WorldWideScience

Sample records for specific post-translational modification

  1. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques

    DEFF Research Database (Denmark)

    Zhao, Yingming; Jensen, Ole N

    2009-01-01

    More than 300 different types of protein post-translational modifications (PTMs) have been described, many of which are known to have pivotal roles in cellular physiology and disease. Nevertheless, only a handful of PTMs have been extensively investigated at the proteome level. Knowledge of protein...... substrates and their PTM sites is key to dissection of PTM-mediated cellular processes. The past several years have seen a tremendous progress in developing MS-based proteomics technologies for global PTM analysis, including numerous studies of yeast and other microbes. Modification-specific enrichment...

  2. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  3. Proteomic analysis of post-translational modifications

    DEFF Research Database (Denmark)

    Mann, Matthias; Jensen, Ole N

    2003-01-01

    Post-translational modifications modulate the activity of most eukaryote proteins. Analysis of these modifications presents formidable challenges but their determination generates indispensable insight into biological function. Strategies developed to characterize individual proteins are now...... systematically applied to protein populations. The combination of function- or structure-based purification of modified 'subproteomes', such as phosphorylated proteins or modified membrane proteins, with mass spectrometry is proving particularly successful. To map modification sites in molecular detail, novel...

  4. Peptidomics of Peptic Digest of Selected Potato Tuber Proteins: Post-Translational Modifications and Limited Cleavage Specificity.

    Science.gov (United States)

    C K Rajendran, Subin R; Mason, Beth; Udenigwe, Chibuike C

    2016-03-23

    Bioinformatic tools are useful in predicting bioactive peptides from food proteins. This study was focused on using bioinformatics and peptidomics to evaluate the specificity of peptide release and post-translational modifications (PTMs) in a peptic digest of potato protein isolate. Peptides in the protein hydrolysate were identified by LC-MS/MS and subsequently aligned to their parent potato tuber proteins. Five major proteins were selected for further analysis, namely, lipoxygenase, α-1,4-glucan phosphorylase, annexin, patatin, and polyubiquitin, based on protein coverage, abundance, confidence levels, and function. Comparison of the in silico peptide profile generated with ExPASy PeptideCutter and experimental peptidomics data revealed several differences. The experimental peptic cleavage sites were found to vary in number and specificity from PeptideCutter predictions. Average peptide chain length was also found to be higher than predicted with hexapeptides as the smallest detected peptides. Moreover, PTMs, particularly Met oxidation and Glu/Asp deamidation, were observed in some peptides, and these were unaccounted for during in silico analysis. PTMs can be formed during aging of potato tubers, or as a result of processing conditions during protein isolation and hydrolysis. The findings provide insights on the limitations of current bioinformatics tools for predicting bioactive peptide release from proteins, and on the existence of structural modifications that can alter the peptide bioactivity and functionality.

  5. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  6. Targeting post-translational modifications of histones for cancer therapy.

    Science.gov (United States)

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  7. Post-translational modifications regulate signalling by Ror1

    Czech Academy of Sciences Publication Activity Database

    Kaucká, M.; Krejčí, Pavel; Plevová, K.; Pavlová, Š.; Procházková, Jiřina; Janovská, P.; Valnohová, J.; Kozubík, Alois; Pospíšilová, Š.; Bryja, Vítězslav

    2011-01-01

    Roč. 203, č. 3 (2011), s. 351-362 ISSN 1748-1708 Institutional support: RVO:68081707 Keywords : chronic lymphocytic leukaemia * glycosylation * post-translational modification Subject RIV: BO - Biophysics Impact factor: 3.090, year: 2011

  8. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications.

    Science.gov (United States)

    Lu, Cheng-Tsung; Huang, Kai-Yao; Su, Min-Gang; Lee, Tzong-Yi; Bretaña, Neil Arvin; Chang, Wen-Chi; Chen, Yi-Ju; Chen, Yu-Ju; Huang, Hsien-Da

    2013-01-01

    Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein-protein interaction and domain-domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.

  9. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications.

    Science.gov (United States)

    Tong, Qing-He; Tao, Tao; Xie, Li-Qi; Lu, Hao-Jie

    2016-06-15

    Detection of low-abundance proteins and their post-translational modifications (PTMs) remains a great challenge. A conventional enzyme-linked immunosorbent assay (ELISA) is not sensitive enough to detect low-abundance PTMs and suffers from nonspecific detection. Herein, a rapid, highly sensitive and specific platform integrating ELISA with a proximity ligation assay (PLA), termed ELISA-PLA, was developed. Using ELISA-PLA, the specificity was improved by the simultaneous and proximate recognition of targets through multiple probes, and the sensitivity was significantly improved by rolling circle amplification (RCA). For GFP, the limit of detection (LOD) was decreased by two orders of magnitude compared to that of ELISA. Using site-specific phospho-antibody and pan-specific phospho-antibody, ELISA-PLA was successfully applied to quantify the phosphorylation dynamics of ERK1/2 and the overall tyrosine phosphorylation level of ERK1/2, respectively. ELISA-PLA was also used to quantify the O-GlcNAcylation of AKT, c-Fos, CREB and STAT3, which is faster and more sensitive than the conventional immunoprecipitation and western blotting (IP-WB) method. As a result, the sample consumption of ELISA-PLA was reduced 40-fold compared to IP-WB. Therefore, ELISA-PLA could be a promising platform for the rapid, sensitive and specific detection of proteins and PTMs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The interplay of post-translational modification and gene therapy

    Directory of Open Access Journals (Sweden)

    Osamor VC

    2016-02-01

    Full Text Available Victor Chukwudi Osamor,1–3 Shalom N Chinedu,3,4 Dominic E Azuh,3,5 Emeka Joshua Iweala,3,4 Olubanke Olujoke Ogunlana3,4 1Covenant University Bioinformatics Research (CUBRe Unit, Department of Computer and Information Sciences, College of Science and Technology (CST, Covenant University, Ota, Ogun State, Nigeria; 2Institute of Informatics (Computational biology and Bioinformatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw (Uniwersytet Warszawski, Warszawa, Poland; 3Covenant University Public Health and Well-being Research Group (CUPHWERG, Covenant University, 4Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, 5Department of Economics and Development Studies, Covenant University, Ota, Ogun State, Nigeria Abstract: Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. Keywords: post-translational modification, gene therapy, epigenetics, histone, methylation

  11. Post-Translational Modifications of Histones in Human Sperm.

    Science.gov (United States)

    Krejčí, Jana; Stixová, Lenka; Pagáčová, Eva; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, Gabriela; Zdráhal, Zbyněk; Sehnalová, Petra; Dabravolski, Siarhei; Hejátko, Jan; Bártová, Eva

    2015-10-01

    We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual. © 2015 Wiley Periodicals, Inc.

  12. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.

    Science.gov (United States)

    O’Leary, Brendan; Fedosejevs, Eric T.; Hill, Allyson T.; Bettridge, James; Park, Joonho; Rao, Srinath K.; Leach, Craig A.; Plaxton, William C.

    2011-01-01

    This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism. PMID:21841182

  13. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    Science.gov (United States)

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  14. Elucidating Host-Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches

    DEFF Research Database (Denmark)

    Ravikumar, Vaishnavi; Jers, Carsten; Mijakovic, Ivan

    2015-01-01

    can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein...... display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis...... pathogen interactions....

  15. Molecular dynamics simulation of phosphorylated KID post-translational modification.

    Directory of Open Access Journals (Sweden)

    Hai-Feng Chen

    2009-08-01

    Full Text Available Kinase-inducible domain (KID as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX. NMR spectra suggest that apo-KID is an unstructured protein. After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. However, the mechanism of folding coupled to binding is poorly understood.To get an insight into the mechanism, we have performed ten trajectories of explicit-solvent molecular dynamics (MD for both bound and apo phosphorylated KID (pKID. Ten MD simulations are sufficient to capture the average properties in the protein folding and unfolding.Room-temperature MD simulations suggest that pKID becomes more rigid and stable upon the KIX-binding. Kinetic analysis of high-temperature MD simulations shows that bound pKID and apo-pKID unfold via a three-state and a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound pKID folds in the order of KIX access, initiation of pKID tertiary folding, folding of helix alpha(B, folding of helix alpha(A, completion of pKID tertiary folding, and finalization of pKID-KIX binding. Our data show that the folding pathways of apo-pKID are different from the bound state: the foldings of helices alpha(A and alpha(B are swapped. Here we also show that Asn139, Asp140 and Leu141 with large Phi-values are key residues in the folding of bound pKID. Our results are in good agreement with NMR experimental observations and provide significant insight into the general mechanisms of binding induced protein folding and other conformational adjustment in post-translational modification.

  16. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  17. Proteomic analysis of post translational modifications in cyanobacteria.

    Science.gov (United States)

    Xiong, Qian; Chen, Zhuo; Ge, Feng

    2016-02-16

    Cyanobacteria are a diverse group of Gram-negative bacteria and the only prokaryotes capable of oxygenic photosynthesis. Recently, cyanobacteria have attracted great interest due to their crucial roles in global carbon and nitrogen cycles and their ability to produce clean and renewable biofuels. To survive in various environmental conditions, cyanobacteria have developed a complex signal transduction network to sense environmental signals and implement adaptive changes. The post-translational modifications (PTMs) systems play important regulatory roles in the signaling networks of cyanobacteria. The systematic investigation of PTMs could contribute to the comprehensive description of protein species and to elucidate potential biological roles of each protein species in cyanobacteria. Although the proteomic studies of PTMs carried out in cyanobacteria were limited, these data have provided clues to elucidate their sophisticated sensing mechanisms that contribute to their evolutionary and ecological success. This review aims to summarize the current status of PTM studies and recent publications regarding PTM proteomics in cyanobacteria, and discuss the novel developments and applications for the analysis of PTMs in cyanobacteria. Challenges, opportunities and future perspectives in the proteomics studies of PTMs in cyanobacteria are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies

    Directory of Open Access Journals (Sweden)

    Christiana Kontaxi

    2017-08-01

    Full Text Available Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal microtubule network in the brain. Under normal conditions, tau is highly soluble and adopts an “unfolded” conformation. However, it undergoes conformational changes resulting in a less soluble form with weakened microtubule stabilizing properties. Altered tau forms characteristic pathogenic inclusions in Alzheimer's disease and related tauopathies. Although, tau hyperphosphorylation is widely considered to be the major trigger of tau malfunction, tau undergoes several post-translational modifications at lysine residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation. We are only beginning to define the site-specific impact of each type of lysine modification on tau biology as well as the possible interplay between them, but, like phosphorylation, these modifications are likely to play critical roles in tau's normal and pathobiology. This review summarizes the latest findings focusing on lysine post-translational modifications that occur at both endogenous tau protein and pathological tau forms in AD and other tauopathies. In addition, it highlights the significance of a site-dependent approach of studying tau post-translational modifications under normal and pathological conditions.

  19. Hunting for unexpected post-translational modifications by spectral library searching with tier-wise scoring.

    Science.gov (United States)

    Ma, Chun Wai Manson; Lam, Henry

    2014-05-02

    Discovering novel post-translational modifications (PTMs) to proteins and detecting specific modification sites on proteins is one of the last frontiers of proteomics. At present, hunting for post-translational modifications remains challenging in widely practiced shotgun proteomics workflows due to the typically low abundance of modified peptides and the greatly inflated search space as more potential mass shifts are considered by the search engines. Moreover, most popular search methods require that the user specifies the modification(s) for which to search; therefore, unexpected and novel PTMs will not be detected. Here a new algorithm is proposed to apply spectral library searching to the problem of open modification searches, namely, hunting for PTMs without prior knowledge of what PTMs are in the sample. The proposed tier-wise scoring method intelligently looks for unexpected PTMs by allowing mass-shifted peak matches but only when the number of matches found is deemed statistically significant. This allows the search engine to search for unexpected modifications while maintaining its ability to identify unmodified peptides effectively at the same time. The utility of the method is demonstrated using three different data sets, in which the numbers of spectrum identifications to both unmodified and modified peptides were substantially increased relative to a regular spectral library search as well as to another open modification spectral search method, pMatch.

  20. Tubulin post-translational modifications in the primitive protist Trichomonas vaginalis.

    Science.gov (United States)

    Delgado-Viscogliosi, P; Brugerolle, G; Viscogliosi, E

    1996-01-01

    Using several specific monoclonal antibodies, we investigated the occurrence and distribution of different post-translationally modified tubulin during interphase and division of the primitive flagellated protist Trichomonas vaginalis. Immunoblotting and immunofluorescence experiments revealed that interphasic microtubular structures of T. vaginalis contained acetylated and glutamylated but non-tyrosinated and non-glycylated [Brugerolle and Adoutte, 1988: Bio Systems 21: 255-268] tubulin. Immunofluorescence studies performed on dividing cells showed that the extranuclear mitotic spindle (or paradesmosis) was acetylated and glutamylated, which contrast with the ephemeral nature of this structure. Newly formed short axostyles also contained acetylated and glutamylated tubulin suggesting that both post-translational modifications might take place very early after assembly of microtubular structures. Our results indicate that acetylation and glutamylation of tubulin appeared early in the history of eukaryotes and could reflect the occurrence of post-translational modifications of tubulin in the primitive eukaryotic cells. These cells probably had a highly ordered cross-linked microtubular cytoskeleton in which microtubules showed a low level of subunit exchange dynamics.

  1. Regulation of the tumor suppressor PML by sequential post-translational modifications

    International Nuclear Information System (INIS)

    Schmitz, M. Lienhard; Grishina, Inna

    2012-01-01

    Post-translational modifications (PTMs) regulate multiple biological functions of the promyelocytic leukemia (PML) protein and also the fission, disassembly, and rebuilding of PML nuclear bodies (PML-NBs) during the cell cycle. Pathway-specific PML modification patterns ensure proper signal output from PML-NBs that suit the specific functional requirements. Here we comprehensively review the signaling pathways and enzymes that modify PML and also the oncogenic PML-RARα fusion protein. Many PTMs occur in a hierarchical and timely organized fashion. Phosphorylation or acetylation constitutes typical starting points for many PML modifying events, while degradative ubiquitination is an irreversible end point of the modification cascade. As this hierarchical organization of PTMs frequently turns phosphorylation events as primordial events, kinases or phosphatases regulating PML phosphorylation may be interesting drug targets to manipulate the downstream modifications and thus the stability and function of PML or PML-RARα.

  2. A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation

    DEFF Research Database (Denmark)

    Graham, Mark E; Thaysen-Andersen, Morten; Bache, Nicolai

    2011-01-01

    Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved......NAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking...... phosphorylation sites within 4 amino acid residues. This novel type of protein glycosyl phosphorylation adds a new signaling mechanism to the regulation of neurotransmission and more complexity to the study of O-GlcNAc modification....

  3. Status of large-scale analysis of post-translational modifications by mass spectrometry

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Mann, Matthias

    2013-01-01

    Cellular function can be controlled through the gene expression program but often protein post translations modifications (PTMs) provide a more precisely and elegant mechanism. Key functional roles of specific modification events for instance during the cell cycle have been known for decades...... of protein modifications. For many PTMs, including phosphorylation, ubiquitination, glycosylation and acetylation, tens of thousands of sites can now be confidently identified and localized in the sequence of the protein. Quantitation of PTM levels between different cellular states is likewise established......, with label-free methods showing particular promise. It is also becoming possible to determine the absolute occupancy or stoichiometry of PTMS sites on a large scale. Powerful software for the bioinformatic analysis of thousands of PTM sites has been developed. However, a complete inventory of sites has...

  4. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.

    Science.gov (United States)

    Sarg, Bettina; Lopez, Rita; Lindner, Herbert; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-15

    Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to

  5. Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain

    DEFF Research Database (Denmark)

    Edwards, Alistair V G; Edwards, Gregory J; Schwämmle, Veit

    2014-01-01

    Protein post-translational modification (PTM) is a powerful way to modify the behavior of cellular proteins and thereby cellular behavior. Multiple recent studies of evolutionary trends have shown that certain pairs of protein post-translational modifications tend to occur closer to each other than...... for observations of increasingly frequent and diverse protein modification in cell biology. In this study, we use mass spectrometry and proteomic strategies to present biological data showing spatiotemporal PTM co-localization across multiple PTM categories, which display changes over development of the brain...

  6. Alpha1-acid glycoprotein post-translational modifications: a comparative two dimensional electrophoresis based analysis

    Directory of Open Access Journals (Sweden)

    P. Roncada

    2010-04-01

    Full Text Available Alpha1-acid glycoprotein (AGP is an immunomodulatory protein expressed by hepatocytes in response to the systemic reaction that follows tissue damage caused by inflammation, infection or trauma. A proteomic approach based on two dimensional electrophoresis, immunoblotting and staining of 2DE gels with dyes specific for post-translational modifications (PTMs such as glycosylation and phosphorylation has been used to evaluate the differential interspecific protein expression of AGP purified from human, bovine and ovine sera. By means of these techniques, several isoforms have been identified in the investigated species: they have been found to change both with regard to the number of isoforms expressed under physiological condition and with regard to the quality of PTMs (i.e. different oligosaccharidic chains, presence/absence of phosphorilations. In particular, it is suggested that bovine serum AGP may have one of the most complex pattern of PTMs among serum proteins of mammals studied so far.

