WorldWideScience

Sample records for spectra unfolding

  1. NEUPAC, Experimental Neutron Spectra Unfolding with Sensitivities

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Nakazawa, Masaharu

    1986-01-01

    1 - Description of problem or function: The code is able to determine the integral quantities and their sensitivities, together with an estimate of the unfolded spectrum and integral quantities. The code also performs a chi-square test of the input/output data, and contains many options for the calculational routines. 2 - Method of solution: The code is based on the J1-type unfolding method, and the estimated neutron flux spectrum is obtained as its solution. 3 - Restrictions on the complexity of the problem: The maximum number of energy groups used for unfolding is 620. The maximum number of reaction rates and the window functions given as input is 20. The total storage requirement depends on the amount of input data

  2. GRETEL, Ge(Li) Gamma Spectra Unfolding

    International Nuclear Information System (INIS)

    1975-01-01

    1 - Nature of physical problem solved: The program performs the quantitative analysis of gamma-ray spectra obtained by Ge(Li) detectors, using special libraries which are prepared for each particular problem. 2 - Method of solution: The computer routines which detect and evaluate peak areas perform the following operations: - local smoothing of the spectrum; - first derivative of the smoothed spectrum, - peak location according to the change of sign of the first derivative; - computation of the net area of each peak found

  3. Dante-unfolding code for energy spectra evaluation

    International Nuclear Information System (INIS)

    Petilli, M.

    1979-01-01

    The code DANTE, using the last square method in unfolding for dosimetry purpose, solves the neutron spectra evaluation problem starting by activity measurements. The code DANTE introduced for the first time the correlation between available data by mean of flux and activity variance-covariance matrices and the error propagation. In the present report the solution method is detailed described

  4. Neutron spectra unfolding in Bonner spheres spectrometry using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Setayeshi, S.; Koohi-Fayegh, R.; Ghiassi-Nejad, M.

    2003-01-01

    The neural network method has been used for the unfolding of neutron spectra in neutron spectrometry by Bonner spheres. A back propagation algorithm was used for training of neural networks 4mm x 4 mm bare LiI(Eu) and in a polyethylene sphere set: 2, 3, 4, 5, 6, 7, 8, 10, 12, 18 inch diameter have been used for unfolding of neutron spectra. Neural networks were trained by 199 sets of neutron spectra, which were subdivided into 6, 8, 10, 12, 15 and 20 energy bins and for each of them an appropriate neural network was designed and trained. The validation was performed by the 21 sets of neutron spectra. A neural network with 10 energy bins which had a mean value of error of 6% for dose equivalent estimation of spectra in the validation set showed the best results. The obtained results show that neural networks can be applied as an effective method for unfolding neutron spectra especially when the main target is neutron dosimetry. (author)

  5. Influence of cross-section structure on unfolded neutron spectra

    International Nuclear Information System (INIS)

    Ertek, C.; Vlasov, M.F.; Cross, B.; Smith, P.M.

    1979-01-01

    The influence of cross-section structure on neutron spectra unfolded by multiple foil activation technique, SAND-II case, has been studied. For three reactions with evident structure in neutron cross-section above threshold: 27Al(n,α)24Na, 31P(n,p)31Si and 32S(n,p)32P, two remarkably different sets of evaluated data were selected from the available evaluations; one set of data was ''smooth'', the structure having been averaged over by a smooth curve; the other set was ''sharp'' with structure given in detail. These data were used in unfolding procedure together with other reactions, the same in both cases (as well as input spectra and measured reaction rates). It was found that during unfolding calculations less iteration steps were needed to unfold the neutron flux spectrum with the set of ''sharp'' data. In case of ''smooth'' data it was difficult to obtain an agreement between measured and calculated activity values even by increasing the number of iteration steps. Contrary to expectations, considerable deformation of unfolded neutron flux spectrum has been observed in the case of the ''smooth'' data set. (author)

  6. Unfolding of neutron spectra from Godiva type critical assemblies

    International Nuclear Information System (INIS)

    Harvey, J.T.; Meason, J.L.; Wright, H.L.

    1976-01-01

    The results from three experiments conducted at the White Sands Missile Range Fast Burst Reactor Facility are discussed. The experiments were designed to measure the ''free-field'' neutron leakage spectrum and the neutron spectra from mildly perturbed environments. SAND-II was used to calculate the neutron spectrum utilizing several different trial input spectra for each experiment. Comparisons are made between the unfolded neutron spectrum for each trial input on the basis of the following parameters: average neutron energy (above 10 KeV), integral fluence (above 10 KeV), spectral index and the hardness parameter, phi/sub eq//phi

  7. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  8. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  9. DANTE, Activation Analysis Neutron Spectra Unfolding by Covariance Matrix Method

    International Nuclear Information System (INIS)

    Petilli, M.

    1981-01-01

    1 - Description of problem or function: The program evaluates activation measurements of reactor neutron spectra and unfolds the results for dosimetry purposes. Different evaluation options are foreseen: absolute or relative fluxes and different iteration algorithms. 2 - Method of solution: A least-square fit method is used. A correlation between available data and their uncertainties has been introduced by means of flux and activity variance-covariance matrices. Cross sections are assumed to be constant, i.e. with variance-covariance matrix equal to zero. The Lagrange multipliers method has been used for calculating the solution. 3 - Restrictions on the complexity of the problem: 9 activation experiments can be analyzed. 75 energy groups are accepted

  10. The criteria for selecting a method for unfolding neutron spectra based on the information entropy theory

    International Nuclear Information System (INIS)

    Zhu, Qingjun; Song, Fengquan; Ren, Jie; Chen, Xueyong; Zhou, Bin

    2014-01-01

    To further expand the application of an artificial neural network in the field of neutron spectrometry, the criteria for choosing between an artificial neural network and the maximum entropy method for the purpose of unfolding neutron spectra was presented. The counts of the Bonner spheres for IAEA neutron spectra were used as a database, and the artificial neural network and the maximum entropy method were used to unfold neutron spectra; the mean squares of the spectra were defined as the differences between the desired and unfolded spectra. After the information entropy of each spectrum was calculated using information entropy theory, the relationship between the mean squares of the spectra and the information entropy was acquired. Useful information from the information entropy guided the selection of unfolding methods. Due to the importance of the information entropy, the method for predicting the information entropy using the Bonner spheres' counts was established. The criteria based on the information entropy theory can be used to choose between the artificial neural network and the maximum entropy method unfolding methods. The application of an artificial neural network to unfold neutron spectra was expanded. - Highlights: • Two neutron spectra unfolding methods, ANN and MEM, were compared. • The spectrum's entropy offers useful information for selecting unfolding methods. • For the spectrum with low entropy, the ANN was generally better than MEM. • The spectrum's entropy was predicted based on the Bonner spheres' counts

  11. FERDO/FERD, Unfolding of Pulse-Height Spectrometer Spectra

    International Nuclear Information System (INIS)

    Rust, B.W.; Ingersoll, D.T.; Burrus, W.R.

    1985-01-01

    1 - Description of problem or function: FERDO and FERD are unfolding codes which can be used to correct observed pulse-height distributions for the non-ideal response of a pulse-height spectrometer or to solve poorly conditioned linear equations. 2 - Method of solution: It is assumed that the response of the spectrometer is given by Ax = b, where A is the spectrometer response function matrix, x is the unknown spectrum, and b is the pulse-height distribution. FERDO does not resolve directly for x but instead solves for p = Wx, where W is a 'window function matrix'. Typically, W is the resolution function of an ideal spectrometer which has a single Gaussian response. The effective resolution of the unfolding solution may be varied by the choice of W. Confidence intervals are found for each element of the solution p

  12. RDANN a new methodology to solve the neutron spectra unfolding problem

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2006-01-01

    The optimization processes known as Taguchi method and DOE methodology are applied to the design, training and testing of Artificial Neural Networks in the neutron spectrometry field, which offer potential benefits in the evaluation of the behavior of the net as well as the ability to examine the interaction of the weights and neurons inside the same one. In this work, the Robust Design of Artificial Neural Networks methodology is used to solve the neutron spectra unfolding problem, designing, training and testing an ANN using a set of 187 neutron spectra compiled by the International Atomic Energy Agency, to obtain the better neutron spectra unfolded from the Bonner spheres spectrometer's count rates. (Author)

  13. A high-resolution neutron spectra unfolding method using the Genetic Algorithm technique

    CERN Document Server

    Mukherjee, B

    2002-01-01

    The Bonner sphere spectrometers (BSS) are commonly used to determine the neutron spectra within various nuclear facilities. Sophisticated mathematical tools are used to unfold the neutron energy distribution from the output data of the BSS. This paper highlights a novel high-resolution neutron spectra-unfolding method using the Genetic Algorithm (GA) technique. The GA imitates the biological evolution process prevailing in the nature to solve complex optimisation problems. The GA method was utilised to evaluate the neutron energy distribution, average energy, fluence and equivalent dose rates at important work places of a DIDO class research reactor and a high-energy superconducting heavy ion cyclotron. The spectrometer was calibrated with a sup 2 sup 4 sup 1 Am/Be (alpha,n) neutron standard source. The results of the GA method agreed satisfactorily with the results obtained by using the well-known BUNKI neutron spectra unfolding code.

  14. JADSPE, Multi-Channel Gamma Spectra Unfolding Program

    International Nuclear Information System (INIS)

    Rikovska, J.; Stejskalova, E.

    2005-01-01

    1 - Description of program or function: JADSPE is a package of eight programs to process multi-channel gamma-ray spectra. The programs can be used to: - locate automatically spectral peaks and calculate their positions, areas, and full widths at half maximum (FWHM); - plot the spectra on a CALCOMP plotter, TEKTRONIX terminal or a line printer; - add or subtract several spectra with the possibility of adjusting either their start and end channels or the maxima of the chosen corresponding peaks. The JADSPE package comprises the following programs: - SPECTF: automatic location of peaks and calculation of their positions, areas and FWHMS. The standard deviations of peak parameters are also determined, and each evaluated region is plotted on the line printer. - SPECT1: The areas and FWHMs are calculated for peaks whose positions are known beforehand. The standard deviations of calculated parameters are also determined, and each evaluated region is plotted on the line printer. - PLOCHA: The peak net area is calculated by summing the channel contents in specified regions and by subtracting a linear background. - GRAPH: Spectrum plotting on the line printer. - PLTNEW: Spectrum plotting on CALCOMP plotter or on TEKTRONIX terminal. - SUMDIF: The channel contents of several gamma-ray spectra are added or subtracted. - SSPFP: The channel contents of several gamma-ray spectra are added with adjustment of the maxima of specified peaks. - SOUCET: The channel contents of several gamma-ray spectra are added with the adjustment of start and end channels of the spectra. 2 - Method of solution: Non-linear least-square fit. 3 - Restrictions on the complexity of the problem: The full energy peaks are approximated by a symmetrical Gaussian function and the underlying background is approximated by a first-order polynomial. A fixed spectrum length of 4096 channels is assumed. Maxima of: - number of peaks in one multiplet: 9; - number of peaks identified by the automatic search procedure

  15. An Expansion Method to Unfold Proton Recoil Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kockum, J

    1970-07-01

    A method is given to obtain a good estimate of the input neutron spectrum from a pulse-height distribution measured with proportional counters filled with a hydrogenous gas. The method consists of expanding the sought estimate as a product of two functions where one is obtained by differentiating the pulse-height distribution and the other is a power series of the neutron energy. The coefficients of this series are determined by a least-squares fit of the calculated pulse-height distribution to the measured one. The method has been tested on pulse-height distributions obtained by calculations from a realistic neutron spectrum and response functions for a spherical counter 3. 94 cm in diameter and filled with 7 atm. of methane and 1 atm. of hydrogen, respectively. In the former case it is possible with the method described, to unfold pulse-height distributions up to a neutron energy of about 3 MeV to within 10 % of the input spectrum. The differentiating procedure included in the method ensures that all spectral details not smoothed out by the finite resolution of the counter, are kept in the spectrum estimate. A realistic estimate of the statistical uncertainty of each neutron spectrum value is given. Some of the possible systematical errors caused by uncertainties in input data have been investigated.

  16. Unfolding neutron spectra obtained from BS–TLD system using genetic algorithm

    International Nuclear Information System (INIS)

    Santos, J.A.L.; Silva, E.R.; Ferreira, T.A.E; Vilela, E.C.

    2012-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as a function of energy should be characterized. The precise information allows radiological quantities establishment related to that spectrum, but it is necessary that a spectrometric system covers a large interval of energy and an unfolding process is appropriate. This paper proposes use of a technique of Artificial Intelligence (AI) called genetic algorithm (GA), which uses bio-inspired mathematical models with the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a BS system to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enabling this technique to unfold neutron spectra with the BS–TLD system. - Highlights: ► The unfolding code used the artificial intelligence technique called genetic algorithms. ► A response matrix specific to the unfolding data obtained with the BS–TLD system is used by the AGLN. ► The observed results demonstrate the potential use of genetic algorithms in solving complex nuclear problems.

  17. RICKI, Interactive Gamma Spectra Unfolding with Isotope Identification

    International Nuclear Information System (INIS)

    Proctor, A.E.

    1990-01-01

    1 - Description of program or function: RICKI is an interactive program for analysis of gamma spectra containing one or more peaks with possible multiplets. Algorithms are incorporated for peak fitting, analysis, and nuclide identification. Comprehensive output keeps the user informed of the analysis as it proceeds and presents the results. User-selectable options for plotting and neutron activation analysis are available to control this analysis. RICKI was developed to analyze spectra from examinations of severe fuel damage specimens. Two features included to streamline the analysis of Three Mile Island (TMI) core bore data are the edit of averaged activities and the output file created for generating a spreadsheet. Activity editing allows the user to select which gamma lines are used for a specific nuclide in average activity calculations. Contributions from peak areas which result from overlapping lines of two or more nuclides may be removed. For each averaged activity an edited activity file record is written containing the nuclide name, averaged activity, activity standard deviation, scan start position, and scan end position. 2 - Method of solution: The peak search algorithm utilizes an optimized second derivative filter for efficient and reliable determination of peak location. A linear Gaussian fitting technique, which is a modified version of Mukoyama's linear least squares fitting method in which the centroid, sigma, and peak height are free parameters, is used to calculate peak areas. An estimated background is computed for each peak using Gunnink's method. Nuclide activities are computed by matching centroids with nuclide library entries and averaging the activity calculated for each matching peak. 3 - Restrictions on the complexity of the problem - Maxima of: 500 gamma library entries, 80 peaks/spectrum

  18. RDANN a new methodology to solve the neutron spectra unfolding problem

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    The optimization processes known as Taguchi method and DOE methodology are applied to the design, training and testing of Artificial Neural Networks in the neutron spectrometry field, which offer potential benefits in the evaluation of the behavior of the net as well as the ability to examine the interaction of the weights and neurons inside the same one. In this work, the Robust Design of Artificial Neural Networks methodology is used to solve the neutron spectra unfolding problem, designing, training and testing an ANN using a set of 187 neutron spectra compiled by the International Atomic Energy Agency, to obtain the better neutron spectra unfolded from the Bonner spheres spectrometer's count rates. (Author)

  19. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    Science.gov (United States)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  20. NEWSPEC: A computer code to unfold neutron spectra from Bonner sphere data

    International Nuclear Information System (INIS)

    Lemley, E.C.; West, L.

    1996-01-01

    A new computer code, NEWSPEC, is in development at the University of Arkansas. The NEWSPEC code allows a user to unfold, fold, rebin, display, and manipulate neutron spectra as applied to Bonner sphere measurements. The SPUNIT unfolding algorithm, a new rebinning algorithm, and the graphical capabilities of Microsoft (MS) Windows and MS Excel are utilized to perform these operations. The computer platform for NEWSPEC is a personal computer (PC) running MS Windows 3.x or Win95, while the code is written in MS Visual Basic (VB) and MS VB for Applications (VBA) under Excel. One of the most useful attributes of the NEWSPEC software is the link to Excel allowing additional manipulation of program output or creation of program input

  1. Unfolding neutron spectra with BS-TLD system using genetic algorithms

    International Nuclear Information System (INIS)

    Santos, Joelan A.L.; Silva, Everton R.; Vilela, Eudice C.

    2011-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as function of energy to be characterized. To perform this task, the neutron spectrometer has a primary role in determining the neutron flux (Φ E (E)). Precise information allows radiological quantities establishment related to that spectrum but it is necessary, however, a series of steps with a spectrometric system that can cover a large interval of energy and whose answer is isotropic. The most widely used for accomplishing this task is the spectrometric Bonner spheres system. One of the biggest problems related to neutron spectrometry is the process of data analysis, known as unfolding. Most of the work undertaken to implement new techniques of this process, using data obtained with the scintillator 6 LiI(I). However, characteristics related to the dead time make it not be so effective when used in high flow neutron fields. An alternative to this problem is the use of thermoluminescent detectors (TLD), but the codes used do not provide a more specific response matrix to unfolding the information obtained through these materials, which makes the development of a specific response matrix important to adequately characterize the response obtained by them. This paper proposes using a technique of artificial intelligence called genetic algorithm, which uses bio-inspired mathematical models and through the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a system of Bonner spheres, such as thermal neutron detectors, to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enables of this technique to unfolding neutrons spectra with BS-TLD system. (author)

  2. Unfolding neutron spectra with BS-TLD system using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joelan A.L., E-mail: jasantos@cnen.gov.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Silva, Everton R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Informatica; Ferreira, Tiago A.E. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Estatistica e Informatica; Fonseca, Evaldo S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Vilela, Eudice C., E-mail: ecvilela@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as function of energy to be characterized. To perform this task, the neutron spectrometer has a primary role in determining the neutron flux ({Phi}{sub E}(E)). Precise information allows radiological quantities establishment related to that spectrum but it is necessary, however, a series of steps with a spectrometric system that can cover a large interval of energy and whose answer is isotropic. The most widely used for accomplishing this task is the spectrometric Bonner spheres system. One of the biggest problems related to neutron spectrometry is the process of data analysis, known as unfolding. Most of the work undertaken to implement new techniques of this process, using data obtained with the scintillator {sup 6}LiI(I). However, characteristics related to the dead time make it not be so effective when used in high flow neutron fields. An alternative to this problem is the use of thermoluminescent detectors (TLD), but the codes used do not provide a more specific response matrix to unfolding the information obtained through these materials, which makes the development of a specific response matrix important to adequately characterize the response obtained by them. This paper proposes using a technique of artificial intelligence called genetic algorithm, which uses bio-inspired mathematical models and through the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a system of Bonner spheres, such as thermal neutron detectors, to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enables of this technique to unfolding neutrons spectra with BS-TLD system. (author)

  3. Studying the applicability of densities mixture unfolding for heavy ion jet spectra in the ALICE experiment

    CERN Document Server

    Hackstock, Philip

    2016-01-01

    The results of a three months summer project from July 4th 2016 to September 23rd are presented in this summer student report.\\\\ The method presented in the paper\\footnote{\\url{http://www.sciencedirect.com/science/article/pii/S0168900215000406}} on densities mixture unfolding by Nikolay Gagunashvili and its software implementation were studied. A mind map flowchart, plotting macros and documentation were produced and while an 18 fold performance boost trough parallelization could be achieved, the verdict on the applicability of this method for heavy ion jet spectra in the ALICE experiment remains inconclusive. This is mainly due to a lack of time and complexity of the method and its implementation.

  4. Catalogue of response spectra for unfolding in situ gamma-ray pulse-height distributions

    International Nuclear Information System (INIS)

    Dymke, N.

    1982-01-01

    To unfold in situ gamma-ray pulse-height distributions by means of a response matrix technique, the matrix must be in keeping with the measurement geometry, detector size, and energy range to be covered by the measurements. A methodology has been described for determination of standard gamma-ray spectra needed in deriving response matrices and a spectrum catalogue compiled containing graphs and data for the 0-3 MeV (4 x 4 in. NaI(Tl)) and 0-8 MeV (1.5 x 1.5 in. NaI(Tl)) ranges. (author)

  5. Characteristic Investigation of Unfolded Neutron Spectra with Different Priori Information and Gamma Radiation Interference

    International Nuclear Information System (INIS)

    Kim, Bong Hwan

    2006-01-01

    Neutron field spectrometry using multi spheres such as Bonner Spheres (BS) has been almost essential in radiation protection dosimetry for a long time at workplace in spite of poor energy resolution because it is not asking the fine energy resolution but requiring easy operation and measurement performance over a wide range of energy interested. KAERI has developed and used extended BS system based on a LiI(Eu) scintillator as the representative neutron spectrometry system for workplace monitoring as well as for the quantification of neutron calibration fields such as those recommended by ISO 8529. Major topics in using BS are how close the unfolded spectra is the real one and to minimize the interference of gamma radiation in neutron/gamma mixed fields in case of active instrument such as a BS with a LiI(Eu) scintillator. The former is related with choosing a priori information when unfolding the measured data and the latter is depend on how to discriminate it in intense gamma radiation fields. Influence of a priori information in unfolding and effect of counting loss due to pile-up of signals for the KAERI BS system were investigated analyzing the spectral measurement results of Scattered Neutron Calibration Fields (SNCF)

  6. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  7. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  8. Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination

    International Nuclear Information System (INIS)

    Marinkovic, P.

    1991-01-01

    Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)

  9. Many channel spectrum unfolding

    International Nuclear Information System (INIS)

    Najzer, M.; Glumac, B.; Pauko, M.

    1980-01-01

    The principle of the ITER unfolding code as used for the many channel spectrum unfolding is described. Its unfolding ability is tested on seven typical neutron spectra. The effect of the initial spectrum approximation upon the solution is discussed

  10. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  11. ZZ DOSCROS, Neutron Cross-Section Library for Spectra Unfolding and Integral Parameter Evaluation

    International Nuclear Information System (INIS)

    Zijp, Willem L.; Nolthenius, Henk J.; Rieffe, Henk Ch.

    1987-01-01

    1 - Description of problem or function: Format: SAND-II; Number of groups: 640 fine group cross section values; Nuclides: Li, B, F, Na, Mg, Al, S, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Nb, Mo, Rh, Pd, Ag, In, Sb, I, Cs, La, Eu, Sm, Dy, Lu, Ta, W, Re, Au, Th, U, Np, Pu. Origin: ENDF/B-V mainly, ENDF/B-IV, INDL/V. This library forms in combination with the DAMSIG81 library a convenient source of evaluated energy dependent cross section sets which may be used in the determination of neutron spectra by means of adjustment (or unfolding) procedures or which can be used for the determination of integral parameters (such as damage-to-activation ratio) useful in characterising the neutron spectra. The energy dependent fine group cross section data are presented in a 640 group structure of the SAND-II type. This group structure has 45 energy groups per energy decade below 1 MeV and a group width of 100 KeV above 1 MeV. The total energy span of this group structure is from 10 -10 MeV to 20 MeV. The library has the SAND-II format, which implies that a special part of the library has to contain cover cross section data sets. These cross section data sets are required in the SAND-II program for taking into account the influence of special detector surroundings which may be used during an irradiation. 2 - Method of solution: The selection of the reactions from the evaluated nuclear data libraries was determined by various properties of the reactions for neutron metrology. For this reason all the well- known reactions of the ENDF/B-V dosimetry file are included but these data are supplemented with cross section sets for less well known metrology reactions which may become of interest

  12. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfazl, E-mail: sahosseini@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Tehran 8639-11365 (Iran, Islamic Republic of); Afrakoti, Iman Esmaili Paeen [Faculty of Engineering & Technology, University of Mazandaran, Pasdaran Street, P.O. Box: 416, Babolsar 47415 (Iran, Islamic Republic of)

    2017-04-11

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The {sup 241}Am-{sup 9}Be and {sup 252}Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions. - Highlights: • The neutron pulse height distribution was simulated using MCNPX-ESUT. • The energy spectrum of the neutron source was unfolded using GMDH. • The energy spectrum of the neutron source was

  13. On unfolding counting-rate spectra of recoil-proton neutron detectors

    International Nuclear Information System (INIS)

    Yeivin, Yehuda

    1983-01-01

    This note proposes a possible scheme for unfolding recoil-proton neutron detector data, in which at first the undistorted proton source spectrum is derived. The main argument in favour of this scheme is that, compared with the conventional scheme, it necessitates somewhat weaker assumptions with respect to the unknown spectrum above the detector's upper energy cutoff, and would therefore be more reliable. We also demonstrate a simple, elementary proof of the wall effect correction for spherical detectors, and, in order to gain insight of the potential merits of the proposed unfolding scheme, illustrate our main argument by considering a hypothetic linear range-energy relation, in which case complete unfolding becomes possible with no assumptions at all on the proton spectrum above the cutoff energy. (author)

  14. Analysis of coincidence {gamma}-ray spectra using advanced background elimination, unfolding and fitting algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, M. E-mail: fyzimiro@savba.skfyzimiro@flnr.jinr.ru; Matousek, V. E-mail: matousek@savba.sk; Kliman, J.; Krupa, L.L.; Jandel, M

    2003-04-21

    The efficient algorithms to analyze multiparameter {gamma}-ray spectra are presented. They allow to search for peaks, to separate peaks from background, to improve the resolution and to fit 1-, 2-, 3-parameter {gamma}-ray spectra.

  15. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Zavaljevski, N.

    1992-01-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (orig.)

  16. The effect of the neutron spectra unfolding method on the fast neutron dose determination

    International Nuclear Information System (INIS)

    Marinkovic, P.; Avdic, S.; Pesic, M.; Zavaljevski, N

    1992-09-01

    Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (author)

  17. Fast neutron spectra unfolding with SAND-11 and maximum likelihoed methods

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1980-01-01

    Mutual comparison of the methods SAND-II and maximal likeness for neutron spectra determination are represented. Spectra were restored according to the measures reaction rate of ten activation detectors using the device B-2 of the reactor BR-5 behind two thicknesses of steel-graphite shielding: Z=6.5 cm and Z=42.5 cm. The influence of earlier information on the results of neutron spectra determination was studied. Differential and integral energy dependences of neutron flux density for three initial spectra and two cross section libraries (BGS-1 and ZACRSS) are presented. The both methods yield close differential spectra (discrepancies < 10 %) when identical cross section libraries and reference spectra are used

  18. SAMPO80, Ge(Li) Detector Gamma Spectra Unfolding with Isotope Identification

    International Nuclear Information System (INIS)

    Koskelo, M.J.; Aarnio, P.A.; Routti, J.T.

    1998-01-01

    1 - Description of problem or function: Analysis of gamma spectra measured with Ge(Li) or HPGe detectors. 2 - Method of solution: - Shape calibration using a non-linear least squares algorithm with a variable metric method. - Peak location with a smoothed second difference method. - Peak area calculation with a linear least squares fit to predefined peak shapes. - Nuclide identification with a linear least squares fit based on associated lines. 3 - Restrictions on the complexity of the problem: Number of shape calibration points allowed: 20; Number of energy calibration points allowed: 20; Number of efficiency calibration points allowed: 20; Maximum number of found peaks: 100; Maximum number of fitted peaks: 100; Maximum number of peaks in a multiplet: 5; Maximum number of channels in a fitting interval: 50; Maximum number of peaks for nuclide identification: 80; Maximum number of identified nuclides: 30; Maximum number of lines per nuclide: 30

  19. Foil activation detectors - some remarks on the choice of detectors, the adjustment of cross-sections and the unfolding of flux spectra

    International Nuclear Information System (INIS)

    McCracken, A.K.; Packwood, A.

    1978-01-01

    Neutron spectroscopy in a favourable environment can yield without supporting calculations a wealth of spectral detail which cannot be approached by the multiple foil analysis (MFA) method. On the other hand in hostile environments only MFA methods are available and they require validation and/or improvement by exposing them to comparison with other types of measurement and definitive calculation in tightly controlled test neutron spectra. This paper considers some problems related to MFA unfolding of flux spectra, systematic and random errors in detector measurements and the choice of detectors which will be of maximum use in all environments of current interest

  20. BUMS--Bonner sphere Unfolding Made Simple an HTML based multisphere neutron spectrometer unfolding package

    CERN Document Server

    Sweezy, J; Veinot, K

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at h...

  1. Unfolding Participation

    DEFF Research Database (Denmark)

    Saad-Sulonen, Joanna; Halskov, Kim; Eriksson, Eva

    2015-01-01

    The aim of the Unfolding Participation workshop is to outline an agenda for the next 10 years of participatory design (PD) and participatory human computer interaction (HCI) research. We will do that through a double strategy: 1) by critically interrogating the concept of participation (unfolding...... the concept itself), while at the same time, 2) reflecting on the way that participation unfolds across different participatory configurations. We invite researchers and practitioners from PD and HCI and fields in which information technology mediated participation is embedded (e.g. in political studies......, urban planning, participatory arts, business, science and technology studies) to bring a plurality of perspectives and expertise related to participation....

  2. Iterative nonlinear unfolding code: TWOGO

    International Nuclear Information System (INIS)

    Hajnal, F.

    1981-03-01

    a new iterative unfolding code, TWOGO, was developed to analyze Bonner sphere neutron measurements. The code includes two different unfolding schemes which alternate on successive iterations. The iterative process can be terminated either when the ratio of the coefficient of variations in terms of the measured and calculated responses is unity, or when the percentage difference between the measured and evaluated sphere responses is less than the average measurement error. The code was extensively tested with various known spectra and real multisphere neutron measurements which were performed inside the containments of pressurized water reactors

  3. BUMS--Bonner sphere Unfolding Made Simple: an HTML based multisphere neutron spectrometer unfolding package

    International Nuclear Information System (INIS)

    Sweezy, Jeremy; Hertel, Nolan; Veinot, Ken

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at http://nukeisit.gatech.edu/bums

  4. Application of semi-empirical modeling and non-linear regression to unfolding fast neutron spectra from integral reaction rate data

    International Nuclear Information System (INIS)

    Harker, Y.D.

