)

    2005-01-07

    We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra su{sub q}(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form.

  20. Supersymmetrization schemes of D=4 Maxwell algebra

    Kamimura, Kiyoshi; Lukierski, Jerzy

    2012-01-01

    The Maxwell algebra, an enlargement of Poincaré algebra by Abelian tensorial generators, can be obtained in arbitrary dimension D by the suitable contraction of O(D-1,1)⊕O(D-1,2) (Lorentz algebra ⊕ AdS algebra). We recall that in D=4 the Lorentz algebra O(3,1) is described by the realification Sp R (2|C) of complex algebra Sp(2|C)≃Sl(2|C) and O(3,2)≃Sp(4). We study various D=4N-extended Maxwell superalgebras obtained by the contractions of real superalgebras OSp R (2N-k;2|C)⊕OSp(k;4) (k=0,1,2,…,2N); (extended Lorentz superalgebra ⊕ extended AdS superalgebra). If N=1 (k=0,1,2) one arrives at three different versions of simple Maxwell superalgebra. For any fixed N we get 2N different superextensions of Maxwell algebra with n-extended Poincaré superalgebras (1⩽n⩽N) and the internal symmetry sectors obtained by suitable contractions of the real algebra O R (2N-k|C)⊕O(k). Finally the comments on possible applications of Maxwell superalgebras are presented.

  1. A survey on locally uniformly A-convex algebras

    Oudadess, M.

    1984-12-01

    Using a bornological technic of M. Akkar, we reduce the study of classical questions (spectrum, boundedness of characters, functional calculus, etc.) in locally uniformly A-convex algebras to the Banach case. (author)

  2. The N=2 super-W3 algebra

    Romans, L.J.

    1992-01-01

    We present the complete structure of the N=2 super-W 3 algebra, a non-linear extended conformal algebra containing the usual N=2 superconformal algebra (with generators of spins 1, 3/2, 3/2 and 2) and a higher-spin multiplet of generators with spins 2, 5/2, 5/2 and 3. We investigate various sub-algebras and related algebras, and find necessary conditions upon possible unitary representations of the algebra. In particular, the central charge c is restricted to two discrete series, one ascending and one descending to a common accumulation point c=6. The results suggest that the algebra is realised in certain (compact or non-compact) Kazama-Suzuki coset models, including a c=9 model proposed by Bars based on SU(2, 1)/U(2). (orig.)

  3. Linearizing W-algebras

    Krivonos, S.O.; Sorin, A.S.

    1994-06-01

    We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

  4. Algebraic topological entropy

    Hudetz, T.

    1989-01-01

    As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

  5. Algorithms in Algebraic Geometry

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  6. Generalized Heisenberg algebra and algebraic method: The example of an infinite square-well potential

    Curado, E.M.F.; Hassouni, Y.; Rego-Monteiro, M.A.; Rodrigues, Ligia M.C.S.

    2008-01-01

    We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements

  7. Lectures on algebraic statistics

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  8. Extended conformal algebras

    Goddard, Peter

    1990-01-01

    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  9. Algebraic conformal field theory

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  10. Generational Differences in Internalized Transnegativity and Psychological Distress Among Feminine Spectrum Transgender People.

    Jackman, Kasey B; Dolezal, Curtis; Bockting, Walter O

    2018-01-01

    This study examined internalized transnegativity and psychological distress in two age groups of transgender individuals who identified their gender identity on the feminine spectrum (rather than congruent with their male sex assigned at birth). Due to greater visibility and acceptance of gender diversity in the United States, we hypothesized that internalized transnegativity would be lower in the younger compared with the older group, and that the younger generation would, therefore, report lower levels of psychological distress than the older generation. The study sample consisted of trans-feminine individuals (N = 440) who completed a online survey of the U.S. transgender population and comprised a younger group aged 18-24 years (n = 133) and an older group aged 40 years and older (n = 307). Internalized transnegativity was assessed using the Transgender Identity Survey, and psychological distress was assessed with the Brief Symptom Inventory 18. We used regression and mediation analysis to examine differences between the two groups. Contrary to our expectations, the older group reported significantly lower levels of both internalized transnegativity and psychological distress compared with the younger group. Internalized transnegativity partially mediated the relationship between age group and psychological distress. Despite greater visibility of transgender people and increasing acceptance of gender diversity in the United States, the younger trans-feminine individuals reported more psychological distress than the older transfeminine individuals, which was, in part, related to internalized transnegativity. Trans-feminine individuals may benefit from culturally sensitive and clinically competent mental health services to alleviate internalized transnegativity and psychological distress.

  11. On the algebraic structure of differential calculus on quantum groups

    Rad'ko, O.V.; Vladimirov, A.A.

    1997-01-01

    Intrinsic Hopf algebra structure of the Woronowicz differential complex is shown to generate quite naturally a bicovariant algebra of four basic objects within a differential calculus on quantum groups - coordinate functions, differential forms, Lie derivatives, and inner derivatives - as the cross-product algebra of two mutually dual graded Hopf algebras. This construction, properly taking into account Hopf-algebraic properties of Woronowicz's bicovariant calculus, provides a direct proof of the Cartan identity and of many other useful relations. A detailed comparison with other approaches is also given

  12. Multiple optical code-label processing using multi-wavelength frequency comb generator and multi-port optical spectrum synthesizer.

    Moritsuka, Fumi; Wada, Naoya; Sakamoto, Takahide; Kawanishi, Tetsuya; Komai, Yuki; Anzai, Shimako; Izutsu, Masayuki; Kodate, Kashiko

    2007-06-11

    In optical packet switching (OPS) and optical code division multiple access (OCDMA) systems, label generation and processing are key technologies. Recently, several label processors have been proposed and demonstrated. However, in order to recognize N different labels, N separate devices are required. Here, we propose and experimentally demonstrate a large-scale, multiple optical code (OC)-label generation and processing technology based on multi-port, a fully tunable optical spectrum synthesizer (OSS) and a multi-wavelength electro-optic frequency comb generator. The OSS can generate 80 different OC-labels simultaneously and can perform 80-parallel matched filtering. We also demonstrated its application to OCDMA.

  13. Approaches for the generation of a covariance matrix for the Cf-252 fission-neutron spectrum

    Mannhart, W.

    1983-01-01

    After a brief retrospective glance is cast at the situation, the evaluation of the Cf-252 neutron spectrum with a complete covariance matrix based on the results of integral experiments is proposed. The different steps already taken in such an evaluation and work in progress are reviewed. It is shown that special attention should be given to the normalization of the neutron spectrum which must be reflected in the covariance matrix. The result of the least-squares adjustment procedure applied can easily be combined with the results of direct spectrum measurements and should be regarded as the first step in a new evaluation of the Cf-252 fission-neutron spectrum. (author)

  14. Teaching Picture Naming to Two Adolescents with Autism Spectrum Disorders Using Systematic Instruction and Speech-Generating Devices

    Kagohara, Debora M.; van der Meer, Larah; Achmadi, Donna; Green, Vanessa A.; O'Reilly, Mark F.; Lancioni, Giulio E.; Sutherland, Dean; Lang, Russell; Marschik, Peter B.; Sigafoos, Jeff

    2012-01-01

    We evaluated an intervention aimed at teaching two adolescents with autism spectrum disorders (ASDs) to name pictures using speech-generating devices (SGDs). The effects of intervention were evaluated in two studies using multiple-probe across participants designs. Intervention--consisting of time delay, least-to-most prompting, and differential…

  15. Teaching Advanced Operation of an iPod-Based Speech-Generating Device to Two Students with Autism Spectrum Disorders

    Achmadi, Donna; Kagohara, Debora M.; van der Meer, Larah; O'Reilly, Mark F.; Lancioni, Giulio E.; Sutherland, Dean; Lang, Russell; Marschik, Peter B.; Green, Vanessa A.; Sigafoos, Jeff

    2012-01-01

    We evaluated a program for teaching two adolescents with autism spectrum disorders (ASD) to perform more advanced operations on an iPod-based speech-generating device (SGD). The effects of the teaching program were evaluated in a multiprobe multiple baseline across participants design that included two intervention phases. The first intervention…

  16. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  17. Coherent states and classical limit of algebraic quantum models

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  18. Automatic Construction of Finite Algebras

    张健

    1995-01-01

    This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.