  7. Variable elimination in post-translational modification reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    We define a subclass of chemical reaction networks called post-translational modification systems. Important biological examples of such systems include MAPK cascades and two-component systems which are well-studied experimentally as well as theoretically. The steady states of such a system...

  8. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins

    Czech Academy of Sciences Publication Activity Database

    Stepper, J.; Shastri, S.; Loo, T. S.; Preston, J. C.; Novák, Petr; Man, Petr; Moore, Ch. H.; Havlíček, Vladimír; Patchett, M. L.; Norris, G. E.

    2011-01-01

    Roč. 585, č. 4 (2011), s. 645-650 ISSN 0014-5793 Institutional research plan: CEZ:AV0Z50200510 Keywords : Post-translational modification * Glycosylation * Bacteriocin Subject RIV: CE - Biochemistry Impact factor: 3.538, year: 2011

  9. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    Science.gov (United States)

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  10. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  11. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  12. Global turnover of histone post-translational modifications and variants in human cells

    Directory of Open Access Journals (Sweden)

    Zee Barry M

    2010-12-01

    Full Text Available Abstract Background Post-translational modifications (PTMs on the N-terminal tails of histones and histone variants regulate distinct transcriptional states and nuclear events. Whereas the functional effects of specific PTMs are the current subject of intense investigation, most studies characterize histone PTMs/variants in a non-temporal fashion and very few studies have reported kinetic information about these histone forms. Previous studies have used radiolabeling, fluorescence microscopy and chromatin immunoprecipitation to determine rates of histone turnover, and have found interesting correlations between increased turnover and increased gene expression. Therefore, histone turnover is an understudied yet potentially important parameter that may contribute to epigenetic regulation. Understanding turnover in the context of histone modifications and sequence variants could provide valuable additional insight into the function of histone replacement. Results In this study, we measured the metabolic rate of labeled isotope incorporation into the histone proteins of HeLa cells by combining stable isotope labeling of amino acids in cell culture (SILAC pulse experiments with quantitative mass spectrometry-based proteomics. In general, we found that most core histones have similar turnover rates, with the exception of the H2A variants, which exhibit a wider range of rates, potentially consistent with their epigenetic function. In addition, acetylated histones have a significantly faster turnover compared with general histone protein and methylated histones, although these rates vary considerably, depending on the site and overall degree of methylation. Histones containing transcriptionally active marks have been consistently found to have faster turnover rates than histones containing silent marks. Interestingly, the presence of both active and silent marks on the same peptide resulted in a slower turnover rate than either mark alone on that same

  13. Post-translationally modified muscle-specific ubiquitin ligases as circulating biomarkers in experimental cancer cachexia

    Science.gov (United States)

    Mota, Roberto; Rodríguez, Jessica E; Bonetto, Andrea; O’Connell, Thomas M; Asher, Scott A; Parry, Traci L; Lockyer, Pamela; McCudden, Christopher R; Couch, Marion E; Willis, Monte S

    2017-01-01

    Cancer cachexia is a severe wasting syndrome characterized by the progressive loss of lean body mass and systemic inflammation. Up to 80% of cancer patients experience cachexia, with 20-30% of cancer-related deaths directly linked to cachexia. Despite efforts to identify early cachexia and cancer relapse, clinically useful markers are lacking. Recently, we identified the role of muscle-specific ubiquitin ligases Atrogin-1 (MAFbx, FBXO32) and Muscle Ring Finger-1 in the pathogenesis of cardiac atrophy and hypertrophy. We hypothesized that during cachexia, the Atrogin-1 and MuRF1 ubiquitin ligases are released from muscle and migrate to the circulation where they could be detected and serve as a cachexia biomarker. To test this, we induced cachexia in mice using the C26 adenocarcinoma cells or vehicle (control). Body weight, tumor volume, and food consumption were measured from inoculation until ~day 14 to document cachexia. Western blot analysis of serum identified the presence of Atrogin-1 and MuRF1 with unique post-translational modifications consistent with mono- and poly- ubiquitination of Atrogin-1 and MuRF1 found only in cachectic serum. These findings suggest that both increased Atrogin-1 and the presence of unique post-translational modifications may serve as a surrogate marker specific for cachexia. PMID:28979816

  14. Golgi structure formation, function, and post-translational modifications in mammalian cells.

    Science.gov (United States)

    Huang, Shijiao; Wang, Yanzhuang

    2017-01-01

    The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.

  15. Post-Translational Modifications of RelB NF-κB Subunit and Associated Functions

    Directory of Open Access Journals (Sweden)

    Véronique Baud

    2016-05-01

    Full Text Available The family of NF-κB transcription factors plays a key role in diverse biological processes, such as inflammatory and immune responses, cell survival and tumor development. Beyond the classical NF-κB activation pathway, a second NF-κB pathway has more recently been uncovered, the so-called alternative NF-κB activation pathway. It has been shown that this pathway mainly controls the activity of RelB, a member of the NF-κB family. Post-translational modifications, such as phosphorylation, acetylation, methylation, ubiquitination and SUMOylation, have recently emerged as a strategy for the fine-tuned regulation of NF-κB. Our review discusses recent progress in the understanding of RelB regulation by post-translational modifications and the associated functions in normal and pathological conditions.

  16. Identification and characterization of HTLV-1 HBZ post-translational modifications.

    Directory of Open Access Journals (Sweden)

    Nathan Dissinger

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is estimated to infect 15-25 million people worldwide, with several areas including southern Japan and the Caribbean basin being endemic. The virus is the etiological agent of debilitating and fatal diseases, for which there is currently no long-term cure. In the majority of cases of leukemia caused by HTLV-1, only a single viral gene, hbz, and its cognate protein, HBZ, are expressed and their importance is increasingly being recognized in the development of HTLV-1-associated disease. We hypothesized that HBZ, like other HTLV-1 proteins, has properties and functions regulated by post-translational modifications (PTMs that affect specific signaling pathways important for disease development. To date, PTM of HBZ has not been described. We used an affinity-tagged protein and mass spectrometry method to identify seven modifications of HBZ for the first time. We examined how these PTMs affected the ability of HBZ to modulate several pathways, as measured using luciferase reporter assays. Herein, we report that none of the identified PTMs affected HBZ stability or its regulation of tested pathways.

  17. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer

    Directory of Open Access Journals (Sweden)

    David Corujo

    2018-02-01

    Full Text Available Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs. While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.

  18. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; von Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein...... probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated...

  19. Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Braga, Thiago Verano; Roepstorff, Peter

    2015-01-01

    The investigation of post-translational modifications (PTMs) represents one of the main research focuses for the study of protein function and cell signaling. Mass spectrometry instrumentation with increasing sensitivity improved protocols for PTM enrichment and recently established pipelines...... for high-throughput experiments allow large-scale identification and quantification of several PTM types. This review addresses the concurrently emerging challenges for the computational analysis of the resulting data and presents PTM-centered approaches for spectra identification, statistical analysis...

  20. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors.

    Science.gov (United States)

    Olson, Michael F

    2018-05-04

    The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.

  1. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  2. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  3. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Directory of Open Access Journals (Sweden)

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  4. An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum

    KAUST Repository

    Veluchamy, Alaguraj

    2015-05-20

    Background: Nucleosomes are the building blocks of chromatin where gene regulation takes place. Chromatin landscapes have been profiled for several species, providing insights into the fundamental mechanisms of chromatin-mediated transcriptional regulation of gene expression. However, knowledge is missing for several major and deep-branching eukaryotic groups, such as the Stramenopiles, which include the diatoms. Diatoms are highly diverse and ubiquitous species of phytoplankton that play a key role in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans. Results: Here, we use high resolution mass spectrometry to identify a full repertoire of post-translational modifications on histones of the marine diatom Phaeodactylum tricornutum, including eight novel modifications. We map five histone marks coupled with expression data and show that P. tricornutum displays both unique and broadly conserved chromatin features, reflecting the chimeric nature of its genome. Combinatorial analysis of histone marks and DNA methylation demonstrates the presence of an epigenetic code defining activating or repressive chromatin states. We further profile three specific histone marks under conditions of nitrate depletion and show that the histone code is dynamic and targets specific sets of genes. Conclusions: This study is the first genome-wide characterization of the histone code from a stramenopile and a marine phytoplankton. The work represents an important initial step for understanding the evolutionary history of chromatin and how epigenetic modifications affect gene expression in response to environmental cues in marine environments. © 2015 Veluchamy et al.

  5. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mowei; Wu, Si; Stenoien, David L.; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Pasa-Tolic, Ljiljana

    2016-11-11

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  6. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties

    Directory of Open Access Journals (Sweden)

    Mirko eZaffagnini

    2013-11-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively-modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively-modified GAPDH in stress signaling pathways in plants.

  7. Comparison at the peptide level with post-translational modification consideration reveals more differences between two unenriched samples.

    Science.gov (United States)

    Yin, Jianrui; Shao, Chen; Jia, Lulu; Gao, Youhe

    2014-06-30

    In shotgun strategies, peptide sequences are first identified from tandem mass (MS/MS) spectra, and the existence and abundance of the proteins are then inferred from the peptide information. However, the protein inference step can produce errors and a loss of information. To identify the information that is lost using the traditional approaches, this study compared the proteomic data of two leukemia cell lines (Jurkat and K562) at the peptide level with consideration of post-translational modifications (PTMs). The raw files from the two cell lines were searched against the decoy IPI-human database version 3.68, which contains forward and reverse sequences. Then the observed modification name in the results was matched with the modification classification on the Unimod website by a manual search. Only the peptides with 'post-translational' modifications were compared between the two cell lines. After searching the database with consideration of PTMs, a total of 44046 non-redundant peptides were identified in both the Jurkat and K562 cell lines. Of these peptides, even without specific PTM enrichment, 11.43% of them (with at least two spectra in one cell line) existed in different PTM forms between the two cell lines, and 1.73% of the peptides were modified in both cell lines, but with different modifications or possibly on different sites. Comparing proteomic data at the peptide level with consideration of PTMs can reveal more differences between two unenriched samples. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Sidoli, Simone; Wang, Leilei

    2014-01-01

    We present a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in rat retinas affected by ischemia and reperfusion (I/R) injury. Retinal I/R injury contributes to serious ocular diseases, which can lead to vision loss and blindness. We applied linear...... ion trap-orbitrap hybrid tandem mass spectrometry (MS/MS) to quantify 131 single histone marks and 143 combinations of multiple histone marks in noninjured and injured retinas. We observed 34 histone PTMs that exhibited significantly (p

  9. Prediction of human protein function from post-translational modifications and localization features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Blom, Nikolaj

    2002-01-01

    a number of functional attributes that are more directly related to the linear sequence of amino acids, and hence easier to predict, than protein structure. These attributes include features associated with post-translational modifications and protein sorting, but also much simpler aspects......We have developed an entirely sequence-based method that identifies and integrates relevant features that can be used to assign proteins of unknown function to functional classes, and enzyme categories for enzymes. We show that strategies for the elucidation of protein function may benefit from...

  10. Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gaucher, S.P.; Redding, A.M.; Mukhopadhyay, A.; Keasling, J.D.; Singh, A.K.

    2008-03-01

    Recent developments in shotgun proteomics have enabled high-throughput studies of a variety of microorganisms at a proteome level and provide experimental validation for predicted open reading frames in the corresponding genome. More importantly, advances in mass spectrometric data analysis now allow mining of large proteomics data sets for the presence of post-translational modifications(PTMs). Although PTMs are a critical aspectof cellular activity, such information eludes cell-wide studies conducted at the transcript level. Here, we analyze several mass spectrometric data sets acquired using two-dimensional liquid chromatography tandem mass spectrometry, 2D-LC/MS/MS, for the sulfate reducing bacterium, Desulfovibrio vulgaris Hildenborough. Our searches of the raw spectra led us to discover several post-translationally modified peptides in D. vulgaris. Of these, several peptides containing a lysine with a +42 Da modification were found reproducibly across all data sets. Both acetylation and trimethylation have the same nominal +42 Da mass, and are therefore candidates for this modification. Several spectra were identified having markers for trimethylation, while one is consistent with an acetylation. Surprisingly, these modified peptides predominantly mapped to proteins involved in sulfate respiration. Other highly expressed proteins in D. vulgaris, such as enzymes involved in electron transport and other central metabolic processes, did not contain this modification. Decoy database searches were used to control for random spectrum/sequence matches. Additional validation for these modifications was provided by alternate workflows, for example, two-dimensional gel electrophoresis followed by mass spectrometry analysis of the dissimilatory sulfite reductase gamma-subunit(DsrC) protein. MS data for DsrC in this alternate workflow also contained the +42 Da modification at the same loci. Furthermore, the DsrC homologue in another sulfate reducing bacterium

  11. Evolutionary constraint and disease associations of post-translational modification sites in human genomes.

    Directory of Open Access Journals (Sweden)

    Jüri Reimand

    2015-01-01

    Full Text Available Interpreting the impact of human genome variation on phenotype is challenging. The functional effect of protein-coding variants is often predicted using sequence conservation and population frequency data, however other factors are likely relevant. We hypothesized that variants in protein post-translational modification (PTM sites contribute to phenotype variation and disease. We analyzed fraction of rare variants and non-synonymous to synonymous variant ratio (Ka/Ks in 7,500 human genomes and found a significant negative selection signal in PTM regions independent of six factors, including conservation, codon usage, and GC-content, that is widely distributed across tissue-specific genes and function classes. PTM regions are also enriched in known disease mutations, suggesting that PTM variation is more likely deleterious. PTM constraint also affects flanking sequence around modified residues and increases around clustered sites, indicating presence of functionally important short linear motifs. Using target site motifs of 124 kinases, we predict that at least ∼180,000 motif-breaker amino acid residues that disrupt PTM sites when substituted, and highlight kinase motifs that show specific negative selection and enrichment of disease mutations. We provide this dataset with corresponding hypothesized mechanisms as a community resource. As an example of our integrative approach, we propose that PTPN11 variants in Noonan syndrome aberrantly activate the protein by disrupting an uncharacterized cluster of phosphorylation sites. Further, as PTMs are molecular switches that are modulated by drugs, we study mutated binding sites of PTM enzymes in disease genes and define a drug-disease network containing 413 novel predicted disease-gene links.

  12. Muc1 based breast cancer vaccines: role of post translational modifications

    International Nuclear Information System (INIS)

    Begum, M.; Khurshid, R.; Nagra, S.A.

    2008-01-01

    Vaccine development is one of the most promising fields in cancer research. After autologous transplantation, due to low tumour burden, patients are more likely to respond immunologically to a cancer vaccine. MUC1 with its adhesive and anti adhesive functions, immunostimulatory and immunosuppressive activities, is therefore a good candidate for breast cancer vaccine. A structure-based insight into the immunogenicity of natural MUC1 glyco forms, of its sub-domains, motifs and post translational modification like glycosylation and myriostoylation may aid the design of tumour vaccines. Primary sequences of human MUC1 were retrieved from the SWISSPROT data bank. Protein pattern search: The primary sequence of Human MUC1 was searched at PROSITE (a dictionary of protein sites and patterns) database. Our study observes that post-translational modifications play an important role in presenting MUC1 as a candidate for breast cancer vaccine. It is found that the phosphorylation and glycosylation of important functional motifs of MUC1 may take part in the production of cytokines that may provide immunization. (author)

  13. Multiple γ-glutamylation: A novel type of post-translational modification in a diapausing Artemia cyst protein

    International Nuclear Information System (INIS)

    Hasegawa, Mai; Ikeda, Yuka; Kanzawa, Hideaki; Sakamoto, Mika; Goto, Mina; Tsunasawa, Susumu; Uchiumi, Toshio; Odani, Shoji

    2010-01-01

    A highly hydrophilic, glutamate-rich protein was identified in the aqueous phenol extract from the cytosolic fraction of brine shrimp (Artemia franciscana) diapausing cysts and termed Artemia phenol soluble protein (PSP). Mass spectrometric analysis revealed the presence of many protein peaks around m/z 11,000, separated by 129 atomic mass units; this value corresponds to that of glutamate, which is strongly suggestive of heterogeneous polyglutamylation. Polyglutamylation has long been known as the functionally important post-translational modification of tubulins, which carry poly(L-glutamic acid) chains of heterogeneous length branching off from the main chain at the γ-carboxy groups of a few specific glutamate residues. In Artemia PSP, however, Edman degradation of enzymatic peptides revealed that at least 13, and presumably 16, glutamate residues were modified by the attachment of a single L-glutamate, representing a hitherto undescribed type of post-translational modification: namely, multiple γ-glutamylation or the addition of a large number of glutamate residues along the polypeptide chain. Although biological significance of PSP and its modification is yet to be established, suppression of in vitro thermal aggregation of lactate dehydrogenase by glutamylated PSP was observed.

  14. Prediction of protein post-translational modifications: main trends and methods

    Science.gov (United States)

    Sobolev, B. N.; Veselovsky, A. V.; Poroikov, V. V.

