WorldWideScience

Sample records for spectra electromagnetic moments

  1. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  2. The Method of Moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2014-01-01

    Now Covers Dielectric Materials in Practical Electromagnetic DevicesThe Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts.New to the Second EditionExpanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multipl

  3. Electromagnetic properties for arbitrary spin particles: Natural electromagnetic moments from light-cone arguments

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2009-01-01

    We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and Q 2 =0 should be conserved nontrivially by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments and covariant vertex functions. The light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments, which we refer to as the 'natural' ones. These specific values are in accordance with the standard model, and the prediction of universal g=2 gyromagnetic factor is naturally recovered. We provide a very simple and compact formula for these natural moments. As an application of our results, we generalize the discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical support to the light-cone helicity conservation argument.

  4. Statistical fluctuations of electromagnetic transition intensities and electromagnetic moments in pf-shell nuclei

    International Nuclear Information System (INIS)

    Hamoudi, A.; Shahaliev, E.; Nazmitdinov, R. G.; Alhassid, Y.

    2002-01-01

    We study the fluctuation properties of ΔT=0 electromagnetic transition intensities and electromagnetic moments in A∼60 nuclei within the framework of the interacting shell model, using a realistic effective interaction for pf-shell nuclei with a 56 Ni core. The distributions of the transition intensities and of the electromagnetic moments are well described by the Gaussian orthogonal ensemble of random matrices. In particular, the transition intensity distributions follow a Porter-Thomas distribution. When diagonal matrix elements (i.e., moments) are included in the analysis of transition intensities, the distributions remain Porter-Thomas except for the isoscalar M1. This deviation is explained in terms of the structure of the isoscalar M1 operator

  5. Multipole electromagnetic moments of neutrino in dispersive medium

    International Nuclear Information System (INIS)

    Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1989-01-01

    Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated

  6. Electromagnetic moments of hadrons and quarks in a hybrid model

    International Nuclear Information System (INIS)

    Gerasimov, S.B.

    1989-01-01

    Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig

  7. An online database of nuclear electromagnetic moments

    International Nuclear Information System (INIS)

    Mertzimekis, T.J.; Stamou, K.; Psaltis, A.

    2016-01-01

    Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure – including nuclear moments – which hinders the information management. A new, dedicated, public and user friendly online database ( (http://magneticmoments.info)) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.

  8. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    Science.gov (United States)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  9. A new online database of nuclear electromagnetic moments

    Science.gov (United States)

    Mertzimekis, Theo J.

    2017-09-01

    Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.

  10. Kornwell-Norton moments and electromagnetic current commutator expansion on light cone

    International Nuclear Information System (INIS)

    Vitsorek, Eh.; Motts, G.

    1975-01-01

    Relations have been obtained between the asymptotic behaviour of moments and the commutator of electromagnetic currents on the light cone. The existence of the operator decomposition on the light cone and the applicability of Fourier transformation to it has not been assumed

  11. Comparison of exit time moment spectra for extrinsic metric balls

    DEFF Research Database (Denmark)

    Hurtado, Ana; Markvorsen, Steen; Palmer, Vicente

    2012-01-01

    We prove explicit upper and lower bounds for the $L^1$-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds $P^m$ in ambient Riemannian spaces $N^n$. We assume that $P$ and $N$ both have controlled radial curvatures (mean curvature and sectional curvature...... obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds $N^n$ themselves....

  12. Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    International Nuclear Information System (INIS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Electromagnetic moments and electric dipole transitions in carbon isotopes

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-01-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value

  14. Level spectra, electromagnetic moments and transition rates and spectroscopic factors for odd rhodium isotopes in the Coriolis coupling model

    International Nuclear Information System (INIS)

    Bredbacka, A.; Brenner, M.; Malik, F.B.; Aabo Akademi, Turku

    1989-01-01

    Properties of low-lying positive- and negative-parity states of 97,99,101,103,105,107,109 Rh at low excitation energies have been analyzed in terms of a Coriolis coupling model. The model can account for the general trend of the level schemes for states of both parties. In particular, the 9/2, 7/2, and 5/2 triplet near the ground state, the occurrence of multiple 13/2 and at least one 15/2 and 19/2 state of positive parity are reasonably reproduced by the model. Similarly, 1/2 ground-state spin followed by a (3/2, 5/2) doublet, and one or more 13/2 and 17/2 states of negative parity are adequately understood in terms of the model. The calculated electromagnetic dipole and quadrupole moments and magnetic dipole and electric quadrupole transition rates are in broad agreement with the observed ones. This is achieved without the use of any effective charge. The general trend of observed spectroscopic factors for pick-up reactions is in agreement with the calculated ones. The results are presented as a function of deformation. Because of the sparsity of data on many of these isotopes, no attempt has been made to find the best fit for each isotope individually. Since the model can reasonably reproduce the general trend of level schemes, electromagnetic properties and spectroscopic factors, one may conclude that the Coriolis coupling model provides a good description of the nuclear properties of these isotopes. (orig.)

  15. Moment Magnitude Determination for Marmara Region-Turkey Using Displacement Spectra

    Science.gov (United States)

    Köseoǧlu Küsmezer, Ayşegül; Meral Özel, Nurcan; Barış, Å.žErif; Üçer, S. Balamir; Ottemöller, Lars

    2010-05-01

    The main purpose of the study is to determine moment magnitude Mω using displacement source spectra of earthquakes occurred in Marmara Region. The region is the most densely populated and fast-developing part of Turkey, bounded by 39.0°N to 42.0°N and 26.0°E to 32.0°E, and have experienced major earthquake disasters during the last four centuries with destructive earthquakes and probabilistic seismic hazard studies shows that the region have significant probability of producing M>7 earthquake within the next years. Seismic moment is a direct measurement of earthquake size (rupture area and static displacement) and does not saturate, spectral analysis at local distances is a very useful method which allows the reliable determination of seismic moment and moment magnitude. We have used converging grid search method developed by L. Ottemöller, and J. Havskov, 2008 for the automatic determination of moment magnitude for local distances. For data preperation; the time domain signal of S waves were extracted from the vertical component seismograms.Data was transformed from time to frequency domain by applying the standart fast fourier transform (fft). Source parameters and moment magnitudes of earthquakes are determined by applying spectral fitting procedure to classical Brune's model. The method is first manually and then automatically performed on the source spectrum of S waves within 20 sec. Mo and fc (Aki;1967, and Brune;1970) were determined by using the method which the model space is divided into a grid and the error function detected for all grid points. A smaller grid with denser spacing around the best solution is generated with an iterative procedure. The moment magnitudes of the earthquakes have been calculated according to the scale of Kanamori (1977) and Hanks and Kanamori (1979). A data set of 279 events recorded on broadband velocity seismograms extracted from KOERI (Kandilli Observatory and Earthquake Research Institute) seismic network were

  16. Electroabsorption spectra of carotenoid isomers: Conformational modulation of polarizability vs. induced dipole moments

    International Nuclear Information System (INIS)

    Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz

    2006-01-01

    Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability

  17. Analysis of aggregate optical spectra using moments. Application to the purple membrane of halobacterium halobium

    International Nuclear Information System (INIS)

    Hemenger, R.P.

    1978-01-01

    The problem of extracting structural information from the optical spectra of aggregates of molecules interacting through their electronic transitions is studied. One serious difficulty common to all approaches to this problem is that of properly taking into account the effects of molecular vibrations. A series of exact relations derived previously which are correct with regard to molecular vibrations provide a number of independent, explicit connections between aggregate geometrical parameters and moments of experimental spectra. It is shown that, by applying these moment relations to the optical absorption and circular dichroism spectra of simple aggregates, a complete set of equations can be found, i.e., enough equations can be found to solve for all of the geometrical parameters which enter into the expressions for absorption and circular dichroism spectra. This procedure is applied in some detail to the purple membrane of Halobacterium halobium. The results are completely consistent with what is known about its structure

  18. An evolutionary approach to real-time moment magnitude estimation via inversion of displacement spectra

    Science.gov (United States)

    Caprio, M.; Lancieri, M.; Cua, G. B.; Zollo, A.; Wiemer, S.

    2011-01-01

    We present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. The method consists of two components: 1) estimating seismic moment by finding the low frequency plateau Ω0, the corner frequency fc and attenuation factor (Q) that best fit the observed displacement spectra assuming a Brune ω2 model, and 2) estimating magnitude and its uncertainty based on the estimate of seismic moment. A novel characteristic of this method is that is does not rely on empirically derived relationships, but rather involves direct estimation of quantities related to the moment magnitude. SI magnitude and uncertainty estimates are updated each second following the initial P detection. We tested the SI approach on broadband and strong motion waveforms data from 158 Southern California events, and 25 Japanese events for a combined magnitude range of 3 ≤ M ≤ 7. Based on the performance evaluated on this dataset, the SI approach can potentially provide stable estimates of magnitude within 10 seconds from the initial earthquake detection.

  19. Coda-derived source spectra, moment magnitudes and energy-moment scaling in the western Alps

    Science.gov (United States)

    Morasca, P.; Mayeda, K.; Malagnini, L.; Walter, William R.

    2005-01-01

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. for events ranging between MW~ 1.0 and ~5.0. Path corrections for consecutive narrow frequency bands ranging between 0.3 and 25.0 Hz were included using a simple 1-D model for five three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0 Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne cm by using independent moment magnitudes from long-period waveform modelling for three moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0 Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to fmax, as well as to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (i) we derived stable estimates of seismic moment, M0, (and hence MW) as well as radiated S-wave energy, (ES), from waveforms recorded by as few as one station, for events that were too small to be waveform modelled (i.e. events less than MW~ 3.5); (ii) the source spectra were used to derive an equivalent local magnitude, ML(coda), that is in excellent agreement with the network averaged values using direct S waves; (iii) scaled energy, , where ER, the radiated seismic energy, is comparable to results from other tectonically active regions (e.g. western USA, Japan) and supports the idea that there is a fundamental

  20. Charge radii and electromagnetic moments of Li and Be isotopes from the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Forssen, C.; Caurier, E.; Navratil, P.

    2009-01-01

    Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign

  1. The multi-resolution capability of Tchebichef moments and its applications to the analysis of fluorescence excitation-emission spectra

    Science.gov (United States)

    Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2018-01-01

    Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.

  2. Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment

    International Nuclear Information System (INIS)

    Poluektov, Yu.M.

    2014-01-01

    The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively

  3. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    Science.gov (United States)

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  4. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors

    Science.gov (United States)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-01

    The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .

  5. Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.

  6. Combination of ray-tracing and the method of moments for electromagnetic radiation analysis using reduced meshes

    Science.gov (United States)

    Delgado, Carlos; Cátedra, Manuel Felipe

    2018-05-01

    This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.

  7. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  8. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-08-01

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.

  9. Earthquake magnitudes based on Coda-Derived Moment-Rate Spectra in Taiwan

    Science.gov (United States)

    Tu, F.; Gung, Y.; Yoo, S.; Rhie, J.

    2010-12-01

    We use the coda-derived moment-rate spectra method to estimate earthquake magnitudes in Taiwan. We extract coda-envelope at several frequency bands ranging from 0.03 to 8.0 hz using the horizontal component of broad-band waveform data recorded by BATS (Broadband Array in Taiwan for Siemology). We derived synthetic coda-envelope using various empirical frequency-dependent corrections mainly based upon Mayeda et al. (2003), which may account for all propagation, site and S-to-coda transfer function effects. After proper calibration and distance-corrections, the dimensionless coda amplitudes are used to determine the earthquake magnitude and source spectra. Selected events with magnitudes between 4 and 6 that occurred in 2009 are used to derive the empirical corrections and calibrations. We present detailed results of each procedure. Moreover, with the empirical corrections, we apply this measurement to an expanded data set and compare the derived coda-magnitude with other magnitude scales derived from conventional methods.

  10. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC; Petschlies, Marcus [Humboldt Univ. Berlin (Germany). Inst. fuer Physik

    2011-03-15

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, in nite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modi cation to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43).10{sup -12}, 5.72(16).10{sup -8} and 2.650(54).10{sup -6} for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%. (orig.)

  11. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  12. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    Science.gov (United States)

    Fletcher, J. B.; McGarr, A.

    2011-08-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f-2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω-2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  13. 2011 Van earthquake (Mw=7.2) aftershocks using the source spectra an approach to real-time estimation of moment magnitude

    Science.gov (United States)

    Meral Ozel, N.; Kusmezer, A.

    2012-04-01

    The Converging Grid Search (CGS) algorithm was tested on broadband waveforms data from large aftershocks of the October 23, Van earthquake with the hypocentral distances within 0-300 km over a magnitude range of 4.0≤M≤5.6.Observed displacement spectra were virtually well adapted to the Brune's source model in the whole frequency range for many waveforms.The estimated Mw solutions were compared to global CMT catalogue solutions, and were seen to be in good agreement. To estimate Mw from a shear-wave displacement spectrum, an automatic routine named as CGS was applied to attempt to test and develop a method for stable moment magnitude estimation to be used as a real-time operation.The spectra were corrected for average an elastic attenuation and geometrical spreading factors and then were scaled to compute moment at the long period asymptote where the spectral plateau for 0 Hz is flat.For this aim, an automatic procedure was utilized: 1)calculating the displacement spectra for vertical components at a given station, 2)estimating corner frequency and seismic moment using CGS which is based on minimizing the differences between observed and synthetic source spectra, 3)calculating moment magnitude from seismic moment for each station separately, and then are averaged to give the mean values of each event. The best fitting iteration of these parameters was obtained after a few seconds. The noise spectrum was also computed to suggest a comparison between signals to noise ratio before performing the inversion.Weak events with low SNR were excluded from the computations. The method examined on the Van earthquake aftershock dataset proved that it is applicable to have stable and reliable estimates of magnitude for the routine processing within a few seconds from the initial P wave detection though the location estimation is necessary.This allows a fast determination of Mw magnitude and assist to measure physical quantities of the source available for the real time

  14. Local moments and electronic correlations in Fe-based Heusler alloys: Kα x-ray emission spectra measurements

    International Nuclear Information System (INIS)

    Svyazhin, Artem; Kurmaev, Ernst; Shreder, Elena; Shamin, Sergey; Sahle, Christoph J.

    2016-01-01

    Heusler alloys are a property-rich class of materials, intensively investigated today from both theoretical and real-world application points of view. In this paper, we attempt to shed light on the role of electronic correlations in the Fe_2MeAl group (where Me represents all 3d elements from Ti to Ni) of Heusler alloys. For this purpose, we have investigated the local moments of iron by means of the x-ray emission spectroscopy technique. To obtain numerical values of local moments, the Kα-FWHM method has been employed for the first time. In every compound of the group, the presence of a local moment on the Fe atom was detected. As has been revealed, the values of these moments are temperature-independent, pointing to an insufficiency of a pure itinerant approach to magnetism in these alloys. We also comprehensively compare the usage of Kβ main lines and Kα spectra as tools for the probing of local moments and point out the significant advantages of the latter. - Highlights: • Local spin moments of iron in Fe_2MeAl (Me = Ti … Ni) Heusler alloys were investigated by means of x-ray emission spectroscopy. • Independence of the local moments from temperature confirms their localized nature. • A local moment value of iron in Fe_2MeAl raises with the atomic number of element Me. • The applicability of the Kα x-ray emission line for extracting local moment values of 3d elements was established.

  15. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  16. Carrier-envelope phase-dependent transmitted spectra in inversion-asymmetric media with permanent dipole moments

    International Nuclear Information System (INIS)

    Yang Weifeng; Song Xiaohong; Zhang Chaojin; Xu Zhizhan

    2009-01-01

    We investigate the transmitted spectra of a few-cycle ultrashort pulse in an inversion-asymmetric medium with a permanent dipole moment (PDM). Our results show that even-order harmonics can be generated in this medium. Moreover, the generated even-order harmonics depend strongly on the carrier-envelope phase (CEP) of initial incident few-cycle ultrashort pulses. Physical analysis of the re-emitted spectra of the medium reveals that the CEP-dependent spectral effect is originated from the inversion-asymmetric structure and the corresponding PDM effects: two-photon transition dominates in the nonlinear process and further induces the generations of the even-order harmonics. Furthermore, the orientation relation between the electric field peak of the pulse and the PDM results in even-order harmonic generations depending on the CEP.

  17. Regulation of unbalanced electromagnetic moment in mutual loading systems of electric machines of traction rolling stock and multiple unit of mainline and industrial transport

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-12-01

    Full Text Available Purpose. The research data are aimed to identify the regulatory principles of unbalanced electromagnetic moment of mutually loaded electric machines of traction rolling stock and multiple unit of main and industrial transport. The purpose of this study is energy efficiency increase of the testing of traction electric machines of direct and pulse current using the improvement methods of their mutual loading, including the principles of automatic regulation of mutual loading system. Methodology. The general theoretical provisions and principles of system approach to the theoretical electric engineering, the theory of electric machines and theoretical mechanics are the methodological basis of this research. The known methods of analysis of electromagnetic and electromechanical processes in electrical machines of direct and pulse current are used in the study. Methods analysis of loading modes regulation of traction electric machines was conducted using the generalized scheme of mutual loading. It is universal for all known methods to cover the losses of idling using the electric power. Findings. The general management principles of mutual loading modes of the traction electric machines of direct and pulse current by regulating their unbalanced electric magnetic moment were developed. Regulatory options of unbalanced electromagnetic moment are examined by changing the difference of the magnetic fluxes of mutually loaded electric machines, the current difference of electric machines anchors, the difference of the angular velocities of electric machines shafts. Originality. It was obtained the scientific basis development to improve the energy efficiency test methods of traction electric machines of direct and pulse current. The management principles of mutual loading modes of traction electric machines were formulated. For the first time it is introduced the concept and developed the principles of regulation of unbalanced electromagnetic moment in

  18. Multiple Spectral Ratio Analyses Reveal Earthquake Source Spectra of Small Earthquakes and Moment Magnitudes of Microearthquakes

    Science.gov (United States)

    Uchide, T.; Imanishi, K.

    2016-12-01

    Spectral studies for macroscopic earthquake source parameters are helpful for characterizing earthquake rupture process and hence understanding earthquake source physics and fault properties. Those studies require us mute wave propagation path and site effects in spectra of seismograms to accentuate source effect. We have recently developed the multiple spectral ratio method [Uchide and Imanishi, BSSA, 2016] employing many empirical Green's function (EGF) events to reduce errors from the choice of EGF events. This method helps us estimate source spectra more accurately as well as moment ratios among reference and EGF events, which are useful to constrain the seismic moment of microearthquakes. First, we focus on earthquake source spectra. The source spectra have generally been thought to obey the omega-square model with single corner-frequency. However recent studies imply the existence of another corner frequency for some earthquakes. We analyzed small shallow inland earthquakes (3.5 multiple spectral ratio analyses. For 20000 microearthquakes in Fukushima Hamadori and northern Ibaraki prefecture area, we found that the JMA magnitudes (Mj) based on displacement or velocity amplitude are systematically below Mw. The slope of the Mj-Mw relation is 0.5 for Mj 5. We propose a fitting curve for the obtained relationship as Mw = (1/2)Mj + (1/2)(Mjγ + Mcorγ)1/γ+ c, where Mcor is a corner magnitude, γ determines the sharpness of the corner, and c denotes an offset. We obtained Mcor = 4.1, γ = 5.6, and c = -0.47 to fit the observation. The parameters are useful for characterizing the Mj-Mw relationship. This non-linear relationship affects the b-value of the Gutenberg-Richter law. Quantitative discussions on b-values are affected by the definition of magnitude to use.

  19. Precipitation Sensitivity to the Mean Radius of Drop Spectra: Comparison of Single- and Double-Moment Bulk Microphysical Schemes

    Directory of Open Access Journals (Sweden)

    Nemanja Kovačević

    2015-04-01

    Full Text Available In this study, two bulk microphysical schemes were compared across mean radius values of the entire drop spectra. A cloud-resolving mesoscale model was used to analyze surface precipitation characteristics. The model included the following microphysical categories: water vapour, cloud droplets, raindrops, ice crystals, snow, graupel, frozen raindrops and hail. Two bulk schemes were used: a single-moment scheme in which the mean radius was specified as a parameter and a double-moment scheme in which the mean radius of drops was calculated diagnostically with a fixed value for the cloud droplet number concentration. Experiments were conducted out for three values of the mean radius (in the single-moment scheme and two cloud droplet number concentrations (in the double-moment scheme. There were large differences in the surface precipitation for the two schemes, the simulated precipitation generated by the double-moment scheme had a higher sensitivity. The single-moment scheme generated an unrealistic collection rate of cloud droplets by raindrops and hail as well as unrealistic evaporation of rain and melting of solid hydrometeors; these processes led to inaccurate timing and amounts of surface precipitation.

  20. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    Science.gov (United States)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  1. Charge radii and electromagnetic moments of At-211195

    Science.gov (United States)

    Cubiss, J. G.; Barzakh, A. E.; Seliverstov, M. D.; Andreyev, A. N.; Andel, B.; Antalic, S.; Ascher, P.; Atanasov, D.; Beck, D.; Bieroń, J.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Fritzsche, S.; Gaffney, L. P.; George, S.; Ghys, L.; Heßberger, F. P.; Huyse, M.; Imai, N.; Kalaninová, Z.; Kisler, D.; Köster, U.; Kowalska, M.; Kreim, S.; Lane, J. F. W.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Marsh, B. A.; Mitsuoka, S.; Molkanov, P. L.; Nagame, Y.; Neidherr, D.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Revill, J. P.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Sandhu, K.; Schweikhard, L.; Sels, S.; Truesdale, V. L.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.; Van Duppen, P.; Wendt, K. D. A.; Wienholtz, F.; Whitmore, B. W.; Wilson, G. L.; Wolf, R. N.; Zuber, K.

    2018-05-01

    Hyperfine-structure parameters and isotope shifts of At-211195 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α -decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At,199197, for which a significant difference in the charge radii for ground (9 /2- ) and isomeric (1 /2+ ) states has been observed.

  2. Nonclassical polarization effects in fluorescence emission spectra from microdroplets

    Science.gov (United States)

    Arnold, S.; Goddard, N. L.; Hill, S. C.