  19. Nonflexible Lie-admissible algebras

    Myung, H.C.

    1978-01-01

    We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

  20. Recoupling Lie algebra and universal ω-algebra

    Joyce, William P.

    2004-01-01

    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  1. On MV-algebras of non-linear functions

    Antonio Di Nola

    2017-01-01

    Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  2. On MV-algebras of non-linear functions

    Antonio Di Nola

    2017-01-01

    Full Text Available In this paper, the main results are: a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I; a study of Hopfian MV-algebras; and a category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  3. Hurwitz Algebras and the Octonion Algebra

    Burdik, Čestmir; Catto, Sultan

    2018-02-01

    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  4. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

    Arakelyan, T.A.

    1990-01-01

    The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

  5. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  6. An introduction to algebraic structures

    Landin, Joseph

    2010-01-01

    As the author notes in the preface, ""The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'"" Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short

  7. Green's functions through so(2,1) lie algebra in nonrelativistic quantum mechanics

    Boschi-Filho, H.; Vaidya, A.N.

    1991-01-01

    The authors discuss an algebraic technique to construct the Green's function for systems described by the noncompact so(2,1) Lie algebra. They show that this technique solves the one-dimensional linear oscillator and Coulomb potentials and also generates particular solutions for other one-dimensional potentials. Then they construct explicitly the Green's function for the three-dimensional oscillator and the three-dimensional Coulomb potential, which are generalizations of the one-dimensional cases, and the Coulomb plus an Aharanov-Bohm, potential. They discuss the dynamical algebra involved in each case and also find their wave functions and bound state spectra. Finally they introduce in each case and also find their wave functions and bound state spectra. Finally they introduce a point canonical transformation in the generators of so(2,10) Lie algebra, show that this procedure permits us to solve the one-dimensional Morse potential in addition to the previous cases, and construct its Green's function and find its energy spectrum and wave functions

  8. Representations of Lie algebras and partial differential equations

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  9. q-Derivatives, quantization methods and q-algebras

    Twarock, Reidun

    1998-01-01

    Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed

  10. Representations of quantum bicrossproduct algebras

    Arratia, Oscar; Olmo, Mariano A del

    2002-01-01

    We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

  11. On hyper BCC-algebras

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  12. On hyper BCC-algebras

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  13. Simple relation algebras

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  14. Twisted classical Poincare algebras

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  15. Symmetric vectors and algebraic classification

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  16. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  17. Cohomology of Effect Algebras

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  18. Basic notions of algebra

    Shafarevich, Igor Rostislavovich

    2005-01-01

    This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

  19. Boolean algebra essentials

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  20. Quiver W-algebras

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  1. From Rota-Baxter algebras to pre-Lie algebras

    An Huihui; Ba, Chengming

    2008-01-01

    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  2. Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)

    Bohm, A.; Teese, R.B.

    1982-01-01

    We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy

  3. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  4. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    N.W. van den Hijligenberg; R. Martini

    1995-01-01

    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  5. Logarithmic sℓ-hat (2) CFT models from Nichols algebras: I

    Semikhatov, A M; Tipunin, I Yu

    2013-01-01

    We construct chiral algebras that centralize rank-2 Nichols algebras with at least one fermionic generator. This gives ‘logarithmic’ W-algebra extensions of a fractional-level sℓ-hat (2) algebra. We discuss crucial aspects of the emerging general relation between Nichols algebras and logarithmic conformal field theory (CFT) models: (i) the extra input, beyond the Nichols algebra proper, needed to uniquely specify a conformal model; (ii) a relation between the CFT counterparts of Nichols algebras connected by Weyl groupoid maps; and (iii) the common double bosonization U(X) of such Nichols algebras. For an extended chiral algebra, candidates for its simple modules that are counterparts of the U(X) simple modules are proposed, as a first step toward a functorial relation between U(X) and W-algebra representation categories. (paper)

  6. Contemporary developments in algebraic K-theory

    Karoubi, M.; Kuku, A.O.; Pedrini, C.

    2003-01-01

    The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory

  7. Algebraic monoids, group embeddings, and algebraic combinatorics

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  8. Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting

    Ayala, Silvana; Wu, Yuechen; Vorndran, Shelby; Santiago, Raphael P.; Kostuk, Raymond K.

    2015-09-01

    In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.

  9. (Quasi-)Poisson enveloping algebras

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  10. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  11. Commutative algebra constructive methods finite projective modules

    Lombardi, Henri

    2015-01-01

    Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...

  12. Construction and decoding of a class of algebraic geometry codes

    Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd

    1989-01-01

    A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...

  13. The structure of the super-W sub infinity (. lambda. ) algebra

    Bergshoeff, E [CERN, Geneva (Switzerland). Theory Div.; Wit, B de [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Vasiliev, M [AN SSSR, Moscow (USSR). Theoretical Dept., P.N. Lebedev Inst.

    1991-12-02

    We give a comprehensive treatment of the super-W{sub {infinity}}({lambda}) algebra, an extension of the super-Virasoro algebra that contains generators of spin S {>=} 1/2. The parameter {lambda} defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W{sub {infinity}}({lambda}) algebra from the associative algebra of superspace differential operators. We discuss the structure of this associative algebra and its relation with the so-called wedge algebra, in which the generators for given spin are restricted to finite-dimensional representations of sl(2). From the super-W{sub {infinity}}({lambda}) algebra one can obtain a variety of W{sub {infinity}} algebras by consistent truncations for specific values of {lambda}. Without truncation the algebras are formally isomorphic for different values of {lambda}. We present a realization in terms of the currents of a supersymmetric bc system. (orig.).

  14. Ready, Set, Algebra?

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  15. Learning Activity Package, Algebra.

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  16. Who Takes College Algebra?

    Herriott, Scott R.; Dunbar, Steven R.

    2009-01-01

    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  17. Analytic real algebras.

    Seo, Young Joo; Kim, Young Hee

    2016-01-01

    In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.

  18. Pre-Algebra Lexicon.

    Hayden, Dunstan; Cuevas, Gilberto

    The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

  19. Computer algebra applications

    Calmet, J.

    1982-01-01

    A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

  20. Algebraic Description of Motion

    Davidon, William C.

    1974-01-01

    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  1. Linear-Algebra Programs

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  2. On Algebraic Spectrum of Ontology Evaluation

    Adekoya Adebayo Felix; kinwale Adio Taofiki; Sofoluwe Adetokunbo

    2011-01-01

    Ontology evaluation remains an important open problem in the area of its application. The ontology structure evaluation framework for benchmarking the internal graph structures was proposed. The framework was used in transport and biochemical ontology. The corresponding adjacency, incidence matrices and other structural properties due to the class hierarchical structure of the transport and biochemical ontology were computed using MATLAB. The results showed that the choice of suitable choice ...