    2014-02-01

    The review summarizes main trends in the development of methods for the prediction of protein post-translational modifications (PTMs) by considering the three most common types of PTMs — phosphorylation, acetylation and glycosylation. Considerable attention is given to general characteristics of regulatory interactions associated with PTMs. Different approaches to the prediction of PTMs are analyzed. Most of the methods are based only on the analysis of the neighbouring environment of modification sites. The related software is characterized by relatively low accuracy of PTM predictions, which may be due both to the incompleteness of training data and the features of PTM regulation. Advantages and limitations of the phylogenetic approach are considered. The prediction of PTMs using data on regulatory interactions, including the modular organization of interacting proteins, is a promising field, provided that a more carefully selected training data will be used. The bibliography includes 145 references.

  15. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation

    Science.gov (United States)

    Shirinian, Margret; Kfoury, Youmna; Dassouki, Zeina; El-Hajj, Hiba; Bazarbachi, Ali

    2013-01-01

    Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro. PMID:23966989

  16. Quantitative proteomic analysis of post-translational modifications of human histones

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Nielsen, Eva C; Matthiesen, Rune

    2006-01-01

    , and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained...... by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational...

  17. A homology-based pipeline for global prediction of post-translational modification sites

    Science.gov (United States)

    Chen, Xiang; Shi, Shao-Ping; Xu, Hao-Dong; Suo, Sheng-Bao; Qiu, Jian-Ding

    2016-05-01

    The pathways of protein post-translational modifications (PTMs) have been shown to play particularly important roles for almost any biological process. Identification of PTM substrates along with information on the exact sites is fundamental for fully understanding or controlling biological processes. Alternative computational strategies would help to annotate PTMs in a high-throughput manner. Traditional algorithms are suited for identifying the common organisms and tissues that have a complete PTM atlas or extensive experimental data. While annotation of rare PTMs in most organisms is a clear challenge. In this work, to this end we have developed a novel homology-based pipeline named PTMProber that allows identification of potential modification sites for most of the proteomes lacking PTMs data. Cross-promotion E-value (CPE) as stringent benchmark has been used in our pipeline to evaluate homology to known modification sites. Independent-validation tests show that PTMProber achieves over 58.8% recall with high precision by CPE benchmark. Comparisons with other machine-learning tools show that PTMProber pipeline performs better on general predictions. In addition, we developed a web-based tool to integrate this pipeline at http://bioinfo.ncu.edu.cn/PTMProber/index.aspx. In addition to pre-constructed prediction models of PTM, the website provides an extensional functionality to allow users to customize models.

  18. Beyond gene expression: the impact of protein post-translational modifications in bacteria.

    Science.gov (United States)

    Cain, Joel A; Solis, Nestor; Cordwell, Stuart J

    2014-01-31

    The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. © 2013 Elsevier B.V. All rights reserved.

  19. Multiple post-translational modifications in hepatocyte nuclear factor 4α

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Katsura, Shogo; Ito, Ryo; Hashiba, Waka; Sekine, Hiroki; Fujiki, Ryoji; Kato, Shigeaki

    2011-01-01

    Highlights: → We performed comprehensive PTM analysis for HNF4α protein. → We identified 8 PTMs in HNF4α protein including newly identified PTMs. → Among them, we found acetylation at lysine 458 was one of the prime PTMs for HNF4α function. → Acetylation at lysine 458 was inhibitory for HNF4α transcription function. → This modification fluctuated in response to extracellular condition. -- Abstract: To investigate the role of post-translational modifications (PTMs) in the hepatocyte nuclear factor 4α (HNF4α)-mediated transcription, we took a comprehensive survey of PTMs in HNF4α protein by massspectrometry and identified totally 8 PTM sites including newly identified ubiquitilation and acetylation sites. To assess the impact of identified PTMs in HNF4α-function, we introduced point mutations at the identified PTM sites and, tested transcriptional activity of the HNF4α. Among the point-mutations, an acetylation site at lysine 458 was found significant in the HNF4α-mediated transcriptional control. An acetylation negative mutant at lysine 458 showed an increased transcriptional activity by about 2-fold, while an acetylation mimic mutant had a lowered transcriptional activation. Furthermore, this acetylation appeared to be fluctuated in response to extracellular nutrient conditions. Thus, by applying an comprehensive analysis of PTMs, multiple PTMs were newly identified in HNF4α and unexpected role of an HNF4α acetylation could be uncovered.

  20. Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications.

    Science.gov (United States)

    Feltes, Bruno César; Bonatto, Diego

    2015-01-01

    The xeroderma pigmentosum complementation group proteins (XPs), which include XPA through XPG, play a critical role in coordinating and promoting global genome and transcription-coupled nucleotide excision repair (GG-NER and TC-NER, respectively) pathways in eukaryotic cells. GG-NER and TC-NER are both required for the repair of bulky DNA lesions, such as those induced by UV radiation. Mutations in genes that encode XPs lead to the clinical condition xeroderma pigmentosum (XP). Although the roles of XPs in the GG-NER/TC-NER subpathways have been extensively studied, complete knowledge of their three-dimensional structure is only beginning to emerge. Hence, this review aims to summarize the current knowledge of mapped mutations and other structural information on XP proteins that influence their function and protein-protein interactions. We also review the possible post-translational modifications for each protein and the impact of these modifications on XP protein functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Electrospray mass spectrometry characterization of post-translational modifications of barley alpha-amylase 1 produced in yeast

    DEFF Research Database (Denmark)

    Søgaard, M; Andersen, Jens S.; Roepstorff, P

    1993-01-01

    We have used electrospray mass spectrometry (ESMS) in combination with protein chemistry and genetics to delineate post-translational modifications in yeast of barley alpha-amylase 1 (AMY1), a 45 kD enzyme crucial for production of malt, an important starting material in the manufacture of beer...

  2. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-01-01

    taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we...

  3. Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications.

    Science.gov (United States)

    Urasaki, Yasuyo; Fiscus, Ronald R; Le, Thuc T

    2016-04-01

    We describe an alternative approach to classifying fatty liver by profiling protein post-translational modifications (PTMs) with high-throughput capillary isoelectric focusing (cIEF) immunoassays. Four strains of mice were studied, with fatty livers induced by different causes, such as ageing, genetic mutation, acute drug usage, and high-fat diet. Nutrient-sensitive PTMs of a panel of 12 liver metabolic and signalling proteins were simultaneously evaluated with cIEF immunoassays, using nanograms of total cellular protein per assay. Changes to liver protein acetylation, phosphorylation, and O-N-acetylglucosamine glycosylation were quantified and compared between normal and diseased states. Fatty liver tissues could be distinguished from one another by distinctive protein PTM profiles. Fatty liver is currently classified by morphological assessment of lipid droplets, without identifying the underlying molecular causes. In contrast, high-throughput profiling of protein PTMs has the potential to provide molecular classification of fatty liver. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems.

    Science.gov (United States)

    Noberini, Roberta; Osti, Daniela; Miccolo, Claudia; Richichi, Cristina; Lupia, Michela; Corleone, Giacomo; Hong, Sung-Pil; Colombo, Piergiuseppe; Pollo, Bianca; Fornasari, Lorenzo; Pruneri, Giancarlo; Magnani, Luca; Cavallaro, Ugo; Chiocca, Susanna; Minucci, Saverio; Pelicci, Giuliana; Bonaldi, Tiziana

    2018-05-04

    Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.

  5. Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs

    Directory of Open Access Journals (Sweden)

    Juan Carlos Begara-Morales

    2016-02-01

    Full Text Available Nitric oxide (NO is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS, such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs peroxiredoxins (Prx and all the enzymatic components of the ascorbate-glutathione (Asa-GSH cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.

  6. Post-translational modifications are key players of the Legionella pneumophila infection strategy

    Science.gov (United States)

    Michard, Céline; Doublet, Patricia

    2015-01-01

    Post-translational modifications (PTMs) are widely used by eukaryotes to control the enzymatic activity, localization or stability of their proteins. Traditionally, it was believed that the broad biochemical diversity of the PTMs is restricted to eukaryotic cells, which exploit it in extensive networks to fine-tune various and complex cellular functions. During the last decade, the advanced detection methods of PTMs and functional studies of the host–pathogen relationships highlight that bacteria have also developed a large arsenal of PTMs, particularly to subvert host cell pathways to their benefit. Legionella pneumophila, the etiological agent of the severe pneumonia legionellosis, is the paradigm of highly adapted intravacuolar pathogens that have set up sophisticated biochemical strategies. Among them, L. pneumophila has evolved eukaryotic-like and rare/novel PTMs to hijack host cell processes. Here, we review recent progress about the diversity of PTMs catalyzed by Legionella: ubiquitination, prenylation, phosphorylation, glycosylation, methylation, AMPylation, and de-AMPylation, phosphocholination, and de-phosphocholination. We focus on the host cell pathways targeted by the bacteria catalyzed PTMs and we stress the importance of the PTMs in the Legionella infection strategy. Finally, we highlight that the discovery of these PTMs undoubtedly made significant breakthroughs on the molecular basis of Legionella pathogenesis but also lead the way in improving our knowledge of the eukaryotic PTMs and complex cellular processes that are associated to. PMID:25713573

  7. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Akiko Hashiguchi

    2016-12-01

    Full Text Available The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs can regulate protein activity and localization as well as protein–protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future.

  8. Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules

    Directory of Open Access Journals (Sweden)

    Teresa Mendes Maia

    2014-01-01

    Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary genes are associated with various diseases such as ciliopathies and infertility. Here, we describe the role of the highly conserved ciliary protein, Bug22, in Drosophila. Previous studies in unicellular organisms have shown that Bug22 is required for proper cilia function, but its exact role in ciliogenesis has not been investigated yet. Null Bug22 mutant flies display cilia-associated phenotypes and nervous system defects. Furthermore, sperm differentiation is blocked at the individualization stage, due to impaired migration of the individualization machinery. Tubulin post-translational modifications (PTMs such as polyglycylation, polyglutamylation or acetylation, are determinants of microtubule (MT functions and stability in centrioles, cilia and neurons. We found defects in the timely incorporation of polyglycylation in sperm axonemal MTs of Bug22 mutants. In addition, we found that depletion of human Bug22 in RPE1 cells resulted in the appearance of longer cilia and reduced axonemal polyglutamylation. Our work identifies Bug22 as a protein that plays a conserved role in the regulation of PTMs of the ciliary axoneme.

  9. Unrestrictive identification of post-translational modifications in the urine proteome without enrichment

    Science.gov (United States)

    2013-01-01

    Background Research on the human urine proteome may lay the foundation for the discovery of relevant disease biomarkers. Post-translational modifications (PTMs) have important effects on the functions of protein biomarkers. Identifying PTMs without enrichment adds no extra steps to conventional identification procedures for urine proteomics. The only difference is that this method requires software that can conduct unrestrictive identifications of PTMs. In this study, routine urine proteomics techniques were used to identify urine proteins. Unspecified PTMs were searched by MODa and PEAKS 6 automated software, followed by a manual search to screen out in vivo PTMs by removing all in vitro PTMs and amino acid substitutions. Results There were 75 peptides with 6 in vivo PTMs that were found by both MODa and PEAKS 6. Of these, 34 peptides in 18 proteins have novel in vivo PTMs compared with the annotation information of these proteins on the Universal Protein Resource website. These new in vivo PTMs had undergone methylation, dehydration, oxidation, hydroxylation, phosphorylation, or dihydroxylation. Conclusions In this study, we identified PTMs of urine proteins without the need for enrichment. Our investigation may provide a useful reference for biomarker discovery in the future. PMID:23317149

  10. Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Aspalter, Claudia-Maria; Sidoli, Simone

    2014-01-01

    Mass spectrometry (MS) is a powerful analytical method for the identification and quantification of co-existing post-translational modifications in histone proteins. One of the most important challenges in current chromatin biology is to characterize the relationships between co-existing histone...... sample-specific patterns for the co-frequency of histone post-translational modifications. We implemented a new method to identify positive and negative interplay between pairs of methylation and acetylation marks in proteins. Many of the detected features were conserved between different cell types...... sites but negative cross-talk for distant ones, and for discrete methylation states at Lys-9, Lys-27, and Lys-36 of histone H3, suggesting a more differentiated functional role of methylation beyond the general expectation of enhanced activity at higher methylation states....

  11. Proteomic profiling and post-translational modifications in human keratinocytes treated with Mucuna pruriens leaf extract.

    Science.gov (United States)

    Cortelazzo, Alessio; Lampariello, Raffaella L; Sticozzi, Claudia; Guerranti, Roberto; Mirasole, Cristiana; Zolla, Lello; Sacchetti, Gianni; Hajek, Joussef; Valacchi, Giuseppe

    2014-02-03

    Mucuna pruriens (Mp) is a plant belonging to the Fabaceae family, with several medicinal properties among which its potential to treat diseases where reactive oxygen species (ROS) play an important role in the pathogeneses. The aim was to investigate the effects of Mp leaf methanolic extract (MPME) on human keratinocytes protein expression and its role in preventing proteins oxidation after oxidative stress (OS) exposure. The effects of MPME on HaCaT cells protein expression were evaluated treating cells with different concentrations of MPME, with glucose oxidase (GO, source of OS) and with MPME subsequently treated with GO. The protein patterns of treated HaCaT cells are analyzed by two-dimensional gel electrophoresis (2-DE) and compared with that of untreated HaCaT. Immunoblotting was then used to evaluate the role of MPME in preventing the 4-hydroxynonenal protein adducts (4-HNE PAs) formation (marker of OS). Eighteen proteins, identified by mass spectrometry (LC-ESI-CID-MS/MS), were modulated distinctly by MPME in HaCaT. Overall, MPME counteract GO effect, reducing the GO-induced overexpression of several proteins involved in stress response (T-complex protein 1, Protein disulfide-isomerase A3, Protein DJ-1, and Stress-induced-phosphoprotein 1), in cell energy methabolism (Inorganic pyrophosphatase, Triosephosphate isomerase isoform 1, 2-phosphopyruvate-hydratase alpha-enolase, and Fructose-bisphosphate aldolase A isoform 1), in cytoskeletal organization (Cytokeratins 18, 9, 2, Cofilin-1, Annexin A2 and F-actin-capping protein subunit beta isoform 1) and in cell cycle progression (Eukaryotic translation initiation factor 5A-1 isoform B). In addition, MPME decreased the 4-HNE PAs levels, in particular on 2-phosphopyruvate-hydratase alpha-enolase and Cytokeratin 9. Our findings show that MPME might be helpful in the treatment of OS-related skin diseases by preventing protein post-translational modifications (4-HNE PAs). © 2013 Published by Elsevier Ireland Ltd.

  12. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Philip A Kramer

    2015-11-01

    Full Text Available Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.

  13. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun; Marcinek, David J.

    2015-11-25

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.

  14. Tax-1 and Tax-2 similarities and differences: Focus on post-translational modifications and NF-кB activation

    Directory of Open Access Journals (Sweden)

    Margret eShirinian

    2013-08-01

    Full Text Available ABSTRACTAlthough human T-cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2 share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients and subsequently leads to adult T cell leukemia/lymphoma (ATL whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 posttranslational modifications and specifically ubiquitylation and SUMOylation have been implicated in NF-кB activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein-protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-кB activation. In this present review, structural and functional differences between Tax-1 and Tax- 2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-кB activation and protein-protein interactions involved in oncogenecity both in vivo and in vitro.

  15. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response.

    Science.gov (United States)

    Maréchal, Alexandre; Zou, Lee

    2015-01-01

    The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.

  16. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals.

    Science.gov (United States)

    Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J

    2017-01-01

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed ( p 1.25 or expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with

  17. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals

    Directory of Open Access Journals (Sweden)

    Jarlath E. Nally

    2017-08-01

    Full Text Available Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE. Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p < 0.05, fold change >1.25 or < −1.25 across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30

  18. AMS 4.0: consensus prediction of post-translational modifications in protein sequences.

    Science.gov (United States)

    Plewczynski, Dariusz; Basu, Subhadip; Saha, Indrajit

    2012-08-01

    We present here the 2011 update of the AutoMotif Service (AMS 4.0) that predicts the wide selection of 88 different types of the single amino acid post-translational modifications (PTM) in protein sequences. The selection of experimentally confirmed modifications is acquired from the latest UniProt and Phospho.ELM databases for training. The sequence vicinity of each modified residue is represented using amino acids physico-chemical features encoded using high quality indices (HQI) obtaining by automatic clustering of known indices extracted from AAindex database. For each type of the numerical representation, the method builds the ensemble of Multi-Layer Perceptron (MLP) pattern classifiers, each optimising different objectives during the training (for example the recall, precision or area under the ROC curve (AUC)). The consensus is built using brainstorming technology, which combines multi-objective instances of machine learning algorithm, and the data fusion of different training objects representations, in order to boost the overall prediction accuracy of conserved short sequence motifs. The performance of AMS 4.0 is compared with the accuracy of previous versions, which were constructed using single machine learning methods (artificial neural networks, support vector machine). Our software improves the average AUC score of the earlier version by close to 7 % as calculated on the test datasets of all 88 PTM types. Moreover, for the selected most-difficult sequence motifs types it is able to improve the prediction performance by almost 32 %, when compared with previously used single machine learning methods. Summarising, the brainstorming consensus meta-learning methodology on the average boosts the AUC score up to around 89 %, averaged over all 88 PTM types. Detailed results for single machine learning methods and the consensus methodology are also provided, together with the comparison to previously published methods and state-of-the-art software tools. The

  19. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane.