    1999-12-01

    We report a pronounced nonclassical polarization effect on the shape of fluorescence emission spectra from isolated microdroplets containing a dilute solution of soluble fluors or a dilute layer of surfactant fluors. We see different spectral shapes for 90° scattering when comparing between IVV, IVH, IHH, IHV. However, we measure the largest difference in spectral shape in the surfactant case, with the incident polarization directed toward the detector (IHV vs IHH). Imaging reveals that the emission in this case principally arises from two distinct regions near the surface of the droplet, which are diametrically opposed and along the axis of the incident laser beam. The effect appears to be the direct result of coupling between molecular emission moments and electromagnetic modes of the droplet. It is not the molecule which radiates but the molecule microvessel. Directional emission is sensitive to the polarization of the electromagnetic mode which is stimulated by the coupling.

  3. On fractional Fourier transform moments

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2000-01-01

    Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their

  4. L{sub g} coda moment rate spectra and discrimination using L{sub g} coda envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Mayeda, K.M.; Walter, W.R. [Lawrence Livermore National Laboratory, CA (United States)

    1994-12-31

    Low magnitude seismic monitoring will depend largely on high frequency near-regional discriminants such as ratios of P to S energy and spectral amplitude ratios within P or S phases. Due to high frequency attenuation and sparse distribution of recording stations, small magnitude events will have to be identified with only a few stations, in some instances perhaps only one. Recently, stable single station magnitudes for explosions at NTS and moment rate spectra for earthquakes throughout the western U.S. have been estimated using L{sub g} coda envelopes. The averaging nature of coda waves virtually eliminates the amplitude variability due to source radiation anisotropy and lateral variations in path geology between the source and receiver. In this study, we find that L{sub g} coda spectral ratios are 3 to 4 times less variable than direct phase spectral ratio measurements. Events fired in low strength-high gas porosity material have higher spectral ratios than events in high strength-low gas porosity material, and thus discriminate well from earthquakes which have the lowest spectral ratios. In contrast, P{sub g}/L{sub g} phase ratios for events in low strength-high gas porosity material lie closest to the earthquake population. A combination of both discriminants performs better than either one does alone. Moment rate spectra for explosions show strong depth-dependent spectral peaking that is not observed in normal depth western U.S. earthquakes and is consistent with strong R{sub g} to S scattering near the explosion source. This explosion spectral peaking will be explored in future work as part of a possible broadband discriminant.

  5. Nuclear Anapole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  6. Nuclear Anapole Moments

    International Nuclear Information System (INIS)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-01-01

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments

  7. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Spevak, V.; Auerbach, N.; Flambaum, V.V.

    1997-01-01

    Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed theoretical treatment of the collective T-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation. copyright 1997 The American Physical Society

  8. Nuclear anapole moment and tests of the standard model

    International Nuclear Information System (INIS)

    Flambaum, V. V.

    1999-01-01

    There are two sources of parity nonconservation (PNC) in atoms: the electron-nucleus weak interaction and the magnetic interaction of electrons with the nuclear anapole moment. A nuclear anapole moment has recently been observed. This is the first discovery of an electromagnetic moment violating fundamental symmetries--the anapole moment violates parity and charge-conjugation invariance. We describe the anapole moment and how it can be produced. The anapole moment creates a circular magnetic field inside the nucleus. The interesting point is that measurements of the anapole allow one to study parity violation inside the nucleus through atomic experiments. We use the experimental result for the nuclear anapole moment of 133 Cs to find the strengths of the parity violating proton-nucleus and meson-nucleon forces. Measurements of the weak charge characterizing the strength of the electron-nucleon weak interaction provide tests of the Standard Model and a way of searching for new physics beyond the Standard Model. Atomic experiments give limits on the extra Z-boson, leptoquarks, composite fermions, and radiative corrections produced by particles that are predicted by new theories. The weak charge and nuclear anapole moment can be measured in the same experiment. The weak charge gives the mean value of the PNC effect while the anapole gives the difference of the PNC effects for the different hyperfine components of an electromagnetic transition. The interaction between atomic electrons and the nuclear anapole moment may be called the ''PNC hyperfine interaction.''

  9. Wigner higher-order spectra: definition, properties, computation and application to transient signal analysis

    OpenAIRE

    Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.

    1993-01-01

    The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...

  10. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  11. Electromagnetic direct implicit PIC simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1983-01-01

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes

  12. Hydrodynamical description of 200A GeV/c S+Au collisions: Hadron and electromagnetic spectra

    International Nuclear Information System (INIS)

    Sollfrank, J.; Huovinen, P.; Kataja, M.; Ruuskanen, P.V.; Prakash, M.; Venugopalan, R.

    1997-01-01

    We study relativistic S+Au collisions at 200A GeV/c using a hydrodynamical approach. We test various equations of state (EOS close-quote s), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electromagnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. Only EOS close-quote s with a few degrees of freedom up to very high temperatures can be ruled out presently. We deduce an upper bound of about 250 MeV for the initial temperature from the single photon spectra of WA80. With regard to the CERES dilepton data, none of the EOS close-quote s considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the ρ peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS. copyright 1997 The American Physical Society

  13. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  14. Collider detection of dark matter electromagnetic anapole moments

    Science.gov (United States)

    Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver

    2018-03-01

    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.

  15. Estimation of ground and excited state dipole moment of laser dyes C504T and C521T using solvatochromic shifts of absorption and fluorescence spectra.

    Science.gov (United States)

    Basavaraja, Jana; Suresh Kumar, H M; Inamdar, S R; Wari, M N

    2016-02-05

    The absorption and fluorescence spectra of laser dyes: coumarin 504T (C504T) and coumarin 521T (C521T) have been recorded at room temperature in a series of non-polar and polar solvents. The spectra of these dyes showed bathochromic shift with increasing in solvent polarity indicating the involvement of π→π⁎ transition. Kamlet-Taft and Catalan solvent parameters were used to analyze the effect of solvents on C504T and C521T molecules. The study reveals that both general solute-solvent interactions and specific interactions are operative in these two systems. The ground state dipole moment was estimated using Guggenheim's method and also by quantum mechanical calculations. The solvatochromic data were used to determine the excited state dipole moment (μ(e)). It is observed that dipole moment value of excited state (μ(e)) is higher than that of the ground state in both the laser dyes indicating that these dyes are more polar in nature in the excited state than in the ground state. Copyright © 2015. Published by Elsevier B.V.

  16. The law of electromagnetic force

    Directory of Open Access Journals (Sweden)

    V.J. Kutkovetskyy

    2014-06-01

    Full Text Available Calculation peculiarities for Lorentz force, Ampere force, interaction of parallel electric currents, and the moment of electrical machines are analyzed. They have exceptions on application, and they are the rules which result from the law of electromagnetic force as coordinate derivative of the operating magnetic flow. An addition to the direction of electromagnetic force action is proposed. Standards of salient-pole electrical machine designing are considered.

  17. Differential form representation of stochastic electromagnetic fields

    Science.gov (United States)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  18. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Science.gov (United States)

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-08-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  19. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Slim, J. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Gebel, R. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Heberling, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); Hinder, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Hölscher, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Lehrach, A. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Lorentz, B. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Mey, S. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Nass, A.; Rathmann, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); and others

    2016-08-21

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1–2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  20. Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift

    OpenAIRE

    Tkalya, E. V.

    2005-01-01

    We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...

  1. Electromagnetic properties of neutrinos

    International Nuclear Information System (INIS)

    Ould-Saada, F.

    1996-01-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, μ ν , of the order of 10 -11 μ B would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of ≅10 eV would give μ ν ≅10 -18 μ B , much smaller than the present experimental upper limit of 2x10 -10 μ B . Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of μ ν , larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, νe - scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the ν e , extending down to 2x10 -11 μ B . (author) 15 figs., 5 tabs., 96 refs

  2. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  3. Differential form representation of stochastic electromagnetic fields

    Directory of Open Access Journals (Sweden)

    M. Haider

    2017-09-01

    Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  4. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  5. Experimental investigation of rotation resistance moment energy spectra in multicylindrical circular Couette system with independently rotating cylinders

    Directory of Open Access Journals (Sweden)

    Serov Anatoly

    2017-01-01

    Full Text Available The torque of the rotational resistance in the Ku-Etta multi-cylinder system rotating in the direction towards each other is measured. The experiments were carried out for three values of the kinematic viscosity of the working fluid that fills the multicylinder system: water at a temperature of 24 °C (viscosity 0.9 cSt, an aqueous solution of glycerol at 20 °C and 41 °C (2.5 cSt and 5.2 cSt. An attempt is made to investigate the features of a viscous flow in the multicolor Couette flow system from the analysis of the energy spectra of the moment of resistance to rotation of cylinders.

  6. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  7. Anomalous magnetic nucleon moments in a Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Chak Wing Chan.

    1978-01-01

    We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)

  8. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  9. CONSEQUENCES OF SYMMETRY GROUPS FOR ELECTROMAGNETIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, A. J.; Sudarshan, E. C.G.

    1963-06-15

    The electromagnetic properties of SU/sub 3/ supermultiplets are obtained formally by a unitary transformation of a theory whose SU/sub 3/ invariant strong interactions are perturbed by merely charge-independent interactions. Several new results are presented, but the emphasis is on the simplicity and power of the method. Electromagnetic properties of the first and second kinds are distinguished, the former being independent of the precise manner in which the particular electromagnetic property depends on the electric charge current density. It is shown that all except two relations between the magnetic moments of the baryon octet hold equally well for other electromagnetic properties like self energies and Compton scattering amplitudes. (auth)

  10. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Gamma-ray continuum spectra from heavy ion reactions

    International Nuclear Information System (INIS)

    Beene, J.R.; Halbert, M.L.; Hensley, D.C.; Sarantites, D.G.; Westerberg, L.W.; Geoffroy, K.; Woodward, R.

    1979-01-01

    A detailed quantitative analysis of the yrast continuum was attempted by subtracting the underlying statistical continnuum in a way that makes allowance for ignorance of its detailed shape. This procedure makes it possible to obtain the moment of inertia as a function of spin over a wide range of spins. The results of this continuum spectra shape analysis can be used to calculate the first and second moments of the continuum multiplicity distribution. Continuum spectra were taken during the bombardment of 150 Nd by 115- and 130-MeV beams of 20 Ne, also the first and second moments of the γ-ray multiplicity distribution as a function of the gamma energy. The moment of inertia versus spin and the deduced Yrast continuua are shown. 10 references

  12. Pair creation of neutral particles in a vacuum by external electromagnetic fields in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Qiong-gui Lin; Department of Physics, Zhongshan University, Guangzhou 510275

    1999-01-01

    Neutral fermions of spin-1/2 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. In 2 + 1 dimensions the electromagnetic field strength plays the same role to the magnetic moment as the vector potential to the electric charge. This duality enables one to obtain physical results for neutral particles from known ones for charged particles. We give the probability of neutral particle-antiparticle pair creation in a vacuum by non-uniform electromagnetic fields produced by constant uniform charge and current densities. (author)

  13. Gravitational radiation from electromagnetic systems

    International Nuclear Information System (INIS)

    Nikishov, A.I.; Ritus, V.I.

    1989-01-01

    It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor

  14. Electromagnetic-radiation absorption by water.

    Science.gov (United States)

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  15. Electromagnetic-radiation absorption by water

    Science.gov (United States)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  16. Magnetic moments of composite quarks and leptons: further difficulties

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-05-01

    The previously noted difficulty of obtaining Dirac magnetic moments in composite models with two basic building blocks having different charges is combined with the observation by Shaw et al., that a light bound fermion state built from heavy constituents must have the Dirac moment in a renormalizable theory. The new constraint on any model that builds leptons from two fundamental fields bound by non-electromagnetic forces is that the ratio of the magnetic moment to the total charge of the bound state is independent of the values of the charges of the constituents; e.g., such a bound state of a spin-1/2 fermion and a scalar boson will have the same magnetic moment if the fermion is neutral and the boson has charge -e or vice versa

  17. Stochastic generation of continuous wave spectra

    DEFF Research Database (Denmark)

    Trulsen, J.; Dysthe, K. B.; Pécseli, Hans

    1983-01-01

    Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...

  18. Particle identification with neural networks using a rotational invariant moment representation

    Science.gov (United States)

    Sinkus, Ralph; Voss, Thomas

    1997-02-01

    A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. A preprocessing procedure is applied to the spatial energy distribution of the particle shower in order to account for the varying geometry of the calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The distributions of moments exhibit very different scales, thus the multidimensional input distribution for the neural network is transformed via a principal component analysis and rescaled by its respective variances to ensure input values of the order of one. This increases the sensitivity of the network and thus results in better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.

  19. Particle identification with neural networks using a rotational invariant moment representation

    International Nuclear Information System (INIS)

    Sinkus, R.

    1997-01-01

    A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. A preprocessing procedure is applied to the spatial energy distribution of the particle shower in order to account for the varying geometry of the calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The distributions of moments exhibit very different scales, thus the multidimensional input distribution for the neural network is transformed via a principal component analysis and rescaled by its respective variances to ensure input values of the order of one. This increases the sensitivity of the network and thus results in better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies. (orig.)

  20. Preliminary electromagnetic analysis of Helium Cooled Solid Blanket for CFETR by MAXWELL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cheng; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-15

    Highlights: • A FEM model of the blanket and magnetic system was built. • Electromagnetic forces and moments of the typical blanket for ferromagnetic and non-ferromagnetic materials were computed and analyzed. • Maxwell forces and Lorentz forces were computed and compared. • Eddy current in the blanket was analyzed under MD condition. - Abstract: A Helium Cooled Solid Blanket (HCSB) for CFETR (Chinese Fusion Engineering Test Reactor) was designed by USTC. The structural and thermal-hydraulic analysis has been carried out, while electromagnetic analysis was not carefully researched. In this paper, a FEM (finite element method) model of the HCSB was developed and electromagnetic forces as well as moments was computed by a FEM software called MAXWELL integrated in ANSYS Workbench. In the geometrical model, flow channels and small connecting parts were neglected because of the extreme complication and the reasonable conservative assumption by neglecting these circumstantial details. As for electromagnetic (EM) analysis, Lorentz forces due to eddy currents caused by main disruption and Maxwell forces due to the magnetization of RAFM steel (i.e. EUROFER97) were computed. Since the unavailability of the details of the plasma in CFETR, when disruptions happen, the condition where a linear current quench of main disruption occurs was assumed. The maximum magnitude of the electromagnetic forces was 356.45 kN and the maximum value of the coupled electromagnetic moments was 1899.40 N m around the radial direction. It is feasible to couple electromagnetic analysis, structural analysis and thermal-hydraulic analysis in the future since MAXWELL has good channels to exchange data between different analytic parts.

  1. Relativistic dynamics of point magnetic moment

    Science.gov (United States)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew

    2018-01-01

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.

  2. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  3. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  4. Neutron Electric Dipole Moment from Gauge-String Duality.

    Science.gov (United States)

    Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea

    2017-03-03

    We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.

  5. Strange Quark Magnetic Moment of the Nucleon at the Physical Point.

    Science.gov (United States)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2017-01-27

    We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051  GeV^{2}≲Q^{2}≲1.31  GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14)  fm^{2}.

  6. Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals

    NARCIS (Netherlands)

    Van Der Wurff, E. C I; Stoof, H. T C

    2016-01-01

    We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the

  7. Relativistic dynamics of point magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)

    2018-01-15

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)

  8. Second harmonic electromagnetic emission via Langmuir wave coalescence

    International Nuclear Information System (INIS)

    Willes, A.J.; Robinson, P.A.; Melrose, D.B.

    1996-01-01

    The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency is considered. A simplified expression for the rate of production of second harmonic electromagnetic waves is obtained for a broad class of Langmuir spectra. In addition, two different analytic approximations are considered. The validity of the commonly used head-on approximation is explored, in which the two coalescing Langmuir waves are assumed to approach from opposite directions. This approximation breaks down at low Langmuir wavenumbers, and for narrow Langmuir wave spectra. A second, more general, approximation is introduced, called the narrow-spectrum approximation, which requires narrow spectral widths of the Langmuir spectra. The advantages of this approximation are that it does not break down at low Langmuir wavenumbers, and that it remains valid for relatively broad Langmuir wave spectra. Finally, the applicability of these approximations in treating harmonic radiation in type III solar radio bursts is discussed. copyright 1996 American Institute of Physics

  9. The minimization of the extraneous electromagnetic fields of an inductive power transfer system

    International Nuclear Information System (INIS)

    McLean, James; Sutton, Robert

    2013-01-01

    The efficiency of inductive wireless power transfer (IPT) systems has been extensively studied. However, the electromagnetic compatibility of such systems is at least as important as the efficiency and has received much less attention. We consider the net magnetic dipole moment of the system as a figure of merit. That is, we seek to minimize the magnitude of the net dipole moment in order to minimize both the near magnetic fields and the radiated power. A 20 kHz, 3.3 kW, IPT system, representative of typical wireless vehicular battery charging systems, is considered and it is seen that one particular value of load impedance minimizes the net dipole moment while another, distinct, value maximizes efficiency. Thus, efficiency must be traded off, at least to some extent, in order to minimize extraneous electromagnetic fields.

  10. Unusual Co moment reduction in the NiCoO/Co exchange bias system

    Energy Technology Data Exchange (ETDEWEB)

    Brueck, S. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)]. E-mail: brueck@mf.mpg.de; Goering, E. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Tang, Y.J. [Center for Magnetic Recording Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0401 (United States); Schuetz, G. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Berkowitz, A.E. [Center for Magnetic Recording Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0401 (United States); Department of Physics, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0401 (United States)

    2007-03-15

    To answer the question on how the explicit mechanism of coupling in the antiferromagnetic alloy NiCoO is established when in close contact to a ferromagnetic Co layer, X-ray magnetic circular dichroism (XMCD) measurements have been performed. Precise XMCD spectra at the L{sub 2,3}-edge of Ni as well as Co have been obtained at room temperature and at 80K by measuring total electron yield X-ray absorption spectra. The Ni XMCD clearly shows the existence of free, rotatable magnetic Ni moments in the antiferromagnet. As for the Co, XMCD at room temperature shows an average magnetic moment comparable to bulk values. Cooling the sample to 80K decreases the average Co moment by 10%. This decrease is explained by a reduction of ferromagnetic cobalt moments related to antiferromagnetic coupling or pinning close to the interface.

  11. Electromagnetic moments and effective operators in nuclei near and far from the stability line

    International Nuclear Information System (INIS)

    Matsuta, Kensaku; Minamisono, Tadanori; Ogawa, Yoko; Miyake, Toru; Morishita, Akio; Sato, Kazunori; Momota, Sadao; Nojiri, Yoichi; Mihara, Mototsugu; Fukuda, Mitsunori; Zhu, Sheng-Yung; Onishi, Takashi; Sasaki, Makoto; Yamaguchi, Takayuki; Minamisono, Kei; Akai, Hisazumi; Atsushi, Kitagawa; Torikoshi, Masami; Kanazawa, Mitsutaka; Nishio, Teiji; Koda, Shigeru; Otsubo, Tatashi; Fukuda, Shigekazu; Tanihata, Isao; Yoshida, Koichi; Ozawa, Akira; Kitagawa, Hisashi; Sagawa, Hiroyuki; Hanna, Stanley S.; Alonso, Jose R.; Krebs, Gary F.; Symons, T. James M.; Osaka-RIKEN-HIMAC Collaboration

    2003-12-01

    Quenching of neutron effective charge has been observed by measuring the quadrupole moment of 16 N. Moreover, the neutron effective charge may be quenched in the quadrupole moment of 21 F. This quenching of effective charges is discussed in terms of the overlap integrals of the wave functions of the valence nucleons and the core. Effective g-factors may be required to explain the large spin expectation value for the mass number 9 mirror nuclei, deduced from the iso-scalar magnetic moment

  12. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    Science.gov (United States)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  13. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  14. Electromagnetic corrections to baryon masses

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc

    2005-01-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately

  15. Particle identification with neural networks using a rotational invariant moment representation

    International Nuclear Information System (INIS)

    Sinkus, R.

    1997-01-01

    A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The multidimensional input distribution for the neural network is transformed via a principle component analysis and rescaled by its respective variances to ensure input values of the order of one. This results is a better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies. (orig.)

  16. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Directory of Open Access Journals (Sweden)

    Andrzej Magiera

    2017-09-01

    Full Text Available Measurements of electric dipole moment (EDM for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle’s magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles’ interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  17. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Science.gov (United States)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  18. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  19. An interferometer experiment to explore the aspect angle dependence of stimulated electromagnetic emission spectra

    Directory of Open Access Journals (Sweden)

    Isham

    2005-01-01

    Full Text Available When the Earth's ionosphere is irradiated by a radiofrequency (RF electromagnetic wave of sufficiently high power density and tuned to match a natural E- or F-region plasma frequency, ionospheric magnetoionic wave modes may be excited and may generate RF electromagnetic sideband waves via nonlinear interactions. These secondary emissions, which may then escape from the ionosphere, have been termed stimulated electromagnetic emission or SEE. The frequency spectra of this radiation has been studied extensively, and a number of characteristic spectral features have been identified and in some cases related to particular plasma processes. The separation in frequency between the RF pump and the harmonics of the local electron gyrofrequency is critical in determining the amount of anomalous absorption suffered by the pump wave and the spectral properties of the stimulated sidebands. The pump can excite electrostatic waves which do not propagate away but can in some cases be observed via radio-wave scattering from the electron density fluctuations associated with them. These enhanced density fluctuations are created by processes commonly referred to as upper-hybrid and Langmuir turbulence. Langmuir turbulence has been the subject of 930-MHz scattering observations with antenna scanning through several pre-selected angles between the geographic and geomagnetic zenith directions, and a preference for pointing angles between the Spitze angle and geomagnetic field-aligned was identified. Other phenomena, such as the generation of enhanced electron temperatures and artificial aurora, have more recently been shown to have special behavior at similar angles, near but apparently not quite at field-aligned. In view of this evidence for angular structure in several pump-induced effects, in light of the rich variety of SEE phenomena strongly dependent on the geomagnetic field via the frequency interval between the pump and the gyrofrequency harmonics, and in

  20. An interferometer experiment to explore the aspect angle dependence of stimulated electromagnetic emission spectra

    Directory of Open Access Journals (Sweden)

    Isham

    2005-01-01

    Full Text Available When the Earth's ionosphere is irradiated by a radiofrequency (RF electromagnetic wave of sufficiently high power density and tuned to match a natural E- or F-region plasma frequency, ionospheric magnetoionic wave modes may be excited and may generate RF electromagnetic sideband waves via nonlinear interactions. These secondary emissions, which may then escape from the ionosphere, have been termed stimulated electromagnetic emission or SEE. The frequency spectra of this radiation has been studied extensively, and a number of characteristic spectral features have been identified and in some cases related to particular plasma processes. The separation in frequency between the RF pump and the harmonics of the local electron gyrofrequency is critical in determining the amount of anomalous absorption suffered by the pump wave and the spectral properties of the stimulated sidebands. The pump can excite electrostatic waves which do not propagate away but can in some cases be observed via radio-wave scattering from the electron density fluctuations associated with them. These enhanced density fluctuations are created by processes commonly referred to as upper-hybrid and Langmuir turbulence. Langmuir turbulence has been the subject of 930-MHz scattering observations with antenna scanning through several pre-selected angles between the geographic and geomagnetic zenith directions, and a preference for pointing angles between the Spitze angle and geomagnetic field-aligned was identified. Other phenomena, such as the generation of enhanced electron temperatures and artificial aurora, have more recently been shown to have special behavior at similar angles, near but apparently not quite at field-aligned. In view of this evidence for angular structure in several pump-induced effects, in light of the rich variety of SEE phenomena strongly dependent on the geomagnetic field via the frequency interval between the pump and the gyrofrequency harmonics, and in view

  1. Spins, Electromagnetic Moments, and Isomers of 107-129Cd

    CERN Document Server

    Yordanov, D T; Bieron, J; Bissell, M L; Blaum, K; Budincevic, I; Fritzsche, S; Frommgen, N; Georgiev, G; Geppert, Ch; Hammen, M; Kowalska, M; Kreim, K; Krieger, A; Neugart, R; Nortershauser, W; Papuga, J; Schmidt, S

    2013-01-01

    The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell.