  3. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography

    Jeffrey S. Lee

    2017-10-01

    Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics

  4. Polynomial deformations of oscillator algebras in quantum theories with internal symmetries

    Karassiov, V.P.

    1992-01-01

    This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )

  5. Elements of mathematics algebra

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  6. Towers of algebras in rational conformal field theories

    Gomez, C.; Sierra, G.

    1991-01-01

    This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors

  7. Cluster algebras bases on vertex operator algebras

    Zuevsky, Alexander

    2016-01-01

    Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300

  8. Algebraic K-theory and algebraic topology

    Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)

    2003-09-15

    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.

  9. An introduction to algebraic geometry and algebraic groups

    Geck, Meinolf

    2003-01-01

    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  10. Linear algebraic groups

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  11. Matrices and linear algebra

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  12. Quantitative Algebraic Reasoning

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  13. Topology general & algebraic

    Chatterjee, D

    2007-01-01

    About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

  14. Adaptive algebraic reconstruction technique

    Lu Wenkai; Yin Fangfang

    2004-01-01

    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  15. A program for constructing finitely presented Lie algebras and superalgebras

    Gerdt, V.P.; Kornyak, V.V.

    1997-01-01

    The purpose of this paper is to describe a C program FPLSA for investigating finitely presented Lie algebras and superalgebras. The underlying algorithm is based on constructing the complete set of relations called also standard basis or Groebner basis of ideal of free Lie (super) algebra generated by the input set of relations. The program may be used, in particular, to compute the Lie (super)algebra basis elements and its structure constants, to classify the finitely presented algebras depending on the values of parameters in the relations, and to construct the Hilbert series. These problems are illustrated by examples. (orig.)

  16. Toda theories, W-algebras, and minimal models

    Mansfield, P.; Spence, B.

    1991-01-01

    We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models. (orig.)

  17. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

    Neshveyev, Sergey; Tuset, Lars

    2012-05-01

    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).

  18. Effective quark-diquark supersymmetry an algebraic approach

    Catto, S.

    1989-01-01

    Effective hadronic supersymmetries and color algebra, where extended Miyazawa U(6/21) supersymmetry between mesons and baryons are derived from QCD under some assumptions and within some approximation, also using a dynamical suppression of color-symmetric states. This shows the hadronic origin of supersymmetry as well as the underlying structure of exceptional algebras to the quark model. Supergroups, and infinite groups like Virasoro algebra, then emerge as useful descriptions of certain properties of the hadronic spectrum. Applications to exotic mesons and baryons are discussed

  19. Superconformal algebras in two dimensions with N=4

    Sevrin, A.; Troost, W.; Proeyen, A. van

    1988-01-01

    We discuss a one-parameter family of d=2 superconformal algebras. They have N=4 supersymmetries and satisfy all the usual requirements. There is one Virasoro algebra, the other generators have dimension 1/2, 1 or 3/2 and there is one central extension. A realisation is given on a linear σ-model on a group manifold. (orig.)

  20. Fredholm Modules over Graph C-Algebras

    Crisp, Tyrone

    2015-01-01

    We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in K-homology of graph C∗-algebras. We prove that every K-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules...

  1. Langevin equation with the deterministic algebraically correlated noise

    Ploszajczak, M.; Srokowski, T.

    1995-01-01

    Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author)

  2. On alphabetic presentations of Clifford algebras and their possible applications

    Toppan, F.; Verbeek, P.W.

    2009-01-01

    In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named “alphabetic (re)presentations.” The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the

  3. Commutator identities on associative algebras and integrability of nonlinear pde's

    Pogrebkov, A. K.

    2007-01-01

    It is shown that commutator identities on associative algebras generate solutions of linearized integrable equations. Next, a special kind of the dressing procedure is suggested that in a special class of integral operators enables to associate to such commutator identity both nonlinear equation and its Lax pair. Thus problem of construction of new integrable pde's reduces to construction of commutator identities on associative algebras.

  4. Profinite algebras and affine boundedness

    Schneider, Friedrich Martin; Zumbrägel, Jens

    2015-01-01

    We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

  5. Pseudo-Riemannian Novikov algebras

    Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn

    2008-08-08

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  6. On the PR-algebras

    Lebedenko, V.M.

    1978-01-01

    The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language

  7. Algebraic geometry in India

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  8. Linear algebra done right

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  9. Algebraic Semantics for Narrative

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  10. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  11. Gauging the octonion algebra

    Waldron, A.K.; Joshi, G.C.

    1992-01-01

    By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs

  12. Summing Boolean Algebras

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

    2004-01-01

    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  13. Polynomials in algebraic analysis

    Multarzyński, Piotr

    2012-01-01

    The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...

  14. Intermediate algebra & analytic geometry

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  15. Introduction to abstract algebra

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  16. Algebraic aspects of exact models

    Gaudin, M.

    1983-01-01

    Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method

  17. Generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase

    Finelli, Fabio; Brandenberger, Robert

    2002-01-01

    In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of pre-big-bang nor of the ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past

  18. Real division algebras and other algebras motivated by physics

    Benkart, G.; Osborn, J.M.

    1981-01-01

    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  19. A process algebra model of QED

    Sulis, William

    2016-01-01

    The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics. (paper)

  20. Truncatable bootstrap equations in algebraic form and critical surface exponents

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino andIstituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1, Torino, I-10125 (Italy)

    2016-10-10

    We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form two different solutions of the same polynomial equation. Their interplay yields an estimate of the surface renormalization group exponents, y{sub h}=0.72558(18) for the ordinary universality class and y{sub h}=1.646(2) for the special universality class, which compare well with the most recent Monte Carlo calculations. Estimates of other surface exponents as well as OPE coefficients are also obtained.

  1. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.

    2014-01-01

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km 2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km 2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  2. Conformal algebra of Riemann surfaces

    Vafa, C.

    1988-01-01

    It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view

  3. Quantum algebraic representation of localization and motion of a Dirac electron

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    Quantum algebraic observables representing localization in space-time of a Dirac electron are defined. Inertial motion of the electron is represented in the quantum algebra with electron mass acting as the generator of motion. Since transformations to uniformly accelerated frames are naturally included in this conformally invariant description, the quantum algebra is also able to deal with uniformly accelerated motion

  4. Time resolved energy spectrum of the axial ion beam generated in plasma focus discharges

    Bostick, W.H.; Kilic, H.; Nardi, V.; Powell, C.W.