    Science.gov (United States)

    Moraes, Izabel; Yuan, Zuo-Fei; Liu, Shichong; Souza, Glaucia Mendes; Garcia, Benjamin A; Casas-Mollano, J Armando

    2015-01-01

    Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in

  20. Prediction of post translational modifications in avicennia marina Cu-Zn superoxide dismutase: implication of glycation on the enzyme structure

    International Nuclear Information System (INIS)

    Jabeen, U.; Salim, A.; Abbasi, A.

    2012-01-01

    3D homology model of Cu-Zn superoxide dismutase (SOD) from Avicennia marina (AMSOD) was constructed using the structural coordinates of Spinach SOD (SSOD). Prediction of post translational modification was done by PROSITE. The predicted sites were examined in the 3D model. AMSOD model was glycated using modeling software and changes in the structure was analyzed after glycation. The analysis revealed some potential sites and structural changes after glycation. (author)

  1. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes.

    Directory of Open Access Journals (Sweden)

    Cédric James Laedermann

    2015-11-01

    Full Text Available In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs is a very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential. Navs are composed of 9 different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8 and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the action potential and consequently modify pain transmission, a process that is observed in persistent pain conditions.Post-translational modification (PTM of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e. peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with the subunit of Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological

  2. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life

    DEFF Research Database (Denmark)

    Beld, Joris; Sonnenschein, Eva; Vickery, Christopher R.

    2013-01-01

    Covering: up to 2013 Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified...... knowledge on this class of enzymes that post-translationally install a 4′-phosphopantetheine arm on various carrier proteins....

  3. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases.

    Science.gov (United States)

    Xue, Chao; Sowden, Mark P; Berk, Bradford C

    2018-05-01

    CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target. © 2018 American Heart Association, Inc.

  4. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    Science.gov (United States)

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  5. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Stefan Burén

    Full Text Available BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native

  6. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor.

    Science.gov (United States)

    Bussiere, Renaud; Lacampagne, Alain; Reiken, Steven; Liu, Xiaoping; Scheuerman, Valerie; Zalk, Ran; Martin, Cécile; Checler, Frederic; Marks, Andrew R; Chami, Mounia

    2017-06-16

    Alteration of ryanodine receptor (RyR)-mediated calcium (Ca 2+ ) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca 2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca 2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca 2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca 2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca 2+ leakage may be a therapeutic approach to treat AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach

    Directory of Open Access Journals (Sweden)

    Roberta Noberini

    2016-06-01

    Full Text Available Aberrant histone post-translational modifications (hPTMs have been implicated with various pathologies, including cancer, and may represent useful epigenetic biomarkers. The data described here provide a mass spectrometry-based quantitative analysis of hPTMs from formalin-fixed paraffin-embedded (FFPE tissues, from which histones were extracted through the recently developed PAT-H-MS method. First, we analyzed FFPE samples from mouse spleen and liver or human breast cancer up to six years old, together with their corresponding fresh frozen tissue. We then combined the PAT-H-MS approach with a histone-focused version of the super-SILAC strategy-using a mix of histones from four breast cancer cell lines as a spike-in standard- to accurately quantify hPTMs from breast cancer specimens belonging to different subtypes. The data, which are associated with a recent publication (Pathology tissue-quantitative mass spectrometry analysis to profile histone post-translational modification patterns in patient samples (Noberini, 2015 [1], are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002669.

  8. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.

  9. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  10. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase.

    Science.gov (United States)

    Costa, Sara R; Marek, Magdalena; Axelsen, Kristian B; Theorin, Lisa; Pomorski, Thomas G; López-Marqués, Rosa L

    2016-06-01

    P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn(181) and Asn(231) Whereas mutation of Asn(231) seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn(181) disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys(86) and Cys(107) compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the β-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Salivary Cystatins: Exploring New Post-Translational Modifications and Polymorphisms by Top-Down High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Manconi, Barbara; Liori, Barbara; Cabras, Tiziana; Vincenzoni, Federica; Iavarone, Federica; Castagnola, Massimo; Messana, Irene; Olianas, Alessandra

    2017-11-03

    Cystatins are a complex family of cysteine peptidase inhibitors. In the present study, various proteoforms of cystatin A, cystatin B, cystatin S, cystatin SN, and cystatin SA were detected in the acid-soluble fraction of human saliva and characterized by a top-down HPLC-ESI-MS approach. Proteoforms of cystatin D were also detected and characterized by an integrated top-down and bottom-up strategy. The proteoforms derive from coding sequence polymorphisms and post-translational modifications, in particular, phosphorylation, N-terminal processing, and oxidation. This study increases the current knowledge of salivary cystatin proteoforms and provides the basis to evaluate possible qualitative/quantitative variations of these proteoforms in different pathological states and reveal new potential salivary biomarkers of disease. Data are available via ProteomeXchange with identifier PXD007170.

  12. Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth

    DEFF Research Database (Denmark)

    Boskey, Adele L.; Christensen, Brian Søndergaard; Taleb, Hayat

    2012-01-01

    The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA...

  13. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase

    DEFF Research Database (Denmark)

    Costa, Sara; Marek, Magdalena; Axelsen, Kristian Buhl

    2016-01-01

    and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues......) compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications...

  14. Analysis of the post-translational modifications of the individual amino acids in lens proteins which were induced by aging and irradiation

    International Nuclear Information System (INIS)

    Fujii, Noriko; Kim, Ingu; Saito, Takeshi; Takata, Takumi

    2017-01-01

    The eye lens is a transparent organ that functions to focus light and images on the retina. The transparency and high refraction of the lens are maintained by the function of α-, β- and γ-crystallins. These long-lived proteins are subject to various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, which occur gradually during the aging process. Such modifications, which are generated by UV light and oxidative stress, decrease crystallin solubility and lens transparency, and ultimately lead to the development of age-related cataracts. Here, we irradiated young rat lenses with γ-rays (5-500 Gy) and extracted the water-soluble (WS) and insoluble (WI) protein fractions. The WS and WI lens proteins were digested with trypsin, and the resulting peptides were analyzed by one-shot LC-MS/MS to determine the specific sites of oxidation of methionine and tryptophan, deamidation of asparagine and glutamine, and isomerization of aspartyl in rat α- and β-crystallins in the WS and WI fractions. Oxidation and deamidation occurred in several crystallins after irradiation at more than, respectively, 50 Gy and 5 Gy; however, isomerization did not occur in any crystallin even after exposure to 500 Gy of irradiation. The number of oxidation and deamidation sites was much higher in the WI than in the WS fraction. Furthermore, the oxidation and deamidation sites in rat crystallins resemble those reported in crystallins from human age-related cataracts. Thus, this study on post-translational modifications of crystallins induced by ionizing irradiation may provide useful information relevant to the formation of human age-related cataracts. (author)

  15. Tyrosine sulfation, a post-translational modification of microvillar enzymes in the small intestinal enterocyte

    DEFF Research Database (Denmark)

    Danielsen, E M

    1987-01-01

    Protein sulfation in small intestinal epithelial cells was studied by labelling of organ cultured mucosal explants with [35S]-sulfate. Six bands in SDS-PAGE became selectively labelled; four, of 250, 200, 166 and 130 kd, were membrane-bound and two, of 75 and 60 kd, were soluble. The sulfated mem...... sulfated. Most if not all the sulfate was bound to tyrosine residues rather than to the carbohydrate of the microvillar enzymes, showing that this type of modification can occur on plasma membrane proteins as well as on secretory proteins....

  16. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth

    International Nuclear Information System (INIS)

    Boskey, Adele L.; Christensen, Brian; Taleb, Hayat; Sørensen, Esben S.

    2012-01-01

    Highlights: ► Thrombin-cleaved fragments of milk-osteopontin effect hydroxyapatite formation differently. ► N- and C-terminal fragments promoted hydroxyapatite formation and growth. ► A central fragment inhibited hydroxyapatite formation and growth. ► Binding to collagen or hydroxyapatite seed crystals modified these effects. -- Abstract: The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA) mineral crystallite formation and growth depending on the extent of phosphorylation. We hypothesized that different regions of full-length OPN would also have distinct effects on the mineralization process. Thrombin fragmentation of milk OPN (mOPN) was used to test this hypothesis. Three fragments were tested in a de novo HA formation assay; an N-terminal fragment (aa 1–147), a central fragment (aa 148–204) denoted SKK-fragment and a C-terminal fragment (aa 205–262). Compared to intact mOPN the C- and N-terminal fragments behaved comparably, promoting HA formation and growth, but the central SKK-fragment acted as a mineralization inhibitor. In a seeded growth experiment all fragments inhibited mineral proliferation, but the SKK-fragment was the most effective inhibitor. These effects, seen in HA-formation and seeded growth assays in a gelatin gel system and in a pH-stat experiment were lost when the protein or fragments were dephosphorylated. Effects of the fully phosphorylated protein and fragments were also altered in the presence of fibrillar collagen. The diverse effects can be explained in terms of the intrinsically disordered nature of OPN and its fragments which enable them to interact with their multiple partners.

  18. Post-translational modifications near the quinone binding site of mammalian complex I.

    Science.gov (United States)

    Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2013-08-23

    Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-N(G) and ω-N(G') nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant.

  19. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Maroschik, Belinda; Gürtler, Anne; Krämer, Anne; Rößler, Ute; Gomolka, Maria; Hornhardt, Sabine; Mörtl, Simone; Friedl, Anna A

    2014-01-01

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  20. The roles of MHC class II genes and post-translational modification in celiac disease.

    Science.gov (United States)

    Sollid, Ludvig M

    2017-08-01

    Our increasing understanding of the etiology of celiac disease, previously considered a simple food hypersensitivity disorder caused by an immune response to cereal gluten proteins, challenges established concepts of autoimmunity. HLA is a chief genetic determinant, and certain HLA-DQ allotypes predispose to the disease by presenting posttranslationally modified (deamidated) gluten peptides to CD4 + T cells. The deamidation of gluten peptides is mediated by transglutaminase 2. Strikingly, celiac disease patients generate highly disease-specific autoantibodies to the transglutaminase 2 enzyme. The dual role of transglutaminase 2 in celiac disease is hardly coincidental. This paper reviews the genetic mapping and involvement of MHC class II genes in disease pathogenesis, and discusses the evidence that MHC class II genes, via the involvement of transglutaminase 2, influence the generation of celiac disease-specific autoantibodies.

  1. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna

    2013-01-01

    beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...... diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from...... the literature and presented experimental data support the notion that PTM of beta cell proteins may be involved in triggering beta cell destruction in type 1 diabetes. If the beta cell antigens recognised by the immune system foremost come from modified proteins rather than native ones, the concept of type 1...

  2. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity.

    Science.gov (United States)

    Zhang, Yiguo; Hayes, John D

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.

  3. Biosynthetic Tailoring of Microcin E492m: Post-Translational Modification Affords an Antibacterial Siderophore-Peptide Conjugate

    Science.gov (United States)

    Nolan, Elizabeth M.; Fischbach, Michael A.; Koglin, Alexander; Walsh, Christopher T.

    2008-01-01

    The present work reveals that four proteins, MceCDIJ, encoded by the MccE492 gene cluster are responsible for the remarkable post-translational tailoring of Microcin E492 (MccE492), an 84-residue protein toxin secreted by Klebsiella pneumonaie RYC492 that targets neighboring gram-negative species. This modification results in attachment of a linearized and monoglycosylated derivative of enterobactin, a nonribosomal peptide and iron scavenger (siderophore), to the MccE492m C-terminus. MceC and MceD derivatize enterobactin by C-glycosylation at the C5 position of a N-(2,3-dihydroxybenzoyl) serine (DHB-Ser) moiety and regiospecific hydrolysis of an ester linkage in the trilactone scaffold, respectively. MceI and MceJ form a protein complex that attaches C-glycosylated enterobactins to the C-terminal serine residue of both aC10 model peptide and full-length MccE492. In the enzymatic product, the terminal serine residue is covalently attached to the C4′ oxygen of the glucose moiety. Non-enzymatic and base-catalyzed migration of the peptide to the C6′ position affords the C6′ glycosyl ester linkage observed in the mature toxin, MccE492m, isolated from bacterial cultures. PMID:17973380

  4. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.

    Science.gov (United States)

    Tatjewski, Marcin; Kierczak, Marcin; Plewczynski, Dariusz

    2017-01-01

    Here, we present two perspectives on the task of predicting post translational modifications (PTMs) from local sequence fragments using machine learning algorithms. The first is the description of the fundamental steps required to construct a PTM predictor from the very beginning. These steps include data gathering, feature extraction, or machine-learning classifier selection. The second part of our work contains the detailed discussion of more advanced problems which are encountered in PTM prediction task. Probably the most challenging issues which we have covered here are: (1) how to address the training data class imbalance problem (we also present statistics describing the problem); (2) how to properly set up cross-validation folds with an approach which takes into account the homology of protein data records, to address this problem we present our folds-over-clusters algorithm; and (3) how to efficiently reach for new sources of learning features. Presented techniques and notes resulted from intense studies in the field, performed by our and other groups, and can be useful both for researchers beginning in the field of PTM prediction and for those who want to extend the repertoire of their research techniques.

  5. Identification of a Post-translational Modification with Ribitol-Phosphate and Its Defect in Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Motoi Kanagawa

    2016-03-01

    Full Text Available Glycosylation is an essential post-translational modification that underlies many biological processes and diseases. α-dystroglycan (α-DG is a receptor for matrix and synaptic proteins that causes muscular dystrophy and lissencephaly upon its abnormal glycosylation (α-dystroglycanopathies. Here we identify the glycan unit ribitol 5-phosphate (Rbo5P, a phosphoric ester of pentose alcohol, in α-DG. Rbo5P forms a tandem repeat and functions as a scaffold for the formation of the ligand-binding moiety. We show that enzyme activities of three major α-dystroglycanopathy-causing proteins are involved in the synthesis of tandem Rbo5P. Isoprenoid synthase domain-containing (ISPD is cytidine diphosphate ribitol (CDP-Rbo synthase. Fukutin and fukutin-related protein are sequentially acting Rbo5P transferases that use CDP-Rbo. Consequently, Rbo5P glycosylation is defective in α-dystroglycanopathy models. Supplementation of CDP-Rbo to ISPD-deficient cells restored α-DG glycosylation. These findings establish the molecular basis of mammalian Rbo5P glycosylation and provide insight into pathogenesis and therapeutic strategies in α-DG-associated diseases.

  6. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin.

    Science.gov (United States)

    Blundon, Malachi A; Schlesinger, Danielle R; Parthasarathy, Amritha; Smith, Samantha L; Kolev, Hannah M; Vinson, David A; Kunttas-Tatli, Ezgi; McCartney, Brooke M; Minden, Jonathan S

    2016-07-15

    Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development. © 2016. Published by The Company of Biologists Ltd.

  7. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.

    Science.gov (United States)

    Chaudhuri, Rima; Sadrieh, Arash; Hoffman, Nolan J; Parker, Benjamin L; Humphrey, Sean J; Stöckli, Jacqueline; Hill, Adam P; James, David E; Yang, Jean Yee Hwa

    2015-08-19

    Most biological processes are influenced by protein post-translational modifications (PTMs). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availability of deep, quantitative datasets in diverse species, there is a growing need for tools to facilitate cross-species comparison of PTM data. This is particularly important because functionally important modification sites are more likely to be evolutionarily conserved; yet cross-species comparison of PTMs is difficult since they often lie in structurally disordered protein domains. Current tools that address this can only map known PTMs between species based on known orthologous phosphosites, and do not enable the cross-species mapping of newly identified modification sites. Here, we addressed this by developing a web-based software tool, PhosphOrtholog ( www.phosphortholog.com ) that accurately maps protein modification sites between different species. This facilitates the comparison of datasets derived from multiple species, and should be a valuable tool for the proteomics community. Here we describe PhosphOrtholog, a web-based application for mapping known and novel orthologous PTM sites from experimental data obtained from different species. PhosphOrtholog is the only generic and automated tool that enables cross-species comparison of large-scale PTM datasets without relying on existing PTM databases. This is achieved through pairwise sequence alignment of orthologous protein residues. To demonstrate its utility we apply it to two sets of human and rat muscle phosphoproteomes generated following insulin and exercise stimulation, respectively, and one publicly available mouse phosphoproteome following cellular stress revealing high mapping and coverage efficiency. Although coverage statistics are dataset dependent, PhosphOrtholog increased the number of cross-species mapped sites

  8. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    Science.gov (United States)

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Towards Liquid Chromatography Time-Scale Peptide Sequencing and Characterization of Post-Translational Modifications in the Negative-Ion Mode Using Electron Detachment Dissociation Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Hørning, Ole B; Jensen, Søren S

    2008-01-01

    Electron detachment dissociation (EDD) of peptide poly-anions is gentle towards post-translational modifications (PTMs) and produces predictable and interpretable fragment ion types (a., x ions). However, EDD is considered an inefficient fragmentation technique and has not yet been implemented...... coverage and extended PTM characterization the new regime of EDD in combination with other ion-electron fragmentation techniques in the positive-ion mode is a step towards a more comprehensive strategy of analysis in proteome research....