  2. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  3. Anomalous moments of quarks and leptons from nonstandard WWγ couplings

    International Nuclear Information System (INIS)

    Boudjema, F.; Hagiwara, K.; Hamzaoui, C.; Numata, K.

    1991-01-01

    Contributions of nonstandard WWγ couplings to the four electromagnetic form factors of light quarks and leptons, magnetic and electric dipole moments, anapole moments, and charge radii, have been reevaluated, with a special emphasis on the effects of the locally SU(2) weak -invariant nonrenormalizable couplings λ and λ. Previous results for the contribution of the dimension-four anomalous couplings Δκ and κ are reproduced. The λ contribution to the charge radius and the anapole moments are found to be logarithmically sensitive to the cutoff scale (Λ), but the contribution of the λ coupling to the anomalous magnetic moments as well as that of the λ coupling to the electric dipole moments are found to be finite. These finite values are, however, found to be regularization-scheme dependent. The origin of the ambiguities is discussed and we argue that the numerical coefficients depend on the details of the underlying physics that gives rise to these nonstandard couplings. Banning an accidental cancellation, we can place an order-of-magnitude upper bound |λ|approx-lt 10 -4 from the experimental limit on the electric dipole moment of the neutron. Some definite predictions for the off-shell form factors are also presented

  4. On the measurement of Wigner distribution moments in the fractional Fourier transform domain

    NARCIS (Netherlands)

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of fractional Fourier transform systems (generally anamorphic ones). The minimum number of (anamorphic) fractional power spectra that are needed

  5. Acoustic and electromagnetic emission as a tool for crack localization

    International Nuclear Information System (INIS)

    Sedlak, P; Sikula, J; Lokajicek, T; Mori, Y

    2008-01-01

    The creation of cracks is accompanied by electric charge redistribution due to loosened chemical bounds. Electric charge on a crack wall creates dipole moments. Vibrations of crack walls produce time-dependent dipole moments and, consequently, electric and magnetic fields are generated. An electric signal is induced on metal electrodes. Simultaneously with the electromagnetic emission (EME) signal, an acoustic emission (AE) signal is generated, but due to the different velocities of propagation of both waves, the detection of the AE signal is delayed. This time delay presents the time of the wave propagation from the individual acoustic emission sensor to the crack. The defect can be located by means of these time intervals. This paper describes the localization using acoustic and electromagnetic emission signals for the two-dimensional case

  6. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  7. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  8. Charged point particles with magnetic moment in general relativity

    International Nuclear Information System (INIS)

    Amorim, R.; Tiomno, J.

    1977-01-01

    Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt

  9. Influence of pure dephasing on emission spectra from single photon sources

    DEFF Research Database (Denmark)

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char......We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate...

  10. Estimates of the first Dirichlet eigenvalue from exit time moment spectra

    DEFF Research Database (Denmark)

    Hurtado, Ana; Markvorsen, Steen; Palmer, Vicente

    2013-01-01

    We compute the first Dirichlet eigenvalue of a geodesic ball in a rotationally symmetric model space in terms of the moment spectrum for the Brownian motion exit times from the ball. This expression implies an estimate as exact as you want for the first Dirichlet eigenvalue of a geodesic ball...

  11. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  12. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  13. Ab initio potential energy surface, electric-dipole moment, polarizability tensor, and theoretical rovibrational spectra in the electronic ground state of {sup 14}NH{sub 3}{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, Sergei N. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Elektrochemie, D-01062 Dresden (Germany); Thiel, Walter [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Muelheim an der Ruhr (Germany); Carvajal, Miguel [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Avenida de las Fuerzas Armadas s/n, Universidad de Huelva, E-21071 Huelva (Spain); Jensen, Per [Theoretische Chemie, Bergische Universitaet, D-42097 Wuppertal (Germany)], E-mail: jensen@uni-wuppertal.de

    2008-05-04

    We report the calculation of a six-dimensional CCSD(T)/aug-cc-pVQZ potential energy surface for the electronic ground state of NH{sub 3}{sup +} together with the corresponding CCSD(T)/aug-cc-pVTZ dipole moment and polarizability surface of {sup 14}NH{sub 3}{sup +}. These electronic properties have been computed on a large grid of molecular geometries. A number of newly calculated band centers are presented along with the associated electric-dipole transition moments. We further report the first calculation of vibrational matrix elements of the polarizability tensor components for {sup 14}NH{sub 3}{sup +}; these matrix elements determine the intensities of Raman transitions. In addition, the rovibrational absorption spectra of the {nu}{sub 2}, {nu}{sub 3}, {nu}{sub 4}, 2{nu}{sub 2}-{nu}{sub 2}, and {nu}{sub 2}+{nu}{sub 3}-{nu}{sub 2} bands have been simulated.

  14. Random operators disorder effects on quantum spectra and dynamics

    CERN Document Server

    Aizenman, Michael

    2015-01-01

    This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization-presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and rela...

  15. Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is suppressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case that charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four dimensional, it does not directly apply to TeV-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions

  16. Electromagnetic compatibility of PLC adapters for in-home/domestic networks

    Science.gov (United States)

    Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek

    2018-01-01

    The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

  17. Time moments of the energy flow of optical pulses in highly dispersive media

    International Nuclear Information System (INIS)

    Nanda, Lipsa; Wanare, Harshawardhan; Ramakrishna, S Anantha

    2010-01-01

    We use the time moments of the Poynting vector associated with an electromagnetic pulse to characterize the traversal times and temporal pulse widths as the pulse propagates in highly dispersive media. The behaviour of these quantities with the propagation distance is analysed in three canonical cases: Lorentz absorptive medium, a Raman gain doublet amplifying medium and a medium exhibiting electromagnetically induced transparency. We find that superluminal pulse propagation in the first two cases with anomalous dispersion is usually accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation. In a medium with electromagnetically induced transparency with large normal dispersion, we identify a range of frequencies for which the pulse undergoes minimal temporal expansion while propagating with ultra-slow speed.

  18. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    Science.gov (United States)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  19. Electromagnetic Currents and Magnetic Moments in $\\chi$EFT

    Energy Technology Data Exchange (ETDEWEB)

    Saori Pastore, Luca Girlanda, Rocco Schiavilla, Michele Viviani, Robert Wiringa

    2009-09-01

    A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory ($\\chi$EFT) at, respectively, $Q^{\\, 2}$ (or N$^2$LO) and $e\\, Q$ (or N$^3$LO), where $Q$ generically denotes the low-momentum scale and $e$ is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole ($M1$) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the $M1$ operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants (LEC's) entering the N$^2$LO potential are fixed by fits to the $np$ S- and P-wave phase shifts up to 100 MeV lab energies. Three additional LEC's are needed to completely specify the $M1$ operator at N$^3$L

  20. Rovibrational matrix elements of the multipole moments and of the ...

    Indian Academy of Sciences (India)

    The rovibrational matrix elements of the multipole moments and polarizability of molecules find applications in the study of infrared spectra, intermolecular potential and collision-induced absorption phenomena, especially in homonuclear molecules. Because of its simplicity and fundamental importance, the hydrogen ...

  1. Stationary spectra in a quasi neutral current-carrying plasma

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    The low-frequency short-wave equilibrium spectra of electromagnetic fluctuations are obtained, accounting for cross-field correlations. The statistical analysis shows that a longitudinal current in a dense quasi neutral (α e ≡4πnomec 2 /Bo 2 >>1) plasma destroys the stationary of fluctuation spectra corresponding to zero fluxes of motion invariants, and may alter also the anomalous electron heat conductivity. 2 refs. (author)

  2. Electric quadrupole moments of {beta}-emitter {sup 21}F and {sup 23}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi; Matsuta, Kensaku; Fukuda, Mitsunori [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others

    1997-03-01

    For the systematic study of nuclear electromagnetic moments, electric quadrupole moments Q of {beta}-emitting nuclei {sup 21}F and {sup 23}Mg have been measured for the first time through combined technique of the polarized nuclear beams and {beta}-NMR technique. From the quadrupole coupling constants of {sup 21}F and {sup 23}Mg in MgF{sub 2} single crystal, the ratios of the Q`s with the known Q were determined as |Q({sup 21}F)|/|Q({sup 19}F{sup *})|=1.001{+-}0.034 and |Q({sup 23}Mg)|/|Q({sup 25}Mg)|=0.571{+-}0.017. (author)

  3. Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method.

    Science.gov (United States)

    Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R

    2014-04-05

    The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Moment methods and Lanczos methods

    International Nuclear Information System (INIS)

    Whitehead, R.R.

    1980-01-01

    In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here

  5. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  6. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  7. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-10-07

    We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  8. Quadrupole moments of wobbling excitations in 163Lu

    International Nuclear Information System (INIS)

    Goergen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Hagemann, G.B.; Sletten, G.; Huebel, H.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of 163 Lu have been measured with the Gammasphere spectrometer using the Doppler-shift attenuation method. The bands have been interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments are extracted for the zero-phonon yrast band and, for the first time, for the one-phonon wobbling band. The very similar results found for the two bands suggest a similar intrinsic structure and support the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the ratio of the interband to the in-band transition strengths remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared

  9. Effect of radio frequency waves of electromagnetic field on the tubulin.

    Science.gov (United States)

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  10. Moment Magnitude Calibration for the Eastern Mediterranean Region from Broadband Regional Coda Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Mayeda, K; Eken, T; Hofstetter, A; Turkelli, N; O' Boyle, J; Orgulu, G; Gok, R

    2003-07-17

    The following is an overview of results from ROA01-32 that focuses on an empirical method of calibrating stable seismic source moment-rate spectra derived from regional coda envelopes using broadband stations. The main goal was to develop a regional magnitude methodology that had the following properties: (1) it is tied to an absolute scale and is thus unbiased and transportable; (2) it can be tied seamlessly to the well-established teleseismic and regional catalogs; (3) it is applicable to small events using a sparse network of regional stations; (4) it is flexible enough to utilize S{sub n}-coda, L{sub g}-coda, or P-coda, whichever phase has the best signal-to-noise ratio. The results of this calibration yield source spectra and derived magnitudes that were more stable than any other direct-phase measure to date. Our empirical procedure accounted for all propagation, site, and S-to-coda transfer function effects. The resultant coda-derived moment-rate spectra were used to provide traditional band-limited magnitude (e.g., M{sub L}, m{sub b} etc.) as well as an unbiased, unsaturated magnitude (moment magnitude, M{sub w}) that is tied to a physical measure of earthquake size (i.e., seismic moment). We validated our results by comparing our coda-derived moment estimates with those obtained from long-period waveform modeling. We first tested and validated the method using events distributed along the Dead Sea Rift (e.g., Mayeda et al., 2003). Next, we tested the transportability of the method to earthquakes distributed across the entire country of Turkey and validated our results using seismic moments of over 50 events that had been previously waveform modeled using the method of Dreger and Helmberger, (1993). In both regions we demonstrated that the interstation magnitude scatter was significantly reduced when using the coda-based magnitudes (i.e., M{sub w}(coda) and m{sub b}(coda)). Once calibrated, the coda-derived source spectra provided stable, unbiased magnitude

  11. Gamma-decay and static moments, ch. 2

    International Nuclear Information System (INIS)

    Koops, J.E.

    1978-01-01

    Electromagnetic properties of low-lying states in the Ni and Cu isotopes with A = 57-67 have been calculated with shell-model wave functions obtained from a schematic interaction (MSDI) and an empirical interaction (ASDI). Effective M1 and E2 operators have been extracted from experimental transition rates and static moments. An extensive compilation of experimental lifetimes, branching and mixing ratios is presented. The adopted values are compared with the calculated results. The properties of yrast levels are generally well reproduced. It is found that the ASDI wave functions are not superior to the MSDI wave functions

  12. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  13. The Terminal Responses of the Two-Wire Line in Multiaperture Cavities Based on Electromagnetic Topology and Method of Moments

    Directory of Open Access Journals (Sweden)

    Ying Li

    2011-01-01

    Full Text Available A simulation technique based on electromagnetic topology (EMT theory is proposed for analyzing electromagnetic interference (EMI coupling through apertures onto the two-transmission line enclosed within metallic structures. The electromagnetic interactions between apertures and the external-internal interactions were treated through the topological decomposition and the multistep iterative method. Then, the load responses of the two-wire transmission line are resolved by the the Baum-Liu-Tesche (BLT equation. The simulation results both without and with the electromagnetic interaction are presented for the frequency range from 100 MHz to 3 GHz. These numerical results obtained by two methods imply that the electromagnetic interaction cannot be simply ignored, especially for the frequency range up to 1 GHz.

  14. Near-Field Spectral Effects due to Electromagnetic Surface Excitations

    OpenAIRE

    Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques

    2000-01-01

    International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...

  15. Nuclear deformations, level assignments and static nuclear moments of isotopes in the region 72Hf-77Ir

    International Nuclear Information System (INIS)

    Ekstroem, C.; Rubinsztein, H.; Moeller, P.

    1976-01-01

    A comparison is made between experimental and theoretical level assignments and static electromagnetic moments of nuclei in the region 72 Hf- 77 Ir. The theoretical calculations are based on the modified oscillator model. Equilibrium deformation values, epsilon and epsilon 4 , are determined for doubly-even and odd-mass nuclei from the minima in the potential energy surfaces. The influence of the different parameters entering the expressions for the magnetic dipole moment is analysed. The electric quadrupole and hexadecapole moments are calculated on the assumption that the nucleus is a homogeneously charged body with a sharp surface and a shape corresponding to that of an equipotential surface. In some selected cases, the electric multipole moments are evaluated by use of the single-particle wave functions. (Auth.)

  16. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Directory of Open Access Journals (Sweden)

    Jian-hua Gao

    2015-10-01

    Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  17. High-Precision Measurements of the Bound Electron’s Magnetic Moment

    Directory of Open Access Journals (Sweden)

    Sven Sturm

    2017-01-01

    Full Text Available Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the ionic nuclei. We summarize the measurements performed so far, discuss their significance, and give a detailed account of the experimental setups, procedures and the foreseen measurements.

  18. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  19. Nucleon magnetic moments and magnetic properties of vacuum in QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Smilga, A.V.

    1983-01-01

    Magnetic moments of a proton and a neutron are calculated in the QCD sum rule approach. The substantial role of the external electromagnetic field induced vacuum expectation values, the most important of which is connected with quark condensate magnetic susceptibility, is demonstrated. The results are μsub(p)=3.0, μsub(n)=2.0(+-10%) that is in a perfect agreement with experiment. The invariant amplitudes of Δ→pγ transition are also calculated

  20. Determination of the electromagnetic character of soft dipole modes solely based on quasicontinuous γ spectroscopy

    International Nuclear Information System (INIS)

    Voinov, A.; Schiller, A.; Guttormsen, M.; Rekstad, J.; Siem, S.

    2003-01-01

    We show that the combined analysis of quasicontinuous γ spectra from the ( 3 He,α) and (n th ,2γ) reactions gives the possibility to measure the electromagnetic character of soft dipole resonances. Two-step γ-cascade spectra have been calculated, using level densities and radiative strength functions from the ( 3 He,αγ) reaction. The calculations show that the intensity of the two-step cascades depends on the electromagnetic character of the soft dipole resonance under study. The difference reaches 40-100% which can be measured experimentally

  1. Control of polarization and dipole moment in low-dimensional semiconductor nanostructures

    International Nuclear Information System (INIS)

    Li, L. H.; Ridha, P.; Mexis, M.; Smowton, P. M.; Blood, P.; Bozkurt, M.; Koenraad, P. M.; Patriarche, G.; Fiore, A.

    2009-01-01

    We demonstrate the control of polarization and dipole moment in semiconductor nanostructures, through nanoscale engineering of shape and composition. Rodlike nanostructures, elongated along the growth direction, are obtained by molecular beam epitaxial growth. By varying the aspect ratio and compositional contrast between the rod and the surrounding matrix, we rotate the polarization of the dominant interband transition from transverse-electric to transverse-magnetic, and modify the dipole moment producing a radical change in the voltage dependence of absorption spectra. This opens the way to the optimization of quantum dot amplifiers and electro-optical modulators.

  2. The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules

    Science.gov (United States)

    Wang, Zhi-Gang

    2018-04-01

    In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.

  3. The magnetic moment of NiO nanoparticles determined by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bahl, C R H; Hansen, M F; Pedersen, T; Saadi, S; Nielsen, K H; Lebech, B; Moerup, S

    2006-01-01

    We have studied the magnetic properties of 57 Fe-doped NiO nanoparticles using Moessbauer spectroscopy and magnetization measurements. Two samples with different degrees of interparticle interaction were studied. In both samples the particles were characterized by high-resolution transmission electron microscopy and x-ray diffraction and found to be plate-shaped. Computer simulations showed that high-field Moessbauer data are very sensitive to the size of the uncompensated magnetic moment. From analyses of the Moessbauer spectra we have estimated that the size of the uncompensated magnetic moment is in accordance with a model based on random occupation of surface sites. The analyses of the magnetization data gave larger magnetic moments, but the difference can be explained by the different sensitivity of the two methods to a particle size distribution and by interactions between the particles, which may have a strong influence on the moments estimated from magnetization data

  4. Conducted Electromagnetic Interference (EMI) in Smart Grids

    CERN Document Server

    Smolenski, Robert

    2012-01-01

    As power systems develop to incorporate renewable energy sources, the delivery systems may be disrupted by the changes involved. The grid’s technology and management must be developed to form Smart Grids between consumers, suppliers and producers. Conducted Electromagnetic Interference (EMI) in Smart Grids considers the specific side effects related to electromagnetic interference (EMI) generated by the application of these Smart Grids. Conducted Electromagnetic Interference (EMI) in Smart Grids presents specific EMI conducted phenomena as well as effective methods to filter and handle them once identified. After introduction to Smart Grids, the following sections cover dedicated methods for EMI reduction and potential avenues for future development including chapters dedicated to: •potential system services, •descriptions of the EMI spectra shaping methods, •methods of interference voltage compensation, and theoretical analysis of experimental results.  By focusing on these key aspects, Conducted El...

  5. New material equations for electromagnetism with toroid polarizations

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Martsenyuk, M.A.; Saha, B.

    1999-09-01

    With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)

  6. Energetic Proton Spectra Measured by the Van Allen Probes

    Science.gov (United States)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  7. Comparative analysis of three approaches to the study of electromagnetic radiation

    International Nuclear Information System (INIS)

    Castellanos Moreno, A.

    1992-01-01

    A model for electromagnetic radiation formed by photons in a cavity is considered, such that the density of photons, m, is taken as a birth and death stochastic process. The main thermodynamical properties of electromagnetic radiation and expression for statistical moments (m k ) are obtained. The probability distribution of photons in a unit of volume found in this paper is equal to the average probability to find m photodetections in a finite interval time given by A. M. Cetto and L. de la Pena. I conclude that further investigation for the concept of photon is needed (Author)

  8. Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys

    International Nuclear Information System (INIS)

    Turek, I.; Divis, M.; Niznansky, D.; Vejpravova, J.

    2007-01-01

    Formation of local magnetic moments in the intermetallic compound LaFe 2 Si 2 due to doping by a few at% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured 57 Fe Moessbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments

  9. The origin of electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Park, Jong Dae; Hwang, Sung Tae; Lee, Ho Seong; Park, Sung Jong; Cho, Hyuck; Choi, Won Sik

    2000-01-01

    Recently, there have been a lot of interests in the coherence superposition of atomic states which are formed by laser fields. Coherent population trapping(CTP), electromagnetically induced transparency(EIT), enhancement of the refractive index without absorption, lasing without inversion(LWI), and electromagnetically induced absorption(EIA) are the examples where coherence effects are important. Previously, the spontaneous transfer of the light-induced coherence from the excited level to the ground one was emphasized for the essential ingredient for electromagnetically induced absorption. In this paper, we have considered a case where linearly polarized coupling laser and probe laser are applied to the same degenerated ground and excited levels. We have solved the master equations for density matrix using time varying Hamiltonian and studied the absorption spectra at various conditions. We demonstrate that EIA can be observed without spontaneous transfer of the light-induced coherence in F g = 1 -> F e = 2 D2 transitions of Hydrogen atoms

  10. Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A. [Universita di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Cavoto, G. [' ' Sapienza' ' Universita di Roma, Rome (Italy); INFN, Sezione di Roma (Italy); Henry, L.; Martinez Vidal, F.; Ruiz Vidal, J. [IFIC, Universitat de Valencia-CSIC, Valencia (Spain); Marangotto, D. [Universita di Milano, Milan (Italy); INFN, Sezione di Milano (Italy); Merli, A.; Neri, N. [Universita di Milano, Milan (Italy); CERN, Geneva (Switzerland); INFN, Sezione di Milano (Italy)

    2017-12-15

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector. (orig.)