    1993-01-01

    The energy spectrum of the deuteron beam along the electrode axis (0 (degree) ) in a plasma focus discharge has been determined with a time of flight (TOF) method and with a differential filter method in the ion energy interval E = 0.3-9 MeV. The ion TOF method is applied to single-ion pulse events with an ion emission time t(E) that is only weakly dependent on the ion energy E for E > 0.3 MeV. The correlation of the ion beam intensity with the filling pressure, the neutron yield and the hard X-ray intensity is also reported. (author). 11 refs, 10 figs

  5. Special set linear algebra and special set fuzzy linear algebra

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

    2009-01-01

    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  6. Hecke algebras with unequal parameters

    Lusztig, G

    2003-01-01

    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  7. Axis Problem of Rough 3-Valued Algebras

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  8. The $W_{3}$ algebra modules, semi-infinite cohomology and BV algebras

    Bouwknegt, Peter; Pilch, Krzysztof

    1996-01-01

    The noncritical D=4 W_3 string is a model of W_3 gravity coupled to two free scalar fields. In this paper we discuss its BRST quantization in direct analogy with that of the D=2 (Virasoro) string. In particular, we calculate the physical spectrum as a problem in BRST cohomology. The corresponding operator cohomology forms a BV-algebra. We model this BV-algebra on that of the polyderivations of a commutative ring on six variables with a quadratic constraint, or equivalently, on the BV-algebra of (polynomial) polyvector fields on the base affine space of SL(3,C). In this paper we attempt to present a complete summary of the progress made in these studies. [...

  9. The W(sl(N+3), sl(3)) algebra and their contractions to W3

    Bellucci, S.

    1996-09-01

    The authors construct the nonlinear W(sl(N+3), sl(3)) algebras and find the spectrum of values of the central charge that gives rise, by contracting the W(sl(N+3), sl(3)) algebras, to a W 3 algebra belonging to the coset W((sl(N+3), sl(3)/(u(1) x sl(N)). Using the tool of embedding the W(sl(N+3), sl(3)) algebras into linearizing algebras, the authors construct new realization of W 3 modulo null fields. The possibility to reproduce, within the conformal linearization framework, the central charge spectrum for minimal models of the nonlinear W(sl(N+3), sl(3)) algebras is discussed at the end

  10. Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra

    Lecoutre, César

    2014-01-01

    We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...

  11. Factors Relating to the Success or Failure of College Algebra Internet Students: A Grounded Theory Study

    Walker, Christine

    2008-01-01

    The purpose of this grounded theory study was to discover the factors that contribute to the success or failure of college algebra for students taking college algebra by distance education Internet, and then generate a theory of success or failure of the group of College Algebra Internet students at one Utah college. Qualitative data were collected and analyzed on students’ perceptions and perspectives of a College Algebra Internet course that they took during the spring or summer 2006 semest...

  12. The Weyl group of the Cuntz algebra

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    The Weyl group of the Cuntz algebra O_n is investigated. This is (isomorphic to) the group of polynomial automorphisms lambda_u of O_n, namely those induced by unitaries u that can be written as finite sums of words in the canonical generating isometries S_i and their adjoints. A necessary...

  13. Constructive Learning in Undergraduate Linear Algebra

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  14. On bigraded regularities of Rees algebra

    Ramakrishna Nanduri

    2017-08-03

    Aug 3, 2017 ... work of [2,16], to any bigraded K-algebra R with the specified ... family of bounds on the differences em, when I is m-primary (see also [8]). .... R+ be the ideal generated by homogeneous elements of R of positive degree.

  15. Lie Algebras for Constructing Nonlinear Integrable Couplings

    Zhang Yufeng

    2011-01-01

    Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)

  16. Algebraic solution of an anisotropic nonquadratic potential

    Boschi Filho, H.; Vaidya, A.N.

    1990-06-01

    We show that an anisotropic nonquadratic potential, for which a path integral treatment had been recently discussed in the literature, possesses the (SO(2,1)xSO(2,1))ΛSO(2,1) dynamical symmetry and constructs its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. (author). 11 refs

  17. Lie algebraical aspects of quantum statistics

    Palev, T.D.

    1976-01-01

    It is shown that the secon quantization axioms can, in principle, be satisfied with creation and annihilation operators generating (in the case of n pairs of such operators) the Lie algebra Asub(n) of the group SL(n+1). A concept of the Fock space is introduced. The matrix elements of the operators are found

  18. C*-algebras by example

    Davidson, Kenneth R

    1996-01-01

    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  19. Algebra II workbook for dummies

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  20. SO(4,1) as a structure group of a fibre bundle and SO(3,2) as a relativistic spectrum-generating group

    Bohm, A.

    1979-12-01

    A collective model for hadrons is presented that has two aspects: the description of nonlocal objects and the construction of spectrum-generating groups in a relativistic theory. The experimental data for this model are the mass and spin spectrum of hadron towers; each tower is characterized by a system constant α. The mass formula derived is m 2 = lambda 2 (α 2 - 9/4) + lambda 2 s(s+1), where R = 1/lambda is the radius of micro-de Sitter spaces. The subject is treated under the following topics: relativistic spectrum-generating SO(3,2); nonlocal objects and SO(4,1); the SO(4,1) constraint relation for the relativistic spectrum-generating SO(3,2); and generalization of the remarkable representation and generalization of the de Sitter fiber bundle - the general relativistic rotator. 1 figure, 1 table

  1. Algebraic K-theory

    Srinivas, V

    1996-01-01

    Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

  2. q-deformed conformal and Poincare algebras on quantum 4-spinors

    Kobayashi, Tatsuo; Uematsu, Tsuneo

    1993-01-01

    We investigate quantum deformation of conformal algebras by constructing the quantum space for sl q (4). The differential calculus on the quantum space and the action of the quantum generators are studied. We derive deformed su(2, 2) algebra from the deformed sl(4) algebra using the quantum 4-spinor and its conjugate spinor. The quantum 6-vector in so q (4, 2) is constructed as a tensor product of two sets of 4-spinors. We obtain the q-deformed conformal algebra with the suitable assignment of the generators which satisfy the reality condition. The deformed Poincare algebra is derived through a contraction procedure. (orig.)

  3. Regularity of C*-algebras and central sequence algebras

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  4. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  5. Quantum cluster algebra structures on quantum nilpotent algebras

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  6. Lie Algebras Associated with Group U(n)

    Zhang Yufeng; Dong Huanghe; Honwah Tam

    2007-01-01

    Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.

  7. The kinematic algebras from the scattering equations

    Monteiro, Ricardo; O’Connell, Donal

    2014-01-01

    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant

  8. Experimental generation of two-index Bessel-Gauss beams by engineering their angular spectrum functions

    Yao, Hainan; Wang, Fei; Cai, Yangjian

    2018-01-01

    Two-index Bessel beams (TIBBs) was introduced by Ornigotti and Aiello (2014) theoretically. In this paper, we propose a simple experimental scheme for generation of two-index Bessel-Gauss beams (TIBGBs), as an extension of the TIBBs. The scheme is based on manipulating the amplitude and phase in the Fourier plane with the use of a spatial light modulator and a spiral phase plate. Furthermore, we experimentally report the generation of the several examples of the TIBGBs based on the proposed optical system. The focusing properties of the TIBGB with indices p = 1 and l = 2 passing through a single lens are investigated both theoretically and experimentally. The experimental results agree well with theoretical predictions.

  9. Identities and derivations for Jacobian algebras

    Dzhumadil'daev, A.S.

    2001-09-01

    Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)

  10. Algebraic quantum field theory

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  11. Complex algebraic geometry

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  12. Algebraic design theory

    Launey, Warwick De

    2011-01-01

    Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...

  13. Complex Algebraic Varieties

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  14. Higher regulators, algebraic

    Bloch, Spencer J

    2000-01-01

    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  15. Applied linear algebra

    Olver, Peter J

    2018-01-01

    This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

  16. Basic linear algebra

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  17. Algebraic topology a primer

    Deo, Satya

    2018-01-01

    This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...

  18. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  19. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  20. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Yoon, Woo Y.; Nigg, David W.