    1976-01-01

    A semi-empirical analytical expression representing a fast reactor neutron spectrum has been developed. This expression was used in a non-linear regression computer routine to obtain from measured multiple foil integral reaction data the neutron spectrum inside the Coupled Fast Reactivity Measurement Facility. In this application six parameters in the analytical expression for neutron spectrum were adjusted in the non-linear fitting process to maximize consistency between calculated and measured integral reaction rates for a set of 15 dosimetry detector foils. In two-thirds of the observations the calculated integral agreed with its respective measured value to within the experimental standard deviation, and in all but one case agreement within two standard deviations was obtained. Based on this quality of fit the estimated 70 to 75 percent confidence intervals for the derived spectrum are 10 to 20 percent for the energy range 100 eV to 1 MeV, 10 to 50 percent for 1 MeV to 10 MeV and 50 to 90 percent for 10 MeV to 18 MeV. The analytical model has demonstrated a flexibility to describe salient features of neutron spectra of the fast reactor type. The use of regression analysis with this model has produced a stable method to derive neutron spectra from a limited amount of integral data

  5. A genetic algorithm based method for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2013-03-01

    An approach to neutron spectrum unfolding based on a stochastic evolutionary search mechanism - Genetic Algorithm (GA) is presented. It is tested to unfold a set of simulated spectra, the unfolded spectra is compared to the output of a standard code FERDOR. The method was then applied to a set of measured pulse height spectrum of neutrons from the AmBe source as well as of emitted neutrons from Li(p,n) and Ag(C,n) nuclear reactions carried out in the accelerator environment. The unfolded spectra compared to the output of FERDOR show good agreement in the case of AmBe spectra and Li(p,n) spectra. In the case of Ag(C,n) spectra GA method results in some fluctuations. Necessity of carrying out smoothening of the obtained solution is also studied, which leads to approximation of the solution yielding an appropriate solution finally. Few smoothing techniques like second difference smoothing, Monte Carlo averaging, combination of both and gaussian based smoothing methods are also studied. Unfolded results obtained after inclusion of the smoothening criteria are in close agreement with the output obtained from the FERDOR code. The present method is also tested on a set of underdetermined problems, the outputs of which is compared to the unfolded spectra obtained from the FERDOR applied to a completely determined problem, shows a good match. The distribution of the unfolded spectra is also studied. Uncertainty propagation in the unfolded spectra due to the errors present in the measurement as well as the response function is also carried out. The method appears to be promising for unfolding the completely determined as well as underdetermined problems. It also has provisions to carry out the uncertainty analysis. (author)

  6. Catalogue to select the initial guess spectrum during unfolding

    CERN Document Server

    Vega-Carrillo, H R

    2002-01-01

    A new method to select the initial guess spectrum is presented. Neutron spectra unfolded from Bonner sphere data are dependent on the initial guess spectrum used in the unfolding code. The method is based on a catalogue of detector count rates calculated from a set of reported neutron spectra. The spectra of three isotopic neutron sources sup 2 sup 5 sup 2 Cf, sup 2 sup 3 sup 9 PuBe and sup 2 sup 5 sup 2 Cf/D sub 2 O, were measured to test the method. The unfolding was carried out using the three initial guess options included in the BUNKIUT code. Neutron spectra were also calculated using MCNP code. Unfolded spectra were compared with those calculated; in all the cases our method gives the best results.

  7. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  8. Mechanics of collective unfolding

    Science.gov (United States)

    Caruel, M.; Allain, J.-M.; Truskinovsky, L.

    2015-03-01

    Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and the structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.

  9. Neutron spectrum unfolding using computer code SAIPS

    International Nuclear Information System (INIS)

    Karim, S.

    1999-01-01

    The main objective of this project was to study the neutron energy spectrum at rabbit station-1 in Pakistan Research Reactor (PARR-I). To do so, multiple foils activation method was used to get the saturated activities. The computer code SAIPS was used to unfold the neutron spectra from the measured reaction rates. Of the three built in codes in SAIPS, only SANDI and WINDOWS were used. Contribution of thermal part of the spectra was observed to be higher than the fast one. It was found that the WINDOWS gave smooth spectra while SANDII spectra have violet oscillations in the resonance region. The uncertainties in the WINDOWS results are higher than those of SANDII. The results show reasonable agreement with the published results. (author)

  10. Unfolding study of a trimeric membrane protein AcrB.

    Science.gov (United States)

    Ye, Cui; Wang, Zhaoshuai; Lu, Wei; Wei, Yinan

    2014-07-01

    The folding of a multi-domain trimeric α-helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two-state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter-subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate-limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop , from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re-association of the trimer might be the limiting factor to obtain folded wild-type AcrB. © 2014 The Protein Society.

  11. Neutron spectrum unfolding using neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2004-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  12. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  13. Verification of unfold error estimates in the unfold operator code

    International Nuclear Information System (INIS)

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. copyright 1997 American Institute of Physics

  14. Moessbauer spectroscopic evidence on the heme binding to the proximal histidine in unfolded carbonmonoxy myoglobin by guanidine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan, E-mail: harami.taikan@jaea.go.jp [Japan Atomic Energy Agency (Japan); Kitao, Shinji; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Mitsui, Takaya [Japan Atomic Energy Agency (Japan)

    2008-01-15

    The unfolded heme structure in myoglobin is controversial because of no chance of direct X-ray structure analyses. The unfolding of carbonmonoxy myoglobin (MbCO) by guanidine hydrochloride (GdnHCl) was studied by the Moessbauer spectroscopy. The spectra show the presence of a sort of spectrum in the unfolded MbCO, independent on the concentration of GdnHCl from 1 to 6 M and the increase of the fraction of unfolded MbCO, depending on the GdnHCl concentration. The isomer shift of the iron of heme in the unfolded MbCO was identified to be different from that of the native MbCO as the globin structure in Mb collapses under the unfolded conditions. This result and the existing related Moessbauer data proved that the heme in the unfolded MbCO may remain coordinated to the proximal histidine.

  15. Applied multidimensional scaling and unfolding

    CERN Document Server

    Borg, Ingwer; Mair, Patrick

    2018-01-01

    This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfoldin...

  16. Neutron spectrum unfolding: Pt. 2

    International Nuclear Information System (INIS)

    Matiullah; Wiyaja, D.S.; Berzonis, M.A.; Bondars, H.; Lapenas, A.A.; Kudo, K.; Majeed, A.; Durrani, S.A.

    1991-01-01

    In Part I of this paper, we described the use of the computer code SAIPS in neutron spectrum unfolding. Here in Part II, we present our experimental work carried out to study the shape of the neutron spectrum in different experimental channels of a 5 MW light-water cooled and moderated research reactor. The spectral neutron flux was determined using various fission foils (placed in close contact with mica track detectors) and activation detectors. From the measured activities, the neutron spectrum was unfolded by SAIPS. (author)

  17. BONDI-97 A novel neutron energy spectrum unfolding tool using a genetic algorithm

    CERN Document Server

    Mukherjee, B

    1999-01-01

    The neutron spectrum unfolding procedure using the count rate data obtained from a set of Bonner sphere neutron detectors requires the solution of the Fredholm integral equation of the first kind by using complex mathematical methods. This paper reports a new approach for the unfolding of neutron spectra using the Genetic Algorithm tool BONDI-97 (BOnner sphere Neutron DIfferentiation). The BONDI-97 was used as the input for Genetic Algorithm engine EVOLVER to search for a globally optimised solution vector from a population of randomly generated solutions. This solution vector corresponds to the unfolded neutron energy spectrum. The Genetic Algorithm engine emulates the Darwinian 'Survival of the Fittest' strategy, the key ingredient of the 'Theory of Evolution'. The spectra of sup 2 sup 4 sup 1 Am/Be (alpha,n) and sup 2 sup 3 sup 9 Pu/Be (alpha,n) neutron sources were unfolded using the BONDI-97 tool. (author)

  18. Genetic algorithms - A new technique for solving the neutron spectrum unfolding problem

    International Nuclear Information System (INIS)

    Freeman, David W.; Edwards, D. Ray; Bolon, Albert E.

    1999-01-01

    A new technique utilizing genetic algorithms has been applied to the Bonner sphere neutron spectrum unfolding problem. Genetic algorithms are part of a relatively new field of 'evolutionary' solution techniques that mimic living systems with computer-simulated 'chromosome' solutions. Solutions mate and mutate to create better solutions. Several benchmark problems, considered representative of radiation protection environments, have been evaluated using the newly developed UMRGA code which implements the genetic algorithm unfolding technique. The results are compared with results from other well-established unfolding codes. The genetic algorithm technique works remarkably well and produces solutions with relatively high spectral qualities. UMRGA appears to be a superior technique in the absence of a priori data - it does not rely on 'lucky' guesses of input spectra. Calculated personnel doses associated with the unfolded spectra match benchmark values within a few percent

  19. Evaluation of spectral unfolding techniques for neutron spectroscopy

    International Nuclear Information System (INIS)

    Sunden, Erik Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Tardocchi, M.

    2008-01-01

    The precision of the JET installations of MAXED, GRAVEL and the L-curve version of MAXED has been evaluated by using synthetic neutron spectra. We have determined the number of counts needed for the detector systems NE213 and MPR to get an error below 10% of the MAXED unfolded neutron spectra is determined to be ∼10 6 and ∼10 4 , respectively. For GRAVEL the same number is ∼10 7 and ∼3·10 4 for NE213 and MPR, respectively

  20. Enthalpy-entropy compensation in protein unfolding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Enthalpy-entropy compensation was found to be a universal law in protein unfolding based on over 3 000 experimental data. Water molecular reorganization accompanying the protein unfolding was suggested as the origin of the enthalpy-entropy compensation in protein unfolding. It is indicated that the enthalpy-entropy compensation constitutes the physical foundation that satisfies the biological need of the small free energy changes in protein unfolding, without the sacrifice of the bio-diversity of proteins. The enthalpy-entropy compensation theory proposed herein also provides valuable insights into the Privalov's puzzle of enthalpy and entropy convergence in protein unfolding.

  1. First results of Minimum Fisher Regularisation as unfolding method for JET NE213 liquid scintillator neutron spectrometry

    International Nuclear Information System (INIS)

    Mlynar, Jan; Adams, John M.; Bertalot, Luciano; Conroy, Sean

    2005-01-01

    At JET, the NE213 liquid scintillator is being validated as a diagnostic tool for spectral measurements of neutrons emitted from the plasma. Neutron spectra have to be unfolded from the measured pulse-height spectra, which is an ill-conditioned problem. Therefore, use of two independent unfolding methods allows for less ambiguity on the interpretation of the data. In parallel to the routine algorithm MAXED based on the Maximum Entropy method, the Minimum Fisher Regularisation (MFR) method has been introduced at JET. The MFR method, known from two-dimensional tomography applications, has proved to provide a new transparent tool to validate the JET neutron spectra measured with the NE213 liquid scintillators. In this article, the MFR method applicable to spectra unfolding is briefly explained. After a mention of MFR tests on phantom spectra experimental neutron spectra are presented that were obtained by applying MFR to NE213 data in selected JET experiments. The results tend to confirm MAXED observations

  2. Unfolding four-helix bundles

    Science.gov (United States)

    Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-03-01

    A geometrical model has been developed to describe the early stages of unfolding of cytochromes c‧ and c-b562 . Calculations are based on a step-wise extension of the polypeptide chain subject to the constraint that the spatial relationship among the residues of each triplet is fixed by the native-state crystallographic data. The response of each protein to these structural perturbations allows the evolution of each of the four helices in these two proteins to be differentiated. It is found that the two external helices in c‧ unfold before its two internal helices, whereas exactly the opposite behaviour is demonstrated by c-b562 . Each of these cytochromes has an extended, internal, non-helical ('turning') region that initially lags behind the most labile helix but then, at a certain stage (identified for each cytochrome), unravels before any of the four helices present in the native structure. It is believed that these predictions will be useful in guiding future experimental studies on the unfolding of these two cytochromes.

  3. Deep Unfolding for Topic Models.

    Science.gov (United States)

    Chien, Jen-Tzung; Lee, Chao-Hsi

    2018-02-01

    Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.

  4. COOLC, Ne-213 Liquid Scintillation Detector Neutron Spectra Unfolding

    International Nuclear Information System (INIS)

    1971-01-01

    1 - Nature of physical problem solved: COOLC is designed to calculate a neutron energy spectrum from a pulse-height spectrum produced by a detector system using the liquid scintillator NE-213. 2 - Method of solution: The program estimates the counts which would be observed in an ideal detector system having a response which is specified by the user. The solution implicitly takes into account the non-negativity of the desired neutron spectrum. The solution is obtained by finding a nearly optimal combination of slices through the spectrometer response functions such that their sum approximates the response of a channel of the ideal analyzer, and then uses the coefficients so determined to obtain an estimate of the desired neutron spectrum. 3 - Restrictions on the complexity of the problem: There are none noted

  5. A linear iterative unfolding method

    International Nuclear Information System (INIS)

    László, András

    2012-01-01

    A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing, due to the well-known numerical ill behavior of this task. Various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the unfolding problem. Most of these methods definitely introduce bias into the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration, which can be used to choose the best compromise between the introduced bias and the propagated statistical and systematic errors. The method is consistent: 'binwise' convergence to the initial probability distribution is proved in absence of measurement errors under a quite general condition on the response function. This condition holds for practical applications such as convolutions, calorimeter response functions, momentum reconstruction response functions based on tracking in magnetic field etc. In presence of measurement errors, explicit formulae for the propagation of the three important error terms is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a finite iteration order), statistical error, and systematic error. A trade-off between these three error terms can be used to define an optimal iteration stopping criterion, and the errors can be estimated there. We provide a numerical C library for the implementation of the method, which incorporates automatic

  6. Uncertainty analysis of dosimetry spectrum unfolding

    International Nuclear Information System (INIS)

    Perey, F.G.

    1977-01-01

    The propagation of uncertainties in the input data is analyzed for the usual dosimetry unfolding solution. A new formulation of the dosimetry unfolding problem is proposed in which the most likely value of the spectrum is obtained. The relationship of this solution to the usual one is discussed

  7. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. II. Error analysis and generalization

    Directory of Open Access Journals (Sweden)

    D. L. Fehl

    2010-12-01

    Full Text Available A five-channel, filtered-x-ray-detector (XRD array has been used to measure time-dependent, soft-x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA. The preceding, companion paper [D. L. Fehl et al., Phys. Rev. ST Accel. Beams 13, 120402 (2010PRABFM1098-4402] describes an algorithm for spectral reconstructions (unfolds and spectrally integrated flux estimates from data obtained by this instrument. The unfolded spectrum S_{unfold}(E,t is based on (N=5 first-order B-splines (histograms in contiguous unfold bins j=1,…,N; the recovered x-ray flux F_{unfold}(t is estimated as ∫S_{unfold}(E,tdE, where E is x-ray energy and t is time. This paper adds two major improvements to the preceding unfold analysis: (a Error analysis.—Both data noise and response-function uncertainties are propagated into S_{unfold}(E,t and F_{unfold}(t. Noise factors ν are derived from simulations to quantify algorithm-induced changes in the noise-to-signal ratio (NSR for S_{unfold} in each unfold bin j and for F_{unfold} (ν≡NSR_{output}/NSR_{input}: for S_{unfold}, 1≲ν_{j}≲30, an outcome that is strongly spectrally dependent; for F_{unfold}, 0.6≲ν_{F}≲1, a result that is less spectrally sensitive and corroborated independently. For nominal z-pinch experiments, the combined uncertainty (noise and calibrations in F_{unfold}(t at peak is estimated to be ∼15%. (b Generalization of the unfold method.—Spectral sensitivities (called here passband functions are constructed for S_{unfold} and F_{unfold}. Predicting how the unfold algorithm reconstructs arbitrary spectra is thereby reduced to quadratures. These tools allow one to understand and quantitatively predict algorithmic distortions (including negative artifacts, to identify potentially troublesome spectra, and to design more useful response functions.

  8. Unfolding and smoothing applied to the quality enhancement of neutron tomographic images

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Silvani, Maria I.; Lopes, Ricardo T.

    2008-01-01

    Resolution and contrast are the major parameters defining the quality of a computer-aided tomographic image. These parameters depend upon several features of the image acquisition system, such as detector resolution, geometrical arrangement of the source-object-detector, beam divergence, source strength, detector efficiency and counting time. Roughly, the detector finite resolution is the main source of systematic errors affecting the separation power of the image acquisition system, while the electronic noise and statistical fluctuation are responsible for the data dispersion, which spoils the contrast. An algorithm has been developed in this work aiming at the improvement of the image quality through the minimization of both types of errors. The systematic ones are reduced by a mathematical unfolding of the position spectra - used as projections to reconstruct the 2D-images - using the Line Spread Function - LSF of the neutron tomographic system. The principle behind this technique is that every single channel contains information about all channels of the spectrum, but it is concealed due to the automatic integration carried out by the detector. Therefore, knowing the shape of this curve, it is possible to retrieve the original spectra. These spectra are unfortunately corrupted by the unavoidable statistical fluctuation, and by oscillations arising from the unfolding process, which strongly affects the quality of the final unfolded image. In order to reduce this impact, the spectra have been filtered by a Fourier transform technique or smoothed with a least square fitting procedure. The algorithm has been applied to spectra of some test-bodies generated by an earlier developed tomographic simulator, which reproduces the spectra furnished by a thermal neutron tomographic system employing a position sensitive detector. The obtained results have shown that the unfolded spectra produce final images capable to resolve features otherwise not achievable with the

  9. Protein unfolding with a steric trap.

    Science.gov (United States)

    Blois, Tracy M; Hong, Heedeok; Kim, Tae H; Bowie, James U

    2009-10-07

    The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.

  10. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2016-01-01

    In ATLAS, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  11. Experience with using unfolding procedures in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407321; The ATLAS collaboration

    2016-01-01

    In the ATLAS experiment, several unfolding methods are used to correct experimental measurements for detector effects, like acceptance and resolution. These methods use as input the raw experimental distributions, as well as Monte Carlo simulation for the description of the detector effects. The systematic uncertainties associated to the various unfolding methods are evaluated. The statistical and systematic uncertainties affecting the raw measurements and/or the simulation are propagated through the unfolding procedure. The resulting corrected measurements with their uncertainties can be directly compared with the corresponding theoretical predictions.

  12. UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA

    Directory of Open Access Journals (Sweden)

    IONIŢĂ Elena

    2015-06-01

    Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.

  13. Thermal dissociation and unfolding of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2005-01-01

    The thermal stability of human insulin was studied by differential scanning microcalorimetry and near-UV circular dichroism as a function of zinc/protein ratio, to elucidate the dissociation and unfolding processes of insulin in different association states. Zinc-free insulin, which is primarily...... dimeric at room temperature, unfolded at approximately 70 degrees C. The two monomeric insulin mutants Asp(B28) and Asp(B9),Glu(B27) unfolded at higher temperatures, but with enthalpies of unfolding that were approximately 30% smaller. Small amounts of zinc caused a biphasic thermal denaturation pattern...... of insulin. The biphasic denaturation is caused by a redistribution of zinc ions during the heating process and results in two distinct transitions with T(m)'s of approximately 70 and approximately 87 degrees C corresponding to monomer/dimer and hexamer, respectively. At high zinc concentrations (>or=5 Zn(2...

  14. An approach to unfold the response of a multi-element system using an artificial neural network

    International Nuclear Information System (INIS)

    Cordes, E.; Fehrenbacher, G.; Schuetz, R.; Sprunck, M.; Hahn, K.; Hofmann, R.; Wahl, W.

    1998-01-01

    An unfolding procedure is proposed which aims at obtaining spectral information of a neutron radiation field by the analysis of the response of a multi-element system consisting of converter type semiconductors. For the unfolding procedure an artificial neural network (feed forward network), trained by the back-propagation method, was used. The response functions of the single elements to neutron radiation were calculated by application of a computational model for an energy range from 10 -2 eV to 10 MeV. The training of the artificial neural network was based on the computation of responses of a six-element system for a set of 300 neutron spectra and the application of the back-propagation method. The validation was performed by the unfolding of 100 computed responses. Two unfolding examples were pointed out for the determination of the neutron spectra. The spectra resulting from the unfolding procedure agree well with the original spectra used for the response computation

  15. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-01-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤ 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum

  16. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time endash history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. copyright 1997 American Institute of Physics

  17. Influence of the initial guess spectrum in the unfolding of Bss data obtained inside a bunker of a PET cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Benavente C, J. A.; Lacerda, M. A. S.; Guimaraes, A. M.; Da Silva, T. A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2015-10-15

    In a cyclotron facility is strongly advised the use of spectrometry techniques to support workplace neutron dosimetry. Bonner sphere spectrometer (Bss) is the most used for radiation protection applications. Bss data must be unfolded to determine the spectral particle fluence. Some computer codes have been utilized for this purpose. These codes allow unfolding the spectrum from the Bss count rates through different algorithms. Some iterative routines need an initial guess spectrum to start the unfolding. The adequate choice of this initial spectrum is a critical part of the process and can affect the final solution. In this work, we evaluate the influence of the initial guess spectrum in the unfolding of Bss data obtained in four points inside the bunker of a PET cyclotron. The measurements were done utilizing a modified Bss system with thermoluminescent detectors (TLDs). Codes BUNKIUT and NSDUAZ were utilized to unfold the Bss data. For the NSDUAZ the starting spectrum is automatically obtained from a library initial guess spectra. For the BUNKIUT code were utilized two different initial guess spectra: (a) a Maxwellian spectrum with temperature of 1.4 MeV and shape factor of 0.1, created with the MAXIET algorithm and; (b) the spectra obtained through simulation with the MCNPX code version 2.7. Spectra obtained with both unfold codes and with the different initial guess spectra presented epithermal and thermal neutrons due to room-return effects. However, the contribution of the fast neutron to the total fluence were quite different for the different cases studied. These differences highlight the importance of an appropriate choice of an initial guess spectra for the quality of the results. (Author)

  18. Influence of the initial guess spectrum in the unfolding of Bss data obtained inside a bunker of a PET cyclotron

    International Nuclear Information System (INIS)

    Benavente C, J. A.; Lacerda, M. A. S.; Guimaraes, A. M.; Da Silva, T. A.; Vega C, H. R.

    2015-10-01

    In a cyclotron facility is strongly advised the use of spectrometry techniques to support workplace neutron dosimetry. Bonner sphere spectrometer (Bss) is the most used for radiation protection applications. Bss data must be unfolded to determine the spectral particle fluence. Some computer codes have been utilized for this purpose. These codes allow unfolding the spectrum from the Bss count rates through different algorithms. Some iterative routines need an initial guess spectrum to start the unfolding. The adequate choice of this initial spectrum is a critical part of the process and can affect the final solution. In this work, we evaluate the influence of the initial guess spectrum in the unfolding of Bss data obtained in four points inside the bunker of a PET cyclotron. The measurements were done utilizing a modified Bss system with thermoluminescent detectors (TLDs). Codes BUNKIUT and NSDUAZ were utilized to unfold the Bss data. For the NSDUAZ the starting spectrum is automatically obtained from a library initial guess spectra. For the BUNKIUT code were utilized two different initial guess spectra: (a) a Maxwellian spectrum with temperature of 1.4 MeV and shape factor of 0.1, created with the MAXIET algorithm and; (b) the spectra obtained through simulation with the MCNPX code version 2.7. Spectra obtained with both unfold codes and with the different initial guess spectra presented epithermal and thermal neutrons due to room-return effects. However, the contribution of the fast neutron to the total fluence were quite different for the different cases studied. These differences highlight the importance of an appropriate choice of an initial guess spectra for the quality of the results. (Author)

  19. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  20. Spectrum unfolding from activation measurements in a CTR-model blanket experiment

    International Nuclear Information System (INIS)

    Kuijpers, L.J.M.

    1977-07-01

    Neutron spectra in a lithium fusion reactor model blanket are determined experimentally by performing SAND II unfolding runs from measured activities. The principles of the iterative SAND II method are given and characteristics of the output are described. The spectra are calculated from available data with the aid of a Monte Carlo program, of which procedure numerical results are given. Both kinds of spectra are compared; when number of input data is varied or different cross section data sets are chosen, inconsistencies in activities or cross section data may be detected. (orig./WL) [de

  1. A neutron spectrum unfolding code based on iterative procedures

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    In this work, the version 3.0 of the neutron spectrum unfolding code called Neutron Spectrometry and Dosimetry from Universidad Autonoma de Zacatecas (NSDUAZ), is presented. This code was designed in a graphical interface under the LabVIEW programming environment and it is based on the iterative SPUNIT iterative algorithm, using as entrance data, only the rate counts obtained with 7 Bonner spheres based on a 6 Lil(Eu) neutron detector. The main features of the code are: it is intuitive and friendly to the user; it has a programming routine which automatically selects the initial guess spectrum by using a set of neutron spectra compiled by the International Atomic Energy Agency. Besides the neutron spectrum, this code calculates the total flux, the mean energy, H(10), h(10), 15 dosimetric quantities for radiation protection porpoises and 7 survey meter responses, in four energy grids, based on the International Atomic Energy Agency compilation. This code generates a full report in html format with all relevant information. In this work, the neutron spectrum of a 241 AmBe neutron source on air, located at 150 cm from detector, is unfolded. (Author)

  2. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  3. Unfolding energetics and stability of banana lectin.

    Science.gov (United States)

    Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha

    2008-08-01

    The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions. (c) 2008 Wiley-Liss, Inc.

  4. Regularization and error assignment to unfolded distributions

    CERN Document Server

    Zech, Gunter

    2011-01-01

    The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.

  5. Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED

    CERN Document Server

    Reginatto, M; Neumann, S

    2002-01-01

    MAXED was developed to apply the maximum entropy principle to the unfolding of neutron spectrometric measurements. The approach followed in MAXED has several features that make it attractive: it permits inclusion of a priori information in a well-defined and mathematically consistent way, the algorithm used to derive the solution spectrum is not ad hoc (it can be justified on the basis of arguments that originate in information theory), and the solution spectrum is a non-negative function that can be written in closed form. This last feature permits the use of standard methods for the sensitivity analysis and propagation of uncertainties of MAXED solution spectra. We illustrate its use with unfoldings of NE 213 scintillation detector measurements of photon calibration spectra, and of multisphere neutron spectrometer measurements of cosmic-ray induced neutrons at high altitude (approx 20 km) in the atmosphere.

  6. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation.

    Science.gov (United States)

    Eckhardt, D; Li-Blatter, X; Schönfeld, H-J; Heerklotz, H; Seelig, J

    2018-05-25

    Apolipoprotein A-1 (Apo A-1) plays an important role in lipid transfer and obesity. Chemical unfolding of α-helical Apo A-1 is induced with guanidineHCl and monitored with differential scanning calorimetry (DSC) and CD spectroscopy. The unfolding enthalpy and the midpoint temperature of unfolding decrease linearly with increasing guanidineHCl concentration, caused by the weak binding of denaturant. At room temperature, binding of 50-60 molecules guanidineHCl leads to a complete Apo A-1 unfolding. The entropy of unfolding decreases to a lesser extent than the unfolding enthalpy. Apo A-1 chemical unfolding is a dynamic multi-state equilibrium that is analysed with the Zimm-Bragg theory modified for chemical unfolding. The chemical Zimm-Bragg theory predicts the denaturant binding constant K D and the protein cooperativity σ. Chemical unfolding of Apo A-1 is two orders of magnitude less cooperative than thermal unfolding. The free energy of thermal unfolding is ~0.2 kcal/mol per amino acid residue and ~1.0 kcal/mol for chemical unfolding at room temperature. The Zimm-Bragg theory calculates conformational probabilities and the chemical Zimm-Bragg theory predicts stretches of α-helical segments in dynamic equilibrium, unfolding and refolding independently and fast. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Comparison of neutron spectrum unfolding codes

    International Nuclear Information System (INIS)

    Zijp, W.

    1979-02-01

    This final report contains a set of four ECN-reports. The first is dealing with the comparison of the neutron spectrum unfolding codes CRYSTAL BALL, RFSP-JUL, SAND II and STAY'SL. The other three present the results of calculations about the influence of statistical weights in CRYSTAL BALL, SAND II and RFSP-JUL

  8. FERD and FERDOR type unfolding codes

    International Nuclear Information System (INIS)

    Burrus, W.R.

    1976-01-01

    FERD and FERDO are unfolding codes which were developed at the Neutron Physics Division of Oak Ridge National Laboratory in 1965 and 1966. FERDO variants such as FERDOR and FORIST have been widely used, and many useful supplementary procedures have been developed for neutron and gamma-ray spectroscopy and other diverse applications. Algorithms for the codes are discussed

  9. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  10. The unfolding effects of transfer functions and processing of the pulse height distributions

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2010-01-01

    Full Text Available This paper deals with the improvements of the linear artificial neural network unfolding approach aimed at accurately determining the incident neutron spectrum. The effects of the transfer functions and pre-processing of the simulated pulse height distributions from liquid scintillation detectors on the artificial neural networks performance have been studied. A better energy resolution and higher reliability of the linear artificial neural network technique have been achieved after implementation of the results of this study. The optimized structure of the network was used to unfold both monoenergetic and continuous neutron energy spectra, such as the spectra of 252Cf and 241Am-Be sources, traditionally used in the nuclear safeguards experiments. We have demonstrated that the artificial neural network energy resolution of 0.1 MeV is comparable with the one obtained by the reference maximum likelihood expectation-maximization method which was implemented by using the one step late algorithm. Although the maximum likelihood algorithm provides the unfolded results of higher accuracy, especially for continuous neutron sources, the artificial neural network approach with the improved performances is more suitable for fast and robust determination of the neutron spectra with sufficient accuracy.

  11. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  12. A novel neutron energy spectrum unfolding code using particle swarm optimization

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-01-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code. - Highlights: • Introducing a novel method for neutron spectrum unfolding. • Implementation of a particle swarm optimization code for neutron unfolding. • Comparing results of the PSO code with those of recently published TGASU code. • Match results of the PSO code with those of TGASU code. • Greater convergence rate of implemented PSO code than TGASU code.

  13. Reversible Unfolding of Rhomboid Intramembrane Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Arutyunova, Elena; Panwar, Pankaj; Gimpl, Katharina; Keller, Sandro; Lemieux, M Joanne

    2016-03-29

    Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Bosonic Fradkin-Tseytlin equations unfolded

    Energy Technology Data Exchange (ETDEWEB)

    Shaynkman, O.V. [I.E.Tamm Theory Department, Lebedev Physical Institute,Leninski prospect 53, 119991, Moscow (Russian Federation)

    2016-12-22

    We test infinite-dimensional extension of algebra su(k,k) proposed by Fradkin and Linetsky as the candidate for conformal higher spin algebra. Adjoint and twisted-adjoint representations of su(k,k) on the space of this algebra are carefully explored. For k=2 corresponding unfolded system is analyzed and it is shown to encode Fradkin-Tseytlin equations for the set of all integer spins 1,2,… with infinite multiplicity.

  15. Geometrical analysis of cytochrome c unfolding

    Science.gov (United States)

    Urie, Kristopher G.; Pletneva, Ekaterina; Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-01-01

    A geometrical model has been developed to study the unfolding of iso-1 cytochrome c. The model draws on the crystallographic data reported for this protein. These data were used to calculate the distance between specific residues in the folded state, and in a sequence of extended states defined by n = 3, 5, 7, 9, 11, 13, and 15 residue units. Exact calculations carried out for each of the 103 residues in the polypeptide chain demonstrate that different regions of the chain have different unfolding histories. Regions where there is a persistence of compact structures can be identified, and this geometrical characterization is fully consistent with analyses of time-resolved fluorescence energy-transfer (TrFET) data using dansyl-derivatized cysteine side-chain probes at positions 39, 50, 66, 85, and 99. The calculations were carried out assuming that different regions of the polypeptide chain unfold synchronously. To test this assumption, lattice Monte Carlo simulations were performed to study systematically the possible importance of asynchronicity. Calculations show that small departures from synchronous dynamics can arise if displacements of residues in the main body of the chain are much more sluggish than near-terminal residues.