  11. Torque for electron spin induced by electron permanent electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Senami, Masato, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  12. Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moments

    International Nuclear Information System (INIS)

    Siddlingeshwar, B.; Hanagodimath, S.M.; Kirilova, E.M.; Kirilov, Georgii K.

    2011-01-01

    The effect of solvents on absorption and fluorescence spectra and dipole moments of novel benzanthrone derivatives such as 3-N-(N',N'-Dimethylformamidino) benzanthrone (1), 3-N-(N',N'-Diethylacetamidino) benzanthrone (2) and 3-morpholinobenzanthrone (3) have been studied in various solvents. The fluorescence lifetime of the dyes (1-3) in chloroform were also recorded. Bathochromic shift observed in the absorption and fluorescence spectra of these molecules with increasing solvent polarity indicates that the transitions involved are π→π * . Using the theory of solvatochromism, the difference in the excited-state (μ e ) and the ground-state (μ e ) dipole moments was estimated from Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, and McRae equations by using the variation of Stokes shift with the solvent's relative permittivity and refractive index. AM1 and PM6 semiempirical molecular calculations using MOPAC and ab-initio calculations at B3LYP/6-31 G * level of theory using Gaussian 03 software were carried out to estimate the ground-state dipole moments and some other physicochemical properties. Further, the change in dipole moment value (Δμ) was also calculated by using the variation of Stokes shift with the molecular-microscopic empirical solvent polarity parameter (E T N ). The excited-state dipole moments observed are larger than their ground-state counterparts, indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the systems investigated.

  13. Development of Spectrometer Software for Electromagnetic Radiation Measurement and Analysis

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2013-01-01

    This software was under development using LabVIEW to be using with StellarNet Spectrometer system. StellarNet Spectrometer was supplied with SpectraWiz operating software that can measure spectral data for real-time spectroscopy. This LabVIEW software was used to access real-time data from SpectraWiz dynamic link library as hardware interfacing. This software will acquire amplitude of every electromagnetic wavelength at periodic time. In addition to hardware interfacing, the user interface capabilities of software include plotting of spectral data in various mode including scope, absorbance, transmission and irradiance mode. This software surely can be used for research and development in application, utilization and safety of electromagnetic radiation, especially solar, laser and ultra violet. Of-line capabilities of this software are almost unlimited due to availability of mathematical and signal processing function in the LabVIEW add on library. (author)

  14. Dynamic moments of inertia in Xe, Cs and Ba nuclei

    International Nuclear Information System (INIS)

    El-Samman, H.; Barci, V.; Gizon, A.

    1984-01-01

    The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references

  15. Comments on electromagnetic form factors of the nucleon

    International Nuclear Information System (INIS)

    Sachs, R.G.; Wali, K.C.

    1989-01-01

    This paper draws the concept of nucleon form factors further to consider the electromagnetic aspect based on the magnetic moment of the nucleon. These are seen as valid physical interpretations of form factors in electron-nucleon interactions. A linear combination of two functions, associated with charge radius, is derived, which agreed well with experimental results. The paper also expands the specific form to include relativistic cases and consider appropriate frames of reference. (UK)

  16. Moments and mean square charge radii of short-lived argon isotopes

    CERN Document Server

    Klein, A; Georg, U; Keim, M; Lievens, P; Neugart, R; Neuroth, M; Silverans, R E; Vermeeren, L

    1996-01-01

    We report on the measurement of optical isotope shifts for $^{32-40}$Ar and for $^{46}$Ar from which the changes in mean square nuclear charge radii across the N = 20 neutron shell closure are deducted. The investigations were carried out by collinear laser spectroscopy in fast beams of neutral argon atoms. The ultra-sensitive detection combines optical pumping, state-selective collisional ionization and counting of $\\beta$-radioactivity. By reaching far into the sd-shell, the results add new information to the systematics of radii in the calcium region (Z $\\approx$ 20). Contrary to all major neutron shell closures with N $\\geq$ 28, the N = 20 shell closure causes no significant slope change in the development of the radii. Information from the hyperfine structure of the odd-A isotopes includes includes the magnetic moments of $^{33}$Ar (I=1/2) and $^{39}$Ar (I=7/2), and the quadrupole moments of $^{35}$Ar, $^{37}$Ar (I=3/2) and $^{39}$Ar. The electromagnetic moments are compared to shell-model predictions fo...

  17. Study on the dipole moment of asphaltene molecules through dielectric measuring

    KAUST Repository

    Zhang, Long Li; Yang, Chao He; Wang, Ji Qian; Yang, Guo Hua; Li, Li; Li, Yan Vivian; Cathles, Lawrence

    2015-01-01

    The polarity of asphaltenes influences production, transportation, and refining of heavy oils. However, the dipole moment of asphaltene molecules is difficult to measure due to their complex composition and electromagnetic opaqueness. In this work, we present a convenient and efficient way to determine the dipole moment of asphaltene in solution by dielectric measurements alone without measurement of the refractive index. The dipole moment of n-heptane asphaltenes of Middle East atmospheric residue (MEAR) and Ta-He atmospheric residue (THAR) are measured within the temperature range of -60°C to 20°C. There is one dielectric loss peak in the measured solutions of the two types of asphaltene at the temperatures of -60°C or -40°C, indicating there is one type of dipole in the solution. Furthermore, there are two dielectric loss peaks in the measured solutions of the two kinds of asphaltene when the temperature rises above -5°C, indicating there are two types of dipoles corresponding to the two peaks. This phenomenon indicates that as the temperature increases above -5°C, the asphaltene molecules aggregate and present larger dipole moment values. The dipole moments of MEAR C7-asphaltene aggregates are up to 5 times larger than those before aggregation. On the other hand, the dipole moments of the THAR C7-asphaltene aggregates are only 3 times larger than those before aggregation. It will be demonstrated that this method is capable of simultaneously measuring multi dipoles in one solution, instead of obtaining only the mean dipole moment. In addition, this method can be used with a wide range of concentrations and temperatures.

  18. Electric-dipole-moment enhancement factor for the thallium atom, and a new upper limit on the electric dipole moment of the electron

    International Nuclear Information System (INIS)

    Sandars, P.G.H.; Sternheimer, R.M.

    1975-01-01

    Some time ago, an accurate upper limit on a possible permanent electric dipole moment of the thallium atom in the 6 2 P 1 / 2 ground state was obtained by Gould. The result was D/sub Tl/ = [(1.3 +- 2.4) x 10 -21 cm]e. In connection with this value, a calculation of the electric dipole enhancement factor R/sub Tl/, which is defined as the ratio D/sub Tl//D/sub e/, where D/sub e/is the corresponding upper limit on a possible electric dipole moment of the (valence) electron was carried out. A value R/subTl/ = 700 was obtained, which leads to an upper limit D/sub e/ = [(1.9 +- 3.4) x 10 -24 cm]e. This result is comparable with the value D/sub e/ -24 cm)e previously obtained by Weisskopf et al. from measurements on the cesium atom, and with the result of Player and Sandars of [(0.7 +- 2.2) x 10 -24 cm]e obtained from the search for an electric dipole moment in the 3 P 2 metastable state of xenon. All three results set a stringent upper limit on the amount of a possible violation of T and P invariance in electromagnetic interactions. (U.S.)

  19. An Overview of Electromagnetics-Related Research Status in Vietnam(Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM08))

    OpenAIRE

    N. H., Phuc; D. L., Mo; T. V., Su; D. M., Tien; Faculty of Electrical-Electronics Engineering, Ho Chi Minh City University of Technology; Faculty of Electrical-Electronics Engineering, Ho Chi Minh City University of Technology; Faculty of Electrical-Electronics Engineering, Ho Chi Minh City University of Technology; Faculty of Electrical-Electronics Engineering, Ho Chi Minh City University of Technology

    2009-01-01

    This paper presents an overview of the electromagnetics (EM) related research status in Vietnamese universities. A survey is carried on researches on EM field computer simulations from low frequency problems in power devices up to high frequency wave propagation. Depending on the mathematical formulation, the methods in use can be narrowed down to integral equation (IE) models or differential equation (DE) models. In general, moment method involves IE modeling whereas finite element method (F...

  20. Relativistic correction to the deuteron magnetic moment and angular condition

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Strikman, M.I.

    1983-01-01

    The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )

  1. Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory

    International Nuclear Information System (INIS)

    Geng, L. S.; Camalich, J. Martin; Vacas, M. J. Vicente

    2009-01-01

    We present a calculation of the leading SU(3)-breaking O(p 3 ) corrections to the electromagnetic moments and charge radius of the lowest-lying decuplet resonances in covariant chiral perturbation theory. In particular, the magnetic dipole moment of the members of the decuplet is predicted fixing the only low-energy constant (LEC) present up to this order with the well-measured magnetic dipole moment of the Ω - . We predict μ Δ ++ =6.04(13) and μ Δ + =2.84(2), which agree well with the current experimental information. For the electric quadrupole moment and the charge radius, we use state-of-the-art lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment there is no unknown LEC up to the order considered here, and we obtain a pure prediction. We compare our results with those reported in large N c , lattice QCD, heavy-baryon chiral perturbation theory, and other models.

  2. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    International Nuclear Information System (INIS)

    Anglin, J.R.; Schmiedmayer, J.

    2004-01-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation

  3. Large-N(c) relations for the electromagnetic N to Delta(1232) transition

    International Nuclear Information System (INIS)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2007-01-01

    We examine the large-N c relations which express the electromagnetic N-to-Δ transition quantities in terms of the electromagnetic properties of the nucleon. These relations are based on the known large-N c relation between the N-to-Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Extending these relations to finite, but small, momentum transfer we find that the description of the electromagnetic N-to-Δ ratios (R EM and R SM ) in terms of the nucleon form factors predicts a structure which may be ascribed to the effect of the 'pion cloud'. These relations also provide useful constraints for the N-to-Δ generalized parton distributions

  4. Electromagnetic and weak observables in the context of the shell model

    International Nuclear Information System (INIS)

    Wildenthal, B.H.

    1984-01-01

    Wave functions for A = 17-39 nuclei have been obtained from diagonalizations of a single Hamiltonian formulation in the complete sd-shell configuration space for each NTJ system. These wave functions are used to generate the one-body density matrices corresponding to weak and electromagnetic transitions and moments. These densities are combined with different assumptions for the single-particle matrix elements of the weak and electromagnetic operators to produce theoretical matrix elements. The predictions are compared with experiment to determine, in some ''linearly dependent'' fashion, the correctness of the wave functions themselves, the optimum values of the single-particle matrix elements, and the viability of the overall shell-model formulation. (author)

  5. Weak correction to the muon magnetic moment in a gauge model

    International Nuclear Information System (INIS)

    Darby, D.; Grammer, G. Jr.

    1976-01-01

    The weak correction, asub(μ)sup(W), to the anomalous magnetic moment of the muon is calculated in an SU(2) x U(1) x U(1) gauge model of weak and electromagnetic interactions. The Rsub(xi) gauge is used and Ward-Takahashi identities are utilized in eliminating all xi-dependence before the loop integration is performed. asub(μ)sup(W,expt) places no constraint on the mass of one of the neutral vector mesons, which may be arbitrarily small. (Auth.)

  6. Short local descriptors from 2D connected pattern spectra

    NARCIS (Netherlands)

    Bosilj, Petra; Kijak, Ewa; Wilkinson, Michael H. F.; Lefèvre, Sebastien

    2015-01-01

    We propose a local region descriptor based on connected pattern spectra, and combined with normalized central moments. The descriptors are calculated for MSER regions of the image, and their performance compared against SIFT. The MSER regions were chosen because they can be efficiently selected by

  7. Electromagnetic radiation generated by arcing in low density plasma

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  8. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  9. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  10. Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor

    Science.gov (United States)

    Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen

    2018-02-01

    We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the

  11. The classical equations of motion for a spinning point particle with charge and magnetic moment

    International Nuclear Information System (INIS)

    Rowe, E.G.P.; Rowe, G.T.

    1987-01-01

    The classical, special relativistic equations of motion are derived for a spinning point particle interacting with the electromagnetic field through its charge and magnetic moment. Radiation reaction is included. The energy tensors for the particle and for the field are developed as well-defined distributions; consequently no infinities appear. The magnitude of spin and the rest mass are conserved. (orig.)

  12. Comprehensive analysis of earthquake source spectra in southern California

    OpenAIRE

    Shearer, Peter M.; Prieto, Germán A.; Hauksson, Egill

    2006-01-01

    We compute and analyze P wave spectra from earthquakes in southern California between 1989 and 2001 using a method that isolates source-, receiver-, and path-dependent terms. We correct observed source spectra for attenuation using both fixed and spatially varying empirical Green's function methods. Estimated Brune-type stress drops for over 60,000 M_L = 1.5 to 3.1 earthquakes range from 0.2 to 20 MPa with no dependence on moment or local b value. Median computed stress drop increases with de...

  13. Microscopic study of low-lying yrast spectra and deformation systematics of even-even barium isotopes

    International Nuclear Information System (INIS)

    Sarswat, S.P.; Bharti, Arun; Khosa, S.K.

    1996-01-01

    The yrast spectra has been obtained in the variation-after-projection framework using pairing-plus-quadrupole- quadrupole model for the two body interaction. Besides the low-lying yrast spectra, the calculated values of intrinsic quadrupole moments of some of the barium isotopes i.e. 124-134 Ba are presented

  14. Electromagnetic form factors of a massive neutrino

    International Nuclear Information System (INIS)

    Dvornikov, M.S.; Studenikin, A.I.

    2004-01-01

    Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary R ξ gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the electric, magnetic, and anapole form factors, in which the dependence of the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and the expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various flavors of the neutrino. Explicit expressions are obtained for the electric, magnetic, and electric dipole and anapole transitional form factors as well as for the transitional electric dipole moment

  15. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  16. Method of moments as applied to arbitrarily shaped bounded nonlinear scatterers

    Science.gov (United States)

    Caorsi, Salvatore; Massa, Andrea; Pastorino, Matteo

    1994-01-01

    In this paper, we explore the possibility of applying the moment method to determine the electromagnetic field distributions inside three-dimensional bounded nonlinear dielectric objects of arbitrary shapes. The moment method has usually been employed to solve linear scattering problems. We start with an integral equation formulation, and derive a nonlinear system of algebraic equations that allows us to obtain an approximate solution for the harmonic vector components of the electric field. Preliminary results of some numerical simulations are reported. Dans cet article nous explorons la possibilité d'appliquer la méthode des moments pour déterminer la distribution du champ électromagnétique dans des objets tridimensionnels diélectriques, non-linéaires, limités et de formes arbitraires. La méthode des moments a été communément employée pour les problèmes de diffusion linéaire. Nous commençons par une formulation basée sur l'équation intégrale et nous dérivons un système non-linéaire d'équations algébriques qui nous permet d'obtenir une solution approximative pour les composantes harmoniques du vecteur du champ électrique. Les résultats préliminaires de quelques simulations numériques sont présentés.

  17. Measurement and Interpretation of Moments in Inclusive Semileptonic Decays (bar B) → Xc (ell)-(bar ν)

    International Nuclear Information System (INIS)

    Luth, Vera

    2011-01-01

    We present results for the moments of observed spectra in inclusive semileptonic B-meson decays to charm hadrons (bar B) → X c (ell) - (bar ν). Moments of the hadronic-mass and the combined mass-and-energy spectra for different minimum electron or muon momenta between 0.8 and 1.9 GeV/c are obtained from a sample of 232 x 10 6 Γ(4S) → B(bar B) events, collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We also present a reevaluation of the moments of electron-energy spectra and partial decay fractions B((bar B) → X c e - (bar ν)) for minimum electron momenta between 0.6 and 1.5 GeV/c based on a sample of 51 x 10 6 Γ(4S) → B(bar B) events. The measurements are used for the extraction of the total decay fraction, the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V cb |, the quark masses m b and m c , and four heavy-quark QCD parameters in the framework of a Heavy-Quark Expansion (HQE). We find B((bar B) → X c (ell) - (bar ν)) = (10.64 ± 0.17 ± 0.06)% and |V cb | = (42.05 ± 0.45 ± 0.70) x 10 -3 .

  18. Toroidal Dipole Moment of the Lightest Neutralino in the MSSM

    International Nuclear Information System (INIS)

    Cabral-Rosetti, L G; Mondragon, M; Perez, E Reyes

    2011-01-01

    In order to characterize one of the most favored candidates for dark matter, we calculate the anapole form factor of the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM) at the one-loop level. As a Majorana fermion, this particle only shows one electromagnetic property, the toroidal dipole moment, which is directly related to the anapole form factor. We obtain the result analitically in terms of two- and three-points Passarino-Veltman scalar functions and evaluate it for a given spectrum of supersymmetric masses and matrix elements. This work is part of a broader project still in progress.

  19. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    Science.gov (United States)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  20. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  1. Vibration-rotation band intensities in the IR spectra of polyatomic molecules

    International Nuclear Information System (INIS)

    El'kin, M.D.; Kosterina, E.K.; Berezin

    1995-01-01

    Using the curvilinear vibrational coordinates for a nuclear subsystem, expressions for the effective dipole-moment operators are derived in order to analyze the vibrational-rotational transitions in the IR spectra of polyatomic rigid molecules. The explicit expressions obtained for the intensities of hot bands allow one to estimate the influence of the vibration-rotation interaction within the framework of the adopted molecular-vibration model. The suggested method is shown to be suitable for Raman spectra analysis. 12 refs

  2. Ab initio study of the RbSr electronic structure: Potential energy curves, transition dipole moments, and permanent electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Pototschnig, Johann V., E-mail: johann.pototschnig@tugraz.at; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E., E-mail: wolfgang.ernst@tugraz.at [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm{sup −1}. We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) and Rb (5p {sup 2}P°) + Sr (5s{sup 2} {sup 1}S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  3. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    Science.gov (United States)

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  4. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  5. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  6. Electromagnetic analysis of ITER diagnostic equatorial port plugs during plasma disruptions

    International Nuclear Information System (INIS)

    Zhai, Y.; Feder, R.; Brooks, A.; Ulrickson, M.; Pitcher, C.S.; Loesser, G.D.

    2013-01-01

    Highlights: ► Disruption loads on ITER diagnostic equatorial port plugs are extracted. ► Upward major disruption produces the largest radial moment and radial force on diagnostic first walls and diagnostic shield modules. ► Large eddy currents on supporting rails, keys and water pipes are observed during disruption. -- Abstract: ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed

  7. Evaluation of the electromagnetic field level emitted by medium frequency AM broadcast stations

    International Nuclear Information System (INIS)

    Licitra, G.; Bambini, S.; Barellini, A.; Monorchio, A.; Rogovich, A.

    2004-01-01

    In order to estimate the level of the electromagnetic field produced by telecommunication systems, different computational techniques can be employed whose complexity depends on the accuracy of the final results. In this paper, we present the validation of a code based on the method of moments that allows us to analyse the electromagnetic field emitted by radio-communication systems operating at medium frequencies. The method is able to provide an accurate estimate of the levels of electromagnetic field produced by this type of device and, consequently, it can be used as a method for verifying the compliance of the system with the safe exposure level regulations and population protection laws. Some numerical and experimental results are shown relevant to an amplitude modulated (AM) radio transmitter, together with the results of a forthcoming system that will be operative in the near future. (authors)

  8. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  9. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    Science.gov (United States)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  10. Electromagnetic form factors of the Ω- in lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Koutsou, G.; Negele, J. W.; Proestos, Y.

    2010-01-01

    We present results on the omega baryon (Ω - ) electromagnetic form factors using N f =2+1 domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain-wall fermions with those of a mixed-action (hybrid) approach, which combines domain-wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The Ω - magnetic moment, μ Ω - , and the electric charge and magnetic radius, E0/M1 2 >, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.

  11. In medium modification of nucleon electromagnetic properties

    International Nuclear Information System (INIS)

    Khanna, F.; Rakhimov, A.; Yakhsiev, U.

    1997-01-01

    Since nucleons are composite objects, their internal structure is expected to be changed by nuclear environment. A Skyrme like Lagrangian is proposed to consider such effects, namely the modification of electromagnetic (EM) properties of the nucleon. The static properties and EM form factors were obtained. It was shown that the charge radius of the nucleon increased in medium and the mass and axial coupling constant are reduced. The enhancement of magnetic moment of proton is smaller than that obtained in non-topological soliton model.Obtained results may be useful in electron nucleus scattering analysis.(A.A.D.)

  12. Top quark soliton and its anomalous chromomagnetic moment

    International Nuclear Information System (INIS)

    Berger, J.; Blotz, A.; Kim, H.; Goeke, K.

    1996-01-01

    We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society

  13. Amplitude and phase control of trichromatic electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Hu Xiangming; Zou Jinhua; Li Xing; Du Dan; Cheng Guangling

    2005-01-01

    We study the dependence of absorption and dispersion spectra on amplitudes and phases of the driving fields in multiple electromagnetically induced transparency. For this purpose we consider trichromatic excitation in a three-level Λ atomic system, in which a trichromatic control laser and a monochromatic probe laser are applied to two different transitions, respectively. We numerically calculate the absorption and dispersion spectra. Two characteristic features are found. Firstly, the central transparency can be made to appear or to disappear by utilizing the amplitudes and phases of the driving components. Secondly, so long as we fix the sum of two relative phases of two sideband excitation components to the central component, the absorption and dispersion spectra keep their own lineshapes unchanged no matter how we vary the respective relative phases

  14. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    International Nuclear Information System (INIS)

    Buckingham, A. David

    2014-01-01

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection

  15. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  16. Nambu-Jona-Lasinio model in a parallel electromagnetic field

    Science.gov (United States)

    Wang, Lingxiao; Cao, Gaoqing; Huang, Xu-Guang; Zhuang, Pengfei

    2018-05-01

    We explore the features of the UA (1) and chiral symmetry breaking of the Nambu-Jona-Lasinio model without the Kobayashi-Maskawa-'t Hooft determinant term in the presence of a parallel electromagnetic field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate and isospin-singlet pseudo-scalar η condensate and thus modifies the chiral symmetry breaking pattern. In order to characterize the strength of the UA (1) symmetry breaking, we evaluate the susceptibility associated with the UA (1) charge. The result shows that the susceptibility contributed from the chiral anomaly is consistent with the behavior of the corresponding η condensate. The spectra of the mesonic excitations are also studied.