    2009-01-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  1. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Yoon, Woo Y.; Nigg, David W.

    2008-01-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  2. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  3. Converting nested algebra expressions into flat algebra expressions

    Paredaens, J.; Van Gucht, D.

    1992-01-01

    Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

  4. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  5. H. S. group: its algebra and its Galilei limit

    De Ritis, R [Naples Univ. (Italy). Istituto di Fisica; Franchini, L [Dipartimento di Matematica dell' Universita della Calabria, Cosenza; Platania, G [Osservatorio Astronomico di Capodimonte, Naples (Italy)

    1976-08-11

    The infinitesimal generators of the invariance group suitable for the study of Newtonian cosmology are calculated. They form an infinite-dimensional Lie algebra, which is also studied in some particular limits.

  6. Computer Program For Linear Algebra

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  7. Algebra for Gifted Third Graders.

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  8. Gradings on simple Lie algebras

    Elduque, Alberto

    2013-01-01

    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  9. Tensor spaces and exterior algebra

    Yokonuma, Takeo

    1992-01-01

    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  10. Dynamical systems and linear algebra

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  11. Projector bases and algebraic spinors

    Bergdolt, G.

    1988-01-01

    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  12. Contractions of quantum algebraic structures

    Doikou, A.; Sfetsos, K.

    2010-01-01

    A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Three-dimensional quantum algebras: a Cartan-like point of view

    Ballesteros, A; Celeghini, E; Olmo, M A del

    2004-01-01

    A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of elements of the quantum algebra that play a role similar to generators in the case of Lie algebras are considered and a Cartan-like procedure applied to find a representative for each class of quantum algebras. The method is used to construct and classify all three-dimensional complex quantum algebras that are compatible with a given type of coproduct. The quantization of all Lie algebras that, in the classical limit, belong to the most relevant sector in the classification for three-dimensional Lie bialgebras is thus performed. New quantizations of solvable algebras, whose simplicity makes them suitable for possible physical applications, are obtained and already known related quantum algebras recovered

  14. Polynomial Heisenberg algebras

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M

    2004-01-01

    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  15. Classical algebraic chromodynamics

    Adler, S.L.

    1978-01-01

    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  16. Algebraic number theory

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  17. Partially ordered algebraic systems

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  18. Elementary matrix algebra

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  19. Principles of algebraic geometry

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  20. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  1. Endomorphisms of graph algebras

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  2. Algebraic curves and cryptography

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  3. Elementary algebraic geometry

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  4. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  5. Handbook of linear algebra

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  6. Algebra & trigonometry I essentials

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  7. Algebra & trigonometry super review

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  8. Linear Algebra Thoroughly Explained

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  9. Generation of a new spectral format, the lifetime synchronous spectrum (LiSS), using phase-resolved fluorescence spectroscopy

    Shaver, J.M.; McGown, L.B.

    1994-01-01

    A new fluorescence spectral format is introduced in which fluorescence lifetime is shown as a function of synchronously scanned wavelength to generate a Lifetime Synchronous Spectrum (LiSS). Lifetimes are determined in the frequency domain with the use of Phase-Resolved Fluorescence Spectroscopy (PRFS) to obtain the phase of the fluorescence signal. Theory and construction of the LiSS are presented and experimental results are shown for solutions of single components and simple binary and ternary mixtures. These results show how the lifetime information in the LiSS augments the steady-state intensity information of a standard synchronous spectrum, providing unique information for identification of components and resolution of overlapping spectral peaks. The LiSS technique takes advantage of noise reduction inherent in the extraction of lifetime from PRFS in addition to standard spectral smoothing techniques. The precision of phase determination through PRFS is found to be comparable to that of direct phase measurements at normal fluorescence intensities and superior for low-intensity signals

  10. Weak turbulence and broad-spectrum excitation in a nonmagnetized electron beam via second-harmonic generation

    Bogdanov, A.T.

    1990-01-01

    The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)

  11. An su(1, 1) algebraic approach for the relativistic Kepler-Coulomb problem

    Salazar-Ramirez, M; Granados, V D; MartInez, D; Mota, R D

    2010-01-01

    We apply the Schroedinger factorization method to the radial second-order equation for the relativistic Kepler-Coulomb problem. From these operators we construct two sets of one-variable radial operators which are realizations for the su(1, 1) Lie algebra. We use this algebraic structure to obtain the energy spectrum and the supersymmetric ground state for this system.

  12. Algebra of 2D periodic operators with local and perpendicular defects

    Kutsenko, Anton

    2016-01-01

    We show that 2D periodic operators with local and perpendicular defects form an algebra. We provide an algorithm for finding spectrum for such operators. While the continuous spectral components can be computed by simple algebraic operations on some matrix-valued functions and a few number...

  13. Superspace geometrical realization of the N-extended super Virasoro algebra and its dual

    Curto, C.; Gates, S. J., Jr.; Rodgers, V. G. J.

    2000-05-01

    We derive properties of N-extended /GR super Virasoro algebras. These include adding central extensions, identification of all primary fields and the action of the adjoint representation on its dual. The final result suggest identification with the spectrum of fields in supergravity theories and superstring/M-theory constructed from NSR N-extended supersymmetric /GR Virasoro algebras.

  14. The Impact of Interrupted Use of a Speech Generating Device on the Communication Acts of a Child with Autism Spectrum Disorder: A Case Study

    Neeley, Richard A.; Pulliam, Mary Hannah; Catt, Merrill; McDaniel, D. Mike

    2015-01-01

    This case study examined the initial and renewed impact of speech generating devices on the expressive communication behaviors of a child with autism spectrum disorder. The study spanned six years of interrupted use of two speech generating devices. The child's communication behaviors were analyzed from video recordings and included communication…

  15. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

    Gebert, R.W.

    1993-09-01

    The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

  16. The theory of algebraic numbers

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  17. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and γ ray spectrum. FPGS90

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting γ ray and β ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted γ ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library 'JNDC Nuclear Data Library of Fission Products - second version -', which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author)

  18. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and {gamma} ray spectrum. FPGS90

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting {gamma} ray and {beta} ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted {gamma} ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library `JNDC Nuclear Data Library of Fission Products - second version -`, which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author).

  19. A Systematic Review of Tablet Computers and Portable Media Players as Speech Generating Devices for Individuals with Autism Spectrum Disorder.

    Lorah, Elizabeth R; Parnell, Ashley; Whitby, Peggy Schaefer; Hantula, Donald

    2015-12-01

    Powerful, portable, off-the-shelf handheld devices, such as tablet based computers (i.e., iPad(®); Galaxy(®)) or portable multimedia players (i.e., iPod(®)), can be adapted to function as speech generating devices for individuals with autism spectrum disorders or related developmental disabilities. This paper reviews the research in this new and rapidly growing area and delineates an agenda for future investigations. In general, participants using these devices acquired verbal repertoires quickly. Studies comparing these devices to picture exchange or manual sign language found that acquisition was often quicker when using a tablet computer and that the vast majority of participants preferred using the device to picture exchange or manual sign language. Future research in interface design, user experience, and extended verbal repertoires is recommended.

  20. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  1. Spin-4 extended conformal algebras

    Kakas, A.C.

    1988-01-01

    We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

  2. An algebra of reversible computation.

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  3. On Weak-BCC-Algebras

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  4. Assessing Elementary Algebra with STACK

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  5. Process Algebra and Markov Chains

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  6. Process algebra and Markov chains

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.