  16. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Vitisha [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sarkar, P.K., E-mail: pksarkar02@gmail.com [Manipal Centre for Natural Sciences, Manipal University, Manipal 576104 (India)

    2014-02-11

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra.

  17. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    Science.gov (United States)

    Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.

    2016-08-01

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.

  18. Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Suman, Vitisha; Sarkar, P.K.

    2014-01-01

    A spectrum unfolding technique GAMCD (Genetic Algorithm and Monte Carlo based spectrum Deconvolution) has been developed using the genetic algorithm methodology within the framework of Monte Carlo simulations. Each Monte Carlo history starts with initial solution vectors (population) as randomly generated points in the hyper dimensional solution space that are related to the measured data by the response matrix of the detection system. The transition of the solution points in the solution space from one generation to another are governed by the genetic algorithm methodology using the techniques of cross-over (mating) and mutation in a probabilistic manner adding new solution points to the population. The population size is kept constant by discarding solutions having lesser fitness values (larger differences between measured and calculated results). Solutions having the highest fitness value at the end of each Monte Carlo history are averaged over all histories to obtain the final spectral solution. The present method shows promising results in neutron spectrum unfolding for both under-determined and over-determined problems with simulated test data as well as measured data when compared with some existing unfolding codes. An attractive advantage of the present method is the independence of the final spectra from the initial guess spectra

  19. Determination of neutron spectra using the programs GNSR and SPECTRIX

    International Nuclear Information System (INIS)

    Weyrauch, M.; Dietz, E.; Matzke, M.

    2002-01-01

    We describe the capabilities and the application of two computer programs, which have been developed in order to facilitate common tasks in neutron spectrometry: GNSR (calculation of response matrices) and SPECTRIX (unfolding). Gas-filled Neutron Spectrometer Response calculates response functions and response matrices of various gas-filled neutron detectors. It can be configured to accommodate the appropriate gas-fillings and supports a number of different neutron beam configurations with a possibility to input calculated or measured neutron beam spectra. The program includes graphical capabilities as well as a context-sensitive help system. SPECTRIX implements several unfolding algorithms as well as support algorithms for unfolding and includes graphics capabilities and context-sensitive help. We apply both programs to a specific example: calculation of the response matrix of a 3 He detector and unfolding of the neutron spectrum of a thick accelerator target using the calculated response matrix

  20. UMG 3.3, Analysis of data measured with spectrometers using unfolding techniques

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Wiegel, Burkhard; Zimbal, Andreas; Langner, Frank

    2004-01-01

    1 - Description of program or function: UMG (Unfolding with MAXED and GRAVEL) is a package of seven programs written for the analysis of data measured with spectrometers that require the use of unfolding techniques. The program MAXED applies the maximum entropy principle to the unfolding problem, and the program GRAVEL uses a modified SAND-II algorithm to do the unfolding. There are two versions of each: MXD F C33 and GRV F C33 for 'few-channel' unfolding (e.g., Bonner sphere spectrometers) and MXD M C33 and GRV M C33 for 'multi-channel' unfolding (e.g., NE-213). The program IQU can be used to calculate integral quantities for both MAXED and GRAVEL solution spectra and, in the case of MAXED solutions, it can also be used to calculate the uncertainty in these values as well as the uncertainty in the solution spectrum. The uncertainty calculation is handled in the following way: given a solution spectrum generated by MAXED, the program IQU considers variations in the measured data and in the default spectrum and uses standard Methods to do sensitivity analysis and uncertainty propagation. There are two versions: IQU F C33 for 'few-channel' unfolding and IQU M C33 for 'multi-channel' unfolding. The program UMGPlot can be used to display the results from the unfolding programs MAXED and GRAVEL in graphical form in a quick and easy way. 2 - Methods: MAXED is based on the maximum entropy principle. The solution to the unfolding problem is obtained by maximisation of the relative entropy (used here in the form due to Skilling, which is a generalisation of the usual expression to distributions that are not necessarily normalized) subject to constraints imposed by the measurements. This approach permits the inclusion of prior information in a well-defined and mathematically consistent way, and it leads to a solution spectrum that is a non-negative function which can be written in closed form. This last feature permits the use of standard Methods for sensitivity analysis and

  1. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  2. Thermal unfolding of barstar and the properties of interfacial water around the unfolded forms

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Somedatta; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India)

    2013-12-21

    Identification of the intermediates along the folding-unfolding pathways and probing their interactions with surrounding solvent are two important but relatively unexplored issues in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to study the thermal unfolding of barstar in aqueous solution from its folded native form at two different temperatures (400 K and 450 K). The calculations at 400 K reveal partial unfolding of two α-helices (helix-1 and helix-2) and their interconnecting loop. At 450 K, on the other hand, the entire protein attains an expanded flexible conformation due to disruption of a large fraction of tertiary contacts and breaking of almost all the secondary structures. These two disordered structures obtained at such high temperatures are then studied around room temperature to probe their influence on the properties of surrounding solvent. It is found that though the unfolding of the protein in general leads to increasingly hydrated interface, but new structural motifs with locally dehydrated interface may also form during the structural transition. Additionally, independent of the conformational state of the protein, its influence on surrounding solvent has been found to be restricted to the first hydration layer.

  3. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    Directory of Open Access Journals (Sweden)

    D. L. Fehl

    2010-12-01

    Full Text Available An algorithm for spectral reconstructions (unfolds and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA, and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction S_{unfold}(E,t—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300  eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux F_{unfold} is estimated as ∫S_{unfold}(E,tdE. (b Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra S_{bb}(E,T (25≤T≤250  eV, from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250  eV and typical responses, the binwise unfold values S_{j} and the corresponding binwise averages ⟨S_{bb}⟩_{j} agreed to ∼20%, except where S_{bb}≪max⁡{S_{bb}}. Occasionally, unfold values S_{j}≲0 (artifacts were encountered. The algorithm recovered ≳90% of the x

  4. Resolution unfolding with limits imposed by statistical experimental errors

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-02-01

    A typical form of the resolution equation is derived by considering the physical measurement of an energy dependent spectrum. It is shown that the information contained in a data set may be expressed by writing the spectrum as a linear combination of a set of resolution functions. Introduction of other functions to describe the spectrum involves extra physical information. An iterative conjugate gradient technique to obtain a spectrum consistent with the data is described. At each iteration the residual discrepancy between the currently predicted yield and the measured data is used to generate the form and mangitude of the next term to be added to the spectrum. Other unfolding techniques are described and analysed, some faster than the conjugate gradient technique in special cases, but restricted in usefulness by implicit assumptions about the resolution functions. The nature of residual errors is considered. The variations of independently measured data sets are discussed, and hence, the variations of the sequence of terms appearing in a consequent conjugate gradient analysis. An approximate measure is obtained for the expected variation of independently obtained spectra. Refinements are briefly considered which apply to a resolution function that is not known precisely or which make use of a requirement that the spectrum be positive throughout its range. It is concluded that a conjugate gradient technique is best if sufficient computer facilities are available, and that, of the less demanding techniques, the best is one that is essentially a more slowly convergent version of a conjugate gradient method. (author)

  5. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  6. Characteristics of SiC neutron sensor spectrum unfolding process based on Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Cetnar, Jerzy; Krolikowski, Igor [Faculty of Energy and Fuels AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Ottaviani, L. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    This paper deals with SiC detector signal interpretation in neutron radiation measurements in mixed neutron gamma radiation fields, which is called the detector inverse problem or the spectrum unfolding, and it aims in finding a representation of the primary radiation, based on the measured detector signals. In our novel methodology we resort to Bayesian inference approach. In the developed procedure the resultant spectra is unfolded form detector channels reading, where the estimated neutron fluence in a group structure is obtained with its statistical characteristic comprising of standard deviation and correlation matrix. In the paper we present results of unfolding process for case of D-T neutron source in neutron moderating environment. Discussions of statistical properties of obtained results are presented as well as of the physical meaning of obtained correlation matrix of estimated group fluence. The presented works has been carried out within the I-SMART project, which is part of the KIC InnoEnergy R and D program. (authors)

  7. Solvent Effects on Protein Folding/Unfolding

    Science.gov (United States)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  8. Kinetics of protein unfolding at interfaces

    International Nuclear Information System (INIS)

    Yano, Yohko F

    2012-01-01

    The conformation of protein molecules is determined by a balance of various forces, including van der Waals attraction, electrostatic interaction, hydrogen bonding, and conformational entropy. When protein molecules encounter an interface, they are often adsorbed on the interface. The conformation of an adsorbed protein molecule strongly depends on the interaction between the protein and the interface. Recent time-resolved investigations have revealed that protein conformation changes during the adsorption process due to the protein-protein interaction increasing with increasing interface coverage. External conditions also affect the protein conformation. This review considers recent dynamic observations of protein adsorption at various interfaces and their implications for the kinetics of protein unfolding at interfaces. (topical review)

  9. Unfolding in particle physics: A window on solving inverse problems

    International Nuclear Information System (INIS)

    Spano, F.

    2013-01-01

    Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments. (authors)

  10. Review of unfolding methods for neutron flux dosimetry

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.

    1975-01-01

    The primary method in reactor dosimetry is the foil activation technique. To translate the activation measurements into neutron fluxes, a special data processing technique called unfolding is needed. Some general observations about the problems and the reliability of this approach to reactor dosimetry are presented. Current unfolding methods are reviewed. 12 references. (auth)

  11. Defining a methodology for benchmarking spectrum unfolding codes

    International Nuclear Information System (INIS)

    Meyer, W.; Kirmser, P.G.; Miller, W.H.; Hu, K.K.

    1976-01-01

    It has long been recognized that different neutron spectrum unfolding codes will produce significantly different results when unfolding the same measured data. In reviewing the results of such analyses it has been difficult to determine which result if any is the best representation of what was measured by the spectrometer detector. A proposal to develop a benchmarking procedure for spectrum unfolding codes is presented. The objective of the procedure will be to begin to develop a methodology and a set of data with a well established and documented result that could be used to benchmark and standardize the various unfolding methods and codes. It is further recognized that development of such a benchmark must involve a consensus of the technical community interested in neutron spectrum unfolding

  12. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation.

    Science.gov (United States)

    Li, Jiahuang; Chen, Yuan; Yang, Jie; Hua, Zichun

    2015-05-01

    The Schistosoma juponicum 26 kDa glutathione S-transferase (sj26GST) consists of the N-terminal domain (N-domain), containing three alpha-helices (named H1-H3) and four anti-parallel beta-strands (S1-S4), and the C-terminal domain (C-domain), comprising five alpha-helices (named H4-H8). In present work, molecular dynamics simulations and fluorescence spectroscopic were used to gain insights into the unfolding process of sj26GST. The molecular dynamics simulations on sj26GST subunit both in water and in 8 M urea were carried out at 300 K, 400 K and 500 K, respectively. Spectroscopic measurements were employed to monitor structural changes. Molecular dynamics simulations of sj26GST subunit induced by urea and temperature showed that the initial unfolding step of sj26GST both in water and urea occurred on N-domain, involving the disruption of helices H2, H3 and strands S3 and S4, whereas H6 was the last region exposed to solution and was the last helix to unfold. Moreover, simulations analyses combining with fluorescence and circular dichroism spectra indicated that N-domain could not fold independent, suggesting that correct folding of N-domain depended on its interactions with C-domain. We further proposed that the folding of GSTs could begin with the hydrophobic collapse of C-domain whose H4, H5, H6 and H7 could move close to each other and form a hydrophobic core, especially H6 wrapped in the hydrophobic center and beginning spontaneous formation of the helix. S3, S4, H3, and H2 could form in the wake of the interaction between C-domain and N-domain. The paper can offer insights into the molecular mechanism of GSTs unfolding. © 2014 Wiley Periodicals, Inc.

  13. A statistical approach to the estimation of mechanical unfolding parameters from the unfolding patterns of protein heteropolymers

    International Nuclear Information System (INIS)

    Beddard, G S; Brockwell, D J

    2010-01-01

    A statistical calculation is described with which the saw-tooth-like unfolding patterns of concatenated heteropolymeric proteins can be used to estimate the forced unfolding parameters of a previously uncharacterized protein. The chance of observing the various sequences of unfolding events, such as ABAABBB or BBAAABB etc, for two proteins of types A and B is calculated using proteins with various ratios of A and B and at different values of effective unfolding rate constants. If the experimental rate constant for forced unfolding, k 0 , and distance to the transition state x u are known for one protein, then the calculation allows an estimation of values for the other. The predictions are compared with Monte Carlo simulations and experimental data. (communication)

  14. Osmolyte Effects on the Unfolding Pathway of β-Lactoglobulin

    International Nuclear Information System (INIS)

    Meng Wei; Pan Hai; Qin Meng; Cao Yi; Wang Wei

    2013-01-01

    There are large amounts of osmolytes inside cells, which impact many physiological processes by complicated mechanisms. The osmolyte effects on the stability and folding of proteins have been studied in detail using simple two-state folding proteins. However, many important functional proteins fold in complex pathways involving various intermediates. Little is known about the osmolyte effects on the folding and unfolding of these proteins. It is noted that β-lactoglobulin (BLG) is an example of such proteins, whose unfolding involves an obvious intermediate state. Using equilibrium chemical denaturation and stopped-flow kinetics, we investigate the unfolding of BLG in the presence of different osmolytes, e.g., glycerol, ethylene glycol (EG) and poly(ethylene glycol)400 (PEG400). It is found that all these osmolytes can stabilize the unfolding intermediate by modulating the relative unfolding kinetics of the native and the intermediate states. The stabilization effects are similar for EG and PEG400 but distinct for glycerol. Since the unfolding intermediates of many proteins are directly related to protein misfolding diseases, evaluation of the osmolyte effects for the unfolding of these proteins in vitro should be beneficial for the understanding of the occurrence of the related diseases in vivo

  15. Acceptable solutions obtained by unfolding noisy data with a conjugate gradient technique

    International Nuclear Information System (INIS)

    Lang, D.W.

    1976-01-01

    A linear resolution function in a physical measurement leads to data values and standard deviations at, say, N points. It is noted that the associated resolution functions may require that a number n of particular linear combinations of the data values be each not significantly different from zero. One is left with at most N-n parameters to evaluate. If the resolution functions are reasonably behaved, one can show that one sensible way to describe the underlying spectrum treats it as a linear combination of the given resolution functions and includes all the significant information from the data. An iterative search for the best component available to minimize the chi-square of the next fit to the data leads to a conjugate gradient technique. Programs based on the technique have been successfully used to obtain neutron spectra as a function of energy; in raw data from a pulse height analysis of proton recoils in a proportional counter, and where the raw data are time of flight spectra from a time dependent pulse of known form. It is planned to incorporate these, together with working programs respectively for photonuclear analysis and to explore the impurity concentration profile in a surface, into a single ''work-bench'' type program. A suitably difficult model unfolding problem has been developed and used to show the strengths and weaknesses of a number of other methods that have been used for unfolding

  16. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were

  17. Folding and unfolding phylogenetic trees and networks.

    Science.gov (United States)

    Huber, Katharina T; Moulton, Vincent; Steel, Mike; Wu, Taoyang

    2016-12-01

    Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be "unfolded" to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be "folded" to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.

  18. Unfolding Visual Lexical Decision in Time

    Science.gov (United States)

    Barca, Laura; Pezzulo, Giovanni

    2012-01-01

    Visual lexical decision is a classical paradigm in psycholinguistics, and numerous studies have assessed the so-called “lexicality effect" (i.e., better performance with lexical than non-lexical stimuli). Far less is known about the dynamics of choice, because many studies measured overall reaction times, which are not informative about underlying processes. To unfold visual lexical decision in (over) time, we measured participants' hand movements toward one of two item alternatives by recording the streaming x,y coordinates of the computer mouse. Participants categorized four kinds of stimuli as “lexical" or “non-lexical:" high and low frequency words, pseudowords, and letter strings. Spatial attraction toward the opposite category was present for low frequency words and pseudowords. Increasing the ambiguity of the stimuli led to greater movement complexity and trajectory attraction to competitors, whereas no such effect was present for high frequency words and letter strings. Results fit well with dynamic models of perceptual decision-making, which describe the process as a competition between alternatives guided by the continuous accumulation of evidence. More broadly, our results point to a key role of statistical decision theory in studying linguistic processing in terms of dynamic and non-modular mechanisms. PMID:22563419

  19. The identification of unfolding facial expressions.

    Science.gov (United States)

    Fiorentini, Chiara; Schmidt, Susanna; Viviani, Paolo

    2012-01-01

    We asked whether the identification of emotional facial expressions (FEs) involves the simultaneous perception of the facial configuration or the detection of emotion-specific diagnostic cues. We recorded at high speed (500 frames s-1) the unfolding of the FE in five actors, each expressing six emotions (anger, surprise, happiness, disgust, fear, sadness). Recordings were coded every 10 frames (20 ms of real time) with the Facial Action Coding System (FACS, Ekman et al 2002, Salt Lake City, UT: Research Nexus eBook) to identify the facial actions contributing to each expression, and their intensity changes over time. Recordings were shown in slow motion (1/20 of recording speed) to one hundred observers in a forced-choice identification task. Participants were asked to identify the emotion during the presentation as soon as they felt confident to do so. Responses were recorded along with the associated response times (RTs). The RT probability density functions for both correct and incorrect responses were correlated with the facial activity during the presentation. There were systematic correlations between facial activities, response probabilities, and RT peaks, and significant differences in RT distributions for correct and incorrect answers. The results show that a reliable response is possible long before the full FE configuration is reached. This suggests that identification is reached by integrating in time individual diagnostic facial actions, and does not require perceiving the full apex configuration.

  20. Skyshine spectra of gamma rays

    International Nuclear Information System (INIS)

    Swarup, Janardan

    1980-01-01

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  1. Unfolding intermediates of the mutant His-107-Tyr of human ...

    Indian Academy of Sciences (India)

    Srabani Taraphder

    We present in this article a detailed analysis of representative structures and proton transfer activity of .... cal molecular dynamics simulations to identify potential unfolding ... clustering parameters to carry out K-means cluster- ing of different ...

  2. Salt bridge as a gatekeeper against partial unfolding.

    Science.gov (United States)

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.

  3. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1985-01-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  4. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1984-12-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  5. Branches of Triangulated Origami Near the Unfolded State

    Directory of Open Access Journals (Sweden)

    Bryan Gin-ge Chen

    2018-02-01

    Full Text Available Origami structures are characterized by a network of folds and vertices joining unbendable plates. For applications to mechanical design and self-folding structures, it is essential to understand the interplay between the set of folds in the unfolded origami and the possible 3D folded configurations. When deforming a structure that has been folded, one can often linearize the geometric constraints, but the degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this set consists of a number of distinct “branches” which intersect at the unfolded state, and that the number of these branches is exponential in the number of vertices. We find numerical and analytical evidence that suggests that the branches are characterized by choosing each internal vertex to either “pop up” or “pop down.” The large number of pathways along which one can fold an initially unfolded origami structure strongly indicates that a generic structure is likely to become trapped in a “misfolded” state. Thus, new techniques for creating self-folding origami are likely necessary; controlling the popping state of the vertices may be one possibility.

  6. Branches of Triangulated Origami Near the Unfolded State

    Science.gov (United States)

    Chen, Bryan Gin-ge; Santangelo, Christian D.

    2018-01-01

    Origami structures are characterized by a network of folds and vertices joining unbendable plates. For applications to mechanical design and self-folding structures, it is essential to understand the interplay between the set of folds in the unfolded origami and the possible 3D folded configurations. When deforming a structure that has been folded, one can often linearize the geometric constraints, but the degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this set consists of a number of distinct "branches" which intersect at the unfolded state, and that the number of these branches is exponential in the number of vertices. We find numerical and analytical evidence that suggests that the branches are characterized by choosing each internal vertex to either "pop up" or "pop down." The large number of pathways along which one can fold an initially unfolded origami structure strongly indicates that a generic structure is likely to become trapped in a "misfolded" state. Thus, new techniques for creating self-folding origami are likely necessary; controlling the popping state of the vertices may be one possibility.

  7. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

    Science.gov (United States)

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S

    2017-05-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

  8. Unfolding Simulations of Holomyoglobin from Four Mammals: Identification of Intermediates and β-Sheet Formation from Partially Unfolded States

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2013-01-01

    simulations of holoMb and the first comparative study of unfolding of protein orthologs from different species (sperm whale, pig, horse, and harbor seal). We also provide new interpretations of experimental mean molecular ellipticities of myoglobin intermediates, notably correcting for random coil and number...... of helices in intermediates. The simulated holoproteins at 310 K displayed structures and dynamics in agreement with crystal structures (Rg ,1.48–1.51 nm, helicity ,75%). At 400 K, heme was not lost, but some helix loss was observed in pig and horse, suggesting that these helices are less stable......Myoglobin (Mb) is a centrally important, widely studied mammalian protein. While much work has investigated multi-step unfolding of apoMb using acid or denaturant, holomyoglobin unfolding is poorly understood despite its biological relevance. We present here the first systematic unfolding...

  9. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  10. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  11. The structural basis of urea-induced protein unfolding in β-catenin

    Science.gov (United States)

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A.; Kutateladze, Tatinna G.; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-01-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic inter­actions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation. PMID:25372676

  12. [Unfolding item response model using best-worst scaling].

    Science.gov (United States)

    Ikehara, Kazuya

    2015-02-01

    In attitude measurement and sensory tests, the unfolding model is typically used. In this model, response probability is formulated by the distance between the person and the stimulus. In this study, we proposed an unfolding item response model using best-worst scaling (BWU model), in which a person chooses the best and worst stimulus among repeatedly presented subsets of stimuli. We also formulated an unfolding model using best scaling (BU model), and compared the accuracy of estimates between the BU and BWU models. A simulation experiment showed that the BWU modell performed much better than the BU model in terms of bias and root mean square errors of estimates. With reference to Usami (2011), the proposed models were apllied to actual data to measure attitudes toward tardiness. Results indicated high similarity between stimuli estimates generated with the proposed models and those of Usami (2011).

  13. Dry molten globule intermediates and the mechanism of protein unfolding.

    Science.gov (United States)

    Baldwin, Robert L; Frieden, Carl; Rose, George D

    2010-10-01

    New experimental results show that either gain or loss of close packing can be observed as a discrete step in protein folding or unfolding reactions. This finding poses a significant challenge to the conventional two-state model of protein folding. Results of interest involve dry molten globule (DMG) intermediates, an expanded form of the protein that lacks appreciable solvent. When an unfolding protein expands to the DMG state, side chains unlock and gain conformational entropy, while liquid-like van der Waals interactions persist. Four unrelated proteins are now known to form DMGs as the first step of unfolding, suggesting that such an intermediate may well be commonplace in both folding and unfolding. Data from the literature show that peptide amide protons are protected in the DMG, indicating that backbone structure is intact despite loss of side-chain close packing. Other complementary evidence shows that secondary structure formation provides a major source of compaction during folding. In our model, the major free-energy barrier separating unfolded from native states usually occurs during the transition between the unfolded state and the DMG. The absence of close packing at this barrier provides an explanation for why phi-values, derived from a Brønsted-Leffler plot, depend primarily on structure at the mutational site and not on specific side-chain interactions. The conventional two-state folding model breaks down when there are DMG intermediates, a realization that has major implications for future experimental work on the mechanism of protein folding. 2010 Wiley-Liss, Inc.

  14. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    Science.gov (United States)

    Fehl, D. L.; Chandler, G. A.; Stygar, W. A.; Olson, R. E.; Ruiz, C. L.; Hohlfelder, J. J.; Mix, L. P.; Biggs, F.; Berninger, M.; Frederickson, P. O.; Frederickson, R.

    2010-12-01

    An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a) Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction Sunfold(E,t)—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux Funfold is estimated as ∫Sunfold(E,t)dE. (b) Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra Sbb(E,T) (25≤T≤250eV), from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250eV and typical responses, the binwise unfold values Sj and the corresponding binwise averages ⟨Sbb⟩j agreed to ˜20%, except where Sbb≪max⁡{Sbb}. Occasionally, unfold values Sj≲0 (artifacts) were encountered. The algorithm recovered ≳90% of the x-ray flux over the wider range, 75≤T≤250eV. For lower T, the

  15. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye; Zhou, Ning; Shi, Junfeng; Pochapsky, Susan Sondej; Pochapsky, Thomas C.; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2015-01-01

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  16. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye

    2015-02-19

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  17. The unfolding effects on the protein hydration shell and partial molar volume: a computational study.

    Science.gov (United States)

    Del Galdo, Sara; Amadei, Andrea

    2016-10-12

    In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.

  18. Investigating the structural origin of trpzip2 temperature dependent unfolding fluorescence line shape based on a Markov state model simulation.

    Science.gov (United States)

    Song, Jian; Gao, Fang; Cui, Raymond Z; Shuang, Feng; Liang, Wanzhen; Huang, Xuhui; Zhuang, Wei

    2012-10-25

    Vibrationally resolved fluorescence spectra of the β-hairpin trpzip2 peptide at two temperatures as well as during a T-jump unfolding process are simulated on the basis of a combination of Markov state models and quantum chemistry schemes. The broad asymmetric spectral line shape feature is reproduced by considering the exciton-phonon couplings. The temperature dependent red shift observed in the experiment has been attributed to the state population changes of specific chromophores. Through further theoretical study, it is found that both the environment's electric field and the chromophores' geometry distortions are responsible for tryptophan fluorescence shift.

  19. Nonintegrability of the unfolding of the fold-Hopf bifurcation

    Science.gov (United States)

    Yagasaki, Kazuyuki

    2018-02-01

    We consider the unfolding of the codimension-two fold-Hopf bifurcation and prove its meromorphic nonintegrability in the meaning of Bogoyavlenskij for almost all parameter values. Our proof is based on a generalized version of the Morales-Ramis-Simó theory for non-Hamiltonian systems and related variational equations up to second order are used.

  20. Redox Thermodynamics of Cytochromes c Subjected to Urea Induced Unfolding

    NARCIS (Netherlands)

    Monari, S.; Ranieri, A.; Di Rocco, G.; van der Zwan, G.; Peressini, S.; Tavagnacco, C.; Millo, D.; Borsari, M.

    2009-01-01

    The thermodynamics of the electron transfer (ET) process for beef heart and yeast cytochromes c and the Lys72Ala/Lys73Ala/Lys79Ala mutant of the latter species subjected to progressive urea-induced unfolding was determined electrochemically. The results indicate the presence of at least three

  1. Becoming a Peroxidase: Cardiolipin-Induced Unfolding of Cytochrome c

    Science.gov (United States)

    Muenzner, Julia; Toffey, Jason R.; Hong, Yuning; Pletneva, Ekaterina V.

    2014-01-01

    Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein’s function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein’s peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to “open” extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein’s peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes. PMID:23713573

  2. Unfolding the phenomenon of inter-rater agreement

    DEFF Research Database (Denmark)

    Slaug, Bjørn; Schilling, Oliver; Helle, Tina

    2011-01-01

    Objective: The overall objective was to unfold the phenomenon of inter-rater agreement: to identify potential sources of variation in agreement data and to explore how they can be statistically accounted for. The ultimate aim was to propose recommendations for in-depth examination of agreement, i...

  3. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes

    African Journals Online (AJOL)

    High levels of oxLDL lead to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response (UPR), which tends to restore ER homeostasis but switches to apoptosis when ER stress is prolonged. In the present study the ...

  4. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes ...

    African Journals Online (AJOL)

    acer

    Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response. (UPR), which tends to ... in mnocyte/macrophage cell lines as evident of the activation/up-regulation of ER stress/UPR genes. Cholesterol does not seem to exert ... inflammation (Tiwari et al., 2008). One prominent feature of ...

  5. Structural changes during the unfolding of Bovine serum albumin

    Indian Academy of Sciences (India)

    The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA ...

  6. Towards data warehousing and mining of protein unfolding simulation data.

    Science.gov (United States)

    Berrar, Daniel; Stahl, Frederic; Silva, Candida; Rodrigues, J Rui; Brito, Rui M M; Dubitzky, Werner

    2005-10-01

    The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.

  7. Development of the unfolding procedures in fast neutron scintillation spectrometry; Razvoj unfolding procedura u scintilacionoj spektrometriji brzih neutrona

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, P [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1988-07-01

    Two unfolding procedures have been developed for obtaining fast neutron spectrum from proton-recoil spectrum assigned for spectrometry with organic scintillators. First is the method of differentiation of proton-recoil spectrum, and the second is the method based on solution of integral equation of Fredholm of first kind. (author)

  8. The covariance matrix of neutron spectra used in the REAL 84 exercise

    International Nuclear Information System (INIS)

    Matzke, M.

    1986-08-01

    Covariance matrices of continuous functions are discussed. It is pointed out that the number of non-vanishing eigenvalues corresponds to the number of random variables (parameters) involved in the construction of the continuous functions. The covariance matrices used in the REAL 84 international intercomparison of unfolding methods of neutron spectra are investigated. It is shown that a small rank of these covariance matrices leads to a restriction of the possible solution spectra. (orig.) [de

  9. An unfolding method for high energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    2002-06-01

    Finite detector resolution and limited acceptance require one to apply unfolding methods in high energy physics experiments. Information on the detector resolution is usually given by a set of Monte Carlo events. Based on the experience with a widely used unfolding program (RUN) a modified method has been developed. The first step of the method is a maximum likelihood fit of the Monte Carlo distributions to the measured distribution in one, two or three dimensions; the finite statistics of the Monte Carlo events is taken into account by the use of Barlow's method with a new method of solution. A clustering method is used before combining bins in sparsely populated areas. In the second step a regularization is applied to the solution, which introduces only a small bias. The regularization parameter is determined from the data after a diagonalization and rotation procedure. (orig.)

  10. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  11. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji; Koizumi, Nozomu

    2012-01-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  12. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  13. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  14. Unfolding education for sustainable development as didactic thinking and practice

    DEFF Research Database (Denmark)

    Madsen, Katrine Dahl

    2013-01-01

    This article’s primary objective is to unfold how teachers translate education for sustainable development (ESD) in a school context. The article argues that exploring tensions, ruptures and openings apparent in this meeting is crucial for the development of existing teaching practices in relatio...... the analytical foundation; thus it is the practices as seen from the ‘inside’. Furthermore, ESD practices are considered in a broader societal perspective, pointing to the critical power of the practice lens....

  15. STRUCTURAL ANALYSIS, GEOMETRY AND STATICS OF A COACH UNFOLDING MECHANISM

    Directory of Open Access Journals (Sweden)

    Ovidiu ANTONESCU

    2016-05-01

    Full Text Available Starting from the constructive scheme of the mechanism, the kinematic scheme is drawn in three distinct positions (folded, middle and unfolded. By means of this scheme the mobility of the mechanism is calculated and the structural-topological formula of it is obtained. In the last section of the paper an algorithm of geometric calculus has been elaborated, starting from a kinematic link articulated to the base, element which is considered the driving component.