  10. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.

    Science.gov (United States)

    Su, Min-Gang; Weng, Julia Tzu-Ya; Hsu, Justin Bo-Kai; Huang, Kai-Yao; Chi, Yu-Hsiang; Lee, Tzong-Yi

    2017-12-21

    Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM's function is critical to our ability to manipulate the biological mechanisms of protein. In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking

  11. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns

    DEFF Research Database (Denmark)

    Tvardovskiy, Andrey; Wrzesinski, Krzysztof; Sidoli, Simone

    2015-01-01

    Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties...... hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly...

  12. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    Science.gov (United States)

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  13. Characterizing the Range of Extracellular Protein Post-Translational Modifications in a Cellulose-Degrading Bacteria Using a Multiple Proteolyic Digestion/Peptide Fragmentation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, Andrew B [ORNL; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Cook, Kelsey [ORNL; Hettich, Robert {Bob} L [ORNL

    2013-01-01

    Post-translational modifications (PTMs) are known to play a significant role in many biological functions. The focus of this study is to characterize the post-translational modifications of the cellulosome protein complex used by the bacterium Clostridium thermocellum to better understand how this protein machine is tuned for enzymatic cellulose solubilization. To enhance comprehensive characterization, the extracellular cellulosome proteins were analyzed using multiple proteolytic digests (trypsin, Lys-C, Glu-C) and multiple fragmentation techniques (collisionally-activated dissociation, electron transfer dissociation, decision tree). As expected, peptide and protein identifications were increased by utilizing alternate proteases and fragmentation methods, in addition to the increase in protein sequence coverage. The complementarity of these experiments also allowed for a global exploration of PTMs associated with the cellulosome based upon a set of defined PTMs that included methylation, oxidation, acetylation, phosphorylation, and signal peptide cleavage. In these experiments, 85 modified peptides corresponding to 28 cellulosome proteins were identified. Many of these modifications were located in active cellulolytic or structural domains of the cellulosome proteins, suggesting a level of possible regulatory control of protein function in various cellulotyic conditions. The use of multiple enzymes and fragmentation technologies allowed for independent verification of PTMs in different experiments, thus leading to increased confidence in PTM identifications.

  14. ReportSites - A Computational Method to Extract Positional and Physico- Chemical Information from Large-Scale Proteomic Post-Translational Modification Datasets

    DEFF Research Database (Denmark)

    Edwards, Alistair; Edwards, Gregory; Larsen, Martin Røssel

    2012-01-01

    -translational modification data sets, wherein patterns of sequence surrounding processed sites may reveal more about the functional and structural requirements of the modification and the biochemical processes that regulate them. Results: We developed Report Sites using a test set of phosphoproteomic data from rat......-chemical environment (local pI and hydrophobicity). These were then also compared to corresponding values extracted from the full database to allow comparison of phosphorylation trends. Conclusions: Report Sites enabled physico-chemical aspects of protein phosphorylation to be deciphered in a test set of eleven...... thousand phospho sites. Basic properties of modified proteins, such as site location in the context of the complete protein, were also documented. This program can be easily adapted to any post-translational modification (or, indeed, to any defined amino acid sequence), or expanded to include more...

  15. An Engineered Version of Human PON2 Opens the Way to Understand the Role of Its Post-Translational Modifications in Modulating Catalytic Activity.

    Directory of Open Access Journals (Sweden)

    Luigi Mandrich

    Full Text Available The human paraoxonase 2 (PON2 has been described as a highly specific lactonase hydrolysing the quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone (3OC12-HSL and having secondary esterase but not phosphotriesterase activity, in contrast with the related enzymes PON1 and PON3. It has been suggested that PON2 enzyme activity is dependent on glycosylation and its N-terminal region has been recently demonstrated to be a transmembrane domain mediating association to membranes. In the present study we describe a mutated form of PON2, lacking the above N-terminal region, which has been further stabilized by the insertion of six amino acidic substitutions. The engineered version, hence forth called rPON2, has been over-expressed in E.coli, refolded from inclusion bodies and purified, yielding an enzyme with the same characteristics as the full length enzyme. Therefore the first conclusion of this work was that the catalytic activity is independent from the N-terminus and protein glycosylation. The kinetic characterization confirmed the primary activity on 3OC12-HSL; accordingly, in vitro experiments of inhibition of the biofilm formed by Pseudomonas aeruginosa (PAO1 have demonstrated that rPON2 is more effective than PON1. In addition, we observed small but significant activity against organophosphorothiotes pesticides, m-parathion, coumaphos and malathion.The availability of fair amount of active protein allowed to pinpoint, by mass-spectrometry, ubiquitination of Lys 168 induced in rPON2 by HeLa extract and to correlate such post-translational modification to the modulation of catalytic activity. A mutational analysis of the modified residue confirmed the result.

  16. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Mina Ghahremani

    2016-09-01

    Full Text Available Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  17. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

    Science.gov (United States)

    Stützer, Alexandra; Liokatis, Stamatios; Kiesel, Anja; Schwarzer, Dirk; Sprangers, Remco; Söding, Johannes; Selenko, Philipp; Fischle, Wolfgang

    2016-01-21

    Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Lerche, Mathilde H.; Poulsen, Flemming Martin

    2001-01-01

    in which an aspartic acid in LTP1 is bound to the modification through what most likely is an ester bond. The chemical structure of the modification has been characterized by means of two-dimensional homo- and heteronuclear nuclear magnetic resonance spectroscopy as well as mass spectrometry and is found...

  19. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  20. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2014-06-01

    Full Text Available Cyclophilin B (CyPB, encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO mice are small, with reduced femoral areal bone mineral density (aBMD, bone volume per total volume (BV/TV and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11% collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1 activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  1. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink

  2. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    DEFF Research Database (Denmark)

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A...

  3. Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mowei; Paša-Tolić, Ljiljana; Stenoien, David L.

    2016-12-21

    Histones play central roles in most chromosomal functions and both their basic biology and roles in disease have been the subject of intense study. Since multiple PTMs along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here, we used state of the art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFinder as search engine, and LcMsSpectator as a data visualization tool. ProMex sums across retention time to maximize sensitivity and accuracy for low abundance species in MS1deconvolution. MSPathFinder searches the MS2 data against protein sequence databases with user-defined modifications. LcMsSpectator presents the results from ProMex and MSPathFinder in a format that allows quick manual evaluation of critical attributes for high-confidence identifications. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits.

  4. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Science.gov (United States)

    Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping

    2013-01-01

    Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  5. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Directory of Open Access Journals (Sweden)

    Mingqiang Rong

    Full Text Available Huwentoxin-IV (HWTX-IV, a tetrodotoxin-sensitive (TTX-s sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV, having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms, mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms. Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  6. Post-translational modifications of the extracellular matrix are key events in cancer progression: opportunities for biochemical marker development

    DEFF Research Database (Denmark)

    Leeming, D J; Bay-Jensen, A C; Vassiliadis, E

    2011-01-01

    -associated extracellular matrix (ECM) proteins. Furthermore, severe cellular stress and inflammation, caused by cancer, results in generation of PTMs, which will be distributed throughout the ECM. This gives rise to release of protein-specific fragments to the circulation. Here we highlight the importance of remodeling...... of the ECM in cancer and the generation of PTMs, which may be cancer specific and reflect disease progression; thus having potential for biochemical marker development....

  7. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    Energy Technology Data Exchange (ETDEWEB)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  8. Identification of Disease Relevant Post Translational Modifications of Proteins in Pulmonary Fibrosis as Novel Biochemical Marker Targets

    DEFF Research Database (Denmark)

    Kristensen, Jacob Hull

    elastin and the ELM7 neo-epitope with limited reactivity towards intact elastin. Finally, we tested the assays for clinical relevance in serum from patients diagnosed with IPF or lung cancer and healthy matched controls. Serum EL-NE- and ELM7 fragment levels were significantly elevated in IPF- and lung...... cancer patients compared to matched controls. In conclusion, we have developed two technically stable assays, EL-NE and ELM7, for the quantification of elastin degraded by NE and MMP-7 respectively. Both assays were protease specific. Initial clinical testing suggested clinical relevance of the assays...

  9. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    KAUST Repository

    Fiorillo, Annarita

    2014-03-21

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  10. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    Directory of Open Access Journals (Sweden)

    Annarita Fiorillo

    Full Text Available The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3, unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  11. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    KAUST Repository

    Fiorillo, Annarita; di Marino, Daniele; Bertuccini, Lucia; Via, Allegra; Pozio, Edoardo; Camerini, Serena; Ilari, Andrea; Lalle, Marco

    2014-01-01

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  12. An update on post-translational modifications of hydroxyproline-rich glycoproteins: Towards a model highlighting their contribution to plant cell wall architecture

    Directory of Open Access Journals (Sweden)

    May eHijazi

    2014-08-01

    Full Text Available Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp-rich O-glycoproteins (HRGPs were classified into three categories: (i moderately glycosylated extensins (EXTs able to form covalent scaffolds; (ii hyperglycosylated arabinogalactan proteins (AGPs; and (iii Hyp/proline (Pro-Rich proteins (H/PRPs that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs, biosynthesis, structure and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.

  13. Direct Profiling the Post-Translational Modification Codes of a Single Protein Immobilized on a Surface Using Cu-free Click Chemistry.

    Science.gov (United States)

    Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho

    2018-05-23

    Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.

  14. Patterns of low temperature induced accumulation of dehydrins in Rosaceae crops-Evidence for post-translational modification in apple.

    Science.gov (United States)

    Haimi, Perttu; Vinskienė, Jurgita; Stepulaitienė, Inga; Baniulis, Danas; Stanienė, Gražina; Šikšnianienė, Jūratė Bronė; Rugienius, Rytis

    2017-11-01

    Important crop plants of Rosaceae family are often damaged during winter due to the lack of acclimation and cold hardiness. One of the cellular responses of plants to cold stress is the accumulation of dehydrin proteins. We studied the expression of dehydrins in several Rosaceae species during low temperature treatment in vitro. Microshoots of Pyrus communis, Malus×domestica, Fragaria vesca, Fragaria×ananassa, Prunus cerasus and Prunus avium cultivars were grown in low temperature conditions. Genotype -specific accumulation of dehydrins was detected by immunoblot analysis of the extracted proteins. Untargeted difference gel electrophoresis of Malus x domestica microshoots revealed an extensive accumulation of three dehydrins. In a protein phosphatase assay, MdDHN2 and MdDHN4, but not MdDHN6 proteins were found to be extensively phosphorylated. In terms of the amount of protein synthesized, dehydrins are a major protein-level adaptation mechanism to low temperature in M. x domestica. In addition to dehydrins, the induction of proteins involved in the response for oxidative stress were observed. Additionally, a Xero2 -like dehydrin of F. vesca was detected by difference gel electrophoresis and identified by nano LC-MS/MS. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications

    Directory of Open Access Journals (Sweden)

    Lam Hon-Ming

    2009-07-01

    Full Text Available Abstract Background Histone modifications and histone variants are of importance in many biological processes. To understand the biological functions of the global dynamics of histone modifications and histone variants in higher plants, we elucidated the variants and post-translational modifications of histones in soybean, a legume plant with a much bigger genome than that of Arabidopsis thaliana. Results In soybean leaves, mono-, di- and tri-methylation at Lysine 4, Lysine 27 and Lysine 36, and acetylation at Lysine 14, 18 and 23 were detected in HISTONE H3. Lysine 27 was prone to being mono-methylated, while tri-methylation was predominant at Lysine 36. We also observed that Lysine 27 methylation and Lysine 36 methylation usually excluded each other in HISTONE H3. Although methylation at HISTONE H3 Lysine 79 was not reported in A. thaliana, mono- and di-methylated HISTONE H3 Lysine 79 were detected in soybean. Besides, acetylation at Lysine 8 and 12 of HISTONE H4 in soybean were identified. Using a combination of mass spectrometry and nano-liquid chromatography, two variants of HISTONE H3 were detected and their modifications were determined. They were different at positions of A31F41S87S90 (HISTONE variant H3.1 and T31Y41H87L90 (HISTONE variant H3.2, respectively. The methylation patterns in these two HISTONE H3 variants also exhibited differences. Lysine 4 and Lysine 36 methylation were only detected in HISTONE H3.2, suggesting that HISTONE variant H3.2 might be associated with actively transcribing genes. In addition, two variants of histone H4 (H4.1 and H4.2 were also detected, which were missing in other organisms. In the histone variant H4.1 and H4.2, the amino acid 60 was isoleucine and valine, respectively. Conclusion This work revealed several distinct variants of soybean histone and their modifications that were different from A. thaliana, thus providing important biological information toward further understanding of the histone

  16. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

    Science.gov (United States)

    Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R; Soto, Jamie; Jenson, Gregory A; Tor, Austin R; McGlauflin, Rose; Kenny, Helena C; Zhang, Yuan; Souvenir, Rhonda; Hu, Xiao X; Sloan, Crystal L; Pereira, Renata O; Lira, Vitor A; Spitzer, Kenneth W; Sharp, Terry L; Shoghi, Kooresh I; Sparagna, Genevieve C; Rog-Zielinska, Eva A; Kohl, Peter; Khalimonchuk, Oleh; Schaffer, Jean E; Abel, E Dale

    2018-01-05

    Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a

  17. Post-translational transformation of methionine to aspartate is catalyzed by heme iron and driven by peroxide: a novel subunit-specific mechanism in hemoglobin.

    Science.gov (United States)

    Strader, Michael Brad; Hicks, Wayne A; Kassa, Tigist; Singleton, Eileen; Soman, Jayashree; Olson, John S; Weiss, Mitchell J; Mollan, Todd L; Wilson, Michael T; Alayash, Abdu I

    2014-08-08

    A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in β subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, β, and γ subunits with respect to redox reactivity and may have direct implications to α/β hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    DEFF Research Database (Denmark)

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.

    2015-01-01

    Osteopontin (OPN) is a ligand for the α4 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of posttranslational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines, and compared OPN interaction...

  19. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides.

    Science.gov (United States)

    Espiritu, Michael J; Cabalteja, Chino C; Sugai, Christopher K; Bingham, Jon-Paul

    2014-01-01

    Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.

  20. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Sicheritz-Pontén, Thomas; Gupta, Ramneek

    2004-01-01

    Post-translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular...... steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites...... and the development of PTM-specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS-evolutionary stable sites). As an example, we present a new method for kinase-specific prediction of phosphorylation...

  1. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications.

    Directory of Open Access Journals (Sweden)

    Runar Gjerp Solstad

    Full Text Available The global problem of microbial resistance to antibiotics has resulted in an urgent need to develop new antimicrobial agents. Natural antimicrobial peptides are considered promising candidates for drug development. Echinoderms, which rely on innate immunity factors in the defence against harmful microorganisms, are sources of novel antimicrobial peptides. This study aimed to isolate and characterise antimicrobial peptides from the Edible sea urchin Echinus esculentus. Using bioassay-guided purification and cDNA cloning, three antimicrobial peptides were characterised from the haemocytes of the sea urchin; two heterodimeric peptides and a cysteine-rich peptide. The peptides were named EeCentrocin 1 and 2 and EeStrongylocin 2, respectively, due to their apparent homology to the published centrocins and strongylocins isolated from the green sea urchin Strongylocentrotus droebachiensis. The two centrocin-like peptides EeCentrocin 1 and 2 are intramolecularly connected via a disulphide bond to form a heterodimeric structure, containing a cationic heavy chain of 30 and 32 amino acids and a light chain of 13 amino acids. Additionally, the light chain of EeCentrocin 2 seems to be N-terminally blocked by a pyroglutamic acid residue. The heavy chains of EeCentrocins 1 and 2 were synthesised and shown to be responsible for the antimicrobial activity of the natural peptides. EeStrongylocin 2 contains 6 cysteines engaged in 3 disulphide bonds. A fourth peptide (Ee4635 was also discovered but not fully characterised. Using mass spectrometric and NMR analyses, EeCentrocins 1 and 2, EeStrongylocin 2 and Ee4635 were all shown to contain post-translationally brominated Trp residues in the 6 position of the indole ring.

  2. Contribution of Post-translational Phosphorylation to Sarcomere-linked Cardiomyopathy Phenotypes

    Directory of Open Access Journals (Sweden)

    Margaret V Westfall

    2016-09-01

    Full Text Available Secondary shifts develop in post-translational phosphorylation of sarcomeric proteins in multi¬ple animal models of inherited cardiomyopathy. These signaling alterations together with the primary mutation are predicted to contribute to the overall cardiac phenotype. As a result, identification and integration of post-translational myofilament signaling responses are identified as priorities for gaining insights into sarcomeric cardiomyopathies. However, significant questions remain about the nature and contribution of post-translational phosphorylation to structural remodeling and cardiac dysfunction in animal models and human patients. This perspective essay discusses specific goals for filling critical gaps about post-translational signaling in response to these inherited mutations, especially within sarcomeric proteins. The discussion focuses primarily on pre-clinical analysis of animal models and defines challenges and future directions in this field.