  17. Parameters and a magnitude moment relationship from small earthquakes observed during hydraulic fracturing experiments in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, C.

    1982-04-01

    Using source parameters estimated from seismic spectra and magnitudes estimated from coda lengths, we demonstrate that the log-linear relationship between moment and magnitude holds for events with magnitudes as low as -6. Using, as a data set, events induced by hydraulic fracturing experiments at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) geothermal site, we find that the relationship between magnitude M and seismic moment (Mo) is log (Mo) = 17.27+0.77 M Moreover, the linear relationship between seismic moment and source radius (r) holds for the Fenton Hill microearthquakes. Analyses of the Fenton Hill data yield the following relationship. log (r) = 2.28+0.19 log (Mo)

  18. Inelastic processes and interference effects during the interaction of positronium with ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eseev, M. K., E-mail: m_eseev@mail.ru; Matveev, V. I., E-mail: matveev.victor@pomorsu.ru [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2013-11-15

    The excitation, breakup, and reradiation during the interaction of a positronium atom with ultrashort electromagnetic pulses are considered. The probabilities of inelastic processes and reradiation spectra have been obtained. The interference between the amplitudes of the photon emission by the electron and positron is shown to contribute noticeably to the reradiation spectra. The developed approach is applicable for describing the interaction of positronium with ultrashort pulses of attosecond or shorter duration.

  19. Strange nucleon electromagnetic form factors from lattice QCD

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. Vaquero

    2018-05-01

    We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are nonzero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.

  20. Charge radii and moments of tin nuclei by laser spectroscopy

    International Nuclear Information System (INIS)

    Anselment, M.; Bekk, K.; Hanser, A.; Hoeffgen, H.; Meisel, G.; Goering, S.; Rebel, H.; Schatz, G.

    1986-04-01

    The isotope shift and hyperfine structure of the optical Sn I resonance transition 5p 2 3 P 0 ->5p6s 3 P 1 at lambda=286.3 nm have been studied for 18 Sn nuclei including 2 isomers. Laser induced resonance fluorescence from a collimated atomic beam of tin was observed using a tunable cw dye laser with frequency doubler. The electromagnetic nuclear moments and changes of the mean square charge radii of the nuclear charge distributions were determined. The results are discussed with respect to the information they provide on the nuclear structure of the nuclei investigated; they are compared with various theoretical models. (orig.) [de

  1. Beta decay and other processes in strong electromagnetic fields

    International Nuclear Information System (INIS)

    Akhmedov, E. Kh.

    2011-01-01

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.

  2. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  3. arXiv Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    CERN Document Server

    Bagli, E.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-05

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  4. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  5. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  6. Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1982-01-01

    We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy

  7. The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action

    OpenAIRE

    A. A. Panfilov

    2013-01-01

    The paper presents the results of laboratory experiments on electromagnetic emission excitation (electric component of electromagnetic field) by rock samples due to different forms of mechanical stress applications. It was shown that samples generate electric impulses with different spectra when the impact action, gradual loading or dynamic friction is applied. It was ascertained that level and spectral compositions of signals, generated by rock samples, cha...

  8. Microscopic study of low-lying yrast spectra and deformation ...

    Indian Academy of Sciences (India)

    73, No. 4. — journal of. October 2009 physics pp. 657–668. Microscopic study of low-lying yrast spectra and deformation systematics in neutron-rich. 98−106Sr isotopes ... with a large and rigid moment of inertia. 98Sr is predicted to have a ... 2 energy as neutron number N changes from 58 to 60. The onset of deformation in ...

  9. Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Mostepanenko, V.M.; Sokolov, I.Yu.

    1988-01-01

    Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained

  10. Measurements of lifetimes and magnetic moments in A∼90 nuclei with EUROBALL Cluster detectors

    International Nuclear Information System (INIS)

    Jungclaus, A.; Fischer, V.; Kast, D.

    1998-01-01

    Mass A∼90 nuclei with several valence nucleons outside the doubly-magic 100 Sn core are an ideal testing ground for the validity of the spherical shell model. Electromagnetic decay properties as well as magnetic dipole moments of excited states are the key quantities revealing the structure of the wave functions and the mechanisms responsible for strong dipole sequences. The present article discusses by means of two examples the advantages of employing the most recent developments both concerning detector technology and experimental methods

  11. Assembling Transgender Moments

    Science.gov (United States)

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  12. Electromagnetic properties of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, C.

    2006-07-01

    Static observables of bound state systems in field theoretic descriptions are usually extracted from form factors in the limit of vanishing squared four-momentum transfer of the probing exchange particle. On the other hand, static properties in nonrelativistic quantum mechanics can be formulated by means of expectation values involving essentially scalar products of wave functions. The main objective of this work is to show that a synthesis of both approaches is indeed possible - at least if certain restrictions are made to the kind of interactions between the constituents of the bound system - leading to new insights into the structure of static properties. The focus lies especially on the charge radii and magnetic moments of baryons described within a covariant constituent quark model having its field theoretic foundations in the Bethe-Salpeter equation. The current matrix element in the Breit frame between the vertex functions is derived. The charge radius and magnetic moment of a bound three-fermion system is then derived by starting from their usual definition from form factors and in case of the charge radius also from the well-known radius of a charge distribution in classical electrodynamics. In both cases the static limit at the photon point is taken analytically and subsequently the integration over the relative energy variables is done. Finally the vertex functions are replaced by Salpeter amplitudes and the expression is symmetrized over the three fermions. The final results express the charge radius and magnetic moment of the three-fermion system as expectation values with respect to Salpeter amplitudes. The numerical implementation of the analytic results is done within a covariant constituent quark model with quark confinement and a residual instanton interaction accounting for the fine structure of the observed mass spectra. The Salpeter amplitudes which where obtained by solving the Salpeter equation are used to compute the expectation values of

  13. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    Science.gov (United States)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  14. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    Science.gov (United States)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  15. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    Science.gov (United States)

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  16. Modal Ring Method for the Scattering of Electromagnetic Waves

    Science.gov (United States)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  17. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Guichon, P.; Jansen, K.; Korzec, T.; Constantinou, M.

    2011-01-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cutoff effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.

  18. The Spectator-Induced Electromagnetic Effect on Meson Production in Nucleus-Nucleus Collisions at SPS Energies

    Directory of Open Access Journals (Sweden)

    Rybicki Andrzej

    2012-12-01

    Full Text Available The electromagnetic interaction between the spectator system and the charged mesons produced in the course of the high energy heavy ion collision was studied experimentally and theoretically in earlier works [1,2]. This effect was found to result in very large distortions of the final state spectra of the produced mesons [3] and to bring new information on the space-time evolution of the non-perturbative meson production process [4]. In this paper a more extended analysis of this effect will be presented, including a comparative study between charged meson spectra produced in Pb+Pb collisions as well as collisions of Pb ions with smaller nuclei. The experimental results will be compared with Monte Carlo simulations, giving a fair overall understanding of the interplay between the strong and the electromagnetic interaction in the heavy ion collision. A universal behaviour of charged meson spectra emerges from the above comparative study. This gives a unique chance of using the spectator charge as a tool to study the space-time evolution of the high energy nucleus-nucleus reaction.

  19. Nuclear structure studies by means of magnetic moments of excited states

    International Nuclear Information System (INIS)

    Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.

    1981-09-01

    Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)

  20. ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Daniel M. [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany); Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it [Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  1. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  2. Theory of charged vector mesons interacting with the electromagnetic field

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams, which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be circumvented by introducing a xi-limiting process which depends on a dimensionless positive parameter xi → 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renormalizable (for xi > 0)

  3. The results of experimental studies of VLF-ULF electromagnetic emission by rock samples due to mechanical action

    Science.gov (United States)

    Panfilov, A. A.

    2014-06-01

    The paper presents the results of laboratory experiments on electromagnetic emissions excitation (the electric component of electromagnetic fields) by rock samples due to different forms of mechanical stress applications. It was shown that samples generate electric impulses with different spectra when the impact action, gradual loading or dynamic friction is applied. It was ascertained that level and spectral compositions of signals, generated by rock samples, change with an increasing number of hits. It was found that strong electromagnetic signals, generated while rock samples were fracturing, were accompanied by repetitive weak but perceptible variations in the electric field intensity in short frequency ranges.

  4. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  5. Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions

    CERN Document Server

    Rowe, D J

    1998-01-01

    Complete rotation-vibrational spectra and electromagnetic transition rates are obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions. Analytical results are derived by dynamical symmetry methods for diatomic molecules and a liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus with quadrupole Davidson interactions within the framework of the microscopic symplectic model. (author)

  6. Electromagnetic interference-induced instability in CPP-GMR read heads

    International Nuclear Information System (INIS)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A.; Mewes, T.; Mewes, C.K.A.; Kruesubthaworn, A.

    2016-01-01

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  7. Electromagnetic interference-induced instability in CPP-GMR read heads

    Energy Technology Data Exchange (ETDEWEB)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Mewes, T.; Mewes, C.K.A. [Department of Physics and Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Kruesubthaworn, A., E-mail: anankr@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-08-15

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  8. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    Energy Technology Data Exchange (ETDEWEB)

    Geytenbeek, Ben; Rao, Soumya; White, Martin; Williams, Anthony G. [ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia); Scott, Pat; Vincent, Aaron C. [Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Serenelli, Aldo, E-mail: bg364@cam.ac.uk, E-mail: soumya.rao@ncbj.gov.pl, E-mail: p.scott@imperial.ac.uk, E-mail: aldos@ice.csic.es, E-mail: aaron.vincent@imperial.ac.uk, E-mail: martin.white@adelaide.edu.au, E-mail: anthony.williams@adelaide.edu.au [Institute of Space Sciences (IEEC-CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193, Barcelona (Spain)

    2017-03-01

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.

  9. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    International Nuclear Information System (INIS)

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  10. Trunk muscle cocontraction: the effects of moment direction and moment magnitude.

    Science.gov (United States)

    Lavender, S A; Tsuang, Y H; Andersson, G B; Hafezi, A; Shin, C C

    1992-09-01

    This study investigated the cocontraction of eight trunk muscles during the application of asymmetric loads to the torso. External moments of 10, 20, 30, 40, and 50 Nm were applied to the torso via a harness system. The direction of the applied moment was varied by 30 degrees increments to the subjects' right side between the sagittally symmetric orientations front and rear. Electromyographic (EMG) data from the left and right latissimus dorsi, erector spinae, external oblique, and rectus abdominus were collected from 10 subjects. The normalized EMG data were tested using multivariate and univariate analyses of variance procedures. These analyses showed significant interactions between the moment magnitude and the moment direction for seven of the eight muscles. Most of the interactions could be characterized as due to changes in muscle recruitment with changes in the direction of the external moment. Analysis of the relative activation levels, which were computed for each combination of moment magnitude and direction, indicated large changes in muscle recruitment due to asymmetry, but only small adjustments in the relative activation levels due to increased moment magnitude.

  11. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  12. Global characteristics of atomic spectra and their use for the analysis of spectra. IV. Configuration interaction effects

    International Nuclear Information System (INIS)

    Kucas, S.; Jonauskas, V.; Karazija, R.

    1997-01-01

    For pt.III see ibid., vol.52, p.639, 1995. Changes of the moments of atomic spectrum due to configuration interaction (CI), the CI strength, the average shift of the energy of a level due to its interaction with all levels of distant configuration and other global characteristics of CI effects in atoms are systematised and their expressions presented. The results of the calculation of those characteristics for the energy level spectra of the 3s3p 3 + 3s 2 3p3d configurations in Si isoelectronic series, 3p 5 3d N + 3p 6 3d N-2 4p + 3p 6 3d N-2 4f (N = 5, 6, 7, 8) in Cr, Mn, Fe and Co isoelectronic series, ns 2 np N + np N+2 at n = 2 - 5 and N = 2 - 4 in neutral atoms as well as for the characteristic emission spectra corresponding to the 3p 5 3d 9 + 3d 7 4p → 3d 8 transitions as well as for the Auger M 4.3 N 1 N 2.3 spectra in Kr and N 4.5 O 1 O 2.3 in Xe are given and compared with the same characteristics of the more complete experimental spectra. (orig.)

  13. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  14. Moment Magnitudes of Small to Moderate Size Regional Events from Coda in the Middle East

    Science.gov (United States)

    Gok, R.; Pasyanos, M. E.; Matzel, E.; Mayeda, K. M.; Walter, W. R.

    2010-12-01

    The uneven distribution of stations and heterogeneous structure of the Middle East makes it difficult to calculate reliable moment magnitudes in the region. Such magnitudes are important for event characterization, and for yield estimation applications. The complex structure of the lithosphere in the region causes significant variation in the recorded amplitude of body and surface waves that travel along different paths. These 2-D effects are most significant for small and moderate magnitude events, which are most observable at periods 4.5) at low frequencies ( < 0.5 Hz). But even using coda waves, high frequency spectra show considerable scatter. Next, we applied tomographic inversion to the geometrical spreading corrected coda amplitudes to calculate 2-D coda Q. Coda Q results agree well with direct Lg and tectonics of the region. We observe low Q in Anatolian and Iranian plateaus and high Q in Arabian Plate. Applying the 2-D correction reduced the inter-station scatter of the higher frequency spectra, allowing us to obtain reliable moment magnitude estimates for smaller events (Mw < 4.5).

  15. Description of width and spectra of two relativistic fermions bound states

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Skachkov, N.B.

    1979-01-01

    The formalism for relativistic description of two particles with spin 1/2 is constructed. Used is the two-particle three-dimensional equation, obtained by quasipotential approach. Quasipotential equation in the relativistic configurational space with OBEP potential is reduced to the system of partial equations which is the analog of nonrelativistic Hamada-Jonston system. WKB approach is used to calculate mass spectra and leptonic width of mesons in quark model. The results of the study can be applied to the calculation of mass spectra and widths of electromagnetic decays of systems of e + e - , μ + μ - , c anti c, b anti b, N anti N type

  16. INVESTIGATION OF THE RELATIONSHIP OF THE STATISTICAL MOMENTS OF THE FAT PHASE MASS DISTRIBUTION AND RELAXATION SPECTRA OF DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    V. E. Merzlikin

    2015-01-01

    Full Text Available The article deals with the search for optimal parameter estimation of the parameters of the process of homogenization of dairy products. Provides a theoretical basis for relationship of the relaxation time of the fat globules and attenuation coefficient of ultrasonic oscillations in dairy products. Suggested from the measured acoustic properties of milk to make the calculations of the mass distribution of fat globules. Studies on the proof of this hypothesis. Morphological analysis procedure carried out for homogenized milk samples at different pressures, as well as homogenized. As a result of research obtained distribution histogram of fat globules in dependence on the homogenization pressure. Also performed acoustic studies to obtain the frequency characteristics of loss modulus as a function of homogenization pressure. For further research the choice of method for approximating dependences is obtained using statistical moments of distributions. The parameters for the approximation of the distribution of fat globules and loss modulus versus pressure homogenization were obtained. Was carried out to test the hypothesis on the relationship parameters of approximation of the distribution of the fat globules and loss modulus as a function of pressure homogenization. Correlation analysis showed a clear dependence of the first and second statistical moment distributions of the pressure homogenization. The obtain ed dependence is consistent with the physical meaning of the first two moments of a statistical distribution. Correlation analysis was carried out according to the statistical moments of the distribution of the fat globules from moments of loss modulus. It is concluded that the possibility of ultrasonic testing the degree of homogenization and mass distribution of the fat globules of milk products.

  17. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  18. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    Science.gov (United States)

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  19. F4E studies for the electromagnetic analysis of ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Cau, F.; Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università Federico II di Napoli, Napoli (Italy); Juirao, J. [Numerical Analysis TEChnologies S.L. (NATEC), c/ Marqués de San Esteban, 52 Entlo D Gijón (Spain)

    2014-10-15

    Highlights: • Several ITER components have been analyzed from the electromagnetic point of view. • Categorization of DINA load cases is described. • VDEs, MDs and MFD have been studied. • Integral values of forces and moments components versus time have been computed for all the ITER components under study. - Abstract: Fusion for Energy (F4E) is involved in a relevant number of activities in the area of electromagnetic analysis in support of ITER general design and EU in-kind procurement. In particular several ITER components (vacuum vessel, blanket shield modules and first wall panels, test blanket modules, ICRH antenna) are being analyzed from the electromagnetic point of view. In this paper we give an updated description of our main activities, highlighting the main assumptions, objectives, results and conclusions. The plasma instabilities we consider, typically disruptions and VDEs, can be both toroidally symmetric and asymmetric. This implies that, depending on the specific component and loading conditions, FE models we use span from a sector of 10 up to 360° of the ITER machine. The techniques for simulating the electromagnetic phenomena involved in a disruption and the postprocessing of the results to obtain the loads acting on the structures are described. Finally we summarize the typical loads applied to different components and give a critical view of the results.

  20. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-03-22

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  1. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    International Nuclear Information System (INIS)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-01-01

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  2. Low-frequency computational electromagnetics for antenna analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K. (Los Alamos National Lab., NM (USA)); Burke, G.J. (Lawrence Livermore National Lab., CA (USA))

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  3. Nucleon electromagnetic form factors in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-02-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)

  4. Generation of synthetic gamma spectra with MATLAB

    International Nuclear Information System (INIS)

    Palmerio, Julian J.; Coppo, Anibal D.

    2009-01-01

    Objectives: The aim of this work is the simulation of gamma spectra using the MATLAB program to generate the calibration curves in efficiency, which will be used to measure radioactive waste in drums. They are necessary for the proper characterization of these drums. A Monte Carlo simulation was basically developed with the random number generator Mersenne Twister and nuclear data obtained from NIST. This paper shows the results obtained and difficulties encountered until today. The physical correction of the simulated spectra has been the only aspect we have been working, up to this moment. Procedures: A simplified representation of the 'Laboratorio de Verificacion y Control de la Calidad' was chosen. Drums with cemented liquid waste are routinely measured in this laboratory. The commercial program MCNP was also used to get a valid reference in the field of simulation of spectra. We analyzed the spectra obtained by MATLAB in the light of classical literature photon detection and the spectrum obtained by MCNP. Conclusions: Currently the program developed seems adequate to simulate a measurement in the 'Laboratorio de Verificacion y Control de la Calidad'. The spectra obtained by MATLAB seem to physically represent what is observed in real spectra. However, it is a slow program. The current development efforts are directed to improve the speed of simulation. An alternative is to use the CUDA language for NVIDIA video cards to parallelized the simulation. An adequate simulation of the electronic measuring chain is also needed to obtain better representations of the shapes of the peaks. (author)

  5. Shell structure of potassium isotopes deduced from their magnetic moments

    CERN Document Server

    Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-09-29

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  6. Electromagnetic probes of the QGP

    Directory of Open Access Journals (Sweden)

    Bratkovskaya E. L.

    2015-01-01

    Full Text Available We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 “puzzle”. While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  7. Steady Particle States of Revised Electromagnetics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2006-07-01

    Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell's equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from "exploding" under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.

  8. Microwave spectrum, dipole moment, and internal dynamics of the methyl fluoride-carbonyl sulfide weakly bound complex.

    Science.gov (United States)

    Serafin, Michal M; Peebles, Sean A

    2008-02-21

    Rotational spectra for the normal and four isotopically substituted species of the 1:1 complex between methyl fluoride (H3CF) and carbonyl sulfide (OCS) have been measured using Fourier-transform microwave spectroscopy in the 5-16 GHz frequency region. The observed spectra fit well to a semirigid Watson Hamiltonian, and an analysis of the rotational constants has allowed a structure to be determined for this complex. The dipole moment vectors of the H3CF and OCS monomers are aligned approximately antiparallel with a C...C separation of 3.75(3) A and with an ab plane of symmetry. The values of the Pcc planar moments were found to be considerably different from the expected rigid values for all isotopologues. An estimate of approximately 14.5(50) cm-1 for the internal rotation barrier of the CH3 group with respect to the framework of the complex has been made using the Pcc values for the H3CF-OCS and D3CF-OCS isotopic species. Two structures, very close in energy and approximately related by a 60 degrees rotation about the C3 axis of the methyl fluoride, were identified by ab initio calculations at the MP2/6-311++G(2d,2p) level and provide reasonable agreement with the experimental rotational constants and dipole moment components.

  9. Perturbative description of inclusive energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    1996-03-01

    The recent LEP-1.5 data of charged particle inclusive energy spectra are analyzed within the analytical QCD approach based on modified leading log approximation plus local parton hadron duality. The shape, the position of the maximum and the cumulant moments of the inclusive energy spectrum are well described within this model. The sensitivity of the results to the running of the coupling is pointed out. A scaling law for the one-particle invariant density E dn/d{sup 3}p at small momenta is observed, consistently with the predictions of colour coherence in soft gluon bremsstrahlung. (orig.).

  10. Perturbative description of inclusive energy spectra

    International Nuclear Information System (INIS)

    Lupia, S.

    1996-01-01

    The recent LEP-1.5 data of charged particle inclusive energy spectra are analyzed within the analytical QCD approach based on modified leading log approximation plus local parton hadron duality. The shape, the position of the maximum and the cumulant moments of the inclusive energy spectrum are well described within this model. The sensitivity of the results to the running of the coupling is pointed out. A scaling law for the one-particle invariant density E dn/d 3 p at small momenta is observed, consistently with the predictions of colour coherence in soft gluon bremsstrahlung. (orig.)

  11. Regular-chaos transition of the energy spectrum and electromagnetic transition intensities in 44V nucleus using the framework of the nuclear shell model

    International Nuclear Information System (INIS)

    Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.

    2012-01-01

    The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.

  12. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  13. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  14. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  15. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  16. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  17. The moment problem

    CERN Document Server

    Schmüdgen, Konrad

    2017-01-01

    This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...

  18. Performance Evaluation of Moment Connections of Moment Resisting Frames Against Progressive Collapse

    Directory of Open Access Journals (Sweden)

    M. Mahmoudi

    2017-02-01

    Full Text Available When a primary structural element fails due to sudden load such as explosion, the building undergoes progressive collapse. The method for design of moment connections during progressive collapse is different to seismic design of moment connections. Because in this case, the axial force on the connections makes it behave differently. The purpose of this paper is to evaluate the performance of a variety of moment connections in preventing progressive collapse in steel moment frames. To achieve this goal, three prequalified moment connections (BSEEP, BFP and WUP-W were designed according seismic codes. These moment connections were analyzed numerically using ABAQUS software for progressive collapse. The results show that the BFP connection (bolted flange plate has capacity much more than other connections because of the use of plates at the junction of beam-column.