  16. Joint mapping of genes and conditions via multidimensional unfolding analysis

    Directory of Open Access Journals (Sweden)

    Engelen Kristof

    2007-06-01

    Full Text Available Abstract Background Microarray compendia profile the expression of genes in a number of experimental conditions. Such data compendia are useful not only to group genes and conditions based on their similarity in overall expression over profiles but also to gain information on more subtle relations between genes and conditions. Getting a clear visual overview of all these patterns in a single easy-to-grasp representation is a useful preliminary analysis step: We propose to use for this purpose an advanced exploratory method, called multidimensional unfolding. Results We present a novel algorithm for multidimensional unfolding that overcomes both general problems and problems that are specific for the analysis of gene expression data sets. Applying the algorithm to two publicly available microarray compendia illustrates its power as a tool for exploratory data analysis: The unfolding analysis of a first data set resulted in a two-dimensional representation which clearly reveals temporal regulation patterns for the genes and a meaningful structure for the time points, while the analysis of a second data set showed the algorithm's ability to go beyond a mere identification of those genes that discriminate between different patient or tissue types. Conclusion Multidimensional unfolding offers a useful tool for preliminary explorations of microarray data: By relying on an easy-to-grasp low-dimensional geometric framework, relations among genes, among conditions and between genes and conditions are simultaneously represented in an accessible way which may reveal interesting patterns in the data. An additional advantage of the method is that it can be applied to the raw data without necessitating the choice of suitable genewise transformations of the data.

  17. Directional Unfolded Source Term (DUST) for Compton Cameras.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Mitchell, Dean J.; Horne, Steven M.; O' Brien, Sean; Thoreson, Gregory G

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  18. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2011-01-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  19. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomas P

    2012-02-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  20. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    Science.gov (United States)

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  1. Analysis of the experimental positron lifetime spectra by neural networks

    International Nuclear Information System (INIS)

    Avdic, S.; Chakarova, R.; Pazsit, I.

    2003-01-01

    This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pazsit et al., Applied Surface Science, 149 (1998), 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposition of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved. (author)

  2. Use of the foil activation method with arbitrary trial functions to determine neutron energy spectra

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-01-01

    Neutron Spectra have been measured by the foil activation method in thirteen different environments in and around the Sandia Pulsed Reactor (SPR-III), the White Sands Missile Range FBR, and the Annular Core Research Reactor (ACRR). The unfolded spectra were obtained by using the SANDII code in a manner which was not dependent on the initial trial. This altered technique is, therefore, better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial functions

  3. Redox Thermodynamics of Cytochromes c Subjected to Urea Induced Unfolding

    OpenAIRE

    Monari, S.; Ranieri, A.; Di Rocco, G.; van der Zwan, G.; Peressini, S.; Tavagnacco, C.; Millo, D.; Borsari, M.

    2009-01-01

    The thermodynamics of the electron transfer (ET) process for beef heart and yeast cytochromes c and the Lys72Ala/Lys73Ala/Lys79Ala mutant of the latter species subjected to progressive urea-induced unfolding was determined electrochemically. The results indicate the presence of at least three protein forms which were assigned to a low-temperature and a high-temperature His-Met intermediate species and a bis-histidinate form (although the presence of a His-Lys form cannot be excluded). The muc...

  4. Unfolding of Vortices into Topological Stripes in a Multiferroic Material

    Science.gov (United States)

    Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.

    2014-06-01

    Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  5. Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics

    International Nuclear Information System (INIS)

    Milke, N.; Doert, M.; Klepser, S.; Mazin, D.; Blobel, V.; Rhode, W.

    2013-01-01

    The unfolding program TRUEE is a software package for the numerical solution of inverse problems. The algorithm was first applied in the FORTRAN 77 program RUN. RUN is an event-based unfolding algorithm which makes use of the Tikhonov regularization. It has been tested and compared to different unfolding applications and stood out with notably stable results and reliable error estimation. TRUEE is a conversion of RUN to C++, which works within the powerful ROOT framework. The program has been extended for more user-friendliness and delivers unfolding results which are identical to RUN. Beside the simplicity of the installation of the software and the generation of graphics, there are new functions, which facilitate the choice of unfolding parameters and observables for the user. In this paper, we introduce the new unfolding program and present its performance by applying it to two exemplary data sets from astroparticle physics, taken with the MAGIC telescopes and the IceCube neutrino detector, respectively.

  6. Model based rib-cage unfolding for trauma CT

    Science.gov (United States)

    von Berg, Jens; Klinder, Tobias; Lorenz, Cristian

    2018-03-01

    A CT rib-cage unfolding method is proposed that does not require to determine rib centerlines but determines the visceral cavity surface by model base segmentation. Image intensities are sampled across this surface that is flattened using a model based 3D thin-plate-spline registration. An average rib centerline model projected onto this surface serves as a reference system for registration. The flattening registration is designed so that ribs similar to the centerline model are mapped onto parallel lines preserving their relative length. Ribs deviating from this model appear deviating from straight parallel ribs in the unfolded view, accordingly. As the mapping is continuous also the details in intercostal space and those adjacent to the ribs are rendered well. The most beneficial application area is Trauma CT where a fast detection of rib fractures is a crucial task. Specifically in trauma, automatic rib centerline detection may not be guaranteed due to fractures and dislocations. The application by visual assessment on the large public LIDC data base of lung CT proved general feasibility of this early work.

  7. Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.

    Directory of Open Access Journals (Sweden)

    Hailey R Bureau

    Full Text Available Steered Molecular Dynamics (SMD has been seen to provide the potential of mean force (PMF along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD. Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.

  8. Understanding how biodiversity unfolds through time under neutral theory.

    Science.gov (United States)

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  9. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jody Groenendyk

    Full Text Available Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER homeostasis, transient activation of the unfolded protein response (UPR pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.

  10. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  11. Spectrum unfolding by the least-squares methods

    International Nuclear Information System (INIS)

    Perey, F.G.

    1977-01-01

    The method of least squares is briefly reviewed, and the conditions under which it may be used are stated. From this analysis, a least-squares approach to the solution of the dosimetry neutron spectrum unfolding problem is introduced. The mathematical solution to this least-squares problem is derived from the general solution. The existence of this solution is analyzed in some detail. A chi 2 -test is derived for the consistency of the input data which does not require the solution to be obtained first. The fact that the problem is technically nonlinear, but should be treated in general as a linear one, is argued. Therefore, the solution should not be obtained by iteration. Two interpretations are made for the solution of the code STAY'SL, which solves this least-squares problem. The relationship of the solution to this least-squares problem to those obtained currently by other methods of solving the dosimetry neutron spectrum unfolding problem is extensively discussed. It is shown that the least-squares method does not require more input information than would be needed by current methods in order to estimate the uncertainties in their solutions. From this discussion it is concluded that the proposed least-squares method does provide the best complete solution, with uncertainties, to the problem as it is understood now. Finally, some implications of this method are mentioned regarding future work required in order to exploit its potential fully

  12. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques

    DEFF Research Database (Denmark)

    Calcutta, Antonello; Jessen, Christian M; Behrens, Manja Annette

    2012-01-01

    induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl ß-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010......)) along with dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). GPS-NMR is used as a tool for fast analysis of the protein unfolding processes upon external perturbation, and DLS and SAXS are used for further structural characterization of the unfolding states. The combination allows...

  13. Experimental parameterization of an energy function for the simulation of unfolded proteins

    DEFF Research Database (Denmark)

    Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.

    2008-01-01

    The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and e...... and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.......The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle...

  14. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins

    Directory of Open Access Journals (Sweden)

    Koga Yuichi

    2010-07-01

    Full Text Available Abstract Background The unfolding speed of some hyperthermophilic proteins is dramatically lower than that of their mesostable homologs. Ribonuclease HII from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-RNase HII is stabilized by its remarkably slow unfolding rate, whereas RNase HI from the thermophilic bacterium Thermus thermophilus (Tt-RNase HI unfolds rapidly, comparable with to that of RNase HI from Escherichia coli (Ec-RNase HI. Results To clarify whether the difference in the unfolding rate is due to differences in the types of RNase H or differences in proteins from archaea and bacteria, we examined the equilibrium stability and unfolding reaction of RNases HII from the hyperthermophilic bacteria Thermotoga maritima (Tm-RNase HII and Aquifex aeolicus (Aa-RNase HII and RNase HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI. These proteins from hyperthermophiles are more stable than Ec-RNase HI over all the temperature ranges examined. The observed unfolding speeds of all hyperstable proteins at the different denaturant concentrations studied are much lower than those of Ec-RNase HI, which is in accordance with the familiar slow unfolding of hyperstable proteins. However, the unfolding rate constants of these RNases H in water are dispersed, and the unfolding rate constant of thermophilic archaeal proteins is lower than that of thermophilic bacterial proteins. Conclusions These results suggest that the nature of slow unfolding of thermophilic proteins is determined by the evolutionary history of the organisms involved. The unfolding rate constants in water are related to the amount of buried hydrophobic residues in the tertiary structure.

  15. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  16. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  17. Thermal unfolding of a Ca- and Lanthanide-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Goettfert, M. [Technische Univ. Dresden (Germany); Knoeppel, J.

    2017-06-01

    The MIIA (metal ion-induced autocleavage)-domain of the protein Vic001052 from the pathogen Vibrio coralliilyticus, comprises 173 amino acids and exhibits Ca-dependent autoproteolytic activity. It shows homology to nodulation proteins which are secreted by Rhizobiacea into plant host cells where they exert Ca-dependent functions. We have studied the structural and energetic aspects of metal protein interactions of the MIIA domain which appear attractive for engineering metal-binding synthetic peptides. Using a non-cleavable MIIA domain construct, we detected very similar structural changes upon binding to Ca{sup 2+} and Eu{sup 3+}. The thermal denaturation of the Ca-bound state was studied by circular dichroism spectroscopy. The metal-bound folded state unfolds reversibly into an unstructured metal-free state similar to the metal-free state at room temperature.

  18. Unfolding and Refolding Embodiment into the Landscape of Ubiquitous Computing

    DEFF Research Database (Denmark)

    Schick, Lea; Malmborg, Lone

    2009-01-01

    This paper advocates the future of the body as a distributed and shared embodiment; an unfolded body that doesn’t end at one's skin, but emerges as intercorporeality between bodies and the technological environment. Looking at new tendencies within interaction design and ubiquitous computing to see...... how these are to an increasing extent focusing on sociality, context-awareness, relations, affects, connectedness, and collectivity we will examine how these new technological movements can change our perception of embodiment towards a distributed and shared one. By examining interactive textiles...... as part of a future rising landscape of multi-sensory networks we will exemplify how the new technologies can shutter dichotomies and challenge traditional notions of embodiment and the subject. Finally, we show how this ‘new embodiment’ manifests Deleuze’s philosophy of the body as something unstable...

  19. The Unfolded Protein Response and Cell Fate Control.

    Science.gov (United States)

    Hetz, Claudio; Papa, Feroz R

    2018-01-18

    The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance.

    Science.gov (United States)

    Vanacker, Hélène; Vetters, Jessica; Moudombi, Lyvia; Caux, Christophe; Janssens, Sophie; Michallet, Marie-Cécile

    2017-07-01

    Disruption of endoplasmic reticulum (ER) homeostasis results in ER stress and activation of the unfolded protein response (UPR). This response alleviates cell stress, and is activated in both tumor cells and tumor infiltrating immune cells. The UPR plays a dual function in cancer biology, acting as a barrier to tumorigenesis at the premalignant stage, while fostering cancer maintenance in established tumors. In infiltrating immune cells, the UPR has been involved in both immunosurveillance and immunosuppressive functions. This review aims to decipher the role of the UPR at different stages of tumorigenesis and how the UPR shapes the balance between immunosurveillance and immune escape. This knowledge may improve existing UPR-targeted therapies and the design of novel strategies for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Unfolded Protein Response in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Kelsen, Steven G

    2016-04-01

    Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the "unfolded protein response" (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation. Several studies have suggested that the UPR contributes to lung cell apoptosis and lung inflammation in at least some subjects with human COPD. However, information on the prevalence of the UPR in subjects with COPD, the lung cells that manifest a UPR, and the role of the UPR in the pathogenesis of COPD is extremely limited and requires additional study.

  2. The Unfolding of Value Sources During Online Business Model Transformation

    Directory of Open Access Journals (Sweden)

    Nadja Hoßbach

    2016-12-01

    Full Text Available Purpose: In the magazine publishing industry, viable online business models are still rare to absent. To prepare for the ‘digital future’ and safeguard their long-term survival, many publishers are currently in the process of transforming their online business model. Against this backdrop, this study aims to develop a deeper understanding of (1 how the different building blocks of an online business model are transformed over time and (2 how sources of value creation unfold during this transformation process. Methodology: To answer our research question, we conducted a longitudinal case study with a leading German business magazine publisher (called BIZ. Data was triangulated from multiple sources including interviews, internal documents, and direct observations. Findings: Based on our case study, we nd that BIZ used the transformation process to differentiate its online business model from its traditional print business model along several dimensions, and that BIZ’s online business model changed from an efficiency- to a complementarity- to a novelty-based model during this process. Research implications: Our findings suggest that different business model transformation phases relate to different value sources, questioning the appropriateness of value source-based approaches for classifying business models. Practical implications: The results of our case study highlight the need for online-offline business model differentiation and point to the important distinction between service and product differentiation. Originality: Our study contributes to the business model literature by applying a dynamic and holistic perspective on the link between online business model changes and unfolding value sources.

  3. The construction of periodic unfolding operators on some compact Riemannian manifolds

    DEFF Research Database (Denmark)

    Dobberschütz, Sören; Böhm, Michael

    2014-01-01

    The notion of periodic unfolding has become a standard tool in the theory of periodic homogenization. However, all the results obtained so far are only applicable to the "flat" Euclidean space R n. In this paper, we present a generalization of the method of periodic unfolding applicable to struct...

  4. Immobilized unfolded cytochrome c acts as a catalyst for dioxygen reduction.

    Science.gov (United States)

    Tavagnacco, Claudio; Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Borsari, Marco

    2011-10-21

    Unfolding turns immobilized cytochrome c into a His-His ligated form endowed with catalytic activity towards O(2), which is absent in the native protein. Dioxygen could be used by naturally occurring unfolded cytochrome c as a substrate for the production of partially reduced oxygen species (PROS) contributing to the cell oxidative stress.

  5. Non-leftmost Unfolding in Partial Evaluation of Logic Programs with Impure Predicates

    DEFF Research Database (Denmark)

    Albert, Elvira; Puebla, German; Gallagher, John Patrick

    2006-01-01

    -leftmost unfolding steps can result in incorrect results since the independence of the computation rule no longer holds in the presence of impure predicates. Existing proposals allow non-leftmost unfolding steps, but at the cost of accuracy: bindings and failure are not propagated backwards to predicates which...

  6. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding

    NARCIS (Netherlands)

    Hageman, Jurre; Vos, Michel J.; van Waarde, Maria A. W. H.; Kampinga, Harm H.

    2007-01-01

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are

  7. Detection and characterization of partially unfolded oligomers of the SH3 domain of α-Spectrin

    NARCIS (Netherlands)

    Casares, S.; Sadqi, M.; López-Mayorga, O.; Conejero-Lara, F.; van Nuland, N.A.J.

    2004-01-01

    For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of α-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning

  8. Application of long-range order to predict unfolding rates of two-state proteins.

    Science.gov (United States)

    Harihar, B; Selvaraj, S

    2011-03-01

    Predicting the experimental unfolding rates of two-state proteins and models describing the unfolding rates of these proteins is quite limited because of the complexity present in the unfolding mechanism and the lack of experimental unfolding data compared with folding data. In this work, 25 two-state proteins characterized by Maxwell et al. (Protein Sci 2005;14:602–616) using a consensus set of experimental conditions were taken, and the parameter long-range order (LRO) derived from their three-dimensional structures were related with their experimental unfolding rates ln(k(u)). From the total data set of 30 proteins used by Maxwell et al. (Protein Sci 2005;14:602–616), five slow-unfolding proteins with very low unfolding rates were considered to be outliers and were not included in our data set. Except all beta structural class, LRO of both the all-alpha and mixed-class proteins showed a strong inverse correlation of r = -0.99 and -0.88, respectively, with experimental ln(k(u)). LRO shows a correlation of -0.62 with experimental ln(k(u)) for all-beta proteins. For predicting the unfolding rates, a simple statistical method has been used and linear regression equations were developed for individual structural classes of proteins using LRO, and the results obtained showed a better agreement with experimental results. Copyright © 2010 Wiley-Liss, Inc.

  9. Unfolding Semantics of the Untyped λ-Calculus with lectrec-Calculus with letrec

    NARCIS (Netherlands)

    Rochel, J.

    2016-01-01

    We investigate the relationship between finite terms in lambda-letrec, the lambda calculus with letrec, and the infinite lambda terms they express. We say that a lambda-letrec term expresses a lambda term if the latter can be obtained as an infinite unfolding of the former. Unfolding is the process

  10. The unfolded protein response has a protective role in yeast models of classic galactosemia

    Directory of Open Access Journals (Sweden)

    Evandro A. De-Souza

    2014-01-01

    Full Text Available Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast, which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.

  11. Characterization of the Caliban and Prospero Critical Assemblies Neutron Spectra for Integral Measurements Experiments

    Science.gov (United States)

    Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.

    2014-04-01

    Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.

  12. Folding and unfolding pathway of chaperonin GroEL monomer and elucidation of thermodynamic parameters.

    Science.gov (United States)

    Puri, Sarita; Chaudhuri, Tapan K

    2017-03-01

    The conformation and thermodynamic stability of monomeric GroEL were studied by CD and fluorescence spectroscopy. GroEL denaturation with urea and dilution in buffer leads to formation of a folded GroEL monomer. The monomeric nature of this protein was verified by size-exclusion chromatography and native PAGE. It has a well-defined secondary and tertiary structure, folding activity (prevention of aggregation) for substrate protein and is resistant to proteolysis. Being a properly folded and reversibly refoldable, monomeric GroEL is amenable for the study of thermodynamic stability by unfolding transition methods. We present the equilibrium unfolding of monomeric GroEL as studied by urea and heat mediated unfolding processes. The urea mediated unfolding shows two transitions and a single transition in the heat mediated unfolding process. In the case of thermal unfolding, some residual structure unfolds at a higher temperature (70-75°C). The process of folding/unfolding is reversible in both cases. Analysis of folding/unfolding data provides a measure of ΔG NU H 2 O , T m , ΔH van and ΔS van of monomeric GroEL. The thermodynamic stability parameter ΔG NU H 2 O is similar with both CD and intrinsic fluorescence i.e. 7.10±1.0kcal/mol. The calculated T m , ΔH van and ΔS van from the thermal unfolding transition is 46±0.5°C, 43.3±0.1kcal/mol and 143.9±0.1cal/mol/k respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. History, rare, and multiple events of mechanical unfolding of repeat proteins

    Science.gov (United States)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  14. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies.

    Science.gov (United States)

    Kumar, Vijay; Prakash, Amresh; Pandey, Preeti; Lynn, Andrew M; Hassan, Md Imtaiyaz

    2018-05-18

    Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Zsolt Mártonfalvi

    Full Text Available Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme's ATP-binding site and hence contributing to the molecule's mechanosensory function.

  16. Attempt to separate the fluorescence spectra of adrenaline and noradrenaline using chemometrics

    DEFF Research Database (Denmark)

    Nikolajsen, Rikke P; Hansen, Åse Marie; Bro, R

    2000-01-01

    An investigation was conducted on whether the fluorescence spectra of the very similar catecholamines adrenaline and noradrenaline could be separated using chemometric methods. The fluorescence landscapes (several excitation and emission spectra were measured) of two data sets with respectively 16...... regression (Unfold-PLSR) on the larger data set and parallel factor analysis (PARAFAC) of the six samples of the smaller set showed that there was no difference between the fluorescence landscapes of adrenaline and noradrenaline. It can be concluded that chemometric separation of adrenaline and noradrenaline...

  17. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    International Nuclear Information System (INIS)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Tavagnacco, Claudio; Borsari, Marco

    2011-01-01

    Highlights: → Denaturation involves intermediate and partially unfolded forms. → An unfolded species displaying the haem with Fe coordinated by two His is observed. → Under unfolding conditions the nature of the SAM influences conformation of protein. → Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E o ' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E o ' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  18. Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy); Tavagnacco, Claudio [Department of Chemistry, University of Trieste, via Giorgieri 1, 34127 Trieste (Italy); Borsari, Marco, E-mail: marco.borsari@unimore.it [Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena (Italy)

    2011-08-01

    Highlights: > Denaturation involves intermediate and partially unfolded forms. > An unfolded species displaying the haem with Fe coordinated by two His is observed. > Under unfolding conditions the nature of the SAM influences conformation of protein. > Concentration of the unfolding agent affects redox properties of immobilized protein. - Abstract: The electron transfer (ET) process of progressively unfolded bovine cytochrome c immobilized on different self-assembled monolayers (SAMs) was investigated. Insight is gained on the role of the SAM surface on the functionality of the partially unfolded and non-native forms of the adsorbed protein. Direct electrochemical measurements were performed on cytochrome c adsorbed on mercaptopyridine (MP) and mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol (MUA/MU) at varying temperature, in the presence of urea as unfolding agent. Under strongly unfolding conditions, a non-native form of cytochrome c, in which the methionine ligand is replaced by a histidine, was observed on both MP and MUA/MU SAMs. The E{sup o}' of the native form, in which the haem is axially coordinated by methionine and histidine, slightly shifts to negative values upon increasing urea concentration. However, the non-native bis-histidinate species shows a much lower E{sup o}' value (by approximately 0.4 V) which is by far enthalpic in origin and largely determined by axial ligand swapping. Analysis of the reduction enthalpies and entropies and of the ET rate constants indicate that the nature of the SAM (hydrophilic or anionic) results in changes in the conformational rearrangement of the cytochrome c under unfolding conditions.

  19. Highly Perturbed pKa Values in the Unfolded State of Hen Egg White Lysozyme

    OpenAIRE

    Bradley, John; O'Meara, Fergal; Farrell, Damien; Nielsen, Jens Erik

    2012-01-01

    The majority of pKa values in protein unfolded states are close to the amino acid model pKa values, thus reflecting the weak intramolecular interactions present in the unfolded ensemble of most proteins. We have carried out thermal denaturation measurements on the WT and eight mutants of HEWL from pH 1.5 to pH 11.0 to examine the unfolded state pKa values and the pH dependence of protein stability for this enzyme. The availability of accurate pKa values for the folded state of HEWL and separa...

  20. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ortiz R, J. M., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas (Mexico)

    2011-10-15

    NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with {sup 6}Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10{sup -8} up to 231.2 MeV. (Author)

  1. Unfolded equations for massive higher spin supermultiplets in AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Buchbinder, I.L. [Department of Theoretical Physics, Tomsk State Pedagogical University,60 Kievskaya Str., Tomsk, 634061 (Russian Federation); National Research Tomsk State University,36 Lenina Ave., Tomsk, 634050 (Russian Federation); Snegirev, T.V. [Department of Theoretical Physics, Tomsk State Pedagogical University,60 Kievskaya Str., Tomsk, 634061 (Russian Federation); Department of Higher Mathematics and Mathematical Physics,National Research Tomsk Polytechnic University, 30 Lenina Ave., Tomsk, 634050 (Russian Federation); Zinoviev, Yu.M. [Department of Theoretical Physics,Institute for High Energy Physics of National Research Center “Kurchatov Institute”, 1 Pobedy Str., Protvino, Moscow Region, 142280 (Russian Federation)

    2016-08-10

    In this paper we give an explicit construction of unfolded equations for massive higher spin supermultiplets of the minimal (1,0) supersymmetry in AdS{sub 3} space. For that purpose we use an unfolded formulation for massive bosonic and fermionic higher spins and find supertransformations leaving appropriate set of unfolded equations invariant. We provide two general supermultiplets (s,s+1/2) and (s,s−1/2) with arbitrary integer s, as well as a number of lower spin examples.

  2. Multiscale unfolding of real networks by geometric renormalization

    Science.gov (United States)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  3. Effects of ubiquilin 1 on the unfolded protein response.

    Science.gov (United States)

    Lu, Alice; Hiltunen, Mikko; Romano, Donna M; Soininen, Hilkka; Hyman, Bradley T; Bertram, Lars; Tanzi, Rudolph E

    2009-05-01

    Previous studies have implicated the unfolded protein response (UPR) in the pathogenesis of Alzheimer's disease (AD). We previously reported that DNA variants in the ubiquilin 1 (UBQLN1) gene increase the risk for AD. Since UBQLN1 has been shown to play a role in the UPR, we assessed the effects of overexpression and downregulation of UBQLN1 splice variants during tunicamycin-induced ER stress. In addition to previously described transcript variants, TV1 and TV2, we identified two novel transcript variants of UBQLN1 in brain: TV3 (lacking exons 2-4) and TV4 (lacking exon 4). Overexpression of TV1-3, but not TV4 significantly decreased the mRNA induction of UPR-inducible genes, C/EBP homologous protein (CHOP), BiP/GRP78, and protein disulfide isomerase (PDI) during the UPR. Stable overexpression of TV1-3, but not TV4, also significantly decreased the induction of CHOP protein and increased cell viability during the UPR. In contrast, downregulation of UBQLN1 did not affect CHOP mRNA induction, but instead increased PDI mRNA levels. These findings suggest that overexpression UBQLN1 transcript variants TV1-3, but not TV4, exert a protective effect during the UPR by attenuating CHOP induction and potentially increasing cell viability.

  4. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  5. The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Edward B. Thorp

    2012-01-01

    Full Text Available Heart failure is a progressive and disabling disease. The incidence of heart failure is also on the rise, particularly in the elderly of industrialized societies. This is in part due to an increased ageing population, whom initially benefits from improved, and life-extending cardiovascular therapy, yet ultimately succumb to myocardial failure. A major cause of heart failure is ischemia secondary to the sequence of events that is dyslipidemia, atherosclerosis, and myocardial infarction. In the case of heart failure postmyocardial infarction, ischemia can lead to myocardial cell death by both necrosis and apoptosis. The extent of myocyte death postinfarction is associated with adverse cardiac remodeling that can contribute to progressive heart chamber dilation, ventricular wall thinning, and the onset of loss of cardiac function. In cardiomyocytes, recent studies indicate that myocardial ischemic injury activates the unfolded protein stress response (UPR and this is associated with increased apoptosis. This paper focuses on the intersection of ischemia, the UPR, and cell death in cardiomyocytes. Targeting of the myocardial UPR may prove to be a viable target for the prevention of myocyte cell loss and the progression of heart failure due to ischemic injury.

  6. Unfolded protein response in filamentous fungi-implications in biotechnology.

    Science.gov (United States)

    Heimel, Kai

    2015-01-01

    The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.

  7. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  8. The Unfolded Protein Response in Amelogenesis and Enamel Pathologies

    Directory of Open Access Journals (Sweden)

    Steven J. Brookes

    2017-09-01

    Full Text Available During the secretory phase of their life-cycle, ameloblasts are highly specialized secretory cells whose role is to elaborate an extracellular matrix that ultimately confers both form and function to dental enamel, the most highly mineralized of all mammalian tissues. In common with many other “professional” secretory cells, ameloblasts employ the unfolded protein response (UPR to help them cope with the large secretory cargo of extracellular matrix proteins transiting their ER (endoplasmic reticulum/Golgi complex and so minimize ER stress. However, the UPR is a double-edged sword, and, in cases where ER stress is severe and prolonged, the UPR switches from pro-survival to pro-apoptotic mode. The purpose of this review is to consider the role of the ameloblast UPR in the biology and pathology of amelogenesis; specifically in respect of amelogenesis imperfecta (AI and fluorosis. Some forms of AI appear to correspond to classic proteopathies, where pathological intra-cellular accumulations of protein tip the UPR toward apoptosis. Fluorosis also involves the UPR and, while not of itself a classic proteopathic disease, shares some common elements through the involvement of the UPR. The possibility of therapeutic intervention by pharmacological modulation of the UPR in AI and fluorosis is also discussed.

  9. The Unfolded Protein Response in Amelogenesis and Enamel Pathologies.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Dixon, Michael J; Kirkham, Jennifer

    2017-01-01

    During the secretory phase of their life-cycle, ameloblasts are highly specialized secretory cells whose role is to elaborate an extracellular matrix that ultimately confers both form and function to dental enamel, the most highly mineralized of all mammalian tissues. In common with many other "professional" secretory cells, ameloblasts employ the unfolded protein response (UPR) to help them cope with the large secretory cargo of extracellular matrix proteins transiting their ER (endoplasmic reticulum)/Golgi complex and so minimize ER stress. However, the UPR is a double-edged sword, and, in cases where ER stress is severe and prolonged, the UPR switches from pro-survival to pro-apoptotic mode. The purpose of this review is to consider the role of the ameloblast UPR in the biology and pathology of amelogenesis; specifically in respect of amelogenesis imperfecta (AI) and fluorosis. Some forms of AI appear to correspond to classic proteopathies, where pathological intra-cellular accumulations of protein tip the UPR toward apoptosis. Fluorosis also involves the UPR and, while not of itself a classic proteopathic disease, shares some common elements through the involvement of the UPR. The possibility of therapeutic intervention by pharmacological modulation of the UPR in AI and fluorosis is also discussed.

  10. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  11. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  12. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  13. Translation of selected reports on neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Berzonis, M.; Bondars, Kh.Ya.; Taimina, D.

    1982-05-01

    The paper provides the information needed by users of the SAIPS information system on the neutron cross-section libraries accessible and on the principles upon which they are based. Neutron cross-section integrals in fission and fusion spectra are given. (author)

  14. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  15. Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2015-01-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-...

  16. Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange: THERMODYNAMIC STABILITY CORRELATES WITH RATES OF UNFOLDING RATHER THAN FOLDING.