  3. Post-translational glutamylation and tyrosination in tubulin of tritrichomonads and the diplomonad Giardia intestinalis.

    Science.gov (United States)

    Boggild, A K; Sundermann, C A; Estridge, B H

    2002-01-01

    Glutamylated and tyrosinated tubulin were localized in Giardia intestinalis and selected trichomonads of the Tritrichomonadinae subfamily, using specific monoclonal antibodies directed at each of the post-translational modifications. Analysis was carried out using indirect immunofluorescence microscopy. Although trichomonad tubulins remained unlabeled by anti-tyrosine tubulin (TUB-1A2), the presence of the glutamylation motif (GT 335) was confirmed and found to differ in distribution among tritrichomonads. Tritrichomonas muris was most heavily labeled with GT 335, while T. foetus was the least so. Like trichomonads, Giardia was unreactive to anti-tyrosine tubulin; however, the GT 335 antibody produced marked fluorescence in Giardia trophozoites. This study is the first to report immunofluorescent localization of tubulin glutamylation in Giardia and confirms previously reported mass spectrometry data.

  4. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  5. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Pasini, Diego; Helin, Kristian

    2010-01-01

    distinct coexisting modifications. In certain cases, high mass accuracy LTQ-Orbitrap MS/MS allowed precise localization of near isobaric coexisting PTMs such as trimethylation and acetylation within individual peptides. ETD MS/MS facilitated sequencing and annotation of phosphorylated histone peptides....... The combined use of ETD and CID MS/MS increased the total number of identified modified peptides. Comparative quantitative analysis of histones from wild type and Suz12-deficient ESCs using stable isotope labeling with amino acids in cell culture and LC-MS/MS revealed a dramatic reduction of H3K27me2 and H3K27......me3 and an increase of H3K27ac, thereby uncovering an antagonistic methyl/acetyl switch at H3K27. The reduction in H3K27 methylation and increase in H3K27 acetylation was accompanied by H3K36 acetylation and methylation. Estimation of the global isoform percentage of unmodified and modified histone...

  6. Opioid gene expression changes and post-translational histone modifications at promoter regions in the rat nucleus accumbens after acute and repeated 3,4-methylenedioxy-methamphetamine (MDMA) exposure.

    Science.gov (United States)

    Caputi, Francesca Felicia; Palmisano, Martina; Carboni, Lucia; Candeletti, Sanzio; Romualdi, Patrizia

    2016-12-01

    The recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has been shown to produce neurotoxic damage and long-lasting changes in several brain areas. In addition to the involvement of serotoninergic and dopaminergic systems, little information exists about the contribution of nociceptin/orphaninFQ (N/OFQ)-NOP and dynorphin (DYN)-KOP systems in neuronal adaptations evoked by MDMA. Here we investigated the behavioral and molecular effects induced by acute (8mg/kg) or repeated (8mg/kg twice daily for seven days) MDMA exposure. MDMA exposure affected body weight gain and induced hyperlocomotion; this latter effect progressively decreased after repeated administration. Gene expression analysis indicated a down-regulation of the N/OFQ system and an up-regulation of the DYN system in the nucleus accumbens (NAc), highlighting an opposite systems regulation in response to MDMA exposure. Since histone modifications have been strongly associated to the addiction-related maladaptive changes, we examined two permissive (acH3K9 and me3H3K4) and two repressive transcription marks (me3H3K27 and me2H3K9) at the pertinent opioid gene promoter regions. Chromatin immunoprecipitation assays revealed that acute MDMA increased me3H3K4 at the pN/OFQ, pDYN and NOP promoters. Following acute and repeated treatment a significant decrease of acH3K9 at the pN/OFQ promoter was observed, which correlated with gene expression results. Acute treatment caused an acH3K9 increase and a me2H3K9 decrease at the pDYN promoter which matched its mRNA up-regulation. Our data indicate that the activation of the DYNergic stress system together with the inactivation of the N/OFQergic anti-stress system contribute to the neuroadaptive actions of MDMA and offer novel epigenetic information associated with MDMA abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  8. Post-Translational Modifications of Histones in Human Sperm

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Jana; Stixová, Lenka; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, G.; Zdráhal, Z.; Sehnalová, Petra; Dabravolski, S.; Hejatko, J.; Bártová, Eva

    2015-01-01

    Roč. 116, č. 10 (2015), s. 2195-2209 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081707 Keywords : HUMAN SPERM * HISTONES * PROTAMINE P2 Subject RIV: BO - Biophysics Impact factor: 3.446, year: 2015

  9. Post-translational Control of Intracellular Pathogen Sensing Pathways.

    Science.gov (United States)

    Chiang, Cindy; Gack, Michaela U

    2017-01-01

    Mammalian cells recognize virus-derived nucleic acids using a defined set of intracellular sensors including the DNA sensors cyclic GMP-AMP (cGAMP) synthase (cGAS) and interferon gamma (IFNγ)-inducible protein 16 (IFI16) as well as viral RNA receptors of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family. Following innate immune recognition, these sensors launch an immune response that is characterized by the transcriptional upregulation of many antiviral molecules, including proinflammatory cytokines, chemokines, and IFN-stimulated genes. Recent studies have demonstrated that the signal transduction initiated by these sensors is sophisticatedly regulated by post-translational modifications (PTMs) resulting in a robust yet 'tunable' cytokine response to maintain immune homeostasis. Here we summarize recent advances in our understanding of how PTMs and regulatory enzymes control the signaling activity of RLRs, cGAS, and IFI16 as well as their proximal adaptor proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Science.gov (United States)

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  11. Post-translational regulation enables robust p53 regulation.

    Science.gov (United States)

    Shin, Yong-Jun; Chen, Kai-Yuan; Sayed, Ali H; Hencey, Brandon; Shen, Xiling

    2013-08-30

    The tumor suppressor protein p53 plays important roles in DNA damage repair, cell cycle arrest and apoptosis. Due to its critical functions, the level of p53 is tightly regulated by a negative feedback mechanism to increase its tolerance towards fluctuations and disturbances. Interestingly, the p53 level is controlled by post-translational regulation rather than transcriptional regulation in this feedback mechanism. We analyzed the dynamics of this feedback to understand whether post-translational regulation provides any advantages over transcriptional regulation in regard to disturbance rejection. When a disturbance happens, even though negative feedback reduces the steady-state error, it can cause a system to become less stable and transiently overshoots, which may erroneously trigger downstream reactions. Therefore, the system needs to balance the trade-off between steady-state and transient errors. Feedback control and adaptive estimation theories revealed that post-translational regulation achieves a better trade-off than transcriptional regulation, contributing to a more steady level of p53 under the influence of noise and disturbances. Furthermore, post-translational regulation enables cells to respond more promptly to stress conditions with consistent amplitude. However, for better disturbance rejection, the p53- Mdm2 negative feedback has to pay a price of higher stochastic noise. Our analyses suggest that the p53-Mdm2 feedback favors regulatory mechanisms that provide the optimal trade-offs for dynamic control.

  12. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs

    Directory of Open Access Journals (Sweden)

    Alhosna Benjdia

    2017-11-01

    Full Text Available Ribosomally-synthesized and post-translationally modified peptides (RiPPs are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

  13. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.; Porwollik, Steffen; Jones, Marcus B.; Yoon, Hyunjin; Payne, Samuel H.; Martin, Jessica L.; Burnet, Meagan C.; Monroe, Matthew E.; Venepally, Pratap; Smith, Richard D.; Peterson, Scott; Heffron, Fred; Mcclelland, Michael; Adkins, Joshua N.

    2011-08-25

    Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify coding regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.

  14. mRNA Display Selection of a High-Affinity, Modification-Specific Phospho-IκBα-Binding Fibronectin

    Science.gov (United States)

    Olson, C. Anders; Liao, Hsiang-I; Sun, Ren; Roberts, Richard W.

    2009-01-01

    The complexity of the human proteome is greatly expanded by post-translational modifications. New tools capable of recognizing these modifications in a sequence-specific fashion provide a route to purify these modified proteins, to alter protein trafficking, and to visualize signal transduction in real time. Here, we have evolved novel, modification-specific ligands that target phosphorylated IκBα. To do this, we employed mRNA display-based in vitro selection using a 30-trillion-member protein library based on the fibronectin type III domain. The selection yielded one fibronectin molecule, 10C17C25, that binds a phospho-IκBα peptide with Kd = 18 nM and is over 1000-fold specific compared to the nonphosphorylated peptide. 10C17C25 specifically recognizes endogenous phosphorylated IκBα from mammalian cell extract and stabilizes phospho-IκBα in vivo. We also incorporated 10C17C25 into a FRET indicator that detects IκB kinase (IKK) activity in vitro, demonstrating the utility of selecting designed adaptors for kinase activity sensors. PMID:18590330

  15. mRNA display selection of a high-affinity, modification-specific phospho-IkappaBalpha-binding fibronectin.

    Science.gov (United States)

    Olson, C Anders; Liao, Hsiang-I; Sun, Ren; Roberts, Richard W

    2008-08-15

    The complexity of the human proteome is greatly expanded by post-translational modifications. New tools capable of recognizing these modifications in a sequence-specific fashion provide a route to purify these modified proteins, to alter protein trafficking, and to visualize signal transduction in real time. Here, we have evolved novel, modification-specific ligands that target phosphorylated IkappaBalpha. To do this, we employed mRNA display-based in vitro selection using a 30-trillion-member protein library based on the fibronectin type III domain. The selection yielded one fibronectin molecule, 10C17C25, that binds a phospho-IkappaBalpha peptide with K d = 18 nM and is over 1000-fold specific compared to the nonphosphorylated peptide. 10C17C25 specifically recognizes endogenous phosphorylated IkappaBalpha from mammalian cell extract and stabilizes phospho-IkappaBalpha in vivo. We also incorporated 10C17C25 into a FRET indicator that detects IkappaB kinase (IKK) activity in vitro, demonstrating the utility of selecting designed adaptors for kinase activity sensors.

  16. Human Immunodeficiency Virus type-1 reverse transcriptase exists as post-translationally modified forms in virions and cells

    Directory of Open Access Journals (Sweden)

    Warrilow David

    2008-12-01

    Full Text Available Abstract Background HIV-1 reverse transcriptase (RT is a heterodimer composed of p66 and p51 subunits and is responsible for reverse transcription of the viral RNA genome into DNA. RT can be post-translationally modified in vitro which may be an important mechanism for regulating RT activity. Here we report detection of different p66 and p51 RT isoforms by 2D gel electrophoresis in virions and infected cells. Results Major isoforms of the p66 and p51 RT subunits were observed, with pI's of 8.44 and 8.31 respectively (p668.44 and p518.31. The same major isoforms were present in virions, virus-infected cell lysates and intracellular reverse transcription complexes (RTCs, and their presence in RTCs suggested that these are likely to be the forms that function in reverse transcription. Several minor RT isoforms were also observed. The observed pIs of the RT isoforms differed from the pI of theoretical unmodified RT (p668.53 and p518.60, suggesting that most of the RT protein in virions and cells is post-translationally modified. The modifications of p668.44 and p518.31 differed from each other indicating selective modification of the different RT subunits. The susceptibility of RT isoforms to phosphatase treatment suggested that some of these modifications were due to phosphorylation. Dephosphorylation, however, had no effect on in vitro RT activity associated with virions, infected cells or RTCs suggesting that the phospho-isoforms do not make a major contribution to RT activity in an in vitro assay. Conclusion The same major isoform of p66 and p51 RT is found in virions, infected cells and RTC's and both of these subunits are post-translationally modified. This post-translational modification of RT may be important for the function of RT inside the cell.

  17. A post-translational balancing act: the good and the bad of SUMOylation in pancreatic islets.

    Science.gov (United States)

    MacDonald, Patrick E

    2018-04-01

    Post-translational modification of proteins contributes to the control of cell function and survival. The balance of these in insulin-producing pancreatic beta cells is important for the maintenance of glucose homeostasis. Protection from the damaging effects of reactive oxygen species is required for beta cell survival, but if this happens at the expense of insulin secretory function then the ability of islets to respond to changing metabolic conditions may be compromised. In this issue of Diabetologia, He et al ( https://doi.org/10.1007/s00125-017-4523-9 ) show that post-translational attachment of small ubiquitin-like modifier (SUMO) to target lysine residues (SUMOylation) strikes an important balance between the protection of beta cells from oxidative stress and the maintenance of insulin secretory function. They show that SUMOylation is required to stabilise nuclear factor erythroid 2-related factor 2 (NRF2) and increase antioxidant gene expression. Decreasing SUMOylation in beta cells impairs their antioxidant capacity, causes cell death, hyperglycaemia, and increased sensitivity to streptozotocin-induced diabetes, while increasing SUMOylation is protective. However, this protection from overt diabetes occurs in concert with glucose intolerance due to impaired beta cell function. A possible role for SUMOylation as a key factor balancing beta cell protection vs beta cell responsiveness to metabolic cues is discussed in this Commentary.

  18. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  19. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.

    Science.gov (United States)

    Nemie-Feyissa, Dugassa; Królicka, Adriana; Førland, Nina; Hansen, Margarita; Heidari, Behzad; Lillo, Cathrine

    2013-05-01

    Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg(2+) contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Post-translational processing and secretion of atrial natriuretic factor

    International Nuclear Information System (INIS)

    Shields, P.P.

    1988-01-01

    The post-translational processing and regulated secretion of atrial natriuretic factor (ANF) were studied in primary cultures of rat cardiac myocytes. Cultures were established from neonatal rat atria or ventricles, and were maintained for 7-14 days in complete serum free medium. The cultures contained high and constant levels of ANF-(1-126), the known storage form of the hormone in vivo. The cultures also secreted ANF-(1-126), instead of the known circulating form of the hormone, ANF-(99-126). However, the inclusion of the glucocorticoids dexamethasone or hydrocortisone in the culture medium increased the levels of ir-ANF contained and secreted by the cultures, and caused both atrial and ventricular cultures to secrete principally ANF-(99-126) instead of ANF-(1-126). The secreted peptide was shown to be authentic ANF-(99-126) by chromatographic, amino acid composition and radiosequence analysis, thus confirming that the cultures were accurately processing ANF to the in vivo circulating form in the presence of glucocorticoids. Glucocorticoids also caused an increase in size and clustering of atrial myocytes as determined by immunocytochemical analysis, but the morphological effects could be dissociated from the stimulation of ANF-(99-126) secretion by manipulating the timing of glucocorticoid exposure. The location of ANF-(99-126) formation was investigated using biosynthetically labeled 35 S-Cys-ANF-(1-126) in conjunction with actively processing cultures

  1. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation

    DEFF Research Database (Denmark)

    Frogne, Thomas; Sylvestersen, Kathrine Beck; Kubicek, Stefan

    2012-01-01

    signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We...... alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis...

  2. Site specific modification of the human plasma proteome by methylglyoxal

    International Nuclear Information System (INIS)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig S.; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  3. Site specific modification of the human plasma proteome by methylglyoxal

    Energy Technology Data Exchange (ETDEWEB)

    Kimzey, Michael J.; Kinsky, Owen R. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Yassine, Hussein N. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Tsaprailis, George [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Stump, Craig S. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Southern Arizona VA Health Care System, Tucson, AZ 85723 (United States); Monks, Terrence J. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Lau, Serrine S., E-mail: lau@pharmacy.arizona.edu [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  4. Regulation of dynamin family proteins by post-translational

    Indian Academy of Sciences (India)

    2017-04-22

    Apr 22, 2017 ... School of Biological Sciences, National Institute of Science Education and Research-. Bhubaneswar .... translational modifications provides the cell a dynamic and ..... Drp1 which confers cellular protection from mitochondrial.

  5. Standardization and quality control in quantifying non-enzymatic oxidative protein modifications in relation to ageing and disease: Why is it important and why is it hard?

    DEFF Research Database (Denmark)

    Nedić, Olgica; Rogowska-Wrzesinska, Adelina; Rattan, Suresh

    2015-01-01

    Post-translational modifications (PTM) of proteins determine the activity, stability, specificity, transportability and lifespan of a protein. Some PTM are highly specific and regulated involving various enzymatic pathways, but there are other non-enzymatic PTM (nePTM), which occur stochastically...

  6. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Tacchi, Jessica L; Raymond, Benjamin B A; Haynes, Paul A; Berry, Iain J; Widjaja, Michael; Bogema, Daniel R; Woolley, Lauren K; Jenkins, Cheryl; Minion, F Chris; Padula, Matthew P; Djordjevic, Steven P

    2016-02-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. © 2016 The Authors.

  7. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  8. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  9. Fluorescent polymer-based post-translational differentiation and subtyping of breast cancer cells.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Wagh, Anil; Gustad, Thomas R; Law, Benedict; Friesner, Daniel L; Mallik, Sanku

    2012-12-07

    Herein, we report the application of synthesized fluorescent, water soluble polymers for post-translational subtyping and differentiation of breast cancer cells in vitro. The fluorescence emission spectra from these polymers were modulated differently in the presence of conditioned cell culture media from various breast cancer cells. These polymers differentiate at a post-translation level possibly due to their ability to interact with extracellular enzymes that are over-expressed in cancerous conditions.