  19. Spin light of neutrino in matter and electromagnetic fields

    International Nuclear Information System (INIS)

    Lobanov, A.; Studenikin, A.

    2003-01-01

    A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important

  20. Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1975-01-01

    The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)

  1. Relationship between electromagnetically-induced transparency and Autler–Townes splitting in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Zuo Zhan-Chun; Wu Ling-An; Fu Pan-Ming

    2015-01-01

    We study the relationship between electromagnetically-induced transparency (EIT) and Autler–Townes (AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the fluorescence excitation spectrum, it is found that for a Doppler-broadened system, EIT resonance cannot be explained as the result of quantum interference, unlike the case of a homogeneously broadened system. Instead, the macroscopic polarization interference plays an important role in determining the spectra of EIT and AT splitting, which can be explained within the same framework when being detected by the absorption spectra. (paper)

  2. Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA–PDMS bonded membrane

    International Nuclear Information System (INIS)

    Lee, June Kyoo; Park, Kyung-Woo; Choi, Ju Chan; Kim, Hak-Rin; Kong, Seong Ho

    2012-01-01

    The fabrication of a poly(methyl methacrylate) (PMMA)-micromachined fluid lens with an optimally designed built-in electromagnetic actuator was demonstrated in this study. Through a finite element method, the number of winding turns and the distance between magnetic moments were estimated to design an effective and miniaturized electromagnetic actuator. The lens body composed of PMMA structures was simply and rapidly micromachined using computer numerical control micro-milling. The poly(dimethylsiloxane) (PDMS) membranes for electromagnetic actuation were bonded to the PMMA structures by using the proposed PMMA–PDMS bonding technique, which uses an SiO 2 intermediate layer. A physical repulsive force produced by the electromagnetic actuator applies a controllable fluidic pressure to a fluidic chamber that is sealed with the PDMS membrane, thus allowing dynamic focusing. The focus tunability of the fabricated lens was 67 diopters with a focus hysteresis of less than 1 mm and a response time of 2 ms. The solenoid of the built-in actuator showed negligible thermal crosstalk to the lens. (paper)

  3. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process

    International Nuclear Information System (INIS)

    Dubovikova, N; Kolesnikov, Y; Karcher, Ch

    2015-01-01

    This paper presents a detailed experimental study on an electromagnetic flow measurement technique to measure the flow rate of liquid metals. The experimental setup consists of a contactless electromagnetic pump with a torque sensor mounted on the pump shaft. The electromagnetic pump is composed of two rotating steel discs having embedded permanent magnets with alternating poles. The rotation of the discs creates a travelling sinusoidal magnetic field and eddy currents within the liquid metal. The metal is contained inside the duct located between the discs of the pump. The interaction of the magnetic field and the induced eddy currents generates an electromagnetic Lorentz force providing the pumping effect. The flow rate is proportional to this force. The torque sensor measures the moment of the discs due to the Lorentz force, which is converted to a flow rate value. We name the method Lorentz torque velocimetry (LTV). The full calibration procedure and experimental investigation of the LTV are described. The method can be used as a non-contact flow rate control technique for liquid metals. (paper)

  4. Magnetic moments of baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-06-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)

  5. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  6. Integral Parameters of the Generalized Frequency Spectra of Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1966-06-15

    A study of the integral quantities - M{sub 2} (the second energy transfer moment of the scattering kernel weighted by the Maxwellian distribution), (v{sigma}{sub s}){sub min} (the minimum value of the scattering cross section times velocity) and the moments of frequency spectrum including the effective temperature and Debye-Waller integrals - in terms of the frequency spectrum of the dynamical modes is presented. Numerical results for H{sub 2}O, D{sub 2}O, Be, BeO and C using the available frequency spectra have been obtained. In the estimation of M{sub 2} and (v{sigma}{sub s}){sub min} the first term of the Placzek mass expansion is obtained exactly and the correction by the Doppler approximation method. In addition, the exact results for the Doppler approximation and the gas model have also been given.

  7. Autler-Townes doublet and electromagnetically induced transparency resonance probed by an ultrashort pulse train

    International Nuclear Information System (INIS)

    Soares, A A; De Araujo, Luis E E

    2010-01-01

    We study theoretically the interaction between an ultrashort pulse train and a three-level atom driven by a cw laser. We show that the pulse train can be employed to observe spectra of Autler-Townes doublet and electromagnetically induced transparency resonance that are time and frequency resolved. The observation of subnatural linewidth features associated with the electromagnetically induced transparency resonance is described. The temporal evolution of electromagnetically induced transparency of the pulse train is shown to exhibit new and different features compared to that of the related phenomenon of coherent population trapping. By matching the tooth separation of the frequency comb associated with the pulse train to that of the Autler-Townes doublet, quantum beats between the doublet components can be induced. We show that coherent accumulation of excitation plays a major role in the two studied phenomena.

  8. Some electromagnetic and gravitational perturbations of black holes

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1978-08-01

    The dissertation is concerned with the changes which take place in a Kerr black hole which is subjected to electromagnetic or gravitational perturbations, in particular idealized configurations. A calculation is made of the interaction between a slowly rotating black hole and a uniform, weak magnetic field. The method used is to solve the tensorial Maxwell equations in the background geometry of the hole and then calculate the torque on the sources of the field, hence deducing the spin-down law of the hole. The calculation is extended to include black holes rotating with arbitrary angular velocity by a different method, which is based on Newman-Penrose spinor formalism and applies some work of Chandrasekhar. The analogous gravitational problem, in which the centrally located hole is perturbed by a spinning shell of matter is solved by drawing on the results of Chrzanowski on factorized Green functions and horizon multipole moments. Formulae are presented for the spin-down behaviour of a black hole under these two kinds of perturbation. In addition to these effects produced by the fields, there are also linear precessional effects in the gravitational case, but not in the electromagnetic case. (author)

  9. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    Science.gov (United States)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  10. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  11. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  12. Moment methods for nonlinear maps

    International Nuclear Information System (INIS)

    Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON

    1993-01-01

    It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)

  13. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  14. Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.

    Science.gov (United States)

    Lavender, S; Trafimow, J; Andersson, G B; Mayer, R S; Chen, I H

    1994-04-01

    This study was performed to quantify the electromyographic trunk muscle activities in response to variations in moment magnitude and direction while in forward-flexed postures. Recordings were made over eight trunk muscles in 19 subjects who maintained forward-flexed postures of 30 degrees and 60 degrees. In each of the two flexed postures, external moments of 20 Nm and 40 Nm were applied via a chest harness. The moment directions were varied in seven 30 degrees increments to a subject's right side, such that the direction of the applied load ranged from the upper body's anterior midsagittal plane (0 degree) to the posterior midsagittal plane (180 degrees). Statistical analyses yielded significant moment magnitude by moment-direction interaction effects for the EMG output from six of the eight muscles. Trunk flexion by moment-direction interactions were observed in the responses from three muscles. In general, the primary muscle supporting the torso and the applied load was the contralateral (left) erector spinae. The level of electromyographic activity in the anterior muscles was quite low, even with the posterior moment directions.

  15. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-01-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector

  16. Steady Particle States of Revised Electromagnetics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2006-07-01

    Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from “exploding” under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.

  17. Quantum algebraic description of vibrational and transitional nuclear spectra

    International Nuclear Information System (INIS)

    Raychev, P.P.; Roussev, R.P.; Inrne, D.

    1995-01-01

    A physically motivated extension of the SU q (2) model of rotational nuclear spectra is introduced, which is applicable in the vibrational and transitional regions as well. The deformation parameter is related to the centrifugal stretching effect, while the new parameter c allows the spectrum to be an expansion in terms of J(J+c) instead of J(J+1), thus describing nuclear anharmonicities in a way similar to the Interacting Boson Model and the Generalized Variable Moment of Inertia model

  18. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    Science.gov (United States)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  19. Computing moment to moment BOLD activation for real-time neurofeedback

    Science.gov (United States)

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  20. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    Science.gov (United States)

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  1. The electric dipole moment of cobalt monoxide, CoO.

    Science.gov (United States)

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  2. Analysis of Earthquake Source Spectra in Salton Trough

    Science.gov (United States)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Green’s function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  3. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  4. Electromagnetic analysis of ITER generic equatorial port plug designs during three plasma current disruption cases

    International Nuclear Information System (INIS)

    Guirao, J.; Rodríguez, E.; Ordieres, J.; Cabanas, M.F.; García, C.H. Rojas

    2012-01-01

    Highlights: ► Electromagnetic transient performance evaluation of the GEPP structure. ► Three different plasma current disruption cases: MD UP LIN36, VDE UP LIN36 and VDE DW LIN36 were analyzed. ► Three DSM-First Wall (FW) designs (horizontal and vertical drawers and monoblock) were compared. - Abstract: Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures. This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure. The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.

  5. Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment

    International Nuclear Information System (INIS)

    Adachi, T; Hiraki, Y; Yamamoto, K; Takahashi, Y; Fukunishi, H; Hsu, R-R; Su, H-T; Chen, A B; Mende, S B; Frey, H U; Lee, L C

    2008-01-01

    The fundamental electrodynamical coupling processes between lightning and sprites are investigated. By combining the observed spectral data with the Monte Carlo swarm experiments, reduced electric fields and electron energies in sprite streamers and halos are estimated. The obtained fields inside sprite halos (70-97 Td with an analysis error of ±5 Td) are lower than the conventional breakdown field, E k ∼ 128 Td, indicating a significant reduction of electrons associated with halos while those in sprite streamers (98-380 Td with an error of ±50 Td) are higher than E k , suggesting that a significant ionization process drives their formation and development. A combined analysis of photometric and electromagnetic data makes it possible to estimate temporal evolutions of lightning charge moment. It is found that lightning discharges with a short time scale (∼1 ms) and a moderate amount of charge moment (∼400 C km) produce discernible halos. On the other hand, lightning discharges with a large amount of charge moment (∼1300 C km) produce streamers regardless of their time scale. The results obtained are comprehensively interpreted with both the conventional breakdown field necessary for the formation of streamers and the electric field necessary for the production of optical emissions of halo which is sensitive to the time scale of the thundercloud field due to the significant reduction of electrons.

  6. Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique

    CERN Document Server

    Seagar, Andrew

    2016-01-01

    This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...

  7. Factorial-moment and fractal analyses of γ families from atmospheric cascades

    International Nuclear Information System (INIS)

    Kalmakhelidze, M. E.; Roinishvili, N. N.; Svanidze, M. S.; Khizanishvili, L. A.; Chadranyan, L. Kh.

    1997-01-01

    Methods of factorial moments and fractal dimensions are used to analyze γ families from nuclear-electromagnetic cascades in the atmosphere. The analysis aims at estimating the sensitivity of these methods to multiparticle density fluctuations in γ families as considered in spaces of various variables. The mean characteristics of factorial and fractal moments in the azimuthal plane are studied and compared with those of the statistical ensemble of random families. It is shown that fluctuations of the photon distribution in the azimuthal angle Φ are of a dynamic origin. The mean model parameters are analyzed as functions of the radius vector R, an analog of pseudorapidity, and the product ER (E is the energy of an individual photon), an analog of the transverse momentum. Particle densities for two-dimensional partitions into both rings (in the radius R) and sectors (in the azimuthal angle Φ), d 2 N/dΦdR, are also considered. The distributions of various factorial and fractal features of individual γ families are compared with those for the statistical ensemble of random families. Correlations of these features for a γ family treated in terms of different variables (sectors and rings) are studied. Correlations between different factorial-fractal parameters of γ families are analyzed

  8. Wavelet-like bases for thin-wire integral equations in electromagnetics

    Science.gov (United States)

    Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.

    2005-03-01

    In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.

  9. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  10. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  11. Interpretation of magnetic circular dichroism of X-ray emission spectra

    International Nuclear Information System (INIS)

    Takayama, Yasuhiro; Yoshida, Tetsuo; Nakamura, Satoshi; Sasaki, Naoya; Ishii, Hiroyoshi; Miyahara, Tsuneaki

    2006-01-01

    We have measured the dependence of the magnetic circular dichroism (MCD) of the X-ray emission spectra (XES) on the temperature and incident angle for a Gd thin film. The energy of the incident photon for the XES was 138.25eV, which corresponded to the resonant excitation to the 8 D 9/2 intermediate state. The dependence of the observed MCD on the temperature and incident angle was quite different from that of the magnetic moment estimated with a SQUID magnetometer. By considering the reflection, saturation effect, self-absorption effect and magnetic anisotropy of the thin film, the agreement of the two behaviors was considerably improved. This result shows that the revisions of the MCD of the XES are extremely important for the quantitative estimation of the magnetic moment from the MCD of the XES. (author)

  12. Electromagnetic theory for filamentary superconductors

    International Nuclear Information System (INIS)

    Carr, W.J. Jr.

    1975-01-01

    It is shown that a multifilament superconductor, made up of a bundle of twisted filaments embedded in a normal matrix, can be treated as a new state of matter with anisotropic electrical and magnetic properties. Macroscopic electromagnetic field vectors, which satisfy Maxwell's equations, are defined in terms of averages over the ''microscopic'' fields. However, the sources for the field, i.e., the current and charge densities and the magnetization and polarization, differ in some respects from those for ordinary matter. In particular, since the elementary magnetic dipole moments are distributed along lines rather than located at fixed points, the definition of the magnetization transverse to the filaments differs by a factor of 2 from that for ordinary matter, and the definition of the macroscopic current density is also slightly modified. Constitutive relationships among the field vectors in terms of permeabilities, dielectric constants, and conductivities are examined in the limits of strong and weak fields

  13. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  14. PROBLEMS IN TESTING DIGITAL PROTECTIVE RELAY FOR IMMUNITY TO INTENTIONAL DESTRUCTIVE ELECTROMAGNETIC IMPACTS. CONTINUATION OF THE THEME

    Directory of Open Access Journals (Sweden)

    Vladimir I. Gurevich

    2015-12-01

    Full Text Available The article is the continuation of the theme highlighted in the previous article with same title. The new article evaluates the results of digital protective relays (DPR testing for immunity to the E1 component of High-altitude Electromagnetic Pulse (HEMP and to Intentional Electromagnetic Interferences (IEMI impacts, conducted by some independent American organizations; discusses the features of relay protection devices as well as clarifies and supplements the procedure for testing these devices. Due to methodology errors during the DPR tests conducted by mentioned organizations earlier, they cannot be considered as satisfactory and their results as meaningful. At the moment there are no reliable data on the level of DPR immunity to IDEI, which suggests that the test should be conducted further.

  15. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  16. Backbending feature of rotational spectra in the generalized variable-moment-of-inertia model and its equivalence with the Harris model

    International Nuclear Information System (INIS)

    Mantri, A.N.

    1975-01-01

    The equivalence of Harris model equations with those of the generalized variable-moment-of-inertia (GVMI) model given by Das et al. is examined in the light of backbending feature of the rotational states. It is shown that this feature is absent in the Harris model taken to any order. The GVMI model equations are found to be consistent and in one-to-one correspondence with an expansion of the square of the angular velocity in terms of a polynomial in the moment of inertia rather than with the Harris expansion and may give a backbending feature in some cases depending on the relative values of the parameters appearing in the potential energy term

  17. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    International Nuclear Information System (INIS)

    Sakai, Masamichi

    2016-01-01

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.

  18. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  19. Structures, systems and methods for harvesting energy from electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  20. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  1. Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices

    International Nuclear Information System (INIS)

    Resendes, D.

    1995-01-01

    An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)

  2. Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment

    Science.gov (United States)

    Petrov, A. N.

    2018-05-01

    The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.

  3. Quarks in hadrons and nuclei and electromagnetic probes

    International Nuclear Information System (INIS)

    Faessler, Amand

    1995-01-01

    Deuteron properties and nuclear magnetic moments are studied in the non-relativistic quark cluster model. The quark cluster model is modified to include chiral symmetry. This reduces the number of parameters. The σ meson is exchanged between quarks and not as in earlier versions between nucleons. The charge monopole, quadrupole and magnetic-dipole form factors and the tensor polarization of the deuteron in this microscopic meson-quark cluster model are calculated. The deuteron wave function is derived from a microscopic 6-quark Hamiltonian which, in addition to a quadratic confinement potential, includes the one-pion and the one-gluon exchange potentials between quarks. The electromagnetic current operators are constructed on the quark level, i.e., the photon is coupled directly to the quarks. Aside from the one-body impulse current, pionic and gluonic exchange current corrections are included. Due to the Pauli principle on the quark level, new quark interchange terms arise in the one-body and two-body current matrix elements, that are not present on the nucleon level. While these additional quark exchange currents are small for low momentum transfers, we find that they appreciably influence the electromagnetic structure of the deuteron beyond a momentum transfer of q = 5fm -1 . (author)

  4. Fixed poles in electromagnetic processes and modification of Adler's neutrino sum rule due to quark anomalous magnetic moment

    International Nuclear Information System (INIS)

    Khare, A.

    1975-01-01

    We show that Adler's sum rule for neutrino scattering and Bjorken's inequality for electron-proton scattering are modified if quark has finite anomalous magnetic moment ksub(q). We also show that if ksub(q) is nonzero, there exist fixed poles in spin-flip Compton scattering as well as in charged pion photoproduction. (auth.)

  5. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  6. Microwave spectrum and dipole moment of methyldifluorophosphine--borane

    International Nuclear Information System (INIS)

    Creswell, R.A.; Elzaro, R.A.; Schwendeman, R.H.

    1975-01-01

    The microwave spectra of CH 3 PF 2 . 11 BH 3 , CH 3 PF 2 . 10 BH 3 , CH 3 PF 2 . 11 BD 3 , and CH 3 PF 2 . 10 BD 3 were assigned. Stark effect measurements gave the following values for the dipole moment and its components: μ/sub a/ = 3.52 (5) D, μ/sub b/ = 1.76 (5) D, μ/sub c/ = 0.0 D, and μ = 3.94 (5) D. The absence of resolvable internal rotation splittings in the ground state yields lower limits of about 2000 cal/mol for the barriers to both CH 3 and BH 3 group internal rotation. By judicious transfer of structural parameters from related molecules r(P--B) was estimated to be 1.84 +- 0.02 A. (auth)

  7. On the search for the electric dipole moment of strange and charm baryons at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)

    2017-03-15

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)

  8. Multi-moment maps

    DEFF Research Database (Denmark)

    Swann, Andrew Francis; Madsen, Thomas Bruun

    2012-01-01

    We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...

  9. PAMELA measurements of the boron and carbon spectra

    International Nuclear Information System (INIS)

    Mori, N; Adriani, O; Bongi, M; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Bruno, A; Boezio, M; Bonvicini, V; Carbone, R; Bogomolov, E A; Bottai, S; Cafagna, F; Campana, D; Carlson, P; Casolino, M; De Donato, C; De Santis, C; De Simone, N; Castellini, G

    2015-01-01

    The satellite-borne PAMELA experiment is aimed at precision measurements of the charged light component of the cosmic-ray spectrum, with a particular focus on antimatter. It consists of a magnetic spectrometer, a time-of-flight system, an electromagnetic calorimeter with a tail catcher scintillating layer, an anticoincidence system and a neutron detector. PAMELA has measured the absolute fluxes of boron and carbon and the B/C ratio, which plays a central role in galactic propagation studies in order to derive the injection spectra at sources from measurements at Earth. In this paper, the data analysis techniques and the final results are presented. (paper)

  10. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    Science.gov (United States)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the

  11. Measurement of electromagnetic waves in ELF and VLF bands to monitor lightning activity in the Maritime Continent

    Science.gov (United States)

    Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun

    2013-04-01

    Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.

  12. The electric dipole moment of cobalt monoxide, CoO

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xiujuan, E-mail: zhuangxj@hnu.edu.cn [College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China); Steimle, Timothy C. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2014-03-28

    A number of low-rotational lines of the E{sup 4}Δ{sub 7/2} ← X{sup 4}Δ{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}Δ{sub 7/2}(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ{sup -vector}{sub el}, for the X{sup 4}Δ{sub 7/2} (υ = 0) and E{sup 4}Δ{sub 7/2} (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F′ = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F′ = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  13. Tchebichef image moment approach to the prediction of protein secondary structures based on circular dichroism.

    Science.gov (United States)

    Li, Sha Sha; Li, Bao Qiong; Liu, Jin Jin; Lu, Shao Hua; Zhai, Hong Lin

    2018-04-20

    Circular dichroism (CD) spectroscopy is a widely used technique for the evaluation of protein secondary structures that has a significant impact for the understanding of molecular biology. However, the quantitative analysis of protein secondary structures based on CD spectra is still a hard work due to the serious overlap of the spectra corresponding to different structural motifs. Here, Tchebichef image moment (TM) approach is introduced for the first time, which can effectively extract the chemical features in CD spectra for the quantitative analysis of protein secondary structures. The proposed approach was applied to analyze reference set. and the obtained results were evaluated by the strict statistical parameters such as correlation coefficient, cross-validation correlation coefficient and root mean squared error. Compared with several specialized prediction methods, TM approach provided satisfactory results, especially for turns and unordered structures. Our study indicates that TM approach can be regarded as a feasible tool for the analysis of the secondary structures of proteins based on CD spectra. An available TMs package is provided and can be used directly for secondary structures prediction. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  14. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  15. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    Science.gov (United States)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  16. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Ngoc-Ty; Jin, C; Le, Anh-Thu; Lin, C D

    2008-01-01

    We illustrate an iterative method for retrieving the internuclear separations of N 2 , O 2 and CO 2 molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible

  17. Direct evidence of Ni magnetic moment in TbNi{sub 2}Mn—X-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.H., E-mail: dyu@ansto.gov.au [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); Huang, Meng-Jie [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Wang, J.L. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia); Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Su, Hui-Chia; Lin, Hong-Ji; Chen, Chien-Te [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Campbell, S.J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia)

    2014-12-15

    We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi{sub 2}Mn in the Laves phase (magnetic phase transition temperature T{sub C} ∼131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μ{sub B} and 0.05±0.01 μ{sub B}, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μ{sub B} has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ∼0.3 μ{sub B} has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi{sub 2}Mn compared with TbNi{sub 2} (T{sub C}∼37.5 K) and TbMn{sub 2} (T{sub C}∼54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi{sub 2}Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature T{sub C} ∼131 K – is discussed. - Highlights: • We study the magnetic moment of TbNi{sub 2}Mn with XMCD. • We observe directly the Ni intrinsic magnetic moment in TbNi{sub 2}Mn. • We find that Mn ordered antiferromagnetically across the 16d and 8a sites. • We confirm the mechanism for increasing the magnetic phase transition temperature.