    Science.gov (United States)

    Shah, Riddhi; Ohashi, Tomoo; Erickson, Harold P; Oas, Terrence G

    2017-01-20

    Globular proteins are not permanently folded but spontaneously unfold and refold on time scales that can span orders of magnitude for different proteins. A longstanding debate in the protein-folding field is whether unfolding rates or folding rates correlate to the stability of a protein. In the present study, we have determined the unfolding and folding kinetics of 10 FNIII domains. FNIII domains are one of the most common protein folds and are present in 2% of animal proteins. FNIII domains are ideal for this study because they have an identical seven-strand β-sandwich structure, but they vary widely in sequence and thermodynamic stability. We assayed thermodynamic stability of each domain by equilibrium denaturation in urea. We then assayed the kinetics of domain opening and closing by a technique known as thiol exchange. For this we introduced a buried Cys at the identical location in each FNIII domain and measured the kinetics of labeling with DTNB over a range of urea concentrations. A global fit of the kinetics data gave the kinetics of spontaneous unfolding and refolding in zero urea. We found that the folding rates were relatively similar, ∼0.1-1 s -1 , for the different domains. The unfolding rates varied widely and correlated with thermodynamic stability. Our study is the first to address this question using a set of domains that are structurally homologous but evolved with widely varying sequence identity and thermodynamic stability. These data add new evidence that thermodynamic stability correlates primarily with unfolding rate rather than folding rate. The study also has implications for the question of whether opening of FNIII domains contributes to the stretching of fibronectin matrix fibrils. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Measurements of the HEU and LEU in-core spectra at the Ford Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wehe, D K [Oak Ridge National Laboratory, Oak Ridge, TN (United States); King, J S; Lee, J C; Martin, W R [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1985-07-01

    The Ford Nuclear Reactor (FNR) at the University of Michigan has been serving as the test site for a low-enriched uranium (LEU) fuel whole-core demonstration. As part of the experimental program, the differential neutron spectrum has been measured in a high-enriched uranium (HEU) core and an LEU core. The HEU and LEU spectra were determined by unfolding the measured activities of foils that were irradiated in the reactor. When the HEU and LEU spectra are compared from meV to 10 MeV, significant differences between the two spectra are apparent below 10 eV. These are probably caused by the additional {sup 238}U resonance absorption in the LEU fuel. No measurable difference occurs in the shape of the spectra above MeV. (author)

  18. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions.

    Science.gov (United States)

    Žoldák, Gabriel; Jancura, Daniel; Sedlák, Erik

    2017-06-01

    Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady-state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high-throughput drug screening campaigns. © 2017 The Protein Society.

  19. Inter-regulation of the unfolded protein response and auxin signaling

    Czech Academy of Sciences Publication Activity Database

    Chen, Y.N.; Aung, K.; Rolčík, Jakub; Walicki, K.; Friml, J.; Brandizzi, F.

    2014-01-01

    Roč. 77, č. 1 (2014), s. 97-107 ISSN 0960-7412 Institutional support: RVO:61389030 Keywords : endoplasmic reticulum stress * unfolded protein response * auxin response Subject RIV: ED - Physiology Impact factor: 5.972, year: 2014

  20. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    International Nuclear Information System (INIS)

    Alam, Parvez

    2014-01-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths. (paper)

  1. Application of a Bonner sphere spectrometer for determination of the energy spectra of neutrons generated by ≈1 MJ plasma focus

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.; Bienkowska, B.; Miklaszewski, R.; Schmidt, H.; Řezáč, K.; Klír, D.; Kravárik, J.; Kubeš, P.

    2010-01-01

    Roč. 81, č. 11 (2010), 113503/1-113503/5 ISSN 0034-6748 R&D Projects: GA MŠk LA08024 Grant - others:FP-6 EU(XE) RITA-CT2006-26095 Institutional research plan: CEZ:AV0Z10100523 Keywords : plasma focus * fusion DD neutrons * Bonner sphere spectrometer * energy spectra of scattered neutrons * unfolded and calculated spectra Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010

  2. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  3. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  4. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  5. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin.

    Directory of Open Access Journals (Sweden)

    Vasyl V Mykuliak

    2018-04-01

    Full Text Available Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.

  6. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  7. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  8. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  9. Spectra, Winter 2014

    Science.gov (United States)

    2014-01-01

    additional copies or more information, please email spectra@nrl.navy.mil. LEADINGEDGE 1 Contents 30 Navy Launches UAV from Submerged Submarine 31... multitasking have become mainstream concerns. For example, the New York Times in 2005 and Time magazine in 2006 both reported stories about...interruptions and multitasking , and how they affect performance by increasing human er- ror. In 2005, the information technol- ogy research firm Basex

  10. Thermoluminescence spectra of amethyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Suzhou Railway Teachers College (China). Dept. of Physics; Yang, B. [Beijing Normal University (China). Dept. of Physics; Wood, R.A.; White, D.R.R.; Townsend, P.D.; Luff, B.J. [Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences

    1994-04-01

    Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250-800 nm. The near infrared emission at 740-750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity. (Author).

  11. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  12. Pattern recognition in spectra

    International Nuclear Information System (INIS)

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  13. A neutron spectrum unfolding computer code based on artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  14. Microscopic dynamics of water around unfolded structures of barstar at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Somedatta; Chakraborty, Kaushik; Khatua, Prabir; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-02-07

    The breaking of the native structure of a protein and its influences on the dynamic response of the surrounding solvent is an important issue in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to unfold the protein barstar at two different temperatures (400 K and 450 K). The two unfolded forms obtained at such high temperatures are further studied at room temperature to explore the effects of nonuniform unfolding of the protein secondary structures along two different pathways on the microscopic dynamical properties of the surface water molecules. It is demonstrated that though the structural transition of the protein in general results in less restricted water motions around its segments, but there are evidences of formation of new conformational motifs upon unfolding with increasingly confined environment around them, thereby resulting in further restricted water mobility in their hydration layers. Moreover, it is noticed that the effects of nonuniform unfolding of the protein segments on the relaxation times of the protein–water (PW) and the water–water (WW) hydrogen bonds are correlated with hindered hydration water motions. However, the kinetics of breaking and reformation of such hydrogen bonds are found to be influenced differently at the interface. It is observed that while the effects of unfolding on the PW hydrogen bond kinetics seem to be minimum, but the kinetics involving the WW hydrogen bonds around the protein segments exhibit noticeably heterogeneous characteristics. We believe that this is an important observation, which can provide valuable insights on the origin of heterogeneous influence of unfolding of a protein on the microscopic properties of its hydration water.

  15. Equilibrium unfolding of A. niger RNase: pH dependence of chemical and thermal denaturation.

    Science.gov (United States)

    Kumar, Gundampati Ravi; Sharma, Anurag; Kumari, Moni; Jagannadham, Medicherla V; Debnath, Mira

    2011-08-01

    Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (A(MG1)) into another (I(MG2)).

  16. Probing force-induced unfolding intermediates of a single staphylococcal nuclease molecule and the effect of ligand binding

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Murayama, Yoshihiro; Katano, Atsuto; Maki, Kosuke; Kuwajima, Kunihiro; Sano, Masaki

    2008-01-01

    Single-molecule manipulation techniques have given experimental access to unfolding intermediates of proteins that are inaccessible in conventional experiments. A detailed characterization of the intermediates is a challenging problem that provides new possibilities for directly probing the energy landscape of proteins. We investigated single-molecule mechanical unfolding of a small globular protein, staphylococcal nuclease (SNase), using atomic force microscopy. The unfolding trajectories of the protein displayed sub-molecular and stochastic behavior with typical lengths corresponding to the size of the unfolded substructures. Our results support the view that the single protein unfolds along multiple pathways as suggested in recent theoretical studies. Moreover, we found the drastic change, caused by the ligand and inhibitor bindings, in the mechanical unfolding dynamics

  17. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  18. A neutron spectrum unfolding computer code based on artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J.M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J.M.; Vega-Carrillo, H.R.

    2014-01-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding

  19. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  20. Conformational dynamics of a protein in the folded and the unfolded state

    Energy Technology Data Exchange (ETDEWEB)

    Fitter, Joerg

    2003-08-01

    In a quasielastic neutron scattering experiment, the picosecond dynamics of {alpha}-amylase was investigated for the folded and the unfolded state of the protein. In order to ensure a reasonable interpretation of the internal protein dynamics, the protein was measured in D{sub 2}O-buffer solution. The much higher structural flexibility of the pH induced unfolded state as compared to the native folded state was quantified using a simple analytical model, describing a local diffusion inside a sphere. In terms of this model the conformational volume, which is explored mainly by confined protein side-chain movements, is parameterized by the radius of a sphere (folded state, r=1.2 A; unfolded state, 1.8 A). Differences in conformational dynamics between the folded and the unfolded state of a protein are of fundamental interest in the field of protein science, because they are assumed to play an important role for the thermodynamics of folding/unfolding transition and for protein stability.

  1. Spectrum unfolding in X-ray spectrometry using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernandez, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2014-01-01

    The solution of the unfolding problem is an ever-present issue in X-ray spectrometry. The maximum entropy technique solves this problem by taking advantage of some known a priori physical information and by ensuring an outcome with only positive values. This method is implemented in MAXED (MAXimum Entropy Deconvolution), a software code contained in the package UMG (Unfolding with MAXED and GRAVEL) developed at PTB and distributed by NEA Data Bank. This package contains also the code GRAVEL (used to estimate the precision of the solution). This article introduces the new code UMESTRAT (Unfolding Maximum Entropy STRATegy) which applies a semi-automatic strategy to solve the unfolding problem by using a suitable combination of MAXED and GRAVEL for applications in X-ray spectrometry. Some examples of the use of UMESTRAT are shown, demonstrating its capability to remove detector artifacts from the measured spectrum consistently with the model used for the detector response function (DRF). - Highlights: ► A new strategy to solve the unfolding problem in X-ray spectrometry is presented. ► The presented strategy uses a suitable combination of the codes MAXED and GRAVEL. ► The applied strategy provides additional information on the Detector Response Function. ► The code UMESTRAT is developed to apply this new strategy in a semi-automatic mode

  2. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  3. Clinical evaluation of coronary territory map by using unfolded map of Tl-201 myocardial SPECT

    International Nuclear Information System (INIS)

    Uehara, Toshiisa; Nishimura, Tsunehiko; Katafuchi, Tetsuro; Yamagami, Hidetoshi; Kumita, Shinichirou; Hayashida, Kohei; Hayashi, Makoto

    1990-01-01

    Coronary territory map was developed on unfolded map of exercise Tl-201 myocardial SPECT. Each coronary territory was determined by summing the each unfolded map of 54 cases of single vessel disease respectively, and standardizing with normal pattern obtained from normal patients. The diagnostic accuracy of coronary territory map to identify the diseased coronary artery was analyzed in 104 clinical cases and was compared with that of planar and SPECT visual diagnosis, simple unfolded map (raw map) and extent and severity map. The results were as follows. (1) Territory map showed excellent diagnostic accuracy in single or double vessel disease, especially in diagnosis of left circumflex coronary artery lesion. (2) In triple vessel disease, the diagnostic accuracy of territory map or other unfolded maps was 30% at best, and was inferior to planar or SPECT visual analysis. The cause of this inferiority seemed that the quantitatively analyzed map had no information about the degree of Tl-uptake into lung or myocardium, which give useful information in visual diagnosis. (3) The diagnostic agreement ratio in two observers was the highest in territory map diagnosis, so that the territory map diagnosis seemed to be the most objective one. (4) The unfolded map diagnosis with apical display obtained from long-axis tomogram was useful to diagnose left anteior descending coronary (LAD) lesion, which improve not only the sensitivity of LAD but also specificity of right coronary artery single vessel disease. (author)

  4. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  5. Use of the response function in the analysis of complex neutron spectra

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Ciarcia, C.; Couchell, G.P.; Shao, J.

    1974-01-01

    Neutron time-of-flight spectra with overlapping peaks must be unfolded to yield contributions of individual neutron groups. This requires an accurate knowledge of the resolution profile of each group. It is also desirable to know the shape of the spectra of neutrons which were scattered more than once in the scatterer, so that corrections for multiple interactions can be made. These resolution profiles and spectra shapes are not readily available. We have developed a series of measures to account for these effects in our work. We monitor the neutron target thickness during target preparation with a separate time-of-flight spectrometer; we measure detector and accelerator time resolutions for different neutron energies using a thin target and we use computer codes to simulate those factors not amenable to direct measurement

  6. Summary report of the consultants' meeting on neutron sources spectra for EXFOR

    International Nuclear Information System (INIS)

    Simakov, S.P.; Kaeppeler, F.

    2011-10-01

    The participants highlighted the importance of complementing the averaged cross section data already stored in EXFOR by the incident neutron energy spectra. They shared their experience on measurement and simulation of neutron fields produced at reactors and accelerators over a wide energy range. The source characteristics, format and rules needed for storage in EXFOR were discussed. The participants submitted the numerical information on spectra that will essentially increase the number of 'complete' data sets in EXFOR. The report additionally provides an overview of (i) neutron production cross sections and thick target yields missing from the EXFOR database; (ii) codes for neutron spectra calculations; (iii) informational resources for reactor, radioactive and spallation neutron sources; (iv) codes for spectrum unfolding and (v) EXFOR compilation rules for the Maxwellian averaged cross sections measured for the reactor and astrophysical applications. (author)

  7. A highly compliant protein native state with a spontaneous-like mechanical unfolding pathway

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Valpapuram, Immanuel; Camilloni, Carlo

    2012-01-01

    The mechanical properties of proteins and their force-induced structural changes play key roles in many biological processes. Previous studies have shown that natively folded proteins are brittle under tension, unfolding after small mechanical deformations, while partially folded intermediate...... states, such as molten globules, are compliant and can deform elastically a great amount before crossing the transition state barrier. Moreover, under tension proteins appear to unfold through a different sequence of events than during spontaneous unfolding. Here, we describe the response to force...... of the four-α-helix acyl-CoA binding protein (ACBP) in the low-force regime using optical tweezers and ratcheted molecular dynamics simulations. The results of our studies reveal an unprecedented mechanical behavior of a natively folded protein. ACBP displays an atypical compliance along two nearly orthogonal...

  8. An Auto sequence Code to Integrate a Neutron Unfolding Code with thePC-MCA Accuspec

    International Nuclear Information System (INIS)

    Darsono

    2000-01-01

    In a neutron spectrometry using proton recoil method, the neutronunfolding code is needed to unfold the measured proton spectrum to become theneutron spectrum. The process of the unfolding neutron in the existingneutron spectrometry which was successfully installed last year was doneseparately. This manuscript reports that the auto sequence code to integratethe neutron unfolding code UNFSPEC.EXE with the software facility of thePC-MCA Accuspec has been made and run successfully so that the new neutronspectrometry become compact. The auto sequence code was written based on therules in application program facility of PC-MCA Accuspec and then it wascompiled using AC-EXE. Result of the test of the auto sequence code showedthat for binning width 20, 30, and 40 giving a little different spectrumshape. The binning width around 30 gives a better spectrum in mean of givingsmall error compared to the others. (author)

  9. Proving the correctness of unfold/fold program transformations using bisimulation

    DEFF Research Database (Denmark)

    Hamilton, Geoff W.; Jones, Neil

    2011-01-01

    by a labelled transition system whose bisimilarity relation is a congruence that coincides with contextual equivalence. Labelled transition systems are well-suited to represent global program behaviour. On the other hand, unfold/fold program transformations use generalization and folding, and neither is easy......This paper shows that a bisimulation approach can be used to prove the correctness of unfold/fold program transformation algorithms. As an illustration, we show how our approach can be use to prove the correctness of positive supercompilation (due to Sørensen et al). Traditional program equivalence...... to describe contextually, due to use of non-local information. We show that weak bisimulation on labelled transition systems gives an elegant framework to prove contextual equivalence of original and transformed programs. One reason is that folds can be seen in the context of corresponding unfolds....

  10. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  11. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.

    2005-01-01

    . Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that Delta K58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is I order of magnitude faster in Delta K58-beta(2)M than in wt-beta(2)m...... in the circulation of dialysis patients. This beta(2)M variant, Delta K58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)M...

  12. Considerably Unfolded Transthyretin Monomers Preceed and Exchange with Dynamically Structured Amyloid Protofibrils

    DEFF Research Database (Denmark)

    Groenning, Minna; Campos, Raul I; Hirschberg, Daniel

    2015-01-01

    describe an unexpectedly dynamic TTR protofibril structure which exchanges protomers with highly unfolded monomers in solution. The protofibrils only grow to an approximate final size of 2,900 kDa and a length of 70 nm and a comparative HXMS analysis of native and aggregated samples revealed a much higher...... average solvent exposure of TTR upon fibrillation. With SAXS, we reveal the continuous presence of a considerably unfolded TTR monomer throughout the fibrillation process, and show that a considerable fraction of the fibrillating protein remains in solution even at a late maturation state. Together......, these data reveal that the fibrillar state interchanges with the solution state. Accordingly, we suggest that TTR fibrillation proceeds via addition of considerably unfolded monomers, and the continuous presence of amyloidogenic structures near the protofibril surface offers a plausible explanation...

  13. Motional properties of unfolded ubiquitin: a model for a random coil protein

    Energy Technology Data Exchange (ETDEWEB)

    Wirmer, Julia [Johann Wolfgang GoeUniversityFrankfurt, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany); Peti, Wolfgang [Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology (United States); Schwalbe, Harald [Johann Wolfgang GoeUniversityFrankfurt, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany)], E-mail: schwalbe@nmr.uni-frankfurt.de

    2006-07-15

    The characterization of unfolded states of proteins has recently attracted considerable interest, as the residual structure present in these states may play a crucial role in determining their folding and misfolding behavior. Here, we investigated the dynamics in the denatured state of ubiquitin in 8 M urea at pH2. Under these conditions, ubiquitin does not have any detectable local residual structure, and uniform {sup 15}N relaxation rates along the sequence indicate the absence of motional restrictions caused by residual secondary structure and/or long-range interactions. A comparison of different models to predict relaxation data in unfolded proteins suggests that the subnanosecond dynamics in unfolded states depend on segmental motions only and do not show a dependence on the residue type but for proline and glycine residues.

  14. Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins.

    Science.gov (United States)

    Romero-Romero, Sergio; Costas, Miguel; Rodríguez-Romero, Adela; Alejandro Fernández-Velasco, D

    2015-08-28

    Temperature is one of the main variables that modulate protein function and stability. Thermodynamic studies of oligomeric proteins, the dominant protein natural form, have been often hampered because irreversible aggregation and/or slow reactions are common. There are no reports on the reversible equilibrium thermal unfolding of proteins composed of (β/α)8 barrel subunits, albeit this "TIM barrel" topology is one of the most abundant and versatile in nature. We studied the eponymous TIM barrel, triosephosphate isomerase (TIM), belonging to five species of different bacterial taxa. All of them were found to be catalytically efficient dimers. The three-dimensional structure of four enzymes was solved at high/medium resolution. Irreversibility and kinetic control were observed in the thermal unfolding of two TIMs, while for the other three the thermal unfolding was found to follow a two-state equilibrium reversible process. Shifts in the global stability curves of these three proteins are related to the organismal temperature range of optimal growth and modulated by variations in maximum stability temperature and in the enthalpy change at that temperature. Reversibility appears to correlate with the low isoelectric point, the absence of a residual structure in the unfolded state, small cavity volume in the native state, low conformational stability and a low melting temperature. Furthermore, the strong coupling between dimer dissociation and monomer unfolding may reduce aggregation and favour reversibility. It is therefore very thought-provoking to find that a common topological ensemble, such as the TIM barrel, can unfold/refold in the Anfinsen way, i.e. without the help of the cellular machinery.

  15. Declining global warming effects on the phenology of spring leaf unfolding.

    Science.gov (United States)

    Fu, Yongshuo H; Zhao, Hongfang; Piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Peñuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan A

    2015-10-01

    Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days °C(-1) during 1980-1994 to 2.3 ± 1.6 days °C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.

  16. UNFOLDINGS OF THE CYLINDRICA L SURFACES USED IN THE INDUSTRIAL INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    VASILE GHEORGHITA

    2013-02-01

    Full Text Available The connections in the construction of the various industrial installations: pipes, boilers, joints elements and fittings have a cylindrical configuration, or similar cylindrical shape. The execution and their installation require knowledge of the unfolding and intersection curves, which compose them. The graphical solving of the problems of tech nical representation has enabled the formation of abstract geometric of the pieces forms and the ability to see into space. The paper proposes to establish the unfolding of a connection, used in the industrial equipments, by the classical method of the des criptive geometry and mathematics, using appropriate software

  17. Neutron response matrix for unfolding NE-213 measurements to 21 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Johnson, R.H.

    1976-01-01

    A neutron response matrix from measured neutron responses of NE-213 in the energy range of 0.2 to 22 MeV is presented. An interpolation scheme was used to construct an 81-column matrix from the data of Verbinski, Burrus, Love, Zobel, and Hill. As a test of the new response matrix, the Cf-252 neutron spectrum was measured and unfolded using the new response matrix and the FORIST unfolding code. The spectrum agrees well with previous measurements at lower energies, while providing new information above 8 MeV

  18. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  19. Catalogue of neutron spectra

    International Nuclear Information System (INIS)

    Buxerolle, M.; Massoutie, M.; Kurdjian, J.

    1987-09-01

    Neutron dosimetry problems have arisen as a result of developments in the applications of nuclear energy. The largest number of possible irradiation situations has been collected: they are presented in the form of a compilation of 44 neutron spectra. Diagrams show the variations of energy fluence and energy fluence weighted by the dose equivalent/fluence conversion factor, with the logarithm of the corresponding energy. The equivalent dose distributions are presented as percentages for the following energy bins: 0.01 eV/0.5 eV/50 keV/1 MeV/5 MeV/15 MeV. The dose equivalent, the mean energy and the effective energy for the dose equivalent for 1 neutron cm -2 are also given [fr

  20. Measurement of positron spectra after heavy ion collisions with special weighting of the data processing

    International Nuclear Information System (INIS)

    Weik, F.

    1981-01-01

    The measurement of positron spectra of the supercritical 238 U - 238 U system is described, at which the 1ssub(sigma)-level should dip into the negative energy continuum. For the comparison the measurement of the subcritical 238 U - 208 Pb and the nuclear system 238 U - 108 Pd are used. All measurements were performed at 5.9 MeV/A. For the detection of the positrons a solenoid transport system with 2 Si(Li) diodes as energy determining elements and with 4 NaI crystals for the identification by the 511 keV annihilation radiation in coincidence were used. The electronics, the data acquisition on the base of a process computer with coupling to an IBM computer and the analysis are extensively described. To this belongs also an unfolding procedure of a model response function for positron and gamma spectra. The unfolded positron spectra were corrected under assumption of E1-Conversion coefficients to the nuclear contribution which were fitted to the 238 U - 108 Pd system. The positron spectrum of the supercritical 238 U - 238 U shows no evident indication which may lead to the conclusion of a dipping of the 1ssub(sigma) level. (orig.) [de

  1. Method for improving the gamma-transition cascade spectra amplitude resolution during coincidence code computerized processing

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1984-01-01

    A method of unfolding the differential γ-cascade spectra during radiation capture of slow neutrons based on the computeri-- zed processing of the results of measurements performed, by means of a spectrometer with two Ge(Li) detectors is suggested. The efficiency of the method is illustrated using as an example the spectrum of 35 Cl(n, γ) reaction corresponding to the 8580 keV peak. It is shown that the above approach permits to improve the resolution by 1.2-2.6 times without decrease in registration efficiency within the framework of the method of coincidence pulse amplitude summation

  2. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Er isotopes

    International Nuclear Information System (INIS)

    Harun-Ar-Rashid, A.K.M.; Igashira, Masayuki; Ohsaki, Toshiro

    2000-01-01

    Neutron capture cross sections and capture γ-ray spectra of 166,167, 168 Er were measured in the energy region of 10 to 550 keV. The measurements were performed with a pulsed 7 Li(p,n) 7 Be neutron source and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique and the standard capture cross sections of gold were used to derive the capture cross sections. The errors of the derived cross sections were about 5%. The present results were compared with other measurements and evaluations. The observed capture γ-ray pulse-height spectra were unfolded to obtain the corresponding γ-ray spectra. An anomalous shoulder was observed around 3 MeV in each of the capture γ-ray spectra. (author)

  3. RPA-mediated unfolding of systematically varying G-quadruplex structures.

    Science.gov (United States)

    Ray, Sujay; Qureshi, Mohammad H; Malcolm, Dominic W; Budhathoki, Jagat B; Celik, Uğur; Balci, Hamza

    2013-05-21

    G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long) or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA concentration (≈1 μM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 ± 0.10 s for all GQ constructs we studied, despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism that is consistent with our observations. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c

    NARCIS (Netherlands)

    Monari, S.; Millo, D.; Ranieri, A.; di Rocco, G.; van der Zwan, G.; Gooijer, C.; Peressini, S.; Tavagnacco, C.; Hildebrandt, P.; Borsari, M.

    2010-01-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements,

  5. Sequence-dependent unfolding kinetics of DNA hairpins studied by nanopore force spectroscopy

    International Nuclear Information System (INIS)

    Renner, Stephan; Bessonov, Andrey; Simmel, Friedrich C; Gerland, Ulrich

    2010-01-01

    Nanopore force spectroscopy is used to study the unzipping kinetics of two DNA hairpin molecules with a 12 base pair long stem containing two contiguous stretches of six GC and six AT base pairs in interchanged order. Even though the thermodynamic stabilities of the two structures are nearly the same, they differ greatly in their unzipping kinetics. When the GC segment has to be broken before the AT segment, the unfolding rate is orders of magnitude smaller than in the opposite case. We also investigated hairpins with stem regions consisting only of AT or GC base pairs. The pure AT hairpins translocate much faster than the other hairpins, whereas the pure GC hairpins translocate on similar timescales to the hairpins with only an initial GC segment. For each hairpin, nanopore force spectroscopy is performed for different loading rates and the resulting unzipping distributions are mathematically transformed to a master curve that yields the unfolding rate as a function of applied voltage. This is compared with a stochastic model of the unfolding process for the two sequences for different voltages. The results can be rationalized in terms of the different natures of the free energy landscapes for the unfolding process.

  6. Seeking Educational Quality in the Unfolding of Classroom Discourse: A Focus on Microtransitions

    Science.gov (United States)

    Mameli, Consuelo; Molinari, Luisa

    2014-01-01

    In this paper, we argue the importance of conceptualizing educational quality as located in everyday talk, and to search for it in the unfolding of classroom discourse and interactions. More specifically, we argue that for the discursive classroom process to be qualitatively effective it should be open and accessible by a series of…

  7. The Unfolding MD Simulations of Cyclophilin: Analyzed by Surface Contact Networks and Their Associated Metrics

    Science.gov (United States)

    Roy, Sourav; Basu, Sankar; Dasgupta, Dipak; Bhattacharyya, Dhananjay; Banerjee, Rahul

    2015-01-01

    Currently, considerable interest exists with regard to the dissociation of close packed aminoacids within proteins, in the course of unfolding, which could result in either wet or dry moltenglobules. The progressive disjuncture of residues constituting the hydrophobic core ofcyclophilin from L. donovani (LdCyp) has been studied during the thermal unfolding of the molecule, by molecular dynamics simulations. LdCyp has been represented as a surface contactnetwork (SCN) based on the surface complementarity (Sm) of interacting residues within themolecular interior. The application of Sm to side chain packing within proteins make it a very sensitive indicator of subtle perturbations in packing, in the thermal unfolding of the protein. Network based metrics have been defined to track the sequential changes in the disintegration ofthe SCN spanning the hydrophobic core of LdCyp and these metrics prove to be highly sensitive compared to traditional metrics in indicating the increased conformational (and dynamical) flexibility in the network. These metrics have been applied to suggest criteria distinguishing DMG, WMG and transition state ensembles and to identify key residues involved in crucial conformational/topological events during the unfolding process. PMID:26545107

  8. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  9. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  10. Design energy spectra for Turkey

    OpenAIRE

    López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo

    2012-01-01

    This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...

  11. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases

    Science.gov (United States)

    Vriend, Gert; Eijsink, Vincent

    1993-08-01

    Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cercus. Several new techniques have been developed to improve the model-building procedures. Also a model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability

  12. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  13. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  14. Sequencing BPS spectra

    International Nuclear Information System (INIS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  15. Complete all-atom hydrodynamics of protein unfolding in uniform flow

    International Nuclear Information System (INIS)

    Wang, Guan M; Sandberg, William C

    2010-01-01

    The unfolding dynamics of a protein, ubiquitin, pinned in several uniform flows, was studied at low and high flow rates in an all-atom style through a non-equilibrium molecular dynamics approach with explicit water molecules included. Atomic hydrodynamic force components on individual amino acids, as a function of time, due to the collisional interactions with the flowing water molecules were calculated explicitly. The protein conformational change in response to those time-varying forces was computed completely at the high flow rate up to nanosecond until the fully stretched state was reached. The end-to-end length of the single ubiquitin protein molecule at high flow rate is smoothly increasing. The step-like jumps between metastable states that describe the μm ms -1 scale force pulling experiments conducted on polyubiquitins at low flow rates, are not seen at the high flow speeds necessary to computationally probe the ns nm -1 scale regime. No unfolding was observed in the low flow rate atomic computations at nanosecond scale while partial and complete unfolding was observed in the coarse-grained low flow rate computations at microsecond scale. Examination of the all-atom computation of the time variation of the hydrodynamic forces on, and the velocity components of, the protein molecule unveiled to some extent the details of the complexity of the hydrodynamic friction variation in the nm ns -1 regime of high rate flow-driven protein unfolding. This demonstrates quantitatively that all-atom computations are more suitable than the Langevin equation or Brownian dynamics methods for probing the interaction dynamics and resulting conformational dynamics of protein unfolding in strong flows on nm ns -1 time/length scales while the reverse is true for investigation of slow, diffusively driven systems.

  16. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage mini protein

    Science.gov (United States)

    Day, Ryan; Paschek, Dietmar; Garcia, Angel E.

    2012-01-01

    We study the unbiased folding/unfolding thermodynamics of the Trp-cage miniprotein using detailed molecular dynamics simulations of an all-atom model of the protein in explicit solvent, using the Amberff99SB force field. Replica-exchange molecular dynamics (REMD) simulations are used to sample the protein ensembles over a broad range of temperatures covering the folded and unfolded states, and at two densities. The obtained ensembles are shown to reach equilibrium in the 1 μs per replica timescale. The total simulation time employed in the calculations exceeds 100 μs. Ensemble averages of the fraction folded, pressure, and energy differences between the folded and unfolded states as a function of temperature are used to model the free energy of the folding transition, ΔG(P,T), over the whole region of temperature and pressures sampled in the simulations. The ΔG(P,T) diagram describes an ellipse over the range of temperatures and pressures sampled, predicting that the system can undergo pressure induced unfolding and cold denaturation at low temperatures and high pressures, and unfolding at low pressures and high temperatures. The calculated free energy function exhibits remarkably good agreement with the experimental folding transition temperature (Tf = 321 K), free energy and specific heat changes. However, changes in enthalpy and entropy are significantly different than the experimental values. We speculate that these differences may be due to the simplicity of the semi-empirical force field used in the simulations and that more elaborate force fields may be required to describe appropriately the thermodynamics of proteins. PMID:20408169

  17. Spectra of sparse random matrices

    International Nuclear Information System (INIS)

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  18. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.

    Science.gov (United States)

    Li, Xianchan; Zheng, Wei; Zhang, Limin; Yu, Ping; Lin, Yuqing; Su, Lei; Mao, Lanqun

    2009-10-15

    This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.

  19. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  20. Using lattice tools and unfolding methods for hpge detector efficiency simulation with the Monte Carlo code MCNP5

    International Nuclear Information System (INIS)

    Querol, A.; Gallardo, S.; Ródenas, J.; Verdú, G.