    2001-01-01

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  7. Algebraic Methods to Design Signals

    2015-08-27

    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  8. On W1+∞ 3-algebra and integrable system

    Min-Ru Chen

    2015-02-01

    Full Text Available We construct the W1+∞ 3-algebra and investigate its connection with the integrable systems. Since the W1+∞ 3-algebra with a fixed generator W00 in the operator Nambu 3-bracket recovers the W1+∞ algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+∞ 3-algebra, we directly derive the KP and KdV equations from the Nambu–Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu–Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+∞ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized nonlinear Schrödinger equation and give an application in optical soliton.

  9. Multi parametric deformed Heisenberg algebras: a route to complexity

    Curado, E.M.F.; Rego-Monteiro, M.A.

    2000-09-01

    We introduce a generalized of the Heisenberg which is written in terms of a functional of one generator of the algebra, f(J 0 ), that can be any analytical function. When f is linear with slope θ, we show that the algebra in this case corresponds to q-oscillators for q 2 = tan θ. The case where f is polynomial of order n in J 0 corresponds to a n-parameter Heisenberg algebra. The representations of the algebra, when f is any analytical function, are shown to be obtained through the study of the stability of the fixed points of f and their composed functions. The case when f is a quadratic polynomial in J 0 , the simplest non-linear scheme which is able to create chaotic behavior, is analyzed in detail and special regions in the parameter space give representations that ca not be continuously deformed to representations of Heisenberg algebra. (author)

  10. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  11. Probabilistic thread algebra

    Bergstra, J.A.; Middelburg, C.A.

    2015-01-01

    We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution

  12. Discourses on Algebra

    BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.

  13. Thinking Visually about Algebra

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  14. College Algebra I.

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

  15. Algebraic K-theory

    Swan, R G

    1968-01-01

    From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

  16. Real space process algebra

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  17. Commutative algebra with a view toward algebraic geometry

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  18. COMBINE/PC - a portable neutron spectrum and cross-section generation program

    Nigg, D.W.; Grimesey, R.A.; Curtis, R.L.

    1990-01-01

    Use of personal computers and engineering workstations for complex scientific computations has expanded rapidly in the past few years. This trend is expected to continue in the future with the introduction of increasingly sophisticated microprocessors and microcomputer systems. In response to this, an integrated system of neutronics and radiation transport software suitable for operation in an IBM personal computer (PC)-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past 3 years. A key component of this system will be module to produce application-specific multigroup cross-section libraries that can be used in various neutron transport and diffusion theory code modules. This software module, referred to as COMBINE/PC, was recently completed at INEL and is the subject of this paper. COMBINE/PC was developed to provide an ENDF/B-based neutron cross-section generation capability of sufficient sophistication to handle a wide variety of practical fission and fusion-related applications while maintaining a compact machine-independent structure

  19. Contemporary developments in algebraic K-theory

    Karoubi, M [Univ. Paris (France); Kuku, A O [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Pedrini, C [Univ. Genova (Italy)

    2003-09-15

    The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory

  20. Symplectic Maps from Cluster Algebras

    Allan P. Fordy

    2011-09-01

    Full Text Available We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables. Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension. We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The degrees of the iterates satisfy a tropical version of the map.

  1. Operator algebras and topology

    Schick, T.

    2002-01-01

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  2. Advanced modern algebra part 2

    Rotman, Joseph J

    2017-01-01

    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  3. New families of superintegrable systems from k-step rational extensions, polynomial algebras and degeneracies

    Marquette, Ian

    2015-01-01

    Four new families of two-dimensional quantum superintegrable systems are constructed from k-step extension of the harmonic oscillator and the radial oscillator. Their wavefunctions are related with Hermite and Laguerre exceptional orthogonal polynomials (EOP) of type III. We show that ladder operators obtained from alternative construction based on combinations of supercharges in the Krein-Adler and Darboux Crum (or state deleting and creating) approaches can be used to generate a set of integrals of motion and a corresponding polynomial algebra that provides an algebraic derivation of the full spectrum and total number of degeneracies. Such derivation is based on finite dimensional unitary representations (unirreps) and doesn't work for integrals build from standard ladder operators in supersymmetric quantum mechanics (SUSYQM) as they contain singlets isolated from excited states. In this paper, we also rely on a novel approach to obtain the finite dimensional unirreps based on the action of the integrals of motion on the wavefunctions given in terms of these EOP. We compare the results with those obtained from the Daskaloyannis approach and the realizations in terms of deformed oscillator algebras for one of the new families in the case of 1-step extension. This communication is a review of recent works. (paper)

  4. Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-01-01

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  5. Hopf algebras in noncommutative geometry

    Varilly, Joseph C.

    2001-10-01

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  6. Continuum analogues of contragredient Lie algebras

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  7. Analysis and solution of algebraic-differential equations of the steam generation processes; Analisis y resolucion de ecuaciones algebraico-diferenciales de los procesos de generacion de vapor

    Gonzalez Herrera, Juan Anibal

    1996-10-01

    This work presents the construction, analysis and solution of an equipment`s network in steady and dynamic state from: a) The mathematical models of individual equipment and of their geometry. b) The topology let interconnections between equipment. c) The selection of a numerical method to solve simultaneously the mathematical models. The selected mathematical models represent the cycle boiler-superheater. These models were taken from the MICROTERM-300 modular simulator, which contains the simplified models of the process (feedwater, boiler, turbines, etc.) of the thermoelectric plant Francisco Perez Rios from Tula Hidalgo, Mexico. This work was developed in the following stages: 1.- The selection of an appropiate numerical integration method to solve simultaneously the algebraic and differential equations of the equipment conforming the cycle boiler-superheater. 2.- The adaptation of individual mathematical models to allow changes in their geometry, operating conditions and different forms of connection. Also, this models were modified to have a representation of the equations to allow their analysis and an efficient organization to get their solution. 3.- The application of two computer-aided tools to trace possible coding errors in the mathematical models: a) A syntax analyzer which detect assignation and reference errors of variables. b) A structural analyzer to obtain the structural matrix, which relate the variables and the equations in a model. During this stage some improvements to these computer-aided tools were suggested. 4.- The individual testing of each mathematical model in steady and dynamic state in order to: a) Validate the mathematical models. b) Analyze the behavior of the variables of the mathematical models with different parameters, different operating conditions and different initial conditions. 5.- Lastly, the coupling between equipment analyzed to form an equipment`s network what represent the cycle boiler-superheater and the testing in

  8. Three-dimensional polarization algebra.

    R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto

    2016-10-01

    If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.

  9. Real algebraic geometry

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  10. Algebra de Clifford

    María Carolina Spinel G.

    1990-01-01

    Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.

  11. On left Hopf algebras within the framework of inhomogeneous quantum groups for particle algebras

    Rodriguez-Romo, Suemi [Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (Mexico)

    2012-10-15

    We deal with some matters needed to construct concrete left Hopf algebras for inhomogeneous quantum groups produced as noncommutative symmetries of fermionic and bosonic creation/annihilation operators. We find a map for the bidimensional fermionic case, produced as in Manin's [Quantum Groups and Non-commutative Hopf Geometry (CRM Univ. de Montreal, 1988)] seminal work, named preantipode that fulfills all the necessary requirements to be left but not right on the generators of the algebra. Due to the complexity and importance of the full task, we consider our result as an important step that will be extended in the near future.