  18. FIER: Software for analytical modeling of delayed gamma-ray spectra

    Science.gov (United States)

    Matthews, E. F.; Goldblum, B. L.; Bernstein, L. A.; Quiter, B. J.; Brown, J. A.; Younes, W.; Burke, J. T.; Padgett, S. W.; Ressler, J. J.; Tonchev, A. P.

    2018-05-01

    A new software package, the Fission Induced Electromagnetic Response (FIER) code, has been developed to analytically predict delayed γ-ray spectra following fission. FIER uses evaluated nuclear data and solutions to the Bateman equations to calculate the time-dependent populations of fission products and their decay daughters resulting from irradiation of a fissionable isotope. These populations are then used in the calculation of γ-ray emission rates to obtain the corresponding delayed γ-ray spectra. FIER output was compared to experimental data obtained by irradiation of a 235U sample in the Godiva critical assembly. This investigation illuminated discrepancies in the input nuclear data libraries, showcasing the usefulness of FIER as a tool to address nuclear data deficiencies through comparison with experimental data. FIER provides traceability between γ-ray emissions and their contributing nuclear species, decay chains, and parent fission fragments, yielding a new capability for the nuclear science community.

  19. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    Science.gov (United States)

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  20. Interrelationship of crystal structure, infrared spectra and physicochemical properties of perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Bazuev, G V; Shveikin, G P [AN SSSR, Sverdlovsk. Inst. Khimii

    1975-12-01

    In the range 400-800 cm/sup -1/ a study has been made of infrared absorption spectra of perowskites ABO/sub 3/, where A is a rare-earth element or yttrium, B is Ti or V. A common feature of the infrared absorption spectra of perowskites ABO/sub 3/ is the presence of two intensive wide bands in the range 400-700 cm/sup -1/ one of which (low-frequency) is splitted into two or three components. The spectrum of LaTiO/sub 3/ is distinguished from spectra of other compounds. In the range measured this compound is non-transparent for electromagnetic radiation. On the basis of determination of temperature dependences of the electric resistance it is found that LaTiO/sub 3/ has metallic conductivity unlike other perowskites studied which are semiconductors. The spectrum of EuTiO/sub 3/ also differs from other spectra. It is close in its structure and position of bands to the spectrum of cubic perowskite, SrTiO/sub 3/. The splitting of the low-frequency band into two and in the case of TbVO/sub 3/ into three components is caused by deformation of crystal structures of these compounds. A direct dependence between the value of splitting and the deformation degree is observed.

  1. Interactions of free electrons with an electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zel' dovich, Ya B [AN SSSR, Moscow. Inst. Prikladnoj Matematiki

    1975-02-01

    The interaction of a chaotic field of electromagnetic radiation with free electrons in plasma is considered as applied to astrophysical problems, in particular, to the theory of establishing thermodynamic equilibrium of radiation in the hot universe. The kinetic equation describes a change in the spectrum; particular attention is paid to the induced scattering and to the classical interpretation of the induced transfer of energy and momentum. In spectra of radiosources with a high brightness temperature the induced scattering may lead to the Bose condensation of photons, shock wave and appearance of solutions. The scattering of strong low-frequency waves is considered as applied to pulsars and laboratory coherent generators.

  2. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    Directory of Open Access Journals (Sweden)

    Isabelle Rogowski

    Full Text Available This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2. An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  3. Electromagnetic Counterparts to Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspirating BH system will interact strongly-on a purely Newtonian level-with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.

  4. Estimation of sea level muon energy spectrum at high latitude from the latest primary nucleon spectra near the top of the atmosphere

    CERN Document Server

    Haldar, T K; Bhattacharya, D P; 10.1023/A:1024822518795

    2003-01-01

    Vertical muon energy spectra at sea level have been estimated from a directly measured primary cosmic-ray nucleon spectrum. The hadronic energy moments have been calculated from the CERN LEBC EHS data on the Lorentz invariant cross-section results on pp to pi /sup +or-/X and pp to K/sup +or-/X inclusive reactions and are duly corrected for A-A collisions. Finally, the sea level muon energy spectra have been calculated from the decay of conventional mesons, using standard formulation. The estimated muon spectra are found to be in good agreement with the directly measured muon spectra obtained from different experiments. (32 refs).

  5. Analysis of scaled-factorial-moment data

    International Nuclear Information System (INIS)

    Seibert, D.

    1990-01-01

    We discuss the two standard constructions used in the search for intermittency, the exclusive and inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity correlations that are contained in the inclusive moment. We show that there are some similarities among most of the models that have been proposed to explain factorial-moment data, and that these similarities can be used to increase the efficiency of testing these models. We begin by calculating factorial moments from a simple independent-cluster model that assumes only approximate boost invariance of the cluster rapidity distribution and an approximate relation among the moments of the cluster multiplicity distribution. We find two scaling laws that are essentially model independent. The first scaling law relates the moments to each other with a simple formula, indicating that the different factorial moments are not independent. The second scaling law relates samples with different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in light-ion data, indicating possible spatial intermittency in the heavy-ion events

  6. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    Directory of Open Access Journals (Sweden)

    H. Kalesse

    2016-03-01

    Full Text Available Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  7. A BHLS model based moment analysis of muon g-2, and its use for lattice QCD evaluations of ahadμ

    International Nuclear Information System (INIS)

    Benayoun, M.; DelBuono, L.

    2016-05-01

    We present an up-to-date analysis of muon g-2 evaluations in terms of Mellin-Barnes moments as they might be useful for lattice QCD calculations of a μ . The moments up to 4th order are evaluated directly in terms of e + e - -annihilation data and improved within the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms. The model provides a reliable Effective Lagrangian (BHLS) estimate of the two-body channels plus the πππ channel up to 1.05 GeV, just including the φ resonance. The HLS piece accounts for 80% of the contribution to a μ . The missing pieces are evaluated in the standard way directly in terms of the data. We find that the moment expansion converges well in terms of a few moments. The two types of moments which show up in the Mellin-Barnes representation are calculated in terms of hadronic cross-section data in the timelike region and in terms of the hadronic vacuum polarization (HVP) function in the spacelike region which is accessible to lattice QCD (LQCD). In the Euclidean the first type of moments are the usual Taylor coefficients of the HVP and we show that the second type of moments may be obtained as integrals over the appropriately Taylor truncated HVP function. Specific results for the isovector part of a had μ are determined by means of HLS model predictions in close relation to τ-decay spectra.

  8. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  9. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  10. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  12. Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1995-01-01

    We present the extension of the supertransition-array (STA) theory to include configuration widths in the spectra of local thermodynamic equilibrium (LTE) plasmas. Exact analytic expressions for the moments of a STA are given, accounting for the detailed contributions of individual levels within the configurations that belong to a STA. The STA average energy is shifted and an additional term appears in its variance. Various cases are presented, demonstrating the effect of these corrections on the LTE spectrum

  13. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  14. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  15. Statistical moments of the angular spectrum of normal waves in a turbulent collisional magnetized plasma

    International Nuclear Information System (INIS)

    Aistov, A.V.; Gavrilenko, V.G.

    1996-01-01

    The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption

  16. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Ngoc-Ty [Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Jin, C; Le, Anh-Thu; Lin, C D [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2008-04-28

    We illustrate an iterative method for retrieving the internuclear separations of N{sub 2}, O{sub 2} and CO{sub 2} molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.

  17. The quadrupole moments of some even–even nuclei around the mass of A ~ 80: {sup 68−80}Ge on the neighborhood of {sup 76−84}Kr and {sup 76−84}Se isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Yoruk, Abdulkadir, E-mail: yorukabdulkadir@hotmail.com [Süleyman Demirel University, Nursery Medical School (Turkey); Turkan, Nureddin, E-mail: nureddin.turkan@medeniyet.edu.tr [Istanbul Medeniyet University, Faculty of Science (Turkey)

    2016-09-15

    We have carried out the calculation of the quadrupole moments Q(2{sub 1}{sup +}) and electromagnetic transition rates B(E2) of some levels within the framework of the interacting boson model for even-mass Ge nuclei. The presented predictions of the quadrupole moments and B(E2) ratios for Ge nuclei are compared with the results of some previous experimental and theoretical ones along with those of the neighboring Kr and Se isotopes and then it was seen that they agree well with the previous experimental and theoretical ones.

  18. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  19. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  20. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  1. Nucleon form factors and moments of generalized parton distributions using N{sub f}= 2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration

    2013-04-15

    We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.

  2. Reconstruction of convex bodies from moments

    DEFF Research Database (Denmark)

    Hörrmann, Julia; Kousholt, Astrid

    We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...

  3. Magnetic moments revisited

    International Nuclear Information System (INIS)

    Towner, I.S.; Khanna, F.C.

    1984-01-01

    Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents

  4. Spectra of γ rays feeding superdeformed bands

    International Nuclear Information System (INIS)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-01-01

    The spectrum of γrays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding γrays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by ∼30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the γ cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed

  5. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  6. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    International Nuclear Information System (INIS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-01-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity. (paper)

  7. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    Science.gov (United States)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  8. Moment invariants for particle beams

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Overley, M.S.

    1988-01-01

    The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented

  9. Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2016-03-15

    We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.

  10. Moment magnitude scale

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, T.C.; Kanamori, H.

    1979-05-10

    The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.

  11. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  12. Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data

    Science.gov (United States)

    Malagnini, Luca; Dreger, Douglas S.

    2016-07-01

    Although optimal, computing the moment tensor solution is not always a viable option for the calculation of the size of an earthquake, especially for small events (say, below Mw 2.0). Here we show an alternative approach to the calculation of the moment-rate spectra of small earthquakes, and thus of their scalar moments, that uses a network-based calibration of crustal wave propagation. The method works best when applied to a relatively small crustal volume containing both the seismic sources and the recording sites. In this study we present the calibration of the crustal volume monitored by the High-Resolution Seismic Network (HRSN), along the San Andreas Fault (SAF) at Parkfield. After the quantification of the attenuation parameters within the crustal volume under investigation, we proceed to the spectral correction of the observed Fourier amplitude spectra for the 100 largest events in our data set. Multiple estimates of seismic moment for the all events (1811 events total) are obtained by calculating the ratio of rms-averaged spectral quantities based on the peak values of the ground velocity in the time domain, as they are observed in narrowband-filtered time-series. The mathematical operations allowing the described spectral ratios are obtained from Random Vibration Theory (RVT). Due to the optimal conditions of the HRSN, in terms of signal-to-noise ratios, our network-based calibration allows the accurate calculation of seismic moments down to Mw < 0. However, because the HRSN is equipped only with borehole instruments, we define a frequency-dependent Generalized Free-Surface Effect (GFSE), to be used instead of the usual free-surface constant F = 2. Our spectral corrections at Parkfield need a different GFSE for each side of the SAF, which can be quantified by means of the analysis of synthetic seismograms. The importance of the GFSE of borehole instruments increases for decreasing earthquake's size because for smaller earthquakes the bandwidth available

  13. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  14. Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

    International Nuclear Information System (INIS)

    Ioffe, B. L.

    2009-01-01

    A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates - , q = u, d, s,-the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented.

  15. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  16. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  17. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  18. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  19. Energy transfer moments in thermalization; Les moments dei transfert d'energie en thermalisation

    Energy Technology Data Exchange (ETDEWEB)

    Soule, J L; Pillard, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    For all moderators of the 'incoherent gaussian' type, it is possible to calculate, at any temperature, the energy transfer moments as a function of the incident energy without having to use the differential sections. Integral formulae are derived for the integral cross-section, the first and the second moment, which make it possible to tabulate directly these three functions in a few minutes calculation on IBM 7094, for the most part models proposed in the literature for the common moderators. (authors) [French] Pour tous les moderateurs de type 'incoherent gaussien' on peut calculer, a n'importe quelle temperature, les moments de transfert d'energie en fonction de l'energie incidente, sans passer par l'intermediaire des sections differentielles. On developpe des formules integrales pour la section efficace integrale, le premier et le second moment, qui permettent de tabuler directement ces trois fonctions en quelques minutes de calcul sur IBM 7094, pour la plupart des modeles proposes dans la litterature pour les moderateurs usuels. (auteurs)

  20. Spins, charge radii and magnetic moments of neutron-rich Mn isotopes measured with bunched beam Collinear Laser Spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2085887; Heylen, Hanne

    In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...

  1. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  2. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  3. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  4. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  5. Highly efficient parallel direct solver for solving dense complex matrix equations from method of moments

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-03-01

    Full Text Available Based on the vectorised and cache optimised kernel, a parallel lower upper decomposition with a novel communication avoiding pivoting scheme is developed to solve dense complex matrix equations generated by the method of moments. The fine-grain data rearrangement and assembler instructions are adopted to reduce memory accessing times and improve CPU cache utilisation, which also facilitate vectorisation of the code. Through grouping processes in a binary tree, a parallel pivoting scheme is designed to optimise the communication pattern and thus reduces the solving time of the proposed solver. Two large electromagnetic radiation problems are solved on two supercomputers, respectively, and the numerical results demonstrate that the proposed method outperforms those in open source and commercial libraries.

  6. Calculation of electromagnetic constitutive parameters of insulating magnetic materials with conducting inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, E.; Moore, R.; Lust, L.; Kemper, P. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1996-12-31

    A Method of Moments (MoM) electromagnetic model of percolating conducting films was applied to calculate the effective parameters of the composite formed by conducting inclusions placed within a dispersive magnetic but nondispersive dielectric matrix. The MoM calculations demonstrate a coupling between the magnetic properties of the matrix and the effective composite permittivity and frequency dispersion of the composite. The coupling of permittivity and permeability is observed near the percolation threshold of the composite and for high conductivity inclusions. The prediction agrees with physical expectations since near percolation the conduction correlation length dominates the effective permittivity of the composite and this correlation length is determined by both the permittivity and permeability of the composite.

  7. New large-Nc relations for the electromagnetic nucleon-to-Δ form factors

    International Nuclear Information System (INIS)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-01-01

    We establish relations which express the three N → Δ transition form factors in terms of the nucleon form factors. These relations are based on the known large-N c relation between the N → Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N c limit we find C2=E2. We show that these relations provide predictions for the N → Δ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the N → Δ GPDs

  8. Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem.

    Science.gov (United States)

    Alexiadis, Alessio; Vanni, Marco; Gardin, Pascal

    2004-08-01

    The method of moment (MOM) is a powerful tool for solving population balance. Nevertheless it cannot be used in every circumstance. Sometimes, in fact, it is not possible to write the governing equations in closed form. Higher moments, for instance, could appear in the evolution of the lower ones. This obstacle has often been resolved by prescribing some functional form for the particle size distribution. Another example is the occurrence of fractional moment, usually connected with the presence of fractal aggregates. For this case we propose a procedure that does not need any assumption on the form of the distribution but it is based on the "moments generating function" (that is the Laplace transform of the distribution). An important result of probability theory is that the kth derivative of the moments generating function represents the kth moment of the original distribution. This result concerns integer moments but, taking in account the Weyl fractional derivative, could be extended to fractional orders. Approximating fractional derivative makes it possible to express the fractional moments in terms of the integer ones and so to use regularly the method of moments.

  9. Research on the electromagnetic structure of movable coil electromagnet drive mechanism for reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Yian Huijie; Wu Yuanqiang; Wu Xinxin; Yu Suyuan; He Shuyan

    2007-01-01

    The movable coil electromagnet drive mechanism (MCEDM) is a new drive scheme for the reactor control rod, and it has a simple structure, good security and reliability property, etc. MCEDM with an air cooled structure has been used in the land research reactor. In order to apply MCEDM to the mobile reactor, experimental and theoretical study on the electromagnet with an oil-water cooled structure and a single magnetic flux circuit (called the type A electro-magnet) has been completed. It is proven by the experiment and theory that the oil-water cooled structure is an excellent measure to increase the coil current of MCEDM. Moreover, a type B electromagnet with an oil-water cooled structure and double magnetic flux circuits is designed to further increase the magnetic force of MCEDM. The analysis of finite element method shows that the type B electromagnet could double the saturation current of type A electro-magnet and the magnetic force of type B electromagnet is greater than that of the type A electromagnet. Moreover, it is proven that the dynamic property of type B electromagnet is better than type A electromagnet. (author)

  10. A Wigner quasi-distribution function for charged particles in classical electromagnetic fields

    International Nuclear Information System (INIS)

    Levanda, M.; Fleurov, V.

    2001-01-01

    A gauge-invariant Wigner quasi-distribution function for charged particles in classical electromagnetic fields is derived in a rigorous way. Its relation to the axial gauge is discussed, as well as the relation between the kinetic and canonical momenta in the Wigner representation. Gauge-invariant quantum analogs of Hamilton-Jacobi and Boltzmann kinetic equations are formulated for arbitrary classical electromagnetic fields in terms of the 'slashed' derivatives and momenta, introduced for this purpose. The kinetic meaning of these slashed quantities is discussed. We introduce gauge-invariant conditional moments and use them to derive a kinetic momentum continuity equation. This equation provides us with a hydrodynamic representation for quantum transport processes and a definition of the 'collision force'. The hydrodynamic equation is applied for the rotation part of the electron motion. The theory is illustrated by its application in three examples: Wigner quasi-distribution function and equations for an electron in a magnetic field and harmonic potential; Wigner quasi-distribution function for a charged particle in periodic systems using the kq representation; two Wigner quasi-distribution functions for heavy-mass polaron in an electric field

  11. UNBIASED MOMENT-RATE SPECTRA AND ABSOLUTE SITE EFFECTS IN THE KACHCHH BASIN, INDIA, FROM THE ANALYSIS OF THE AFTERSHOCKS OF THE 2001 Mw 7.6 BHUJ EARTHQUAKE

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Bodin, P; Mayeda, K; Akinci, A

    2005-05-04

    What can be learned about absolute site effects on ground motions and about earthquake source spectra from recordings at temporary seismic stations, none of which could be considered a 'reference' (hard rock) site, for which no geotechnical information is available, in a very poorly instrumented region? This challenge motivated our current study of aftershocks of the 2001 Mw 7.6 Bhuj earthquake, in Western India. Crustal attenuation and spreading relationships based on the same data used here were determined in an earlier study. In this paper we decouple the ambiguity between absolute source radiation and site effects by first computing robust estimates of moment-rate spectra of about 200 aftershocks in each of two depth ranges. Using these new estimates of sourcespectra, and our understanding of regional wave propagation, we extract the absolute site terms of the sites of the temporary deployment. Absolute site terms (one for each component of the ground motion, for each station) are computed in an average sense, via an L{sub 1}-norm minimization, and results for each site are averaged over wide ranges of azimuths and takeoff angles. The Bhuj deployment is characterized by a variable shallow geology, mostly of soft sedimentary units. Vertical site terms in the region were observed to be almost featureless and slightly < 1.0 within wide frequency ranges. As a result, H/V spectral ratios mimic the absolute behaviors of absolute horizontal site terms, and they generally overpredict them. On the contrary, with respect to the results for sedimentary rock sites (limestone, dolomite) obtained by Malagnini et al. (2004), H/V spectral ratios in their study did not have much in common with absolute horizontal site terms. Spectral ratios between the vector sum of the computed horizontal site terms for the temporary deployment with respect to the same quantity computed at the hardest rock station available, BAC1, are seriously biased by its non-flat, non

  12. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  13. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  14. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    Science.gov (United States)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  15. On multipole moments in general relativity

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1986-01-01

    In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta

  16. Knee joint moments during high flexion movements: Timing of peak moments and the effect of safety footwear.

    Science.gov (United States)

    Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M

    2017-03-01

    (1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  18. Measurement of the electric dipole moment and magnetic moment anomaly of the muon

    NARCIS (Netherlands)

    Onderwater, CJG

    2005-01-01

    The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The

  19. CP-odd Phase Correlations and Electric Dipole Moments

    CERN Document Server

    Olive, Keith A; Ritz, A; Santoso, Y; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model (CMSSM), the CP-odd invariant related to the soft trilinear A-phase at the GUT scale, theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan beta, and can provide the dominant contribution to the electron EDM induced by theta_A. We perform a detailed analysis of the EDM constraints within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also i...

  20. Magnetic moment of 33Cl

    International Nuclear Information System (INIS)

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  1. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  2. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  3. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  4. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    Science.gov (United States)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  5. Machine learning molecular dynamics for the simulation of infrared spectra.

    Science.gov (United States)

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  6. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  7. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics

    Science.gov (United States)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat

    2018-04-01

    The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.

  8. Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing

    OpenAIRE

    Thales S. Teixeira; Michel Wedel; Rik Pieters

    2010-01-01

    We develop a conceptual framework about the impact that branding activity (the audiovisual representation of brands) and consumers' focused versus dispersed attention have on consumer moment-to-moment avoidance decisions during television advertising. We formalize this framework in a dynamic probit model and estimate it with Markov chain Monte Carlo methods. Data on avoidance through zapping, along with eye tracking on 31 commercials for nearly 2,000 participants, are used to calibrate the mo...

  9. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  10. Engaging students in astronomy and spectroscopy through Project SPECTRA!

    Science.gov (United States)

    Wood, E. L.

    2011-12-01

    Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.

  11. Moment Magnitude discussion in Austria

    Science.gov (United States)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  12. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  13. X-Ray Magnetic Dichroism of Antiferromagnet Fe2O3 : The Orientation of Magnetic Moments Observed by Fe 2p X-Ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Kuiper, Pieter; Searle, Barry G.; Rudolf, Petra; Tjeng, L.H.; Chen, C.T.

    1993-01-01

    We report strong magnetic linear dichroism at the Fe L2,3 edge of the antiferromagnet Fe2O3 (hematite). The relative difference in absorption for light polarized parallel and perpendicular to the magnetic moment is as high as 40% at the Fe L2 edge. The spectra are in excellent agreement with

  14. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  15. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  16. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  17. Simultaneous observations of electromagnetically induced transparency (EIT) and absorption (EIA) in a multi-level V-type system of 87Rb and theoretical simulation of the observed spectra using a multi-mode approach.