    2015-01-01

    In environmental radioactivity measurements, High Purity Germanium (HPGe) detectors are commonly used due to their excellent resolution. Efficiency calibration of detectors is essential to determine activity of radionuclides. The Monte Carlo method has been proved to be a powerful tool to complement efficiency calculations. In aged detectors, efficiency is partially deteriorated due to the dead layer increasing and consequently, the active volume decreasing. The characterization of the radiation transport in the dead layer is essential for a realistic HPGe simulation. In this work, the MCNP5 code is used to calculate the detector efficiency. The F4MESH tally is used to determine the photon and electron fluence in the dead layer and the active volume. The energy deposited in the Ge has been analyzed using the ⁎F8 tally. The F8 tally is used to obtain spectra and to calculate the detector efficiency. When the photon fluence and the energy deposition in the crystal are known, some unfolding methods can be used to estimate the activity of a given source. In this way, the efficiency is obtained and serves to verify the value obtained by other methods. - Highlights: • The MCNP5 code is used to estimate the dead layer thickness of an HPGe detector. • The F4MESH tally is applied to verify where interactions occur into the Ge crystal. • PHD and the energy deposited are obtained with F8 and ⁎F8 tallies, respectively. • An average dead layer between 70 and 80 µm is obtained for the HPGe studied. • The efficiency is calculated applying the TSVD method to the response matrix.

  1. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Pappas, D.S.; Wysocki, F.J.; Furnstahl, R.J.

    1982-08-01

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 10 14 cm -3 ) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  2. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method

  3. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  4. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  5. Experience – Information – Image: A Historiography of Unfolding. Arab Cinema as Example

    Directory of Open Access Journals (Sweden)

    Laura U. Marks

    2011-04-01

    Many artworks can be illuminated by this process. My examples will be drawn from contemporary Arab cinema. In the heavily politicized Arab milieu, the Image world is constructed as a selective unfolding of only those aspects of Experience that are deemed to be useful or profitable. Some Arab filmmakers, rather than deconstruct the resulting ideological images, prefer to carry out their own unfoldings:  explicating hitherto latent events, knowledges, and sensations. Thus what official history deems merely personal, absurd, micro-events, or no events at all, becomes the stuff of a rich alternative historiography. This process characterizes the work of, among others, Joana Hadjithomas and Khalil Joreige, Nisrine Khodr, Mohammed Soueid, and Akram Zaatari (Lebanon, Azza El-Hassan, Elia Suleiman, and Sobhi Al-Zobaidi (Palestine, and Mohamad Khan (Egypt.

  6. Simulation study on unfolding methods for diagnostic X-rays and mixed gamma rays

    International Nuclear Information System (INIS)

    Hashimoto, Makoto; Ohtaka, Masahiko; Ara, Kuniaki; Kanno, Ikuo; Imamura, Ryo; Mikami, Kenta; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    A photon detector operating in current mode that can sense X-ray energy distribution has been reported. This detector consists of a row of several segment detectors. The energy distribution is derived using an unfolding technique. In this paper, comparisons of the unfolding techniques among error reduction, spectrum surveillance, and neural network methods are discussed through simulation studies on the detection of diagnostic X-rays and gamma rays emitted by a mixture of 137 Cs and 60 Co. For diagnostic X-ray measurement, the spectrum surveillance and neural network methods appeared promising, while the error reduction method yielded poor results. However, in the case of measuring mixtures of gamma rays, the error reduction method was both sufficient and effective. (author)

  7. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models

    Science.gov (United States)

    Cheng, Ryan R.; Hawk, Alexander T.; Makarov, Dmitrii E.

    2013-02-01

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  8. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    Science.gov (United States)

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  9. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.

    Science.gov (United States)

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander

    2014-03-06

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  10. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo; Marino, Daniele Di; Tramontano, Anna; Chinappi, Mauro; Cecconi, Fabio

    2014-01-01

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  11. Unfolding measurement of the atmospheric muon neutrino spectrum using IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Mathis; Ruhe, Tim; Meier, Maximilian; Schlunder, Philipp; Menne, Thorben; Fuchs, Tomasz [Dept. of Physics, Technical University of Dortmund, 44227 Dortmund (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a cubic kilometer neutrino observatory located at the geographic South Pole. With its huge volume, the detector is well suited for measurements of the atmospheric muon neutrino energy spectrum. Over the last years, several unfolding analyses for single years were able to provide model independent measurements for the northern hemisphere in an energy region between 200 GeV and 3.2 PeV. In this talk, the extension of the analyses to four additional years of data is presented. With this significant enlargement of the data basis, it is possible to reanalyze the full northern hemisphere with smaller statistical errors. Moreover, the spectrum can be unfolded in several small zenith bands. Measurements of the energy spectrum for different zenith regions provide further information on the composition and the shape of the flux.

  12. On the unfolding of the fundamental region in integrals of modular invariant amplitudes

    International Nuclear Information System (INIS)

    Trapletti, Michele

    2003-01-01

    We study generic one-loop (string) amplitudes where an integration over the fundamental region F of the modular group is needed. We show how the known lattice-reduction technique used to unfold F to a more suitable region S can be modified to rearrange generic modular invariant amplitudes. The main aim is to unfold F to the strip and, at the same time, to simplify the form of the integrand when it is a sum over a finite number of terms, like in one-loop amplitudes for closed strings compactified on orbifolds. We give a general formula and a recipe to compute modular invariant amplitudes. As an application of the technique we compute the one-loop vacuum energy ρ n for a generic Z n freely acting orbifold, generalizing the result that this energy is less than zero and drives the system to a tachyonic divergence, and that ρ n m if n>m. (author)

  13. Situated peer coaching and unfolding cases in the fundamentals skills laboratory.

    Science.gov (United States)

    Himes, Deborah O; Ravert, Patricia K

    2012-09-03

    Using unfolding case studies and situated peer coaching for the Fundamentals Skills Laboratory provides students with individualized feedback and creates a realistic clinical learning experience. A quasi-experimental design with pre- and post-intervention data was used to evaluate changes in student ratings of the course. An instrument was used to examine students' self-ratings and student comments about each lab. We found that students' ratings of the lab remained high with the new method and self-evaluations of their performance were higher as the semester progressed. Students appreciated the personalized feedback associated with peer coaching and demonstrated strong motivation and self-regulation in learning. By participating in unfolding case studies with situated peer coaching, students focus on safety issues, practice collaborative communication, and critical thinking in addition to performing psychomotor skills.

  14. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo

    2014-09-09

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  15. Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface

    Science.gov (United States)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.

  16. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  17. Unfolding of true distributions from experimental data distorted by detectors with finite resolutions

    International Nuclear Information System (INIS)

    Gagunashvili, N.D.

    1993-01-01

    A new procedure for unfolding the true distribution from experimental data distorted by a detector is proposed. For the given detector a result can be found by the least squares method, hence, without bias and involving minimal statistical errors. Stability of the result is achieved at the expense of its information content and/or using additional information on the shape of the distributions to be measured. The method may be applied for detectors with linear or nonlinear distortions. 8 refs.; 5 figs

  18. Unfolded Protein Response Signaling and MAP Kinase Pathways Underlie Pathogenesis of Arsenic-induced Cutaneous Inflammation

    OpenAIRE

    Li, Changzhao; Xu, Jianmin; Li, Fugui; Chaudhary, Sandeep C.; Weng, Zhiping; Wen, Jianming; Elmets, Craig A.; Ahsan, Habibul; Athar, Mohammad

    2011-01-01

    Arsenic exposure through drinking water is a major global public health problem and is associated with an enhanced risk of various cancers including skin cancer. In human skin, arsenic induces precancerous melanosis and keratosis, which may progress to basal cell and squamous cell carcinoma. However, the mechanism by which these pathophysiological alterations occur remains elusive. In this study, we showed that sub-chronic arsenic exposure to SKH-1 mice induced unfolded protein response (UPR)...

  19. STRANGE ATTRACTORS IN SYMMETRIC UNFOLDINGS OF A SINGULARITY WITH THREE-FOLD ZERO EIGENVALUE

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou

    2009-01-01

    In this paper, we study the Sil'nikov heteroclinic bifurcations, which display strange attractors, for the symmetric versal unfoldings of the singularity at the origin with a nilpotent Linear part and 3-jet, using the normal form, the blow-up and the ge-neralized Mel'nikov methods of heteroclinic orbits to two hyperbolic or nonhyperbolic equilibria in a high-dimensional space.

  20. Dysregulation of the unfolded protein response in db/db mice with diet induced steatohepatitis

    OpenAIRE

    Rinella, Mary E.; Siddiqui, M. Shaddab; Gardikiotes, Konstantina; Gottstein, Jeanne; Elias, Marc; Green, Richard M.

    2011-01-01

    In humans with non-alcoholic fatty liver, diabetes is associated with more advanced disease. We have previously shown that diabetic db/db mice are highly susceptible to methionine choline deficient diet (MCD) induced hepatic injury. Since activation of the unfolded protein response (UPR) is an important adaptive cellular mechanism in diabetes, obesity and fatty liver, we hypothesized that dysregulation of the UPR may partially explain how diabetes could promote liver injury.

  1. The l z ( p ) * Person-Fit Statistic in an Unfolding Model Context.

    Science.gov (United States)

    Tendeiro, Jorge N

    2017-01-01

    Although person-fit analysis has a long-standing tradition within item response theory, it has been applied in combination with dominance response models almost exclusively. In this article, a popular log likelihood-based parametric person-fit statistic under the framework of the generalized graded unfolding model is used. Results from a simulation study indicate that the person-fit statistic performed relatively well in detecting midpoint response style patterns and not so well in detecting extreme response style patterns.

  2. Identification of an Unfolding Intermediate for a DNA Lesion Bypass Polymerase

    Science.gov (United States)

    Sherrer, Shanen M.; Maxwell, Brian A.; Pack, Lindsey R.; Fiala, Kevin A.; Fowler, Jason D.; Zhang, Jun; Suo, Zucai

    2012-01-01

    Sulfolobus solfataricusDNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C. PMID:22667759

  3. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  4. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    OpenAIRE

    Judith A. Smith; Judith A. Smith

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defen...

  5. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

    Science.gov (United States)

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza

    2014-11-07

    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  6. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells.

    Science.gov (United States)

    Martins, Ana Sofia; Alves, Inês; Helguero, Luisa; Domingues, Maria Rosário; Neves, Bruno Miguel

    2016-11-01

    The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.

  7. β-sheet-like formation during the mechanical unfolding of prion protein

    International Nuclear Information System (INIS)

    Tao, Weiwei; Cao, Penghui; Park, Harold S.; Yoon, Gwonchan; Eom, Kilho

    2015-01-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP C , whose misfolded form PrP Sc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220

  8. β-sheet-like formation during the mechanical unfolding of prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Weiwei; Cao, Penghui; Park, Harold S., E-mail: parkhs@bu.edu [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Yoon, Gwonchan [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Eom, Kilho [Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2015-09-28

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP{sup C}, whose misfolded form PrP{sup Sc} can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  9. β-sheet-like formation during the mechanical unfolding of prion protein

    Science.gov (United States)

    Tao, Weiwei; Yoon, Gwonchan; Cao, Penghui; Eom, Kilho; Park, Harold S.

    2015-09-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrPC, whose misfolded form PrPSc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  10. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    Science.gov (United States)

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    Science.gov (United States)

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Geometrically engineering the standard model: Locally unfolding three families out of E8

    International Nuclear Information System (INIS)

    Bourjaily, Jacob L.

    2007-01-01

    This paper extends and builds upon the results of [J. L. Bourjaily, arXiv:0704.0444.], in which we described how to use the tools of geometrical engineering to deform geometrically engineered grand unified models into ones with lower symmetry. This top-down unfolding has the advantage that the relative positions of singularities giving rise to the many 'low-energy' matter fields are related by only a few parameters which deform the geometry of the unified model. And because the relative positions of singularities are necessary to compute the superpotential, for example, this is a framework in which the arbitrariness of geometrically engineered models can be greatly reduced. In [J. L. Bourjaily, arXiv:0704.0444.], this picture was made concrete for the case of deforming the representations of an SU 5 model into their standard model content. In this paper we continue that discussion to show how a geometrically engineered 16 of SO 10 can be unfolded into the standard model, and how the three families of the standard model uniquely emerge from the unfolding of a single, isolated E 8 singularity

  13. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  14. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A.

    Science.gov (United States)

    Mayo, S L; Baldwin, R L

    1993-11-05

    Amide (NH) proton exchange rates were measured in 0.0 to 0.7 M guanidinium chloride (GdmCl) for 23 slowly exchanging peptide NH protons of ribonuclease A (RNase A) at pH* 5.5 (uncorrected pH measured in D2O), 34 degrees C. The purpose was to find out whether GdmCl induces exchange through binding to exchange intermediates that are partly or wholly unfolded. It was predicted that, when the logarithm of the exchange rate is plotted as a function of the molarity of GdmCl, the slope should be a measure of the amount of buried surface area exposed to GdmCl in the exchange intermediate. The results indicate that these concentrations of GdmCl do induce exchange by means of a partial unfolding mechanism for all 23 protons; this implies that exchange reactions can be used to study the unfolding and stability of local regions. Of the 23 protons, nine also show a second mechanism of exchange at lower concentrations of GdmCl, a mechanism that is nearly independent of GdmCl concentration and is termed "limited structural fluctuation."

  15. Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging

    Science.gov (United States)

    Kaur, Parminder; Qiang-Fu; Fuhrmann, Alexander; Ros, Robert; Kutner, Linda Obenauer; Schneeweis, Lumelle A.; Navoa, Ryman; Steger, Kirby; Xie, Lei; Yonan, Christopher; Abraham, Ralph; Grace, Michael J.; Lindsay, Stuart

    2011-01-01

    Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance—possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics. PMID:21190677

  16. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.

    2009-01-01

    Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and catio......Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS......) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest......, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded...

  17. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  18. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  19. Multifractal spectra in shear flows

    Science.gov (United States)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  20. Sequential Analysis of Gamma Spectra

    International Nuclear Information System (INIS)

    Fayez-Hassan, M.; Hella, Kh.M.

    2009-01-01

    This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.

  1. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  2. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  3. Inclusive neutral current ep cross sections with HERA II and two-dimensional unfolding

    International Nuclear Information System (INIS)

    Fischer, David-Johannes

    2011-06-01

    In this thesis, the inclusive neutral current ep → eX cross section at small e - scattering angles has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1 detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the scattered electron with high resolution in both energy and polar angle. The analysis comprises the kinematic range of 0.06 e 2 e 2 2 for the squared momentum exchange. The data sample consists of positron proton collisions of the years 2006 and 2007, adding up to an integrated luminosity of ∝141 pb -1 . Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data statistics but rather by the detector resolution and systematics. The migration becomes increasingly influential; an effect which leads to distortions of the measured distribution as well as to statistical correlations between adjacent data points. At this stage, the correction of detector effects as well as the precise determination of statistical correlations become important features of a rigorous error treatment. In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1 inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction (bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a linear transformation (''response matrix'') which is used to correct any distortion of the data. The inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin method can be viewed as an approximation based on a diagonal response matrix. In a scenario of limited detector resolution, the unfolded data distributions will typically exhibit strong fluctuations and correlations between the data points. This issue can be addressed by smoothing

  4. Inclusive neutral current ep cross sections with HERA II and two-dimensional unfolding

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, David-Johannes

    2011-06-15

    In this thesis, the inclusive neutral current ep {yields} eX cross section at small e{sup -} scattering angles has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1 detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the scattered electron with high resolution in both energy and polar angle. The analysis comprises the kinematic range of 0.06 < y{sub e} < 0.6 for the inelasticity and 14 GeV{sup 2} < Q{sub e}{sup 2} < 110 GeV{sup 2} for the squared momentum exchange. The data sample consists of positron proton collisions of the years 2006 and 2007, adding up to an integrated luminosity of {proportional_to}141 pb{sup -1}. Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data statistics but rather by the detector resolution and systematics. The migration becomes increasingly influential; an effect which leads to distortions of the measured distribution as well as to statistical correlations between adjacent data points. At this stage, the correction of detector effects as well as the precise determination of statistical correlations become important features of a rigorous error treatment. In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1 inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction (bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a linear transformation (''response matrix'') which is used to correct any distortion of the data. The inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin method can be viewed as an approximation based on a diagonal response matrix. In a scenario of limited detector resolution, the unfolded data distributions will

  5. Unfolding Utzon

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hvejsel, Marie Frier

    2014-01-01

    The Danish architect Jørn Utzon's architecture is a fusion of form and structure inspired by nature and the visual universe of different cultures. The organic conception of form is clearly evoked in much of Utzon’s architecture following his genesis idea of an “Additive Architecture” founded in h...... of the Sydney Opera House....

  6. Unfolding Utzon

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    2013-01-01

    For many, the architecture by j0rn Utzon is synonymous with the design of the Sydney Opera House (1973) that was made a UNESCO World Heritage Site in 2007, being one of the 20th century's most distinctive buildings and one of the most famous concert halls in the world.......For many, the architecture by j0rn Utzon is synonymous with the design of the Sydney Opera House (1973) that was made a UNESCO World Heritage Site in 2007, being one of the 20th century's most distinctive buildings and one of the most famous concert halls in the world....

  7. Sunshine Unfolding.

    Science.gov (United States)

    Holdrege, Craig; And Others

    Hinduism, yoga, transcendental meditation, traditional American Indian philosophies, far-Eastern philosophies (Taoism, Zen Buddhism, and Zen concepts), macrobiotics, and Judeo-Christian teachings are the topics discussed in this student developed book. Designed for use by both elementary and high school students, it was written with two major…

  8. Universe unfolding

    International Nuclear Information System (INIS)

    King, I.R.

    1976-01-01

    Topics covered the setting; looking at the stars; the earth; time, place and the sky; our satellite, the moon; orbits and motion; the motions of the planets; the Copernican revolution; the planets; the other bodies of the solar system; ages, origins, and life; introducing the stars; sorting out the stars; binary stars--two are better than one; variable stars--inconstancy as a virtue; the secrets of starlight--unraveling the spectrum; the sun--our own star; the structure of a star; interstellar material; the Milky Way, our home galaxy; galaxies--the stellar continents; cosmic violence--from radio galaxies to quasars; the universe; and epilogue. The primary emphasis is on how we have come to know what we know about the universe. Star maps are included

  9. Biological Action Spectra (invited paper)

    International Nuclear Information System (INIS)

    Gruijl, F.R. de

    2000-01-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  10. Double photoionisation spectra of molecules

    CERN Document Server

    Eland, John

    2017-01-01

    This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...

  11. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  12. The structure of BPS spectra

    Science.gov (United States)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  13. Automatic identification of mass spectra

    International Nuclear Information System (INIS)

    Drabloes, F.

    1992-01-01

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  14. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua; Gong Jian; Liu Xiaoya

    2006-01-01

    In the investigation of radiation fingerprint comparison, it is found out that some of the popular gamma spectra analysis software have shortcomings, which decrease the radiation fingerprint comparison precision. So a new analysis software is developed for solving the problems. In order to display the advantage of developed program, some typical simulative warhead gamma spectra are analyzed respectively by present software and GAMMAVISION and GENNIE2000. Present software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  15. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Adams, S.; Seaton, M.J.

    1982-01-01

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  16. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua

    2006-12-01

    During the investigation of radiation fingerprint comparison, it is found out that the popular gamma spectra analysis softwares are faultful, which decrease the precision of radiation fingerprint comparison. So a new analysis software is development for solving the problems. In order to display the advantage of new program, some typical simulative gamma spectra of radiation source are analyzed respectively by our software and GAMMAVISION and GENNIE2000. The software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  17. Raman spectra studies of dipeptides

    International Nuclear Information System (INIS)

    Blanchard, Simone.

    1977-10-01

    This work deals with the homogenous and heterogeneous dipeptides derived from alanine and glycine, in the solid state or in aqueous solutions, in the zwitterions or chlorhydrates form. The Raman spectra comparative study of these various forms of hydrogenated or deuterated compounds allows to specify some of the attributions which are necessary in the conformational study of the like tripeptides. These compounds contain only one peptidic group; therefore there is no possibility of intramolecular hydrogen bond which caracterise vibrations of non bonded peptidic groups and end groups. Infrared spectra of solid dipeptides will be presented and discussed in the near future [fr

  18. Folding and unfolding of large-size shell construction for application in Earth orbit

    Science.gov (United States)

    Kondyurin, Alexey; Pestrenina, Irena; Pestrenin, Valery; Rusakov, Sergey

    2016-07-01

    A future exploration of space requires a technology of large module for biological, technological, logistic and other applications in Earth orbits [1-3]. This report describes the possibility of using large-sized shell structures deployable in space. Structure is delivered to the orbit in the spaceship container. The shell is folded for the transportation. The shell material is either rigid plastic or multilayer prepreg comprising rigid reinforcements (such as reinforcing fibers). The unfolding process (bringing a construction to the unfolded state by loading the internal pressure) needs be considered at the presence of both stretching and bending deformations. An analysis of the deployment conditions (the minimum internal pressure bringing a construction from the folded state to the unfolded state) of large laminated CFRP shell structures is formulated in this report. Solution of this mechanics of deformable solids (MDS) problem of the shell structure is based on the following assumptions: the shell is made of components whose median surface has a reamer; in the separate structural element relaxed state (not stressed and not deformed) its median surface coincides with its reamer (this assumption allows choose the relaxed state of the structure correctly); structural elements are joined (sewn together) by a seam that does not resist rotation around the tangent to the seam line. The ways of large shell structures folding, whose median surface has a reamer, are suggested. Unfolding of cylindrical, conical (full and truncated cones), and large-size composite shells (cylinder-cones, cones-cones) is considered. These results show that the unfolding pressure of such large-size structures (0.01-0.2 atm.) is comparable to the deploying pressure of pneumatic parts (0.001-0.1 atm.) [3]. It would be possible to extend this approach to investigate the unfolding process of large-sized shells with ruled median surface or for non-developable surfaces. This research was

  19. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  20. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response.

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Mehrpour, Maryam; Shojaei, Shahla; Harlos, Craig; Pitz, Marshall; Hamai, Ahmed; Siemianowicz, Krzysztof; Likus, Wirginia; Wiechec, Emilia; Toyota, Brian D; Hoshyar, Reyhane; Seyfoori, Amir; Sepehri, Zahra; Ande, Sudharsana R; Khadem, Forough; Akbari, Mohsen; Gorman, Adrienne M; Samali, Afshin; Klonisch, Thomas; Ghavami, Saeid

    2018-04-01

    Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    Science.gov (United States)

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  2. Study of chemically unfolded {beta}-casein by means of small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Adel [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 1060, Tunis (Tunisia)]. E-mail: aschi13@yahoo.fr; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 1060, Tunis (Tunisia); Daoud, Mohamed [Service de Physique de l' Etat Condense. CEA Saclay. 91191 Gif-sur-Yvette cedex (France); Douillard, Roger [Equipe de Biochimie des Macromolecules Vegetales, Centre de Recherche Agronomique, 2Esplanade R. Garros, BP 224, 51686 Reims cedex 2 (France); Calmettes, Patrick [Laboratoire Leon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette cedex (France)

    2007-01-01

    {beta}-casein is a flexible amphiphilic milk protein which forms an unfolded conformation in presence of very high denaturant concentrations. The structure of {beta}-casein formed at the bulk was studied by small-angle neutron scattering (SANS). The value of the second virial coefficient of the protein solutions indicates that the interactions between the polypeptide chain and solvent are repulsive. The protein conformation is similar to an excluded volume chain. The corresponding values of the contour length, L, the statistical length, b and the apparent radius of the chain cross-section, R{sub c} are given.

  3. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.

    Science.gov (United States)

    Jesus, Catarina S H; Cruz, Pedro F; Arnaut, Luis G; Brito, Rui M M; Serpa, Carlos

    2018-04-12

    The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1 H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol -1 , 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol -1 , ∼1.7 μs). The essential role of two

  4. Unfolding and effective bandstructure calculations as discrete real- and reciprocal-space operations

    Energy Technology Data Exchange (ETDEWEB)

    Boykin, Timothy B., E-mail: boykin@ece.uah.edu [Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ajoy, Arvind [School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 (United States); Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard [Network for Computational Nanotechnology, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2016-06-15

    In recent years, alloy electronic structure calculations based on supercell Brillouin zone unfolding have become popular. There are a number of formulations of the method which on the surface might appear different. Here we show that a discrete real-space description, based on discrete Fourier transforms, is fully general. Furthermore, such an approach can more easily show the effects of alloy scattering. We present such a method for treating the random alloy problem. This treatment features straightforward mathematics and a transparent physical interpretation of the calculated effective (i.e., approximate) energy bands.

  5. Study of chemically unfolded β-casein by means of small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aschi, Adel; Gharbi, Abdelhafidh; Daoud, Mohamed; Douillard, Roger; Calmettes, Patrick

    2007-01-01

    β-casein is a flexible amphiphilic milk protein which forms an unfolded conformation in presence of very high denaturant concentrations. The structure of β-casein formed at the bulk was studied by small-angle neutron scattering (SANS). The value of the second virial coefficient of the protein solutions indicates that the interactions between the polypeptide chain and solvent are repulsive. The protein conformation is similar to an excluded volume chain. The corresponding values of the contour length, L, the statistical length, b and the apparent radius of the chain cross-section, R c are given

  6. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    OpenAIRE

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and...

  7. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  8. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  9. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  10. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  11. Predictors of natively unfolded proteins: unanimous consensus score to detect a twilight zone between order and disorder in generic datasets

    Directory of Open Access Journals (Sweden)

    Deiana Antonio

    2010-04-01

    Full Text Available Abstract Background Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. Results In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii have a mean flexibility intermediate between that of folded and that of unfolded proteins. Conclusions Our results show that

  12. Development of unfolding method to obtain pin-wise source strength distribution from PWR spent fuel assembly measurement

    International Nuclear Information System (INIS)

    Sitompul, Yos Panagaman; Shin, Hee-Sung; Park, Se-Hwan; Oh, Jong Myeong; Seo, Hee; Kim, Ho Dong

    2013-01-01

    An unfolding method has been developed to obtain a pin-wise source strength distribution of a 14 × 14 pressurized water reactor (PWR) spent fuel assembly. Sixteen measured gamma dose rates at 16 control rod guide tubes of an assembly are unfolded to 179 pin-wise source strengths of the assembly. The method calculates and optimizes five coefficients of the quadratic fitting function for X-Y source strength distribution, iteratively. The pin-wise source strengths are obtained at the sixth iteration, with a maximum difference between two sequential iterations of about 0.2%. The relative distribution of pin-wise source strength from the unfolding is checked using a comparison with the design code (Westinghouse APA code). The result shows that the relative distribution from the unfolding and design code is consistent within a 5% difference. The absolute value of the pin-wise source strength is also checked by reproducing the dose rates at the measurement points. The result shows that the pin-wise source strengths from the unfolding reproduce the dose rates within a 2% difference. (author)

  13. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    Science.gov (United States)

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  14. Local Order in the Unfolded State: Conformational Biases and Nearest Neighbor Interactions

    Directory of Open Access Journals (Sweden)

    Siobhan Toal

    2014-07-01

    Full Text Available The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed.

  15. Optimization of expression and purification of human mortalin (Hsp70): Folding/unfolding analysis

    Science.gov (United States)

    Khan, Mohd Shahnawaz; Ahmed, Anwar; Tabrez, Shams; Islam, Badar ul; Rabbani, Nayyar; Malik, Ajamaluddin; Ismael, Mohamad A.; Alsenaidy, Mohammad A.; Alsenaidy, Abdulrahman M.

    2017-12-01

    Human mortalin is a Hsp70 mitochondrial protein that plays an essential role in the biogenesis of mitochondria. The deregulation of mortalin expression and its functions could lead to several age-associated disorders and some types of cancers. In the present study, we optimized the expression and purification of recombinant human mortalin by the use of two-step chromatography. Low temperature (18 °C) and 0.5 mM (IPTG) was required for optimum mortalin expression. Chaperone activity of mortalin was assessed by the citrate synthase and insulin protection assay, which suggested their protective role in mitochondria. Folding and unfolding assessments of mortalin were carried out in the presence of guanidine hydrochloride (GdnHCl) by intrinsic fluorescence measurement, ANS (8-analino 1-nephthlene sulfonic acid) binding and CD (circular dichroism) analysis. Under denaturing conditions, mortalin showed decrease in tryptophan fluorescence intensity along with a red shift of 11 nm. Moreover, ANS binding studies illustrated decrease in hydrophobicity. CD measurement of mortalin showed a predominant helical structure. However, the secondary structure was lost at low concentration of GdnHCl (1 M). We present a simple and robust method to produce soluble mortalin and warranted that chaperones are also susceptible to unfolding and futile to maintain protein homeostasis.

  16. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2015-06-01

    Full Text Available Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  17. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding.

    Science.gov (United States)

    Hageman, Jurre; Vos, Michel J; van Waarde, Maria A W H; Kampinga, Harm H

    2007-11-23

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.

  18. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Science.gov (United States)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  19. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  20. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response.

    LENUS (Irish Health Repository)

    Samali, Afshin

    2010-01-01

    The endoplasmic reticulum (ER) is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR). The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  1. Methods for Monitoring Endoplasmic Reticulum Stress and the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Afshin Samali

    2010-01-01

    Full Text Available The endoplasmic reticulum (ER is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR. The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  2. Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run.

    Science.gov (United States)

    Wang, Huanjiong; Rutishauser, This; Tao, Zexing; Zhong, Shuying; Ge, Quansheng; Dai, Junhu

    2017-02-01

    The impact of spring temperature forcing on the timing of leaf unfolding of plants (temperature sensitivity, S T ) is one important indicator of how and to what degree plant species track climate change. Fu et al. (Nature 526:104-107, 2015) found that S T has significantly decreased from the 1980-1994 to the 1999-2013 period for seven mid-latitude tree species in Europe. However, long-term changes in S T over the past 60 years are still not clear. Here, using in situ observations of leaf unfolding for seven dominant European tree species, we analyze the temporal change in S T over decadal time scales extending the data series back to 1951. Our results demonstrate that S T shows no statistically significant change within shifting 30-year windows from 1951 to 2013 and remains stable between 1951-1980 and 1984-2013 (3.6 versus 3.7 days °C -1 ). This result suggests that the significant decrease in S T over the past 33 years could not be sustained when examining the trends of phenological responses in the long run. Therefore, we could not conclude that tree spring phenology advances will slow down in the future, and the S T changes in warming scenarios are still uncertain.

  3. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    Science.gov (United States)

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  4. Unfolded protein response is required for Aspergillus oryzae growth under conditions inducing secretory hydrolytic enzyme production.