  10. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  11. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    Science.gov (United States)

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  12. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  13. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  14. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christian Gu

    Full Text Available RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.

  15. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis

    DEFF Research Database (Denmark)

    Roepstorff, P; Larsen, Martin Røssel

    2001-01-01

    High-throughput DNA sequencing has resulted in increasing input in protein sequence databases. Today more than 20 genomes have been sequenced and many more will be completed in the near future, including the largest of them all, the human genome. Presently, sequence databases contain entries for ...

  16. Post-translational modification of LipL32 during Leptospira interrogans infection

    Science.gov (United States)

    Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world’s most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize ...

  17. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications

    DEFF Research Database (Denmark)

    Halim, Adnan; Carlsson, Michael C; Mathiesen, Caroline Benedicte K

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post...... allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic...

  18. Detection of hydrolysis of lipid post-translational modifications during gel-electrophoresis-based proteomic protocol

    Czech Academy of Sciences Publication Activity Database

    Žídková, Jitka; Řehulka, Pavel; Chmelík, Josef

    2007-01-01

    Roč. 7, č. 15 (2007), s. 2507-2510 ISSN 1615-9853 R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : ester hydrolysis * gel electrophoresis * MALDI-TOF MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.479, year: 2007

  19. An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum

    KAUST Repository

    Veluchamy, Alaguraj; Rastogi, Achal; Lin, Xin; Lombard, Bé rangè re; Murik, Omer; Thomas, Yann; Dingli, Florent; Rivarola, Maximo; Ott, Sandra; Liu, Xinyue; Sun, Yezhou; Rabinowicz, Pablo D.; McCarthy, James; Allen, Andrew E.; Loew, Damarys; Bowler, Chris; Tirichine, Leï la

    2015-01-01

    in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans. Results: Here, we use high resolution mass spectrometry to identify a full

  20. Protein Glycosylation in Archaea: A Post-Translational Modification to Enhance Extremophilic Protein Stability

    Science.gov (United States)

    2010-01-15

    Analysis of the chemical composition of the Asn-linked polysaccharides decorating many archaeal proteins has revealed the use of a wider variety of sugar...reminiscent of the eukaryal glycan-charged lipid, linked to a variety of monosaccharides , including glucose, mannose, and N-acetylglucosamine (GlcNAc

  1. Functional Characterization of CENP-A Post-Translational Modifications in Chromosome Segregation

    Science.gov (United States)

    2016-09-01

    Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F. Overexpression and mistargeting of centromere protein-A in human primary colorectal...of cell biology. 2007;176(6):795-805. 9. Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F. Overexpression and

  2. Near infrared light induces post-translational modifications of human red blood cell proteins.

    Science.gov (United States)

    Walski, Tomasz; Dyrda, Agnieszka; Dzik, Małgorzata; Chludzińska, Ludmiła; Tomków, Tomasz; Mehl, Joanna; Detyna, Jerzy; Gałecka, Katarzyna; Witkiewicz, Wojciech; Komorowska, Małgorzata

    2015-11-01

    There is a growing body of evidence that near infrared (NIR) light exerts beneficial effects on cells. Its usefulness in the treatment of cancer, acute brain injuries, strokes and neurodegenerative disorders has been proposed. The mechanism of the NIR action is probably of photochemical nature, however it is not fully understood. Here, using a relatively simple biological model, human red blood cells (RBCs), and a polychromatic non-polarized light source, we investigate the impact of NIR radiation on the oxygen carrier, hemoglobin (Hb), and anion exchanger (AE1, Band 3). The exposure of intact RBCs to NIR light causes quaternary transitions in Hb, dehydration of proteins and decreases the amount of physiologically inactive methemoglobin, as detected by Raman spectroscopy. These effects are accompanied by a lowering of the intracellular pH (pHi) and changes in the cell membrane topography, as documented by atomic force microscopy (AFM). All those changes are in line with our previous studies where alterations of the membrane fluidity and membrane potential were attributed to NIR action on RBCs. The rate of the above listed changes depends strictly on the dose of NIR light that the cells receive, nonetheless it should not be considered as a thermal effect.

  3. Pathogenic leptospires modulate protein expression and post-translational modifications in response to mammalian host signals

    Science.gov (United States)

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs and cattle, exhibit little to no signs of disease but shed large numbers of organisms in...

  4. Obstructing Androgen Receptor Activation in Prostate Cancer Cells Through Post-translational Modification by NEDD8

    Science.gov (United States)

    2012-11-01

    FACS flow cytometer analysis . In addition, we will measure the steady state protein level of p53, p21, p27, and pRb. In the Jab1 silencing cell...affected by DHT treatment, and the endogenous AR level was not affected by Jab1 silencing. Interestingly, Western blot analysis of immunoprecipitated AR...Avantaggiati, and R. G. Pestell . 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol

  5. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.; Joosten, M.H.A.J.

    2008-01-01

    Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling

  6. Attention bias modification in specific fears: Spiders versus snakes.

    Science.gov (United States)

    Luo, Xijia; Ikani, Nessa; Barth, Anja; Rengers, Lea; Becker, Eni; Rinck, Mike

    2015-12-01

    Attention Bias Modification (ABM) is used to manipulate attention biases in anxiety disorders. It has been successful in reducing attention biases and anxious symptoms in social anxiety and generalized anxiety, but not yet in specific fears and phobias. We designed a new version of the dot-probe training task, aiming to train fearful participants' attention away from or towards pictures of threatening stimuli. Moreover, we studied whether the training also affected participants' avoidance behavior and their physical arousal upon being confronted with a real threat object. In Experiment 1, students with fear of spiders were trained. We found that the attention manipulation was successful, but the training failed to affect behavior or arousal. In Experiment 2, the same procedure was used on snake-fearful students. Again, attention was trained in the expected directions. Moreover, participants whose attention had been trained away from snakes showed lower physiological arousal upon being confronted with a real snake. The study involved healthy students with normal distribution of the fear of spider/snake. Future research with clinical sample could help with determining the generalizability of the current findings. The effect of ABM on specific phobia is still in question. The finding in the present study suggested the possibility to alter attentional bias with a dot-probe task with general positive stimuli and this training could even affect the behavior while encountering a real threat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. SUCROSE SYNTHASE: ELUCIDATION OF COMPLEX POST-TRANSLATIONAL REGULATORY MECHANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Huber

    2009-05-12

    Studies have focused on the enzyme sucrose synthase, which plays an important role in the metabolism of sucrose in seeds and tubers. There are three isoforms of SUS in maize, referred to as SUS1, SUS-SH1, and SUS2. SUS is generally considered to be tetrameric protein but recent evidence suggests that SUS can also occur as a dimeric protein. The formation of tetrameric SUS is regulated by sucrose concentration in vitro and this could also be an important factor in the cellular localization of the protein. We found that high sucrose concentrations, which promote tetramer formation, also inhibit the binding of SUS1 to actin filaments in vitro. Previously, high sucrose concentrations were shown to promote SUS association with the plasma membrane. The specific regions of the SUS molecule involved in oligomerization are not known, but we identified a region of the SUS1 moelcule by bioinformatic analysis that was predicted to form a coiled coil. We demonstrated that this sequence could, in fact, self-associate as predicted for a coiled coil, but truncation analysis with the full-length recombinant protein suggested that it was not responsible for formation of dimers or tetramers. However, the coiled coil may function in binding of other proteins to SUS1. Overall, sugar availability may differentially influence the binding of SUS to cellular structures, and these effects may be mediated by changes in the oligomeric nature of the enzyme.

  8. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that ...

  9. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  10. Analyzing the evolution of beta-endorphin post-translational processing events: studies on reptiles.

    Science.gov (United States)

    Shoureshi, Pezhman; Baron, Andrea; Szynskie, Laura; Dores, Robert M

    2007-01-01

    In many cartilaginous fishes, most ray-finned fishes, lungfishes, and amphibians, the post-translational processing of POMC includes the monobasic cleavage of beta-endorphin to yield an opioid that is eight to ten amino acids in length. The amino acid motif within the beta-endorphin sequence required for a monobasic cleavage event is -E-R-(S/G)-Q-. Mammals and birds lack this motif and as a result beta-endorphin(1-8) is a not an end-product in either group. Since both mammals and birds were derived from ancestors with reptilian origins, an analysis of beta-endorphin sequences from extant groups of reptiles should provide insights into the manner in which beta-endorphin post-translational processing mechanisms have evolved in amniotes. To this end a POMC cDNA was cloned from the pituitary of the turtle, Chrysemys scripta. The beta-endorphin sequence in this species was compared to other reptile beta-endorphin sequences (i.e., Chinese soft shell turtle and gecko) and to known bird and mammal sequences. This analysis indicated that either the loss of the arginine residue at the cleavage site (the two turtle species, chick, and human) or a substitution at the glutamine position in the consensus sequence (gecko and ostrich) would account for the loss of the monobasic cleavage reaction in that species. Since amphibians are capable of performing the beta-endorphin monobasic reaction, it would appear that the amino acid substitutions that eliminated this post-translational process event in reptilian-related tetrapods must have occurred in the ancestral amniotes.

  11. Identification and Interrogation of Combinatorial Histone Modifications

    Directory of Open Access Journals (Sweden)

    Kelly R Karch

    2013-12-01

    Full Text Available Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs. Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  12. Site-Specific Modification Using the 2′-Methoxyethyl Group Improves the Specificity and Activity of siRNAs

    Directory of Open Access Journals (Sweden)

    Xinyun Song

    2017-12-01

    Full Text Available Rapid progress has been made toward small interfering RNA (siRNA-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand. Intriguingly, addition of the 2′-methoxyethyl (MOE group at the cleavage site improved both the specificity and silencing activity of siRNAs by facilitating the oriented RNA-induced silencing complex (RISC loading of the modified strand. Furthermore, we combined MOE modifications at positions 9 and 10 of one strand together with 2′-O-methylation (OMe at position 14 of the other strand and found a synergistic effect that improved the specificity of siRNAs. The surprisingly beneficial effect of the combined modification was validated using siRNA-targeting endogenous gene intercellular adhesion molecule 1 (ICAM1. We found that the combined modifications eliminated its off-target effects. In conclusion, we established effective strategies to optimize siRNAs using site-specific MOE modifications. The findings may allow the creation of superior siRNAs for therapy in terms of activity and specificity.

  13. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  14. Extracellular sugar modifications provide instructive and cell-specific information for axon-guidance choices.

    NARCIS (Netherlands)

    Bulow, H.E.; Tjoe, N.; Townley, R.A.; Didiano, D.; Kuppevelt, A.H.M.S.M. van; Hobert, O.

    2008-01-01

    Heparan sulfates (HSs) are extraordinarily complex extracellular sugar molecules that are critical components of multiple signaling systems controlling neuronal development. The molecular complexity of HSs arises through a series of specific modifications, including sulfations of sugar residues and

  15. Antibodies against post-translationally modified vimentin peptides in patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    P. A. Kuznetsova

    2017-01-01

    Full Text Available Rheumatoid arthritis (RA is the most common autoimmune rheumatic disease (ARD associated with the production of broad-spectrum antibodies, the detection of which is of important diagnostic and prognostic values. The problems of RA diagnosis are associated with the limited sensitivity of currently used serological markers.Objective: to evaluate the diagnostic informative value of autoantibodies against different post-translationally modified (PTM vimentin peptides in patients with RA and other ARDs.Patients and methods. The frequency of autoantibodies against different isoforms of vimentin was estimated in 144 patients with RA, in 36 patients with other ARDs (ankylosing spondylitis and scleroderma systematica, and in 25 patients of a control group, who had no rheumatic diseases. Antibodies against different PTM vimentin peptides obtained using citrullination, carbamylation/homocitrullination, and acetylation were determined. Anti-citrullinated vimentin (anti-CitVim peptide, anti-carbamylated vimentin (anti-CarVim peptide, and anti-acetylated vimentin (anti-AcVim peptide autoantibodies of IgG and IgA classes were estimated in the serum by enzyme immunoassay.Results. The results of the study showed that IgG and IgA anti-CitVim had the maximum area under the ROC curve (AUC (0.859 and 0.855, respectively. A slightly smaller AUC was seen in IgG anti-CarVim (0.85, IgG anti-AcVim (0.784, and IgA anti-AcVim (0.651. The diagnostic sensitivity and diagnostic specificity were 66.2 and 96.77% for IgG anti-CitVim, 60.56 and 91.94% for IgA anti-CitVim, 91.55 and 53.23% for IgG anti-CarVim, 63.38 and 93.55% for IgG anti-AcVim, and 49.3 and 70.97%, IgA anti-AcVim, respectively. Positivity for IgG anti-CitVim, IgG anti-CarVim, and IgG anti-AcVim, and anti-IgA CitVim was significantly more frequently detected in patients with RA than in those with other ARDs and in the control group (p<0.05. Thus, the identified autoantibodies against modified

  16. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  17. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  18. Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products: New Insights Into the Role of Leader and Core Peptides During Biosynthesis

    Science.gov (United States)

    Yang, Xiao; van der Donk, Wilfred A.

    2013-01-01

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this review, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the posttranslational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution. PMID:23666908

  19. Phycourobilin in Trichromatic Phycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a Phycoerythrobilin Lyase-Isomerase*S⃞

    Science.gov (United States)

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-01-01

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (λmax ∼ 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its α-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters. PMID:19182270

  20. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid.

    Science.gov (United States)

    Thomas, Emily E; Pandey, Naresh; Knudsen, Sarah; Ball, Zachary T; Silberg, Jonathan J

    2017-08-18

    Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.

  1. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes.

    Directory of Open Access Journals (Sweden)

    Travis S D'Cruz

    Full Text Available Synaptophysin, is an abundant presynaptic protein involved in synaptic vesicle recycling and neurotransmitter release. Previous work shows that its content is significantly reduced in the rat retina by streptozotocin (STZ-diabetes. This study tested the hypothesis that STZ-diabetes alters synaptophysin protein turnover and glycosylation in the rat retina. Whole explant retinas from male Sprague-Dawley rats were used in this study. Rats were made diabetic by a single intraperitoneal STZ injection (65 mg/kg body weight in 10 mM sodium citrate, pH 4.5. mRNA translation was measured using a (35S-methionine labeling assay followed by synaptophysin immunoprecipitation and autoradiography. A pulse-chase study was used to determine the depletion of newly synthesized synaptophysin. Depletion of total synaptophysin was determined after treatment with cycloheximide. Mannose rich N-glycosylated synaptophysin was detected by treating retinal lysates with endoglycosidase H followed by immunoblot analysis. Synaptophysin mRNA translation was significantly increased after 1 month (p<0.001 and 2 months (p<0.05 of STZ-diabetes, compared to age-matched controls. Newly synthesized synaptophysin degradation was significantly accelerated in the retina after 1 and 2 months of diabetes compared to controls (p<0.05. Mannose rich glycosylated synaptophysin was significantly increased after 1 month of STZ-diabetes compared to controls (p<0.05.These data suggest that diabetes increases mRNA translation of synaptophysin in the retina, resulting in an accumulation of mannose rich glycosylated synaptophysin, a transient post-translational state of the protein. This diabetes-induced irregularity in post-translational processing could explain the accelerated degradation of retinal synaptophysin in diabetes.

  2. Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties.

    Science.gov (United States)

    Ali, Mostafa; Homann, Thomas; Khalil, Mahmoud; Kruse, Hans-Peter; Rawel, Harshadrai

    2013-07-17

    A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of β-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified β-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified β-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.

  3. USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level.

    Directory of Open Access Journals (Sweden)

    Daniel Pouly

    Full Text Available The mammalian circadian clock influences most aspects of physiology and behavior through the transcriptional control of a wide variety of genes, mostly in a tissue-specific manner. About 20 clock-controlled genes (CCGs oscillate in virtually all mammalian tissues and are generally considered as core clock components. One of them is Ubiquitin-Specific Protease 2 (Usp2, whose status remains controversial, as it may be a cogwheel regulating the stability or activity of core cogwheels or an output effector. We report here that Usp2 is a clock output effector related to bodily Ca2+ homeostasis, a feature that is conserved across evolution. Drosophila with a whole-body knockdown of the orthologue of Usp2, CG14619 (dUsp2-kd, predominantly die during pupation but are rescued by dietary Ca2+ supplementation. Usp2-KO mice show hyperabsorption of dietary Ca2+ in small intestine, likely due to strong overexpression of the membrane scaffold protein NHERF4, a regulator of the Ca2+ channel TRPV6 mediating dietary Ca2+ uptake. In this tissue, USP2-45 is found in membrane fractions and negatively regulates NHERF4 protein abundance in a rhythmic manner at the protein level. In clock mutant animals (Cry1/Cry2-dKO, rhythmic USP2-45 expression is lost, as well as the one of NHERF4, confirming the inverse relationship between USP2-45 and NHERF4 protein levels. Finally, USP2-45 interacts in vitro with NHERF4 and endogenous Clathrin Heavy Chain. Taken together these data prompt us to define USP2-45 as the first clock output effector acting at the post-translational level at cell membranes and possibly regulating membrane permeability of Ca2+.