    Science.gov (United States)

    Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar

    2016-12-14

    We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D 2 transition of Rb87, i.e., F=2→F ' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F=2→F ' =2 while the pump is scanned from F=2→F ' . EIA is observed for the open transition (F=2→F ' =2) whereas EIT is observed in the closed transition (F=2→F ' =3). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.

  18. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  19. Study of the electromagnetic form factors of Helium-3 and Tritium nuclei by electron scattering

    International Nuclear Information System (INIS)

    Amroun, A.

    1989-01-01

    Accurate measurements of the tritium electromagnetic form factor demonstrated that, when the exchange currents are included, the theoretical and the experimental data are in agreement. Similar calculations carried out on helium-3 were not satisfactory. In this investigation, a new electromagnetic form factor of helium-3 is measured. The transfer zone of the diffraction spectra concerning the first minimum and the second maximum is considered. The aim of the study is to test on both nuclei the validity and the uncertainties of the models. The scattering of electrons on helium-3 is analyzed. The experiment was performed in the Saclay linear accelerator. The isoscalar and isovector form factors could be differentiated. By comparing the theoretical and the experimental data, it is demonstrated that the use of three body forces in the calculations has no effect on the form factor results [fr

  20. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    International Nuclear Information System (INIS)

    Johannsen, Tim; Psaltis, Dimitrios

    2010-01-01

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate or oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of ∼10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a ∼< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.

  1. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  2. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  3. Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic

    Directory of Open Access Journals (Sweden)

    Jakub Sokolowski

    2016-01-01

    Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.

  4. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  5. Moment Restriction-based Econometric Methods: An Overview

    NARCIS (Netherlands)

    N. Kunitomo (Naoto); M.J. McAleer (Michael); Y. Nishiyama (Yoshihiko)

    2010-01-01

    textabstractMoment restriction-based econometric modelling is a broad class which includes the parametric, semiparametric and nonparametric approaches. Moments and conditional moments themselves are nonparametric quantities. If a model is specified in part up to some finite dimensional parameters,

  6. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like atoms are considered. The developed technique makes it possible to take into account exactly the spatial nonuniformity of the ultrashort pulse field and photon momenta in the course of reemission

  7. Numerical approximation of the Boltzmann equation : moment closure

    NARCIS (Netherlands)

    Abdel Malik, M.R.A.; Brummelen, van E.H.

    2012-01-01

    This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

  8. Looking into the Matter of Light-Quark Hadrons

    International Nuclear Information System (INIS)

    Roberts, C.D.

    2012-01-01

    In tackling QCD, a constructive feedback between theory and extant and forthcoming experiments is necessary in order to place constraints on the infrared behaviour of QCD's β-function, a key nonperturbative quantity in hadron physics. The Dyson-Schwinger equations provide a tool with which to work toward this goal. They connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence can plausibly provide a means of elucidating the material content of real-world QCD. This contribution illustrates these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the spectra of mesons and baryons, and the critical role played by hadron-hadron interactions in producing these spectra. (author)

  9. Electromagnetic properties of 6Li in a cluster model with breathing clusters

    International Nuclear Information System (INIS)

    Kruppa, A.T.; Beck, R.; Dickmann, F.

    1987-01-01

    Electromagnetic properties of 6 Li are studied using a microscopic (α+δ) cluster model. In addition to the ground state of the clusters, their breathing excited states are included in the wave function in order to take into account the distortion of the clusters. The elastic charge form factor is in good agreement with experiment up to a momentum transfer of 8 fm -2 . The ground state magnetic form factor and the inelastic charge form factor are also well described. The effect of the breathing states of α on the form factors proves to be negligible except at high momentum transfer. The ground-state charge density, rms charge radius, the magnetic dipole moment and a reduced transition strength are also obtained in fair agreement with experiment. (author)

  10. Sensitivities to neutrino electromagnetic properties at the TEXONO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kosmas, T.S., E-mail: hkosmas@uoi.gr [Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina (Greece); Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 Mexico, DF (Mexico); Papoulias, D.K., E-mail: dimpap@cc.uoi.gr [Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina (Greece); AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Tórtola, M., E-mail: mariam@ific.uv.es [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Valle, J.W.F. [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain)

    2015-11-12

    The possibility of measuring neutral-current coherent elastic neutrino–nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.

  11. Face recognition using Krawtchouk moment

    Indian Academy of Sciences (India)

    Zernike moment to enhance the discriminant nature (Pang et al 2006). ... was proposed which is partially invariant to changes in the local image samples, ... tigate the Krawtchouk discrete orthogonal moment-based feature ..... in scale have been achieved by changing the distance between the person and the video camera.

  12. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  13. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    Science.gov (United States)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  14. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  15. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  16. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Wood, C.J.; Olson, R.E.

    1997-08-01

    The complete momentum spectra for single and double ionization of He by 1GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. (orig.)

  17. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  18. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  19. A BHLS model based moment analysis of muon g-2, and its use for lattice QCD evaluations of a{sup had}{sub μ}

    Energy Technology Data Exchange (ETDEWEB)

    Benayoun, M.; DelBuono, L. [Paris VI et Paris VII Univs. (France). LPNHE; David, P. [Paris VI et Paris VII Univs. (France). LPNHE; Paris-Diderot Univ. (France). LIED; Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-05-15

    We present an up-to-date analysis of muon g-2 evaluations in terms of Mellin-Barnes moments as they might be useful for lattice QCD calculations of a{sub μ}. The moments up to 4th order are evaluated directly in terms of e{sup +}e{sup -}-annihilation data and improved within the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms. The model provides a reliable Effective Lagrangian (BHLS) estimate of the two-body channels plus the πππ channel up to 1.05 GeV, just including the φ resonance. The HLS piece accounts for 80% of the contribution to a{sub μ}. The missing pieces are evaluated in the standard way directly in terms of the data. We find that the moment expansion converges well in terms of a few moments. The two types of moments which show up in the Mellin-Barnes representation are calculated in terms of hadronic cross-section data in the timelike region and in terms of the hadronic vacuum polarization (HVP) function in the spacelike region which is accessible to lattice QCD (LQCD). In the Euclidean the first type of moments are the usual Taylor coefficients of the HVP and we show that the second type of moments may be obtained as integrals over the appropriately Taylor truncated HVP function. Specific results for the isovector part of a{sup had}{sub μ} are determined by means of HLS model predictions in close relation to τ-decay spectra.

  20. Magnetic rotation spectra of Co/Pt and Co/Cu multilayers in 50-90 eV region

    International Nuclear Information System (INIS)

    Saito, K.; Igeta, M.; Ejima, T.; Hatano, T.; Arai, A.; Watanabe, M.

    2005-01-01

    Faraday rotation spectra of Co/Pt multilayers were obtained in the region including Co M 2,3 and Pt N 6,7 absorption edges by using multilayer polarizers, and were transformed to magnetic circular dichroism (MCD) spectra by Kramers-Kronig analysis (KKA). From the dependence of the rotation angle on the layer thickness, it was suggested that the magnetization of Co tends to be uniform in Co layers and that of Pt is localized at Co/Pt interfaces. The orbital magnetic moment of Co was estimated to be about 0.17 μ B /Co. The similarity of electronic states around magnetized Pt site between Co/Pt multilayers and CoPt 3 alloy is suggested by the resemblance of the MCD spectra of both materials around Pt N 6,7 edges. In addition, magnetic Kerr rotation of Co/Cu multilayer was measured and was observed around Co M 2,3 and Cu M 2,3 absorption edges

  1. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Harper, E.P.; Lehman, D.R.; Prats, F.

    1984-01-01

    The George Washington University nuclear theory group proposes to conduct investigations of the structure and electromagnetic interactions of few-body systems. The structural properties of the very light nuclei are examined by developing theoretical models that begin from the basic interactions between the constituents and that are solved exactly (numerically), i.e., full three or four-body dynamics. Such models are then used in an attempt to understand the details of the strong and electromagnetic interactions of the few-nucleon nuclei after the basic underlying reaction mechanisms are understood with simpler models. Examples of specific work proposed are the following: (1) From exact four-body dynamics, derive the equations that will permit calculation of the 4 He→ 3 He+n and 4 He→d+d asymptotic normalization constants; (2) Develop a unified picture of the p + d → 3 He = γ, p + d → 3 He = π 0 , p + d → 3 H + π + reactions at intermediate energies; (3) Calculate the elastic and inelastic (1 + →0 + ) form factors for 6 Li with three-body (αNN) wave functions; (4) Calculate static properties (RMS radius, magnetic moment, and quadrupole moment) of 6 Li with three-body wave functions; and (5) Develop the theory for the coincidence reactions 6 Li(p,2p)nα, 6 Li(e,e'p)nα, and 6 Li(e,e'd)α. It is anticipated that these efforts will expand the frontiers of our knowledge about few-body nuclei

  2. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  3. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  4. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  5. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  6. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  7. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  8. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  9. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    International Nuclear Information System (INIS)

    Acuna, M. A.; Gravielle, M. S.

    2011-01-01

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

  10. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  11. On the interpretation of the support moment

    NARCIS (Netherlands)

    Hof, AL

    2000-01-01

    It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the

  12. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  13. Variational approach to magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1977-11-07

    Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.

  14. Sum rules and systematics for baryon magnetic moments

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-11-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the THETA - moment may indicate that the strange quark contribution to the THETA moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -(1/2)μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (author)

  15. Sum rules and systematics for baryon magnetic moments

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1984-01-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks, e.g. from a pion cloud. The large magnitude of the Ψ - moment may indicate that the strange quark contribution to the Ψ moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -1/2μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (orig.)

  16. AN INVESTIGATION OF THE ENERGY L.EVELS AND MUL TIPOLE MIXING RATIO OF ELECTROMAGNETIC TRANSITIONSIN THE EVEN-EVEN ISOTOPES

    Directory of Open Access Journals (Sweden)

    R. KARAKAYA

    1998-12-01

    Full Text Available In this work some of the electromagnetic interactions of even-even Haf nium isotopes in the 150lt;k:;l90 defoıınation region were studied in a detailed manner. l n this region� us ing the experimental 8(E2/lv11 ınultipole ınixing ratios the deformation parameters �o and the quadrupole moments q0 and q'2 were calculated. The obtained results are in a good agreement ·with the ge neral systematic of the defoıınation region under consideration.

  17. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  18. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  19. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Surrente, A; Gallo, P; Felici, M; Dwir, B; Rudra, A; Kapon, E, E-mail: alessandro.surrente@epfl.c [Laboratory of Physics of Nanostructures, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2009-10-14

    Arrays of site-controlled, pyramidal InGaAs/GaAs quantum dots (QDs) grown by organo-metallic chemical vapour deposition with densities comparable to those of self-assembled QDs (5 x 10{sup 9} cm{sup -2}) are demonstrated. The QDs exhibit high quality photoluminescence spectra with inhomogeneous broadening of only 6.5 meV. The QD dipole moment was estimated through the analysis of time-resolved photoluminescence measurements. Such ordered QD arrays should be useful for applications in active nanophotonic systems such as QD lasers, modulators and switches requiring high overlap of the optical modes with the QD active region.

  20. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    International Nuclear Information System (INIS)

    Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M

    2014-01-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)

  1. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    OpenAIRE

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-01-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1 to 2 MHz at the COoler SYnchrotron COSY at J\\"ulich. The device will be used in a future experiment that aims at measuring the proton and deuteron ...

  2. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  3. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  4. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  5. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  6. Magnetic moments of hyperons

    International Nuclear Information System (INIS)

    Overseth, O.E.

    1981-01-01

    The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned

  7. Analytical method of spectra calculations in the Bargmann representation

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz

    2014-01-01

    We formulate a universal method for solving an arbitrary quantum system which, in the Bargmann representation, is described by a system of linear equations with one independent variable, such as one- and multi-photon Rabi models, or N level systems interacting with a single mode of the electromagnetic field and their various generalizations. We explain three types of conditions that determine the spectrum and show their usage for two deformations of the Rabi model. We prove that the spectra of both models are just zeros of transcendental functions, which in one case are given explicitly in terms of confluent Heun functions. - Highlights: • Analytical method of spectrum determination in Bargmann representation is proposed. • Three types of conditions determining spectrum are identified. • Method to two generalizations of the Rabi system is applied

  8. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  9. Pion-cloud effects on the electromagnetic properties of nucleons in a quark model

    International Nuclear Information System (INIS)

    Barik, N.

    1992-01-01

    This paper reports that incorporating corrections for the center-of-mass motion and pion-cloud effects the nucleon electromagnetic form factors G N E.M (q 2 ) are computed in an independent quark model based on the Dirac equation with a confining potential V q (r) = (1 + γ 0 ) a 1n (r/b). The static quantities like magnetic moment μn, charge radius (r 2 ) 1/2 N and axial vector coupling constant (g A ) n → pev of the nucleons computed in this model are in reasonable agreement with the experiment. The pseudoscalar and the pseudovector pion-nucleon coupling constants are obtained as g NNπ = 13.52 and f NNπ = 0.284, which are in excellent agreement with the experimental data

  10. The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC

    Science.gov (United States)

    Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.

    2017-04-01

    The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.

  11. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  12. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  13. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  14. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  15. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  16. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  17. Fast computation of Krawtchouk moments

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, B.; Flusser, Jan

    2014-01-01

    Roč. 288, č. 1 (2014), s. 73-86 ISSN 0020-0255 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Krawtchouk polynomial * Krawtchouk moment * Geometric moment * Impulse response * Fast computation * Digital filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0432452.pdf

  18. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  19. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  20. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  1. Moments analysis of concurrent Poisson processes

    International Nuclear Information System (INIS)

    McBeth, G.W.; Cross, P.

    1975-01-01

    A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)

  2. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  3. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  4. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  5. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. copyright 1997 The American Physical Society

  6. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  7. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  8. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  9. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  10. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  11. A Complex of the Electromagnetic Biosensors with a Nanowired Pickup

    Directory of Open Access Journals (Sweden)

    Rostyslav Sklyar

    2009-01-01

    Full Text Available The proposal to measure the biosignal values of different origins with advanced nanosensors of electromagnetic quantities is justified when allowing for superconducting abilities of the devices. They are composed in full-scale arrays. The said arrays can be both implantable into ionic channels of an organism and sheathed on the sources of the electromagnetic emanation. Nanowired head sensors function both in passive mode for picking up the biosignals and with additional excitation of a defined biomedium through the same head (in reverse. The designed variety of bio-nanosensors allow interfacing a variety of biosignals with the external systems, also with a possibility to control the exposure on an organism by artificially created signals. The calculated signals lies in the range of −5 to 5 V, (7÷0⋅1017/cm3 molecules or magnetic beads, 2÷10 pH, and stream speed 3⋅10−3÷102 m/s, flow 10−5÷10 m/s, and haemoglobin concentration of 1030÷1024 molec/cm3. The sensitivity of this micro- or nanoscope can be estimated as =10−4 (A⋅m/√Hz with SNR equal to 104. The sensitivity of an advanced first-order biogradiometer is equal to 3 fT/√Hz. The smallest resolvable change in magnetic moment detected by this system in the band 10 Hz is 1 fJ/T.

  12. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots

    International Nuclear Information System (INIS)

    Arrayás, Manuel; Trueba, José L

    2015-01-01

    An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)

  13. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  14. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  15. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  16. Interference effects during the reradiation of ultrashort electromagnetic pulses by polyatomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N.; Matveev, V. I., E-mail: mezon98@mail.ru [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2013-11-15

    A theory of the reradiation of ultrashort electromagnetic pulses by arbitrary polyatomic systems of isolated complex atoms has been developed. The technique used allows the spatial inhomogeneity of the field of an ultrashort pulse and photon momenta in reradiation processes to be accurately taken into account. The angular distributions of the reradiation spectra have been obtained for an arbitrary number of atoms in the system. The processes of interference between the photon emission amplitudes are shown to give rise to characteristic “diffraction” maxima. We consider one-dimensional, two-dimensional, and three-dimensional rectangular lattices as examples as well as planar and cylindrical structures as models of planar nanosystems and nanotubes.

  17. Electromagnetic aquametry electromagnetic wave interaction with water and moist substances

    CERN Document Server

    Kupfer, Klaus

    2006-01-01

    This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.

  18. Exploration of Learning Strategies Associated With Aha Learning Moments.

    Science.gov (United States)

    Pilcher, Jobeth W

    2016-01-01

    Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.

  19. Searches for the electron electric dipole moment and nuclear anapole moments in solids

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.

    2004-01-01

    Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results

  20. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    Science.gov (United States)

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  1. Kappa distributions in Saturn's magnetosphere: energetic ion moments using Cassini/MIMI measurements

    Science.gov (United States)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2017-12-01

    Moments of the charged particle distribution function are a compact way of characterizing some of the properties of different magnetospheric regions. Following our previous analyses (Dialynas et al. 2009) and the techniques described in Dialynas et al. (2017), in the present study we use κ-Distribution fits to combine CHEMS (3 to 236 keV/e), LEMMS (0.024 220 keV) H+ and O+ energetic ion spectra covering measurements made in 2004-2016 to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. We use the Khurana et al. [2007] magnetic field model to map the ion measurements to the equatorial plane and produce the equatorial distributions of all ion integral moments, focusing on partial density (n), integral intensity (In), partial pressure (P), integral energy intensity (IE); as well as the characteristic energy (Ec=Ie/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20 Rs). The Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ P, n and T in both local time and L-shell. We find that a) although the PH+ and PO+ are nearly comparable, H+ have higher IE and In at all radial distances (L>5) and local times; b) the 12Η+, ΓΟ+), are consistent with the Arridge et al. [2009] results. Dialynas K. et al. 2009, JGR, 114, A01212 Dialynas K. et al. 2017, Elsevier, ISBN: 9780128046388 Khurana K. K. et al. 2007, AGU, abstract #P44A-01 Roelof E. & A. Skinner 2000, SSR, 91, 437-459 Arridge C. S. et al. 2009, PSS, 57, 2032-2047

  2. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  3. Moment analysis of hadronic vacuum polarization

    Directory of Open Access Journals (Sweden)

    Eduardo de Rafael

    2014-09-01

    Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  4. Moment analysis of hadronic vacuum polarization

    International Nuclear Information System (INIS)

    Rafael, Eduardo de

    2014-01-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data

  5. Moment analysis of hadronic vacuum polarization

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, Eduardo de

    2014-09-07

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  6. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  7. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  8. Electromagnetic engineering - from dc to light

    International Nuclear Information System (INIS)

    Austin, B.A.

    1984-01-01

    Electromagnetic engineering is of great importance to modern world. Some of its various applications can be found in communications science. There is little agreement between the East and West about electromagnetic radiation effects. Although the West believes that there is no danger in power frequency fields, standards for the maximum power densities to which humans may be exposed were laid down by various national and international bodies. Two other effects of electromagnetic energy include: a) The possible ignition of flammable vapours and gases by electromagnetic radiation and; b) the electromagnetic pulse. The application of radar is also discussed

  9. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  10. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  11. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  12. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  13. Absorption spectra of H2-H2 pairs in the fundamental band

    International Nuclear Information System (INIS)

    Meyer, W.; Borysow, A.; Frommhold, L.

    1989-01-01

    For the computation of the induced-dipole moment, the collisional complex consisting of two H 2 molecules is treated like one molecule in the self-consistent-field and size-consistent, coupled electron pair approximations that separates correctly at distant range. The basis set accounts for 95% of the correlation energies. The radial transition matrix elements of the induced-dipole components are obtained for the two cases v 1 =v 2 =0 and v 1 =0,v 2 =1, where the v i are the vibrational quantum numbers of the interacting H 2 molecules (i=1 or 2). The dependence of these elements on the most important rotational states (j 1 , j 1 ',j 2 ,j 2 '=0,...,3) involved is obtained and seen to be significant in the fundamental band. The results are recast in a simple, but accurate analytical form that is used in a quantum formalism for computations of the spectral moments (sum rules) and line shapes of the collision-induced absorption spectra of molecular hydrogen pairs in the infrared 2.4-μm band. The calculations are based on a proven isotropic potential model that we have extended to account for effects of vibrational excitations. Numerical consistency of the line-shape calculations with the sum rules is observed at the 1% level. The comparison of the computational results with the available measurements at temperatures from 20 to 300 K shows agreement within the estimated uncertainties of the best measurements (∼10%). This fact suggests that theory is capable of predicting these spectra reliably at temperatures for which no measurements exist, with an accuracy that compares favorably with that of good laboratory measurements

  14. Closed forms and multi-moment maps

    DEFF Research Database (Denmark)

    Madsen, Thomas Bruun; Swann, Andrew Francis

    2013-01-01

    We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...

  15. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  16. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  17. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  18. Interaction of intense electromagnetic fields with SF6 molecules and clusters in supersonic expansion

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.

    1987-01-01

    A method of measuring SF 6 cluster formation and inhibition in pulsed supersonic expansion in the presence of intense electromagnetic radiation is presented. The characterization of the expansion of SF 6 molecules was done and, the extension of the collision region was determined. An improved unidimensional theory of supersonic expansion showed good agreement with the experimental results. The spectra of multiphoton absorption of SF 6 molecules in supersonic jet and the average energy absorved by each molecule were determined. The absorption spectra of molecule in the collision region present absorption maxima different from those obtained in the collisionless region. The results, if compared with the literature data, show good agreement, with a small difference in the spetra corresponding to the collisionless region. This difference was observed, for the first time in the multiphoton absorption and is attribuited to cluster formation in the jet. A new technique for measuring cluster formation in the supersonic jet, based on determination of the spatial distribution of the energy of molecules in the jet after passing through a skimmer located in the collision region is shown. The inhibition of cluster formation, due to the incidence of intense electromagnetic radiation from a CO 2 -TEA pulsed laser in the initial collision region of the jet, causes a second expansion in the skimmer. The results obtained show that this method can lead to a new isotope separation process. All the parts of the experimental set up, for example, high vacuum system, pulsed valve and pyroelectric detector, were developed and constructed specially for the experiment. (Author) [pt

  19. Restrictions on the neutrino magnetic dipole moment

    International Nuclear Information System (INIS)

    Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.

    1987-01-01

    We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)

  20. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying

    2011-01-01

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.