    Science.gov (United States)

    Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    Unfolded protein response (UPR) is an intracellular signaling pathway for adaptation to endoplasmic reticulum (ER) stress. In yeast UPR, Ire1 cleaves the unconventional intron of HAC1 mRNA, and the functional Hac1 protein translated from the spliced HAC1 mRNA induces the expression of ER chaperone genes and ER-associated degradation genes for the refolding or degradation of unfolded proteins. In this study, we constructed an ireA (IRE1 ortholog) conditionally expressing strain of Aspergillus oryzae, a filamentous fungus producing a large amount of amylolytic enzymes, and examined the contribution of UPR to ER stress adaptation under physiological conditions. Repression of ireA completely blocked A. oryzae growth under conditions inducing the production of hydrolytic enzymes, such as amylases and proteases. This growth defect was restored by the introduction of unconventional intronless hacA (hacA-i). Furthermore, UPR was observed to be induced by amylolytic gene expression, and the disruption of the transcriptional activator for amylolytic genes resulted in partial growth restoration of the ireA-repressing strain. In addition, a homokaryotic ireA disruption mutant was successfully generated using the strain harboring hacA-i as a parental host. These results indicated that UPR is required for A. oryzae growth to alleviate ER stress induced by excessive production of hydrolytic enzymes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    Science.gov (United States)

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Application of unfolding transformation in the random matrix theory to analyze in vivo neuronal spike firing during awake and anesthetized conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2018-03-01

    Full Text Available General anesthetics decrease the frequency and density of spike firing. This effect makes it difficult to detect spike regularity. To overcome this problem, we developed a method utilizing the unfolding transformation which analyzes the energy level statistics in the random matrix theory. We regarded the energy axis as time axis of neuron spike and analyzed the time series of cortical neural firing in vivo. Unfolding transformation detected regularities of neural firing while changes in firing densities were associated with pentobarbital. We found that unfolding transformation enables us to compare firing regularity between awake and anesthetic conditions on a universal scale. Keywords: Unfolding transformation, Spike-timing, Regularity

  7. Qualitative and quantitative validation of the SINBAD code on complex HPGe gamma-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rohee, E.; Coulon, R.; Normand, S.; Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures electroniques, F-91191 Gif-sur-Yvette, (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire Modelisation, Simulation et Systemes, F-91191 Gif-sur-Yvette, (France); Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance, (France)

    2015-07-01

    Radionuclides identification and quantification is a serious concern for many applications as safety or security of nuclear power plant or fuel cycle facility, CBRN risk identification, environmental radioprotection and waste measurements. High resolution gamma-ray spectrometry based on HPGe detectors is a performing solution for all these topics. During last decades, a great number of software has been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when photoelectric peaks are folded together with a high ratio between theirs amplitudes, when the Compton background is much larger compared to the signal of a single peak and when spectra are composed of a great number of peaks. This study deals with the comparison between conventional methods in radionuclides identification and quantification and the code called SINBAD ('Spectrometrie par Inference Non parametrique Bayesienne Deconvolutive'). For many years, SINBAD has been developed by CEA LIST for unfolding complex spectra from HPGe detectors. Contrary to conventional methods using fitting procedures, SINBAD uses a probabilistic approach with Bayesian inference to describe spectrum data. This conventional fitting method founded for example in Genie 2000 is compared with the nonparametric SINBAD approach regarding some key figures of merit as the peak centroid evaluation (identification) and peak surface evaluation (quantification). Unfriendly cases are studied for nuclides detection with closed gamma-rays energies and high photoelectric peak intensity differences. Tests are performed with spectra from the International Atomic Energy Agency (IAEA) for gamma spectra analysis software benchmark and with spectra acquired at the laboratory. Results show that SINBAD and Genie 2000 performances are quite similar with sometimes best results for SINBAD with the important difference that to achieve same performances the nonparametric method is user-friendly compared

  8. ACCELERATED FITTING OF STELLAR SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yuan-Sen; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rix, Hans-Walter [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  9. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  10. Biological Action Spectra (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Gruijl, F.R. de

    2000-07-01

    Ultraviolet (UV) radiation induces a wide variety of biological responses: ranging in humans from well-known short-term effects like sunburn to long-term effects like skin cancer. The wavelength dependencies ('action spectra') of the responses can differ significantly, depending on the UV-targeted molecules (their absorption spectra), their localisation (transmission to the target depth) and the photochemical reactions involved (e.g. quantum yields, competing reaction). An action spectrum (e.g. of sunburn) is usually determined in a wavelength by wavelength analysis of the response. This is not always possible (e.g. in case of skin cancer), and an action spectrum may then be extracted mathematically from differences in responses to broadband UV sources of various spectral compositions (yielding 'biological spectral weights'). However, relative spectral weights may shift with exposure levels and contributions from different wavelengths may not always add up. Under these circumstances conventional analyses will yield different action spectra for different experimental conditions. (author)

  11. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase.

    Directory of Open Access Journals (Sweden)

    Kritika Singh

    Full Text Available Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0-9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications.

  12. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE

  13. Study on keV-neutron capture cross sections and capture γ-ray spectra of 117,119Sn

    International Nuclear Information System (INIS)

    Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G.N.; Chung, W.C.; Ro, T.I.

    2006-01-01

    The capture cross sections and capture γ-ray spectra of 117,119 Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7 Li(p,n) 7 Be reaction and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique was applied to observed capture γ-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119 Sn were obtained with the error of about 5% by using the standard capture cross sections of 197 Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture γ-ray spectra of 117,119 Sn were derived by unfolding the observed capture γ-ray pulse-height spectra. The calculations of capture cross sections and capture γ-ray spectra of 117,119 Sn were performed with the EMPIRE-II code. The calculated results were compared with the present experimental ones. (author)

  14. Measurement and analysis of neutron flux spectra in a neutronics mock-up of the HCLL test blanket module

    International Nuclear Information System (INIS)

    Klix, A.; Batistoni, P.; Boettger, R.; Lebrun-Grandie, D.; Fischer, U.; Henniger, J.; Leichtle, D.; Villari, R.

    2010-01-01

    Fast neutron and gamma-ray flux spectra and time-of-arrival spectra of slow neutrons have been measured in a neutronics mock-up of the European Helium-Cooled Lithium-Lead Test Blanket Module with the aim to validate nuclear cross-section data. The mock-up was irradiated with fusion peak neutrons from the DT neutron generator of the Technical University of Dresden. A well characterized cylindrical NE-213 scintillator was inserted into two positions in the LiPb/EUROFER assembly. Pulse height spectra from neutrons and gamma-rays were recorded from the NE-213 output. The spectra were then unfolded with experimentally obtained response matrices of the NE-213 detector. Time-of-arrival spectra of slow neutrons were measured with a 3 He counter placed in the mock-up, and the neutron generator was operated in pulsed mode. Monte Carlo calculations using the MCNP code and nuclear cross-section data from the JEFF-3.1.1 and FENDL-2.1 libraries were performed and the results are compared with the experimental results. A good agreement of measurement and calculation was found with some deviations in certain energy intervals.

  15. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  16. Honeycomb Actuators Inspired by the Unfolding of Ice Plant Seed Capsules.

    Directory of Open Access Journals (Sweden)

    Lorenzo Guiducci

    Full Text Available Plant hydro-actuated systems provide a rich source of inspiration for designing autonomously morphing devices. One such example, the pentagonal ice plant seed capsule, achieves complex mechanical actuation which is critically dependent on its hierarchical organization. The functional core of this actuation system involves the controlled expansion of a highly swellable cellulosic layer, which is surrounded by a non-swellable honeycomb framework. In this work, we extract the design principles behind the unfolding of the ice plant seed capsules, and use two different approaches to develop autonomously deforming honeycomb devices as a proof of concept. By combining swelling experiments with analytical and finite element modelling, we elucidate the role of each design parameter on the actuation of the prototypes. Through these approaches, we demonstrate potential pathways to design/develop/construct autonomously morphing systems by tailoring and amplifying the initial material's response to external stimuli through simple geometric design of the system at two different length scales.

  17. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  18. [Partially unfolded state of lysozyme with a developed secondary structure in dimethylsulfoxide].

    Science.gov (United States)

    Timchenko, A A; Kirkitadze, M D; Prokhorov, D A; Potekhin, S A; Serdiuk, I N

    1996-06-01

    The conformation of a chicken egg lysozyme molecule (dimensions, stoichiometry of its associates, and the degree of helicity) in DMSO was studied by small-angle neutron scattering, dynamic light scattering, and optical rotatory dispersion in the visible region of the spectrum. At high DMSO concentrations (70%), the protein was shown to exist as a dimer. The monomer molecules in the dimer adopt a partially unfolded conformation, with dimensions substantially greater than those in the native state and a high content of secondary structure (the degree of helicity is close to that of native lysozyme). This approach provides a unique possibility to assess the compactness of molecules in associates, which may be very useful in studying protein self-organization.

  19. Semantic Interoperable Electronic Patient Records: The Unfolding of Consensus based Archetypes.

    Science.gov (United States)

    Pedersen, Rune; Wynn, Rolf; Ellingsen, Gunnar

    2015-01-01

    This paper is a status report from a large-scale openEHR-based EPR project from the North Norway Regional Health Authority encouraged by the unfolding of a national repository for openEHR archetypes. Clinicians need to engage in, and be responsible for the production of archetypes. The consensus processes have so far been challenged by a low number of active clinicians, a lack of critical specialties to reach consensus, and a cumbersome review process (3 or 4 review rounds) for each archetype. The goal is to have several clinicians from each specialty as a backup if one is hampered to participate. Archetypes and their importance for structured data and sharing of information has to become more visible for the clinicians through more sharpened information practice.

  20. Counting Unfolding Events in Stretched Helices with Induced Oscillation by Optical Tweezers

    Science.gov (United States)

    Bacabac, Rommel Gaud; Otadoy, Roland

    Correlation measures based on embedded probe fluctuations, single or paired, are now widely used for characterizing the viscoelastic properties of biological samples. However, more robust applications using this technique are still lacking. Considering that the study of living matter routinely demonstrates new and complex phenomena, mathematical and experimental tools for analysis have to catch up in order to arrive at newer insights. Therefore, we derive ways of probing non-equilibrium events in helical biopolymers provided by stretching beyond thermal forces. We generalize, for the first time, calculations for winding turn probabilities to account for unfolding events in single fibrous biopolymers and globular proteins under tensile stretching using twin optical traps. The approach is based on approximating the ensuing probe fluctuations as originating from a damped harmonic oscillator under oscillatory forcing.

  1. Political-pedagogical unfoldings of bilingualism for deaf people: reflexions and directing

    Directory of Open Access Journals (Sweden)

    Sueli Fernandes

    2009-09-01

    Full Text Available The article talks about bilingualism for deaf people, it’s implications in the educational process, as well as in some of the inclusive linguistic politics unfoldings proposed officially from the end of the decade of 1990 for this segment. The sociocultural and linguistic characteristics of the Brazilian deaf people communities are argued and also the importance of the same ones to be known and socially valued. Some lines of direction and challenges are pointed for the access and remaining of the deaf students in the school educational process. Finally, the text reflects about the bilingual education programs for deaf students, considering that these are complex, specially because it crosses economic ideological, cultural contradictory and heterogeneous interests.

  2. Communication: Role of explicit water models in the helix folding/unfolding processes

    Science.gov (United States)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  3. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt).

    Science.gov (United States)

    Kenny, Timothy C; Germain, Doris

    2017-01-01

    While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPR mt ) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPR mt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPR mt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPR mt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPR mt in this setting.

  4. In-situ spectrometry of {sup 137}Cs in the soil by unfolding method

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Ragan, P [Inst. of Preventive and Clinical Medicine, 833301 Bratislava (Slovakia); Krnac, S [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of {sup 137}Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl {sup 137}Cs at present, as well. The depth distribution of {sup 137}Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The {sup 137}Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs.

  5. Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle

    DEFF Research Database (Denmark)

    Alm, Petter S; de Castro Barbosa, Thais; Barrès, Romain

    2017-01-01

    OBJECTIVE: Parental nutrition and lifestyle impact the metabolic phenotype of the offspring. We have reported that grandpaternal chronic high-fat diet (HFD) transgenerationally impairs glucose metabolism in subsequent generations. Here we determined whether grandpaternal diet transgenerationally....... Gene set enrichment analysis (GSEA) was performed to determine pathways reprogrammed by grandpaternal diet. RESULTS: GSEA revealed an enrichment of the unfolded protein response pathway in skeletal muscle of grand-offspring from HFD-fed grandfathers compared to grand-offspring of chow-fed males....... Activation of the stress sensor (ATF6α), may be a pivotal point whereby this pathway is activated. Interestingly, skeletal muscle from F1-offspring was not affected in a similar manner. No major changes were observed in the skeletal muscle lipidome profile due to grandpaternal diet. CONCLUSIONS...

  6. In-situ spectrometry of 137Cs in the soil by unfolding method

    International Nuclear Information System (INIS)

    Fueloep, M.; Ragan, P.; Krnac, S.

    1995-01-01

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of 137 Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl 137 Cs at present, as well. The depth distribution of 137 Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The 137 Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs

  7. Respiratory epithelial cell responses to cigarette smoke: the unfolded protein response.

    Science.gov (United States)

    Kelsen, Steven G

    2012-12-01

    Cigarette smoking exposes the respiratory epithelium to highly toxic, reactive oxygen nitrogen species which damage lung proteins in the endoplasmic reticulum (ER), the cell organelle in which all secreted and membrane proteins are processed. Accumulation of damaged or misfolded proteins in the ER, a condition termed ER stress, activates a complex cellular process termed the unfolded protein responses (UPR). The UPR acts to restore cellular protein homeostasis by regulating all aspects of protein metabolism including: protein translation and syntheses; protein folding; and protein degradation. However, activation of the UPR may also induce signaling pathways which induce inflammation and cell apoptosis. This review discusses the role of UPR in the respiratory epithelial cell response to cigarette smoke and the pathogenesis of lung diseases like COPD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Blimp-1 controls plasma cell function through regulation of immunoglobulin secretion and the unfolded protein response

    Science.gov (United States)

    Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L

    2015-01-01

    Plasma cell differentiation requires silencing of B cell transcription, while establishing antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for plasma cell generation, however their function in mature plasma cells has remained elusive. We have found that while IRF4 was essential for plasma cell survival, Blimp-1 was dispensable. Blimp-1-deficient plasma cells retained their transcriptional identity, but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap of Blimp-1 and XBP-1 function was restricted to the UPR, with Blimp-1 uniquely regulating mTOR activity and plasma cell size. Thus, Blimp-1 is required for the unique physiological capacity of plasma cells that enables the secretion of protective antibody. PMID:26779600

  9. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  10. Wavelet spectra of JACEE events

    International Nuclear Information System (INIS)

    Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.

    1995-01-01

    Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)

  11. Uranium spectra in the ICP

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (Khan (A.Q.) Research Labs., Rawalpindi (Pakistan))

    1994-05-01

    Uranium spectra have been studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES). In total, 8361 uranium lines were observed in the wavelength range of 235-500 nm. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hard copy text is accompanied by a disk with data files and test files for an IBM-compatible computer. The main article discusses the scientific aspects of the subject and explains the purpose of the data files. (Author).

  12. Identified hadron spectra from PHOBOS

    Science.gov (United States)

    Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  13. Uranium spectra in the ICP

    International Nuclear Information System (INIS)

    Ghazi, A.A.; Qamar, S.; Atta, M.A.

    1994-01-01

    Uranium spectra have been studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES). In total, 8361 uranium lines were observed in the wavelength range of 235-500 nm. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hard copy text is accompanied by a disk with data files and test files for an IBM-compatible computer. The main article discusses the scientific aspects of the subject and explains the purpose of the data files. (Author)

  14. Sodium 4-Phenylbutyrate Attenuates Myocardial Reperfusion Injury by Reducing the Unfolded Protein Response.

    Science.gov (United States)

    Takatori, Osamu; Usui, Soichiro; Okajima, Masaki; Kaneko, Shuichi; Ootsuji, Hiroshi; Takashima, Shin-Ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Takamura, Masayuki

    2017-05-01

    The unfolded protein response (UPR) plays a pivotal role in ischemia-reperfusion (I/R) injury in various organs such as heart, brain, and liver. Sodium 4-phenylbutyrate (PBA) reportedly acts as a chemical chaperone that reduces UPR. In the present study, we evaluated the effect of PBA on reducing the UPR and protecting against myocardial I/R injury in mice. Male C57BL/6 mice were subjected to 30-minute myocardial I/R, and were treated with phosphate-buffered saline (as a vehicle) or PBA. At 4 hours after reperfusion, mice treated with PBA had reduced serum cardiac troponin I levels and numbers of apoptotic cells in left ventricles (LVs) in myocardial I/R. Infarct size had also reduced in mice treated with PBA at 48 hours after reperfusion. At 2 hours after reperfusion, UPR markers, including eukaryotic initiation of the factor 2α-subunit, activating transcription factor-6, inositol-requiring enzyme-1, glucose-regulated protein 78, CCAAT/enhancer-binding protein (C/EBP) homologous protein, and caspase-12, were significantly increased in mice treated with vehicle compared to sham-operated mice. Administration of PBA significantly reduced the I/R-induced increases of these markers. Cardiac function and dimensions were assessed at 21 days after I/R. Sodium 4-phenylbutyrate dedicated to the improvement of cardiac parameters deterioration including LV end-diastolic diameter and LV fractional shortening. Consistently, PBA reduced messenger RNA expression levels of cardiac remodeling markers such as collagen type 1α1, brain natriuretic peptide, and α skeletal muscle actin in LV at 21 days after I/R. Unfolded protein response mediates myocardial I/R injury. Administration of PBA reduces the UPR, apoptosis, infarct size, and preserved cardiac function. Hence, PBA may be a therapeutic option to attenuate myocardial I/R injury in clinical practice.

  15. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.

    Science.gov (United States)

    Heenan, Patrick R; Yu, Hao; Siewny, Matthew G W; Perkins, Thomas T

    2018-03-28

    Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG 0 ) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG 0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.

  16. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    International Nuclear Information System (INIS)

    Honma, Yuichi; Harada, Masaru

    2013-01-01

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation

  17. Activation of the unfolded protein response during anoxia exposure in the turtle Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-02-01

    Red-eared slider turtles, Trachemys scripta elegans, can survive for several weeks without oxygen when submerged in cold water. We hypothesized that anaerobiosis is aided by adaptive up-regulation of the unfolded protein response (UPR), a stress-responsive pathway that is activated by accumulation of unfolded proteins in the endoplasmic reticulum (ER) and functions to restore ER homeostasis. RT-PCR, western immunoblotting and DNA-binding assays were used to quantify the responses and/or activation status of UPR-responsive genes and proteins in turtle tissues after animal exposure to 5 or 20 h of anoxic submergence at 4 °C. The phosphorylation state of protein kinase-like ER kinase (PERK) (a UPR-regulated kinase) and eukaryotic initiation factor 2 (eIF2α) increased by 1.43-2.50 fold in response to anoxia in turtle heart, kidney, and liver. Activation of the PERK-regulated transcription factor, activating transcription factor 4 (ATF4), during anoxia was documented by elevated atf4 transcripts and total ATF4 protein (1.60-2.43 fold), increased nuclear ATF4 content, and increased DNA-binding activity (1.44-2.32 fold). ATF3 and GADD34 (downstream targets of ATF4) also increased by 1.38-3.32 fold in heart and liver under anoxia, and atf3 transcripts were also elevated in heart. Two characteristic chaperones of the UPR, GRP78, and GRP94, also responded positively to anoxia with strong increases in both the transcript and protein levels. The data demonstrate that the UPR is activated in turtle heart, kidney, and liver in response to anoxia, suggesting that this pathway mediates an integrated stress response to protect tissues during oxygen deprivation.

  18. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-01-01

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  19. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  20. Operator functions and localization of spectra

    CERN Document Server

    Gil’, Michael I

    2003-01-01

    "Operator Functions and Localization of Spectra" is the first book that presents a systematic exposition of bounds for the spectra of various linear nonself-adjoint operators in a Hilbert space, having discrete and continuous spectra. In particular bounds for the spectra of integral, differential and integro-differential operators, as well as finite and infinite matrices are established. The volume also presents a systematic exposition of estimates for norms of operator-valued functions and their applications.

  1. Spectral interpolation and unfolding to measure multi-labelled samples by liquid scintillation

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1990-01-01

    A new procedure to determine the activity of each radionuclide in a mixture is described. The information contained in the liquid scintillation pulse height spectra is used. The dilatation, interpolation and contraction steps are essential to obtain a good experimental and computed spectra fitting. The procedure can be applied to mixtures of radionuclides decayin by β - , β - - γ, β + ,β + - γ, EC, EC - γ and isomeric transitions. (Author). 10 refs

  2. Photoinduced Partial Unfolding of Tubulin Bound to Meso-tetrakis(sulfonatophenyl) Porphyrin Leads to Inhibition of Microtubule Formation In Vitro

    Science.gov (United States)

    2013-07-30

    Bio- chemistry 44, 524–536 (2005). [4] M. Loweneck, A. G. Milbradt, C. Root , H. Satzger, W. Zinth, L. Moroder, and C. Renner, Biophys. J. 90, 2099–2108...H. Nettles , B. Cornett, K. H. Downing, and E. Nogales, Proc. Natl. Acad. Sci. 98, 5312–5316 (2001). B. McMicken et al.: Photoinduced unfolding of

  3. A simple rescue maneuver for unfolding and centering a tightly rolled graft in Descemet membrane endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Droutsas K

    2014-10-01

    Full Text Available Konstantinos Droutsas,1,2 Thomas Bertelmann,1 Frank M Schroeder,1 Dimitrios Papaconstantinou,2 Walter Sekundo1 1Department of Ophthalmology, Philipps University, Marburg, Germany; 2First Department of Ophthalmology, University of Athens, Medical School of Athens, Athens, Greece Abstract: A 74-year-old man underwent Descemet membrane endothelial keratoplasty (DMEK for endothelial decompensation due to Fuchs endothelial dystrophy. After descemetorhexis, the DMEK graft was inserted into the anterior chamber. However, unfolding of the graft was not possible as the graft was very tightly rolled together and the anterior chamber deep. After placing a 30G-cannula connected to an air-filled syringe inside the roll's lumen, a small air bubble was injected, which allowed the roll to open up, until it assumed a “taco” configuration around the bubble. Then, the graft was centered by pressing the posterior part of the roll against, and sweeping it over the iris. In the present case a “tight” DMEK roll was successfully unfolded by injection of a single air bubble into the roll’s lumen and centered by a “sweeping” the partialy unfolded graft over the iris. This technique allowed a controlled unfolding and centering of the DMEK graft with limited trauma to the donor endothelium and may be applied in cases where other less traumatic maneuvers are not successful. Keywords: Fuchs endothelial dystrophy, surgical technique, endothelial keratoplasty

  4. Inactivation and unfolding of protein tyrosine phosphatase from Thermus thermophilus HB27 during urea and guanidine hydrochloride denaturation.

    Directory of Open Access Journals (Sweden)

    Yejing Wang

    Full Text Available The effects of urea and guanidine hydrochloride (GdnHCl on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase, a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV circular dichroism (CD, Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase.

  5. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  6. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  7. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Science.gov (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  8. Scikit-spectra: Explorative Spectroscopy in Python

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-06-01

    Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://hugadams.github.io/scikit-spectra/

  9. An RGB approach to extraordinary spectra

    Science.gov (United States)

    Grusche, Sascha; Theilmann, Florian

    2015-09-01

    After Newton had explained a series of ordinary spectra and Goethe had pointed out its complementary counterpart, Nussbaumer discovered a series of extraordinary spectra which are geometrically identical and colourwise analogous to Newton’s and Goethe’s spectra. To understand the geometry and colours of extraordinary spectra, the wavelength composition is explored with filters and spectroscopic setups. Visualized in a dispersion diagram, the wavelength composition is interpreted in terms of additive colour mixing. Finally, all spectra are simulated as the superposition of red, green, and blue images that are shifted apart. This RGB approach makes it easy to understand the complex relationship between wavelengths and colours.

  10. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  11. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    International Nuclear Information System (INIS)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr.

    2004-01-01

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on native gels

  12. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr

    2004-09-27

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on

  13. SU-E-T-272: Direct Verification of a Treatment Planning System Megavoltage Linac Beam Photon Spectra Models, and Analysis of the Effects On Patient Plans

    Energy Technology Data Exchange (ETDEWEB)

    Leheta, D; Shvydka, D; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: For the photon dose calculation Philips Pinnacle Treatment Planning System (TPS) uses collapsed cone convolution algorithm, which relies on energy spectrum of the beam in computing the scatter component. The spectrum is modeled based on Linac’s standard commissioning data and typically is not independently verified. We explored a methodology of using transmission measurements in combination with regularization data processing to unfold Linac spectra. The measured spectra were compared to those modeled by the TPS, and the effect on patient plans was evaluated. Methods: Transmission measurements were conducted in narrow-beam geometry using a standard Farmer ionization chamber. Two attenuating materials and two build -up caps, having different atomic numbers, served to enhance discrimination between absorption of low and high-energy portions of the spectra, thus improving the accuracy of the results. The data was analyzed using a regularization technique implemented through spreadsheet-based calculations. Results: The unfolded spectra were found to deviate from the TPS beam models. The effect of such deviations on treatment planning was evaluated for patient plans through dose distribution calculations with either TPS modeled or measured energy spectra. The differences were reviewed through comparison of isodose distributions, and quantified based on maximum dose values for critical structures. While in most cases no drastic differences in the calculated doses were observed, plans with deviations of 4 to 8% in the maximum dose values for critical structures were discovered. The anatomical sites with large scatter contributions are the most vulnerable to inaccuracies in the modeled spectrum. Conclusion: An independent check of the TPS model spectrum is highly desirable and should be included as part of commissioning of a new Linac. The effect is particularly important for dose calculations in high heterogeneity regions. The developed approach makes

  14. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  15. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  16. Fractal analysis of power spectra

    International Nuclear Information System (INIS)

    Johnston, S.

    1982-01-01

    A general argument is presented concerning the Hausdorff dimension D of the power spectrum curve for a system of N weakly-coupled oscillators. Explicit upper and lower bounds for D are derived in terms of the number N of interacting modes. The mathematical reasoning relies upon the celebrated KAM theorem concerning the perturbation of Hamiltonian systems and the finite measure of the set of destroyed tori in phase space; this set can be related to Hausdorff dimension by certain mathematical theorems. An important consequence of these results is a simple empirical test for the applicability of Hamiltonian perturbation theory in the analysis of an experimentally observed spectrum. As an illustration, the theory is applied to the interpretation of a recent numerical analysis of both the power spectrum of the Sun and certain laboratory spectra of hydrodynamic turbulence. (Auth.)

  17. Spectra processing with computer graphics

    International Nuclear Information System (INIS)

    Kruse, H.

    1979-01-01

    A program of processng gamma-ray spectra in rock analysis is described. The peak search was performed by applying a cross-correlation function. The experimental data were approximated by an analytical function represented by the sum of a polynomial and a multiple peak function. The latter is Gaussian, joined with the low-energy side by an exponential. A modified Gauss-Newton algorithm is applied for the purpose of fitting the data to the function. The processing of the values derived from a lunar sample demonstrates the effect of different choices of polynomial orders for approximating the background for various fitting intervals. Observations on applications of interactive graphics are presented. 3 figures, 1 table

  18. Accuracy of unfolded map method for determining the left ventricular border. Evaluation of the cut-off value from autopsy finding

    International Nuclear Information System (INIS)

    Sugibayashi, Keiichi; Abe, Yoshiteru; Suga, Yutaka

    1996-01-01

    To improve the quantification of the left ventricular surface area (LVSA) by unfolded map method, we evaluated the cut-off value for determining the left ventricular border. The LVSA measured by unfolded map was compared with those measured using myocardial phantom and autopsy findings. The relative error (RE) was calculated as difference between LVSA in phantom and area of unfolded map. In phantom study, the cut-off value was calculated as 73.3±0.5% when the RE was zero. In autopsy study, the cut-off value was 74.0±7.2%. The area of unfolded map had good correlation with LVSA at autopsy when the cut-off value was 74% (r=0.83, p<0.003). The diameter of left ventricle at autopsy was compared with that of beating heart obtained by two-dimensional echocardiography, because the area of unfolded map was greater than LVSA at autopsy. The ratio of LVSA at autopsy to beating heart was calculated as 1.37. The suitable cut-off value was evaluated as 55.6% when the unfolded map area obtained by autopsy was increased 1.37 magnifications. There was a good correlation between LVSA of unfolded map (cut-off=56%) and the LVSA at autopsy (r=0.90, p<0.001). These results suggest that the cut-off value for determining the left ventricular border in vivo is 56%. (author)

  19. The Role of E27-K31 and E56-K10 Salt-Bridge Pairs in the Unfolding Mechanism of the B1 Domain of Protein G

    Directory of Open Access Journals (Sweden)

    Tony Ibnu Sumaryada

    2018-02-01

    Full Text Available Molecular dynamics simulations of the B1 fragment of protein G (56 residues have been performed at 325, 350, 375, 400, 450 and 500 K for 10 ns. An analysis of its structural and energetic parameters has indicated that the unfolding process of the GB1 protein begins at 900 ps of a 500-K simulation. The unfolding process is initiated when hydrogen bonds in the hydrophobic core region are broken; it continues with the α-helix transformation into coils and turns and ends with the destruction of the β-hairpins. These unfolding events are consistent with the hybrid model of the protein folding/unfolding mechanism, which is a compromise between the hydrophobic core collapse model and the zipper model. Salt-bridge pairs were found to play an important role in the unfolding process by maintaining the integrity of the tertiary structure of the protein. The breaking (or disappearance of the salt-bridge pairs E27–K31 (in the α-helix and E56–K10 (connecting β4 and β1 has resulted in the destruction of secondary structures and indicates the beginning of the unfolding process. Our results also suggest that the unfolding process in this simulation was not a complete denaturation of the protein because some β-hairpins remained

  20. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul [Department of Physics, University at Buffalo, Buffalo, New York 14260 (United States)

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  1. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  2. Neutron flux density and secondary-particle energy spectra at the 184-inch synchrocyclotron medical facility

    International Nuclear Information System (INIS)

    Smith, A.R.; Schimmerling, W.; Henson, A.M.; Kanstein, L.L.; McCaslin, J.B.; Stephens, L.D.; Thomas, R.H.; Ozawa, J.; Yeater, F.W.

    1978-07-01

    Helium ions, with an energy of 920 MeV, produced by the 184-inch synchrocyclotron of the Lawrence Berkeley Laboratory are now being used in a pilot series to determine their efficacy in the treatment of tumors of large volume. The techniques for production of the large uniform radiation fields required for these treatments involve the use of beam-limiting collimators and energy degraders. Interaction of the primary beam with these beam components produces secondary charged particles and neutrons. The sources of neutron production in the beam transport system of the alpha-particle beam have been identified and their magnitudes have been determined. Measurements with activation detectors and pulse counters of differing energy responses have been used to determine secondary particle spectra at various locations on the patient table. These spectra are compared to a calculation of neutron production based on best estimates derived from published cross sections. Agreement between the calculated spectra and those derived from experimental measurements is obtained (at the 10 to 20% level) when the presence of charged particles is taken into account. The adsorbed dose in soft tissue is not very sensitive to the shape of the incident neutron energy spectrum, and the values obtained from unfolding the experimental measurements agree with the values obtained from the calculated spectra within the estimated uncertainty of +-25%. These values are about 3 x 10 -3 rad on the beam axis and about 1 x 10 -3 rad at 20 cm or more from the beam axis, per rad deposited by the incident alpha-particle beam. Estimates of upper limit dose to the lens of the eye and red bone marrow are approximately 10 rad and approximately 1 rad, respectively, for a typical treatment plan. The absorbed dose to the lens of the eye is thus well below the threshold value for cataractogenesis estimated for fission neutrons. An upper limit for the risk of leukemia is estimated to be approximately 0.04%

  3. Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan.