  12. Split Malcev algebras

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  13. The Algebra Artist

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  14. Fundamentals of linear algebra

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  15. Algebras of Information States

    Punčochář, Vít

    2017-01-01

    Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016

  16. Clifford Algebras and Spinors

    Todorov, Ivan

    2010-12-01

    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  17. Algebra & trigonometry II essentials

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  18. Modern algebra essentials

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  19. Simulation of electron, positron and Bremsstrahlung spectrum generated due to electromagnetic cascade by 2.5 GeV electron hitting lead target using FLUKA code

    Sahani, P.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Singh, Gurnam; Sarkar, P.K.; Sharma, D.N.

    2009-01-01

    INDUS-2 is a high energy electron accelerator facility where electrons are accelerated in circular ring up to maximum energy 2.5 GeV, to generate synchrotron radiation. During normal operation of the machine a fraction of these electrons is lost, which interact with the accelerator structures and components like vacuum chamber and residual gases in the cavity and hence generates significant amount of Bremsstrahlung radiation. The Bremsstrahlung radiation is highly dependent on the incident electron energy, target material and its thickness. The Bremsstrahlung radiation dominates the radiation environment in such electron storage rings. Because of its broad spectrum extending up to incident electron energy and pulsed nature, it is very difficult to segregate the Bremsstrahlung component from the mixed field environment in accelerators. With the help of FLUKA Monte Carlo code, Bremsstrahlung spectrum generated from 2.5 GeV electron on bombardment of high Z lead target is simulated. To study the variation in Bremsstrahlung spectrum on target thickness, lead targets of 3, 6, 9, 12, 15, 18 mm thickness was used. The energy spectrum of emerging electron and positron is also simulated. The study suggests that as the target thickness increases, the emergent Bremsstrahlung photon fluence increases. With increase in the target thickness Bremsstrahlung photons in the spectrum dominate the low energy part and degrade in high energy part. The electron and positron spectra also extend up to incident electron energy. (author)

  20. Discrete integrable systems and deformations of associative algebras

    Konopelchenko, B G

    2009-01-01

    Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

  1. Analytic transfer maps for Lie algebraic design codes

    van Zeijts, J.; Neri, F.; Dragt, A.J.

    1990-01-01

    Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system

  2. Further linear algebra

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  3. Priority in Process Algebras

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  4. A Process Algebra Approach to Quantum Electrodynamics

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  5. From affine Hecke algebras to boundary symmetries

    Doikou, Anastasia

    2005-01-01

    Motivated by earlier works we employ appropriate realizations of the affine Hecke algebra and we recover previously known non-diagonal solutions of the reflection equation for the U q (gl n -bar ) case. The corresponding N site spin chain with open boundary conditions is then constructed and boundary non-local charges associated to the non-diagonal solutions of the reflection equation are derived, as coproduct realizations of the reflection algebra. With the help of linear intertwining relations involving the aforementioned solutions of the reflection equation, the symmetry of the open spin chain with the corresponding boundary conditions is exhibited, being essentially a remnant of the U q (gl n -bar ) algebra. More specifically, we show that representations of certain boundary non-local charges commute with the generators of the affine Hecke algebra and with the local Hamiltonian of the open spin chain for a particular choice of boundary conditions. Furthermore, we are able to show that the transfer matrix of the open spin chain commutes with a certain number of boundary non-local charges, depending on the choice of boundary conditions

  6. Algebras and manifolds: Differential, difference, simplicial and quantum

    Finkelstein, D.; Rodriguez, E.

    1986-01-01

    Generalized manifolds and Clifford algebras depict the world at levels of resolution ranging from the classical macroscopic to the quantum microscopic. The coarsest picture is a differential manifold and algebra (dm), direct integral of familiar local Clifford algebras of spin operators in curved time-space. Next is a finite difference manifold (Δm) of Regge calculus. This is a subalgebra of the third, a Minkowskian simplicial manifold (Σm). The most detailed description is the quantum manifold (Qm), whose algebra is the free Clifford algebra S of quantum set theory. We surmise that each Σm is a classical 'condensation' of a Qm. Quantum simplices have both integer and half-integer spins in their spectrum. A quantum set theory of nature requires a series of reductions leading from the Qm and a world descriptor W up through the intermediate Σm and Δm to a dm and an action principle. What may be a new algebraic language for topology, classical or quantum, is a by-product of the work. (orig.)

  7. It's a Wonderful Life: Using Public Domain Cinema Clips To Teach Affective Objectives and Illustrate Real-World Algebra Applications.

    Palmer, Loretta

    A basic algebra unit was developed at Utah Valley State College to emphasize applications of mathematical concepts in the work world, using video and computer-generated graphics to integrate textual material. The course was implemented in three introductory algebra sections involving 80 students and taught algebraic concepts using such areas as…

  8. The algebraic size of the family of injective operators

    Bernal-González Luis

    2017-01-01

    Full Text Available In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.

  9. 2-variable Laguerre matrix polynomials and Lie-algebraic techniques

    Khan, Subuhi; Hassan, Nader Ali Makboul

    2010-01-01

    The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.

  10. Primary fields in a unitary representation of Virasoro algebras

    Sasaki, R.; Yamanaka, I.

    1985-08-01

    A unitary representation of Virasoro algebras with the central charge c = 1 - 6/(N + 1)(N + 2) is constructed explicitly in terms of a colored (two color) coset space (the complex projective space CP sup(N-1)) quark model. By utilizing the explicit forms of the Virasoro generators Lsub(m), we derive a general method of constructing the primary fields (fields with well-defined conformal transformation properties) of the above Virasoro algebras. (author)

  11. Langevin equation with the deterministic algebraically correlated noise

    Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Srokowski, T. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author). 58 refs.

  12. On massless representations of the Q-deformed Poincare algebra

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.

    1993-01-01

    This talk is devoted to the construction of massless representations of the q-deformed Poincare algebra. In section 2 we give Hilbert space representations of the SL q (2, C)-covariant quantum space. We then show in the next section how the generators of the q-Poincare algebra can be expressed in terms of operators which live in the light cone. The q-deformed massless one-particle states are considered in section 4. (orig.)

  13. High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions.

    Franceschini, Alessia; Baiardi, Simone; Hughson, Andrew G; McKenzie, Neil; Moda, Fabio; Rossi, Marcello; Capellari, Sabina; Green, Alison; Giaccone, Giorgio; Caughey, Byron; Parchi, Piero

    2017-09-06

    An early and accurate in vivo diagnosis of rapidly progressive dementia remains challenging, despite its critical importance for the outcome of treatable forms, and the formulation of prognosis. Real-Time Quaking-Induced Conversion (RT-QuIC) is an in vitro assay that, for the first time, specifically discriminates patients with prion disease. Here, using cerebrospinal fluid (CSF) samples from 239 patients with definite or probable prion disease and 100 patients with a definite alternative diagnosis, we compared the performance of the first (PQ-CSF) and second generation (IQ-CSF) RT-QuIC assays, and investigated the diagnostic value of IQ-CSF across the broad spectrum of human prions. Our results confirm the high sensitivity of IQ-CSF for detecting human prions with a sub-optimal sensitivity for the sporadic CJD subtypes MM2C and MM2T, and a low sensitivity limited to variant CJD, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. While we found no difference in specificity between PQ-CSF and IQ-CSF, the latter showed a significant improvement in sensitivity, allowing prion detection in about 80% of PQ-CSF negative CJD samples. Our results strongly support the implementation of IQ-CSF in clinical practice. By rapidly confirming or excluding CJD with high accuracy the assay is expected to improve the outcome for patients and their enrollment in therapeutic trials.

  14. Automorphisms of W-algebras and extended rational conformal field theories

    Honecker, A.

    1992-11-01

    Many extended conformal algebras with one generator in addition to the Virasoro field as well as Casimir algebras have non-trivial outer automorphisms which enables one to impose 'twisted' boundary conditions on the chiral fields. We study their effect on the highest weight representations. We give formulae for the enlarged rational conformal field theories in both series of W-algebras with two generators and conjecture a general formula for the additional models in the minimal series of Casimir algebras. A third series of W-algebras with two generators which includes the spin three algebra at c = -2 also has finitely many additional fields in the twisted sector although the model itself is apparently not rational. The additional fields in the twisted sector have applications in statistical mechanics as we demonstrate for Z n -quantum spin chains with a particular type of boundary conditions. (orig.)

  15. Assessing Algebraic Solving Ability: A Theoretical Framework

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  16. Associative and Lie deformations of Poisson algebras

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  17. Fusion rules of chiral algebras

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  18. Einstein algebras and general relativity

    Heller, M.

    1992-01-01

    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  19. A Further Comparison of Manual Signing, Picture Exchange, and Speech-Generating Devices as Communication Modes for Children with Autism Spectrum Disorders

    van der Meer, Larah; Sutherland, Dean; O'Reilly, Mark F.; Lancioni, Giulio E.; Sigafoos, Jeff

    2012-01-01

    We compared acquisition of, and preference for, manual signing (MS), picture exchange (PE), and speech-generating devices (SGDs) in four children with autism spectrum disorders (ASD). Intervention was introduced across participants in a non-concurrent multiple-baseline design and acquisition of the three communication modes was compared in an…

  20. Training Peer Partners to Use a Speech-Generating Device with Classmates with Autism Spectrum Disorder: Exploring Communication Outcomes across Preschool Contexts

    Thiemann-Bourque, Kathy S.; McGuff, Sara; Goldstein, Howard

    2017-01-01

    Purpose: This study examined effects of a peer-mediated intervention that provided training on the use of a speech-generating device for preschoolers with severe autism spectrum disorder (ASD) and peer partners. Method: Effects were examined using a multiple probe design across 3 children with ASD and limited to no verbal skills. Three peers…

  1. Categorical Algebra and its Applications

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  2. Linear {GLP}-algebras and their elementary theories

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  3. Chiral algebras of class S

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2015-01-01

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  4. Applications of Computer Algebra Conference

    Martínez-Moro, Edgar

    2017-01-01

    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  5. Computational aspects of algebraic curves

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  6. Fusion algebras of logarithmic minimal models

    Rasmussen, Joergen; Pearce, Paul A

    2007-01-01

    We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are typically reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra p ≠ 1 is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p = 1 and with Eberle and Flohr for (p, p') = (2, 5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c p,p' (minimal) models defined algebraically

  7. Gleason-kahane-Żelazko theorem for spectrally bounded algebra

    S. H. Kulkarni

    2005-01-01

    Full Text Available We prove by elementary methods the following generalization of a theorem due to Gleason, Kahane, and Żelazko. Let A be a real algebra with unit 1 such that the spectrum of every element in A is bounded and let φ:A→ℂ be a linear map such that φ(1=1 and (φ(a2+(φ(b2≠0 for all a, b in A satisfying ab=ba and a2+b2 is invertible. Then φ(ab=φ(aφ(b for all a, b in A. Similar results are proved for real and complex algebras using Ransford's concept of generalized spectrum. With these ideas, a sufficient condition for a linear transformation to be multiplicative is established in terms of generalized spectrum.

  8. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    Ayupov, Shavkat; Kudaybergenov, Karimbergen

    2016-01-01

    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

  9. Dynamical entropy of C* algebras and Von Neumann algebras

    Connes, A.; Narnhofer, H.; Thirring, W.

    1986-01-01

    The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

  10. Abstract Algebra to Secondary School Algebra: Building Bridges

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  11. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  12. Topological أ-algebras with Cأ-enveloping algebras II

    necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.

  13. A modal characterization of Peirce algebras

    M. de Rijke (Maarten)

    1995-01-01

    textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.

  14. Quantum deformation of the affine transformation algebra

    Aizawa, N.; Sato, Haru-Tada

    1994-01-01

    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  15. Algebra in Cuneiform

    Høyrup, Jens

    with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....

  16. Algebraic topology and concurrency

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...

  17. Elements of abstract algebra

    Clark, Allan

    1984-01-01

    This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)

  18. Geometric Algebra Computing

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  19. Matlab linear algebra

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  20. Handbook of algebra

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  1. The Unitality of Quantum B-algebras

    Han, Shengwei; Xu, Xiaoting; Qin, Feng

    2018-02-01

    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  2. Fractional supersymmetry and infinite dimensional lie algebras

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  3. New examples of continuum graded Lie algebras

    Savel'ev, M.V.

    1989-01-01

    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  4. Quadratic PBW-Algebras, Yang-Baxter Equation and Artin-Schelter Regularity

    Gateva-Ivanova, Tatiana

    2010-08-01

    We study quadratic algebras over a field k. We show that an n-generated PBW-algebra A has finite global dimension and polynomial growth iff its Hilbert series is H A (z) = 1/(1-z) n . A surprising amount can be said when the algebra A has quantum binomial relations, that is the defining relations are binomials xy - c xy zt, c xy is an element of k x , which are square-free and nondegenerate. We prove that in this case various good algebraic and homological properties are closely related. The main result shows that for an n-generated quantum binomial algebra A the following conditions are equivalent: (i) A is a PBW-algebra with finite global dimension; (ii) A is PBW and has polynomial growth; (iii) A is an Artin-Schelter regular PBW-algebra; (iv) A is a Yang-Baxter algebra; (v) H A (z) = 1/(1-z) n ; (vi) The dual A ! is a quantum Grassman algebra; (vii) A is a binomial skew polynomial ring. This implies that the problem of classification of Artin-Schelter regular PBW-algebras of global dimension n is equivalent to the classification of square-free set-theoretic solutions of the Yang-Baxter equation (X,r), on sets X of order n.| (author)

  5. Graded associative conformal algebras of finite type

    Kolesnikov, Pavel

    2011-01-01

    In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...

  6. Linear Algebra and Image Processing

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  7. Templates for Linear Algebra Problems

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  8. Differential Equation over Banach Algebra

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  9. Smarandache hyper BCC-algebra

    Ahadpanah, A.; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  10. General distributions in process algebra

    Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    2001-01-01

    This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential

  11. Tilting-connected symmetric algebras

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  12. Algebraic study of chiral anomalies

    2012-06-14

    Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...

  13. Logarithmic residues in Banach algebras

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    1994-01-01

    textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In

  14. Modular specifications in process algebra

    R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)

    1987-01-01

    textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,

  15. Galois Connections for Flow Algebras

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...

  16. The Algebra of Complex Numbers.

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  17. Donaldson invariants in algebraic geometry

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  18. Learning Algebra from Worked Examples

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  19. Covariant representations of nuclear *-algebras

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  20. Practical algebraic renormalization

    Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias

    2001-01-01

    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