    Science.gov (United States)

    Bozzi, Manuela; Bianchi, Marzia; Sciandra, Francesca; Paci, Maurizio; Giardina, Bruno; Brancaccio, Andrea; Cicero, Daniel O

    2003-11-25

    Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.

  4. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  5. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy

    Directory of Open Access Journals (Sweden)

    Ana-Belén eBlázquez

    2014-06-01

    Full Text Available The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR, which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.

  6. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan; Rosenberg, Scott C.; Hagemann, Goetz; Herzog, Franz; Tóth, Attila; Cleveland, Don W.; Corbett, Kevin D.

    2017-06-28

    Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “pore loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.

  7. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2010-04-15

    The hereditary disorder alpha-1 antitrypsin (AAT) deficiency results from mutations in the SERPINA1 gene and presents with emphysema in young adults and liver disease in childhood. The most common form of AAT deficiency occurs because of the Z mutation, causing the protein to fold aberrantly and accumulate in the endoplasmic reticulum (ER). This leads to ER stress and contributes significantly to the liver disease associated with the condition. In addition to hepatocytes, AAT is also synthesized by monocytes, neutrophils, and epithelial cells. In this study we show for the first time that the unfolded protein response (UPR) is activated in quiescent monocytes from ZZ individuals. Activating transcription factor 4, X-box binding protein 1, and a subset of genes involved in the UPR are increased in monocytes from ZZ compared with MM individuals. This contributes to an inflammatory phenotype with ZZ monocytes exhibiting enhanced cytokine production and activation of the NF-kappaB pathway when compared with MM monocytes. In addition, we demonstrate intracellular accumulation of AAT within the ER of ZZ monocytes. These are the first data showing that Z AAT protein accumulation induces UPR activation in peripheral blood monocytes. These findings change the current paradigm regarding lung inflammation in AAT deficiency, which up until now was derived from the protease-anti-protease hypothesis, but which now must include the exaggerated inflammatory response generated by accumulated aberrantly folded AAT in circulating blood cells.

  8. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  9. Deciphering hierarchical features in the energy landscape of adenylate kinase folding/unfolding

    Science.gov (United States)

    Taylor, J. Nicholas; Pirchi, Menahem; Haran, Gilad; Komatsuzaki, Tamiki

    2018-03-01

    Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.

  10. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    Science.gov (United States)

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  12. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells.

    Science.gov (United States)

    Sun, Shengrong; Wang, Xiong; Wang, Changhua; Nawaz, Ahmed; Wei, Wen; Li, Juanjuan; Wang, Lijun; Yu, De-Hua

    2011-01-01

    The involvement of unfolded protein response (UPR) activation in tumor survival and resistance to chemotherapies suggests a new anticancer strategy targeting UPR pathway. Arctigenin, a natural product, has been recently identified for its antitumor activity with selective toxicity against cancer cells under glucose starvation with unknown mechanism. Here we found that arctigenin specifically blocks the transcriptional induction of two potential anticancer targets, namely glucose-regulated protein-78 (GRP78) and its analog GRP94, under glucose deprivation, but not by tunicamycin. The activation of other UPR pathways, e.g., XBP-1 and ATF4, by glucose deprivation was also suppressed by arctigenin. A further transgene experiment showed that ectopic expression of GRP78 at least partially rescued arctigenin/glucose starvation-mediated cell growth inhibition, suggesting the causal role of UPR suppression in arctigenin-mediated cytotoxicity under glucose starvation. These observations bring a new insight into the mechanism of action of arctigenin and may lead to the design of new anticancer therapeutics. © Georg Thieme Verlag KG Stuttgart · New York.

  13. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R.

    2015-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  14. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c.

    Science.gov (United States)

    Monari, Stefano; Millo, Diego; Ranieri, Antonio; Di Rocco, Giulia; van der Zwan, Gert; Gooijer, Cees; Peressini, Silvia; Tavagnacco, Claudio; Hildebrandt, Peter; Borsari, Marco

    2010-11-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics.

  15. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  16. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  17. Intrauterine Growth Restriction Increases TNFα and Activates the Unfolded Protein Response in Male Rat Pups

    Directory of Open Access Journals (Sweden)

    Emily S. Riddle

    2014-01-01

    Full Text Available Intrauterine growth restriction (IUGR programs adult disease, including obesity and insulin resistance. Our group previously demonstrated that IUGR dysregulates adipose deposition in male, but not female, weanling rats. Dysregulated adipose deposition is often accompanied by the release of proinflammatory signaling molecules, such as tumor necrosis factor alpha (TNFα. TNFα contributes to adipocyte inflammation and impaired insulin signaling. TNFα has also been implicated in the activation of the unfolded protein response (UPR, which impairs insulin signaling. We hypothesized that, in male rat pups, IUGR would increase TNFα, TNFR1, and components of the UPR (Hspa5, ATF6, p-eIF2α, and Ddit3 prior to the onset of obesity. We further hypothesized that impaired glucose tolerance would occur after the onset of adipose dysfunction in male IUGR rats. To test this hypothesis, we used a well-characterized rat model of uteroplacental insufficiency-induced IUGR. Our primary findings are that, in male rats, IUGR (1 increased circulating and adipose TNFα, (2 increased mRNA levels of UPR components as well as p-eIF2a, and (3 impaired glucose tolerance after observed TNFα increased and after UPR activation. We speculate that programmed dysregulation of TNFα and UPR contributed to the development of glucose intolerance in male IUGR rats.

  18. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    Science.gov (United States)

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  19. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    International Nuclear Information System (INIS)

    Chandler, E M; Saunders, M P; Yoon, C J; Fischbach, C; Gourdon, D

    2011-01-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies

  20. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus.

    Directory of Open Access Journals (Sweden)

    Joseph W Briggs

    Full Text Available Activation of the unfolded protein response (UPR in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.

  1. Unfolding epidemiological stories: how the WHO made frozen blood into a flexible resource for the future.

    Science.gov (United States)

    Radin, Joanna

    2014-09-01

    In the decades after World War II, the World Health Organization (WHO) played an important role in managing the process of stabilizing collections of variable blood samples as a fundamentally unstable, protean, and unfolding biomedical resource. In this system, known and as yet unknown constituents of blood were positioned as relevant to the work of multiple constituencies including human population geneticists, physical anthropologists, and immunologists. To facilitate serving these and other constituencies, it was crucial to standardize practices of collecting and preserving samples of blood from globally distributed human populations. The WHO achieved this by linking its administrative infrastructure-comprised of expert advisory groups and technical reports-to key laboratories, which served as sites for demonstrating and also for disseminating standards for working with variable blood samples. The practices that were articulated in making blood samples into a flexible resource contributes to emerging histories of global health that highlight the centrality of new institutions, like the WHO, new forms of expertise, like population genetics and serological epidemiology, and new kinds of research materials, like frozen blood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A new paradigm: innate immune sensing of viruses via the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Judith A Smith

    2014-05-01

    Full Text Available The immune system depends upon combinations of signals to mount appropriate responses: pathogen specific signals in the context of co-stimulatory danger signals drive immune strength and accuracy. Viral infections trigger anti-viral type I interferon (IFN responses by stimulating endosomal and cytosolic pattern recognition receptors (PRRs. However, viruses have also evolved many strategies to counteract IFN responses. Are there intracellular danger signals that enhance immune responses to viruses? During infection, viruses place a heavy demand on the protein folding machinery of the host endoplasmic reticulum (ER. To survive ER stress, host cells mount an Unfolded Protein Response (UPR to decrease ER protein load and enhance protein-folding capacity. Viruses also directly elicit the UPR to enhance their replication. Increasing evidence supports an intersection between the host UPR and inflammation, in particular the production of pro-inflammatory cytokines and type I IFN. The UPR directly activates pro-inflammatory cytokine transcription factors and dramatically enhances cytokine production in response to viral PRR engagement. Additionally, viral PRR engagement may stimulate specific pathways within the UPR to enhance cytokine production. Through these mechanisms, viral detection via the UPR and inflammatory cytokine production are intertwined. Consequently, the UPR response is perfectly poised to act as an infection-triggered danger signal. The UPR may serve as an internal co-stimulatory signal that 1 provides specificity and 2 critically augments responses to overcome viral subterfuge. Further work is needed to test this hypothesis during viral infections.

  3. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  4. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    Science.gov (United States)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  5. Action adaptation during natural unfolding social scenes influences action recognition and inferences made about actor beliefs.

    Science.gov (United States)

    Keefe, Bruce D; Wincenciak, Joanna; Jellema, Tjeerd; Ward, James W; Barraclough, Nick E

    2016-07-01

    When observing another individual's actions, we can both recognize their actions and infer their beliefs concerning the physical and social environment. The extent to which visual adaptation influences action recognition and conceptually later stages of processing involved in deriving the belief state of the actor remains unknown. To explore this we used virtual reality (life-size photorealistic actors presented in stereoscopic three dimensions) to see how visual adaptation influences the perception of individuals in naturally unfolding social scenes at increasingly higher levels of action understanding. We presented scenes in which one actor picked up boxes (of varying number and weight), after which a second actor picked up a single box. Adaptation to the first actor's behavior systematically changed perception of the second actor. Aftereffects increased with the duration of the first actor's behavior, declined exponentially over time, and were independent of view direction. Inferences about the second actor's expectation of box weight were also distorted by adaptation to the first actor. Distortions in action recognition and actor expectations did not, however, extend across different actions, indicating that adaptation is not acting at an action-independent abstract level but rather at an action-dependent level. We conclude that although adaptation influences more complex inferences about belief states of individuals, this is likely to be a result of adaptation at an earlier action recognition stage rather than adaptation operating at a higher, more abstract level in mentalizing or simulation systems.

  6. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2017-11-01

    Full Text Available A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor.

  7. Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response

    Directory of Open Access Journals (Sweden)

    Yan Ying

    2010-08-01

    Full Text Available Abstract Background Resveratrol (RES, a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood. Method The effects of RES on activation of unfolded protein responses (UPR were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS. Results Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK activation, activating transcription factor 6 (ATF6 splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP. Conclusions Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.

  8. Hypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2011-01-01

    Full Text Available Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional parameter subspaces the stability of equilibrium region is determined and its boundaries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coefficient criteria. In the first case closed invariant curves (CICs are found to occur through 5D-crater-type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A remarkable feature of the second case is the coexistence of two attracting CICs outside the stability region. In both these cases the related hysteresis effects are illustrated by numerical simulations. In the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase space.

  9. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.

    Science.gov (United States)

    Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R; Knockenhauer, Kevin E; Vallotton, Pascal; Derrer, Carina P; Kralt, Annemarie; Mugler, Christopher F; Chan, Leon Y; Schwartz, Thomas U; Weis, Karsten

    2017-11-02

    Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Glutathione Peroxidase-1 Suppresses the Unfolded Protein Response upon Cigarette Smoke Exposure

    Directory of Open Access Journals (Sweden)

    Patrick Geraghty

    2016-01-01

    Full Text Available Oxidative stress provokes endoplasmic reticulum (ER stress-induced unfolded protein response (UPR in the lungs of chronic obstructive pulmonary (COPD subjects. The antioxidant, glutathione peroxidase-1 (GPx-1, counters oxidative stress induced by cigarette smoke exposure. Here, we investigate whether GPx-1 expression deters the UPR following exposure to cigarette smoke. Expression of ER stress markers was investigated in fully differentiated normal human bronchial epithelial (NHBE cells isolated from nonsmoking, smoking, and COPD donors and redifferentiated at the air liquid interface. NHBE cells from COPD donors expressed heightened ATF4, XBP1, GRP78, GRP94, EDEM1, and CHOP compared to cells from nonsmoking donors. These changes coincided with reduced GPx-1 expression. Reintroduction of GPx-1 into NHBE cells isolated from COPD donors reduced the UPR. To determine whether the loss of GPx-1 expression has a direct impact on these ER stress markers during smoke exposure, Gpx-1−/− mice were exposed to cigarette smoke for 1 year. Loss of Gpx-1 expression enhanced cigarette smoke-induced ER stress and apoptosis. Equally, induction of ER stress with tunicamycin enhanced antioxidant expression in mouse precision-cut lung slices. Smoke inhalation also exacerbated the UPR response during respiratory syncytial virus infection. Therefore, ER stress may be an antioxidant-related pathophysiological event in COPD.

  11. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  12. Being part of an unfolding story: togetherness in everyday occupations when ageing.

    Science.gov (United States)

    Nyman, Anneli; Josephsson, Staffan; Isaksson, Gunilla

    2014-09-01

    The aim of this study was to explore and enhance the understanding of how togetherness in everyday occupations is experienced and discussed among older adults. Focus-group discussions generated the data and a total of 12 participants, including six women and six men, divided into three groups, participated in this study. Analysis was performed using a grounded theory approach. The findings reflect how togetherness in everyday occupations can be comprehended as multifold transactional processes, emphasizing how an acted belonging was a situated experience connecting people and places through unfolding stories. The findings suggest that the process of meaning-making in ongoing life was closely associated with togetherness and was negotiated with others through shared culture and experiences. Togetherness meant being part of something in which the persons involved were contributing to each other in various ways. However, being part of togetherness was complicated, especially when the person's life situation was challenged in some way. It was apparent from the analysis that togetherness could not be taken for granted. Rather, the findings reflect how togetherness was created and maintained through an ongoing process of nurturing established relationships as well as creating something new around occupations with others.

  13. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    Science.gov (United States)

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a {sup 6}LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  15. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    International Nuclear Information System (INIS)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang; Xie, Ji-Sheng; Meng, Xin; Guan, Yifu; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2α (eIF2α), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2α inhibitor, or overexpression of dominant negative mutants of PERK or eIF2α, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2α branch of UPR in RES-induced inhibition of cell proliferation.

  16. Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick.

    Directory of Open Access Journals (Sweden)

    Angélique Igel-Egalon

    2017-09-01

    Full Text Available Mammalian prions, the pathogens that cause transmissible spongiform encephalopathies, propagate by self-perpetuating the structural information stored in the abnormally folded, aggregated conformer (PrPSc of the host-encoded prion protein (PrPC. To date, no structural model related to prion assembly organization satisfactorily describes how strain-specified structural information is encoded and by which mechanism this information is transferred to PrPC. To achieve progress on this issue, we correlated the PrPSc quaternary structural transition from three distinct prion strains during unfolding and refolding with their templating activity. We reveal the existence of a mesoscopic organization in PrPSc through the packing of a highly stable oligomeric elementary subunit (suPrP, in which the strain structural determinant (SSD is encoded. Once kinetically trapped, this elementary subunit reversibly loses all replicative information. We demonstrate that acquisition of the templating interface and infectivity requires structural rearrangement of suPrP, in concert with its condensation. The existence of such an elementary brick scales down the SSD support to a small oligomer and provide a basis of reflexion for prion templating process and propagation.

  17. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  18. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  19. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  20. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Harrington, J.P.; Seaton, M.J.; Adams, S.; Lutz, J.H.

    1982-01-01

    A detailed study of NGC 7662 is based on UV results obtained from 15 IUE spectra and on observations of other workers at optical, IR and radio wavelengths. Improved techniques are used to extract IUE data for an extended source. Relative fluxes in the different apertures which have been used are obtained using the brightness contours of Coleman, Reay and Worswick. There is close agreement between the reddening deduced from the ratios He II (lambda 1640)/(lambda 4686) and (radio)/(Hβ) and the nebular continuum emission observed with the IUE large slots agrees closely with that predicted using absolute radio and Hβ fluxes. The fluxes in nebular emission lines observed with the small slots are smaller than expected from brightness distributions; it is concluded that, for an extended source, the small slots have aperture transmission factors of 0.85 for SWP and 0.46 for LWR. The central star is fainter than has been previously supposed (by more than two magnitudes). The blackbody He II Zanstra temperature of 113 000 K is consistent with the UV colour temperature. Previous work on colour temperatures of central stars is discussed critically. Two models are discussed. (author)

  1. Methodology for analyzing weak spectra

    International Nuclear Information System (INIS)

    Yankovich, T.L.; Swainson, I.P.

    2000-02-01

    There is considerable interest in quantifying radionuclide transfer between environmental compartments. However, in many cases, it can be a challenge to detect concentrations of gamma-emitting radionuclides due to their low levels in environmental samples. As a result, it is valuable to develop analytical protocols to ensure consistent analysis of the areas under weak peaks. The current study has focused on testing how reproducibly peak areas and baselines can be determined using two analytical approaches. The first approach, which can be carried out using Maestro software, involves extracting net counts under a curve without fitting a functional form to the peak, whereas the second approach, which is used by most other peak fitting programs, determines net counts from spectra by fitting a Gaussian form to the data. It was found that the second approach produces more consistent peak area and baseline measurements, with the ability to de-convolute multiple, overlapping peaks. In addition, programs, such as Peak Fit, which can be used to fit a form to spectral data, often provide goodness of fit analyses, since the Gaussian form can be described using a characteristic equation against which peak data can be tested for their statistical significance. (author)

  2. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  3. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  4. Spectral Interpolation and Unfolding to Measure Multi-labelled Samples by Liquid Scintillation

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    1991-01-01

    A new procedure to determine the activity of each mixture is described. The information contained in pulse height spectra is used. The dilatation, in the steps are essential to obtain a good experimental fitting. The procedure can be applied to mixtures by β''-, β''-, γ, β''+, β''+- γ, EC, Ec-γ and isomeric transitions. (Author) 10 refs

  5. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M.; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E.

    2017-08-01

    The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.

  6. Use of new threshold detector 199Hg(n,n')/sup 199m/Hg for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Sakurai, K.

    1982-01-01

    The nuclear data for the 199 Hg(n,n')/sup 199m/Hg reaction are reviewed and the data are used for neutron spectrum unfolding. The neutron spectrum of the YAYOI glory-hole is unfolded by SAND II with 10 nuclear reactions including the 199 Hg(n,n')/sup 199m/Hg reaction. The ratio of the measured reaction rate to the calculated reaction rate is about 1:1.1 for the guess spectrum. The 199 Hg(n,n')/sup 199m/Hg, 115 In(n,n')/sup 115m/In, 103 Rh(n,n')/sup 103m/Rh reactions should be useful threshold detectors for the neutron dosimetry with low level fast neutron flux

  7. Energetic rationale for an unexpected and abrupt reversal of guanidinium chloride-induced unfolding of peptide deformylase.

    Science.gov (United States)

    Berg, Alexander K; Manokaran, Sumathra; Eiler, Daniel; Kooren, Joel; Mallik, Sanku; Srivastava, D K

    2008-01-01

    Peptide deformylase (PDF) catalyzes the removal of formyl group from the N-terminal methionine residues of nascent proteins in prokaryotes, and this enzyme is a high priority target for antibiotic design. In pursuit of delineating the structural-functional features of Escherichia coli PDF (EcPDF), we investigated the mechanistic pathway for the guanidinium chloride (GdmCl)-induced unfolding of the enzyme by monitoring the secondary structural changes via CD spectroscopy. The experimental data revealed that EcPDF is a highly stable enzyme, and it undergoes slow denaturation in the presence of varying concentrations of GdmCl. The most interesting aspect of these studies has been the abrupt reversal of the unfolding pathway at low to moderate concentrations of the denaturant, but not at high concentration. An energetic rationale for such an unprecedented feature in protein chemistry is offered.

  8. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  9. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding

    Science.gov (United States)

    Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2015-01-01

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823

  10. First Results of Minimum Fisher Regularisation as Unfolding Method for JET NE213 Liquid Scintillator Neutron Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Adams, J. M.; Bertalot, L.; Conroy, S.

    2005-01-01

    Roč. 74, 1-4 (2005), s. 781-786 ISSN 0920-3796. [Symposium on Fusion Technology - SOFT/23rd./. Benátky, 20.9.2004-24.9.2004] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * fusion * neutron diagnostic * spectrum unfolding * scintillator regularisation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.981, year: 2005 http://soft2004.igi.cnr.it/

  11. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.

    Science.gov (United States)

    Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning

    2013-06-14

    The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.

  12. Measurement of charged particle spectra at the LHC at 13 TeV

    CERN Document Server

    AUTHOR|(CDS)2094899

    The measurement of charged particle spectra is performed for centre-of-mass energy \\sqrt(s) = 13 TeV in experiment ATLAS. It is an inclusive measurement aiming at fast comparison of particle activity between data and theoretical model. Data are acquired with minimal model dependence avoiding unnecessary bias. Various efficiencies and fractions are determined in order to correct reconstructed spectra of tracks in the Inner Detector to distributions of primary particles. Correction of certain distributions involves more sophisticated methods, such as Bayesian unfolding. The corrected distributions are compared to Monte Carlo generators - Pythia 8 (A2 and Monash tunes), Herwig++, EPOS and QGSJET. Though no generator describes measured data perfectly, in many cases the differences are within few percent. The measured average number of charged particles per unit of pseudorapidity is 2.876 ± 0.001922(stat.) ± 0.03526(syst.) and is found to be in a good agreement with EPOS generator. Apart from the analysis, an in...

  13. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  14. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  15. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  16. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function.

    Science.gov (United States)

    Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-07-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.

  17. High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Seshasayee Aswin Sai Narain

    2005-03-01

    Full Text Available Abstract Background Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is known to fold within 4 ns. Results High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein have been carried out in explicit water using the OPLS-AA force-field incorporated in the program GROMACS. The radius of gyration (Rg and Root Mean Square Deviation (RMSD have been used as order parameters to follow the unfolding process. Distributions of Rg were used to identify ensembles. Conclusion Three ensembles could be identified. While the native-state ensemble shows an Rg distribution that is slightly skewed, the second ensemble, which is presumably the Transition State Ensemble (TSE, shows an excellent fit. The denatured ensemble shows large fluctuations, but a Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative structures from each of these ensembles are presented here.

  18. Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine-Comparison with GEANT4 simulations

    Science.gov (United States)

    Vagena, E.; Theodorou, K.; Stoulos, S.

    2018-04-01

    Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.

  19. The effects of crowding agents Dextran-70k and PEG-8k on actin structure and unfolding reaction

    Science.gov (United States)

    Gagarskaia, Iuliia A.; Povarova, Olga I.; Uversky, Vladimir N.; Kuznetsova, Irina M.; Turoverov, Konstantin K.

    2017-07-01

    Recently, an increasing number of studies on proteins' structure, stability and folding are trying to bring the experimental conditions closer to those existing in a living cell, namely to the conditions of macromolecular crowding. In vitro such conditions are typically imitated by the ;inert; highly water-soluble polymers with different hydrodynamic dimensions. In this work, the effects of crowded milieu on the structure and conformational stability of actin, which is a key component of the muscle contraction system, was examined. The crowded milieu was simulated by high concentrations of PEG-8k or Dextran-70k. It was revealed that both crowding agents decelerated but not inhibited actin unfolding and made a compact state of inactivated actin thermodynamically more favorable in comparison with the unfolded state. At the same time, the high viscosity of the solution of crowding agents slowed down all processes and especially inactivated actin formation, since it involves the interaction of 14-16 partially unfolded actin molecules. The effects of crowding agent were larger when its hydrodynamic dimensions were closer to the size of globular actin.

  20. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    Science.gov (United States)

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  1. Area spectra of near extremal black holes

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2010-01-01

    Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)

  2. Composite Spectra Paper 1: HR 6902

    Indian Academy of Sciences (India)

    tribpo

    spectra; in many cases we have used the maximum width permitted by the optics of ... 10 mЕ, corresponding to 1 µm the plate, are the norm. ..... an inequality ..... on the spectra of HR 6902, we have thought it appropriate to weight the four ...

  3. Thermoluminescence spectra measured with a Michelson interferometer

    International Nuclear Information System (INIS)

    Haschberger, P.

    1991-01-01

    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author)

  4. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  5. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  6. PCA: Principal Component Analysis for spectra modeling

    Science.gov (United States)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  7. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  8. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in

  9. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  10. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-01-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  11. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)

  12. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  13. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Perry

    Full Text Available Ubiquitin (Ub is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs. However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1, a critical mediator of the unfolded protein response (UPR. WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1 through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  14. Scoring-and-unfolding trimmed tree assembler: concepts, constructs and comparisons.

    Science.gov (United States)

    Narzisi, Giuseppe; Mishra, Bud

    2011-01-15

    Mired by its connection to a well-known -complete combinatorial optimization problem-namely, the Shortest Common Superstring Problem (SCSP)-historically, the whole-genome sequence assembly (WGSA) problem has been assumed to be amenable only to greedy and heuristic methods. By placing efficiency as their first priority, these methods opted to rely only on local searches, and are thus inherently approximate, ambiguous or error prone, especially, for genomes with complex structures. Furthermore, since choice of the best heuristics depended critically on the properties of (e.g. errors in) the input data and the available long range information, these approaches hindered designing an error free WGSA pipeline. We dispense with the idea of limiting the solutions to just the approximated ones, and instead favor an approach that could potentially lead to an exhaustive (exponential-time) search of all possible layouts. Its computational complexity thus must be tamed through a constrained search (Branch-and-Bound) and quick identification and pruning of implausible overlays. For his purpose, such a method necessarily relies on a set of score functions (oracles) that can combine different structural properties (e.g. transitivity, coverage, physical maps, etc.). We give a detailed description of this novel assembly framework, referred to as Scoring-and-Unfolding Trimmed Tree Assembler (SUTTA), and present experimental results on several bacterial genomes using next-generation sequencing technology data. We also report experimental evidence that the assembly quality strongly depends on the choice of the minimum overlap parameter k. SUTTA's binaries are freely available to non-profit institutions for research and educational purposes at http://www.bioinformatics.nyu.edu.

  15. Evolutionary game theory and social learning can determine how vaccine scares unfold.

    Science.gov (United States)

    Bauch, Chris T; Bhattacharyya, Samit

    2012-01-01

    Immunization programs have often been impeded by vaccine scares, as evidenced by the measles-mumps-rubella (MMR) autism vaccine scare in Britain. A "free rider" effect may be partly responsible: vaccine-generated herd immunity can reduce disease incidence to such low levels that real or imagined vaccine risks appear large in comparison, causing individuals to cease vaccinating. This implies a feedback loop between disease prevalence and strategic individual vaccinating behavior. Here, we analyze a model based on evolutionary game theory that captures this feedback in the context of vaccine scares, and that also includes social learning. Vaccine risk perception evolves over time according to an exogenously imposed curve. We test the model against vaccine coverage data and disease incidence data from two vaccine scares in England & Wales: the whole cell pertussis vaccine scare and the MMR vaccine scare. The model fits vaccine coverage data from both vaccine scares relatively well. Moreover, the model can explain the vaccine coverage data more parsimoniously than most competing models without social learning and/or feedback (hence, adding social learning and feedback to a vaccine scare model improves model fit with little or no parsimony penalty). Under some circumstances, the model can predict future vaccine coverage and disease incidence--up to 10 years in advance in the case of pertussis--including specific qualitative features of the dynamics, such as future incidence peaks and undulations in vaccine coverage due to the population's response to changing disease incidence. Vaccine scares could become more common as eradication goals are approached for more vaccine-preventable diseases. Such models could help us predict how vaccine scares might unfold and assist mitigation efforts.

  16. Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Mary Anna Carbone

    Full Text Available The statistical power of genome-wide association (GWA studies to detect risk alleles for human diseases is limited by the unfavorable ratio of SNPs to study subjects. This multiple testing problem can be surmounted with very large population sizes when common alleles of large effects give rise to disease status. However, GWA approaches fall short when many rare alleles may give rise to a common disease, or when the number of subjects that can be recruited is limited. Here, we demonstrate that this multiple testing problem can be overcome by a comparative genomics approach in which an initial genome-wide screen in a genetically amenable model organism is used to identify human orthologues that may harbor risk alleles for adult-onset primary open angle glaucoma (POAG. Glaucoma is a major cause of blindness, which affects over 60 million people worldwide. Several genes have been associated with juvenile onset glaucoma, but genetic factors that predispose to adult onset primary open angle glaucoma (POAG remain largely unknown. Previous genome-wide analysis in a Drosophila ocular hypertension model identified transcripts with altered regulation and showed induction of the unfolded protein response (UPR upon overexpression of transgenic human glaucoma-associated myocilin (MYOC. We selected 16 orthologous genes with 62 polymorphic markers and identified in two independent human populations two genes of the UPR that harbor POAG risk alleles, BIRC6 and PDIA5. Thus, effectiveness of the UPR in response to accumulation of misfolded or aggregated proteins may contribute to the pathogenesis of POAG and provide targets for early therapeutic intervention.

  17. Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice.

    Science.gov (United States)

    Park, Hyo-Jin; Park, Sun-Ji; Koo, Deog-Bon; Lee, Sang-Rae; Kong, Il-Keun; Ryoo, Jae-Woong; Park, Young-Il; Chang, Kyu-Tae; Lee, Dong-Seok

    2014-09-15

    We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish.

    Science.gov (United States)

    Komoike, Yuta; Matsuoka, Masato

    2013-10-15

    Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  20. Unfolding Leonardo DA Vinci's Globe (ad 1504) to Reveal its Historical World Map

    Science.gov (United States)

    Verhoeven, G. J.; Missinne, S. J.

    2017-08-01

    This paper reports in detail on the image-based modelling and unwrapping approach used to create a two-dimensional projected map of an astonishing ostrich egg globe from AD 1504. This miniature egg globe is not only the oldest extant engraved globe, but it is also the oldest post-Columbian globe of the world and the first ever to depict Newfoundland and many other territories. The intention of digitally recording the surface geometry and colour of this unique artefact was to portray the original layout of the world map used by the Florentine Renaissance artist to make this globe. In addition, it was expected to substantiate iconographical details, which are hard to study at its scale of 1:80,000,000. The ostrich egg globe is the prototype of the Lenox Globe kept at the New York Public Library. The latter is very beneficial to examine how the egg globe looked like before being glued together at its equator. On the other hand, unfolding the map engraved in the ostrich egg halves enables a more detailed study of the remarkable details visible on both globes, since the engravings on the quasi-white egg surface are much easier to discern than those of the highly reflective red copper Lenox Globe. Finally, a detailed study of the unwrapped 3D surface is essential to learn more about the world vision of its creator and the incredible efforts that went into making this globe. Thanks to some particular pictographic details as well as the way in which the engravings are applied (by a left-handed person), the globe artist can be identified as Leonardo da Vinci.