  4. Chemical modification of DNA: Molecular specificity studied by tandem mass spectrometry and liquid chromatography

    International Nuclear Information System (INIS)

    Chang, Ching-jer; Cooks, R.G.; Chae, Whi-Gun; Wood, J.M.

    1989-01-01

    Chemical modifications of DNA in vitro could be directly studied by C-13 NMR and P-31 NMR, which eliminated all degradation and separation processes. The prospects of utilized the NMR method in the in vitro experiments are limited because of the inherent low sensitivity of NMR and low level of DNA modification. We have developed a reverse-phase ion-paired HPLC method to study DNA modifications by methylating agents. The structural specificity of HPLC is significantly enhanced by conjunction with the specificity of enzymic transformations. The HPLC studies have also revealed the limitation of HPLC method for simultaneous determination of many minor modified nucleosides. This problem has been overcome by tandem mass spectrometry. In conjunction with the resolving power of HPLC in separating isomers, desorption chemical ionization tandem mass spectrometry has been utilized in the determination of the modified nucleosides at the picomole level using stable-isotope labeled compounds as internal references

  5. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.

    Science.gov (United States)

    Cheng, Chia-Yang; Chu, Chia-Han; Hsu, Hung-Wei; Hsu, Fang-Rong; Tang, Chung Yi; Wang, Wen-Ching; Kung, Hsing-Jien; Chang, Pei-Ching

    2014-01-01

    Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification. Traditional peak calling methods are inadequate when identifying multiple TF binding sites that involve long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS) using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated TFs are able to be pinpointed using our pipeline. A methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that enhances Ch

  6. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    Science.gov (United States)

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  7. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper

    2015-01-01

    ) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post...

  8. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones

    DEFF Research Database (Denmark)

    Sidoli, Simone; Schwämmle, Veit; Ruminowicz, Chrystian

    2014-01-01

    chromatography (WCX-HILIC) interfaced directly to high mass accuracy ESI MS/MS using electron transfer dissociation (ETD). This enabled automated and efficient separation and sequencing of hypermodified histone N-terminal tails for unambiguous localization of combinatorial PTMs. We present Histone Coder and Iso...

  9. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Sidoli, Simone; Ruminowicz, Chrystian

    2016-01-01

    molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse....... We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks......, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37...

  10. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones.

    Science.gov (United States)

    Sidoli, Simone; Schwämmle, Veit; Ruminowicz, Chrystian; Hansen, Thomas A; Wu, Xudong; Helin, Kristian; Jensen, Ole N

    2014-10-01

    We present an integrated middle-down proteomics platform for sensitive mapping and quantification of coexisting PTMs in large polypeptides (5-7 kDa). We combined an RP trap column with subsequent weak cation exchange-hydrophilic interaction LC interfaced directly to high mass accuracy ESI MS/MS using electron transfer dissociation. This enabled automated and efficient separation and sequencing of hypermodified histone N-terminal tails for unambiguous localization of combinatorial PTMs. We present Histone Coder and IsoScale software to extract, filter, and analyze MS/MS data, including quantification of cofragmenting isobaric polypeptide species. We characterized histone tails derived from murine embryonic stem cells knockout in suppressor of zeste12 (Suz12(-/-) ) and quantified 256 combinatorial histone marks in histones H3, H4, and H2A. Furthermore, a total of 713 different combinatorial histone marks were identified in purified histone H3. We measured a seven-fold reduction of H3K27me2/me3 (where me2 and me3 are dimethylation and trimethylation, respectively) in Suz12(-) (/) (-) cells and detected significant changes of the relative abundance of 16 other single PTMs of histone H3 and other combinatorial marks. We conclude that the inactivation of Suz12 is associated with changes in the abundance of not only H3K27 methylation but also multiple other PTMs in histone H3 tails. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Regulation of Mammary Stem Cell Quiescence via Post-Translational Modification of DeltaNp63alpha

    Science.gov (United States)

    2012-12-01

    This document is the Annual Summary Report on the training grant awarded to Andrew DeCastro entitled Regulation of Mammary Stem Cell Quiescence via...screen) mediated phosphorylation of deltaNPdelta3 on stem cell behavior and mitotic activity. Task 1 aims to determine the effects of wild-type, phospho...ablative and phospho-mimetic alleles of deltaNP63delta phosphorylation on stem cell behavior in vitro. Thus far, we demonstrate that stem cell enriched

  12. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  13. Establishment of first engineering specifications for environmental modification to eliminate schistosomiasis epidemic foci in urban areas.

    Science.gov (United States)

    Kong, Shibo; Tan, Xiaodong; Deng, Zhiqing; Xie, Yaofei; Yang, Fen; Zheng, Zengwang

    2017-08-01

    Snail control is a key link in schistosomiasis control, but no unified methods for eliminating snails have been produced to date. This study was conducted to explore an engineering method for eliminating Oncomelania hupensis applicable to urban areas. The engineering specifications were established using the Delphi method. An engineering project based on these specifications was conducted in Hankou marshland to eliminate snails, including the transformation of the beach surface and ditches. Molluscicide was used as a supplement. The snail control effect was evaluated by field investigation. The engineering results fulfilled the requirements of the design. The snail density decreased to 0/0.11m 2 , and the snail area dropped to 0m 2 after the project. There was a statistically significant difference in the number of frames with snails before and after the project (Pengineering specifications for environmental modification were successfully established. Environmental modification, mainly through beach and ditch remediation, can completely change the environment of Oncomelania breeding. This method of environmental modification combined with mollusciciding was highly effective at eliminating snails. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation.

    Directory of Open Access Journals (Sweden)

    Gabriele Hoermannsperger

    specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  17. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    Science.gov (United States)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  18. Histone posttranslational modifications predict specific alternative exon subtypes in mammalian brain.

    Directory of Open Access Journals (Sweden)

    Qiwen Hu

    2017-06-01

    Full Text Available A compelling body of literature, based on next generation chromatin immunoprecipitation and RNA sequencing of reward brain regions indicates that the regulation of the epigenetic landscape likely underlies chronic drug abuse and addiction. It is now critical to develop highly innovative computational strategies to reveal the relevant regulatory transcriptional mechanisms that may underlie neuropsychiatric disease. We have analyzed chromatin regulation of alternative splicing, which is implicated in cocaine exposure in mice. Recent literature has described chromatin-regulated alternative splicing, suggesting a novel function for drug-induced neuroepigenetic remodeling. However, the extent of the genome-wide association between particular histone modifications and alternative splicing remains unexplored. To address this, we have developed novel computational approaches to model the association between alternative splicing and histone posttranslational modifications in the nucleus accumbens (NAc, a brain reward region. Using classical statistical methods and machine learning to combine ChIP-Seq and RNA-Seq data, we found that specific histone modifications are strongly associated with various aspects of differential splicing. H3K36me3 and H3K4me1 have the strongest association with splicing indicating they play a significant role in alternative splicing in brain reward tissue.

  19. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    Science.gov (United States)

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  20. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    Science.gov (United States)

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  1. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  2. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...

  3. Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model.

    Science.gov (United States)

    Triff, Karen; McLean, Mathew W; Callaway, Evelyn; Goldsby, Jennifer; Ivanov, Ivan; Chapkin, Robert S

    2018-04-16

    Dietary fermentable fiber generates short-chain fatty acids (SCFA), e.g., butyrate, in the colonic lumen which serves as a chemoprotective histone deacetylase inhibitor and/or as an acetylation substrate for histone acetylases. In addition, n-3 polyunsaturated fatty acids (n-3 PUFA) in fish oil can affect the chromatin landscape by acting as ligands for tumor suppressive nuclear receptors. In an effort to gain insight into the global dimension of post-translational modification of histones (including H3K4me3 and H3K9ac) and clarify the chemoprotective impact of dietary bioactive compounds on transcriptional control in a preclinical model of colon cancer, we generated high-resolution genome-wide RNA (RNA-Seq) and "chromatin-state" (H3K4me3-seq and H3K9ac-seq) maps for intestinal (epithelial colonocytes) crypts in rats treated with a colon carcinogen and fed diets containing bioactive (i) fish oil, (ii) fermentable fiber (a rich source of SCFA), (iii) a combination of fish oil plus pectin or (iv) control, devoid of fish oil or pectin. In general, poor correlation was observed between differentially transcribed (DE) and enriched genes (DERs) at multiple epigenetic levels. The combinatorial diet (fish oil + pectin) uniquely affected transcriptional profiles in the intestinal epithelium, e.g., upregulating lipid catabolism and beta-oxidation associated genes. These genes were linked to activated ligand-dependent nuclear receptors associated with n-3 PUFA and were also correlated with the mitochondrial L-carnitine shuttle and the inhibition of lipogenesis. These findings demonstrate that the chemoprotective fish oil + pectin combination diet uniquely induces global histone state modifications linked to the expression of chemoprotective genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  4. The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A; Balázsi, Gábor; Gennaro, Maria Laura

    2010-01-01

    Bacterial persistence is the phenomenon in which a genetically identical fraction of a bacterial population can survive exposure to stress by reduction or cessation of growth. Persistence in mycobacteria has been recently linked to a stress-response network, consisting of the MprA/MprB two-component system and alternative sigma factor σ E . This network contains multiple positive transcriptional feedback loops which may give rise to bistability, making it a good candidate for controlling the mycobacterial persistence switch. To analyze the possibility of bistability, we develop a method that involves decoupling of the network into transcriptional and post-translational interaction modules. As a result we reduce the dimensionality of the dynamical system and independently analyze input–output relations in the two modules to formulate a necessary condition for bistability in terms of their logarithmic gains. We show that neither the positive autoregulation in the MprA/MprB network nor the σ E -mediated transcriptional feedback is sufficient to induce bistability in a biochemically realistic parameter range. Nonetheless, inclusion of the post-translational regulation of σ E by RseA increases the effective cooperativity of the system, resulting in bistability that is robust to parameter variation. We predict that overexpression or deletion of RseA, the key element controlling the ultrasensitive response, can eliminate bistability

  5. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes.

    Science.gov (United States)

    Stoichevska, Violet; Peng, Yong Y; Vashi, Aditya V; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2017-03-01

    Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017. © 2016 Wiley Periodicals, Inc.

  6. Site-specific chemical modification of antibody fragments using traceless cleavable linkers.

    Science.gov (United States)

    Bernardes, Gonçalo J L; Steiner, Martina; Hartmann, Isabelle; Neri, Dario; Casi, Giulio

    2013-11-01

    Antibody-drug conjugates (ADCs) are promising agents for the selective delivery of cytotoxic drugs to specific cells (for example, tumors). In this protocol, we describe two strategies for the precise modification at engineered C- or N-terminal cysteines of antibodies in IgG, diabody and small immunoprotein (SIP) formats that yield homogenous ADCs. In this protocol, cemadotin derivatives are used as model drugs, as these agents have a potent cytotoxic activity and are easy to synthesize. However, other drugs with similar functional groups could be considered. In the first approach, a cemadotin derivative containing a sulfhydryl group results in a mixed disulfide linkage. In the second approach, a cemadotin derivative containing an aldehyde group is joined via a thiazolidine linkage. The procedures outlined are robust, enabling the preparation of ADCs with a defined number of drugs per antibody in a time frame between 7 and 24 h.

  7. Post-translational control of RIPK3 and MLKL mediated necroptotic cell death [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    James M. Murphy

    2015-11-01

    Full Text Available Several programmed lytic and necrotic-like cell death mechanisms have now been uncovered, including the recently described receptor interacting protein kinase-3 (RIPK3-mixed lineage kinase domain-like (MLKL-dependent necroptosis pathway. Genetic experiments have shown that programmed necrosis, including necroptosis, can play a pivotal role in regulating host-resistance against microbial infections. Alternatively, excess or unwarranted necroptosis may be pathological in autoimmune and autoinflammatory diseases. This review highlights the recent advances in our understanding of the post-translational control of RIPK3-MLKL necroptotic signaling. We discuss the critical function of phosphorylation in the execution of necroptosis, and highlight the emerging regulatory roles for several ubiquitin ligases and deubiquitinating enzymes. Finally, based on current evidence, we discuss the potential mechanisms by which the essential, and possibly terminal, necroptotic effector, MLKL, triggers the disruption of cellular membranes to cause cell lysis.

  8. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    Science.gov (United States)

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  9. Histones and their modifications in ovarian cancer – drivers of disease and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Deborah Joy Marsh

    2014-06-01

    Full Text Available Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC is the most common subtype, with the majority of women presenting with advanced disease where 5 year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation and monoubiquitination, with involvement of enzymes including histone methyl transferases (HMTases, histone acetyltransferases/deacetylases and ubiquitin ligases/deubiquitinases respectively. Complexes such as the Polycomb Repressive Complex also play roles in the control of histone modifications and more recently roles for long non-coding (lnc RNA and microRNAs (miRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for

  10. Safe genetic modification of cardiac stem cells using a site-specific integration technique.

    Science.gov (United States)

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H; Hu, Shijun; Han, Leng; Lee, Andrew S; Karow, Marisa; Nguyen, Patricia K; Nag, Divya; Calos, Michele P; Robbins, Robert C; Wu, Joseph C

    2012-09-11

    Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (Pmodification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.

  11. Albumin modification and fragmentation in renal disease.

    Science.gov (United States)

    Donadio, Carlo; Tognotti, Danika; Donadio, Elena

    2012-02-18

    Albumin is the most important antioxidant substance in plasma and performs many physiological functions. Furthermore, albumin is the major carrier of endogenous molecules and exogenous ligands. This paper reviews the importance of post-translational modifications of albumin and fragments thereof in patients with renal disease. First, current views and controversies on renal handling of proteins, mainly albumin, will be discussed. Post-translational modifications, namely the fragmentation of albumin found with proteomic techniques in nephrotic patients, diabetics, and ESRD patients will be presented and discussed. It is reasonable to hypothesize that proteolytic fragmentation of serum albumin is due to a higher susceptibility to proteases, induced by oxidative stress. The clinical relevance of the fragmentation of albumin has not yet been established. These modifications could affect some physiological functions of albumin and have a patho-physiological role in uremic syndrome. Proteomic analysis of serum allows the identification of over-expressed proteins and can detect post-translational modifications of serum proteins, hitherto hidden, using standard laboratory techniques. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Directory of Open Access Journals (Sweden)

    Vermeulen Michiel

    2004-01-01

    Full Text Available Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted.

  13. Post-translational amino acid racemization in the frog skin peptide deltorphin I in the secretion granules of cutaneous serous glands.

    Science.gov (United States)

    Auvynet, Constance; Seddiki, Nabila; Dunia, Irene; Nicolas, Pierre; Amiche, Mohamed; Lacombe, Claire

    2006-01-01

    The dermal glands of the South American hylid frog Phyllomedusa bicolor synthesize and expel huge amounts of cationic, alpha-helical, 24- to 33-residue antimicrobial peptides, the dermaseptins B. These glands also produce a wide array of peptides that are similar to mammalian hormones and neuropeptides, including a heptapeptide opioid containing a D-amino acid, deltorphin I (Tyr-DAla-Phe-Asp-Val-Val-Gly NH2). Its biological activity is due to the racemization of L-Ala2 to D-Ala. The dermaseptins B and deltorphins are all derived from a single family of precursor polypeptides that have an N-terminal preprosequence that is remarkably well conserved, although the progenitor sequences giving rise to mature opioid or antimicrobial peptides are markedly different. Monoclonal and polyclonal antibodies were used to examine the cellular and ultrastructural distributions of deltorphin I and dermaseptin B in the serous glands by immunofluoresence confocal microscopy and immunogold-electron microscopy. Preprodeltorphin I and preprodermaseptins B are sorted into the regulated pathway of secretion, where they are processed to give the mature products. Deltorphin I, [l-Ala2]-deltorphin I and dermaseptin B are all stored together in secretion granules which accumulate in the cytoplasm of all serous glands. We conclude that the L- to D-amino acid isomerization of the deltorphin I occurs in the secretory granules as a post-translational event. Thus the specificity of isomerization depends on the presence of structural and/or conformational determinants in the peptide N-terminus surrounding the isomerization site.

  14. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites

    OpenAIRE

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-01-01

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this...

  15. Biochemical systems approaches for the analysis of histone modification readout.

    Science.gov (United States)

    Soldi, Monica; Bremang, Michael; Bonaldi, Tiziana

    2014-08-01

    Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.

    Science.gov (United States)

    Favre, Julien; Clancy, Caitlin; Dowling, Ariel V; Andriacchi, Thomas P

    2016-06-01

    The incidence of anterior cruciate ligament (ACL) injuries may be decreased through the use of intervention programs that focus on increasing the knee flexion angle during jump landing, which decreases strain on the ACL. To investigate whether intervention training designed to change the knee flexion angle during landing causes secondary changes in other known measures associated with the risk of ACL injuries and to examine the time points when these secondary measures change. Controlled laboratory study. A total of 39 healthy recreational athletes performed a volleyball block jump task in an instrumented gait laboratory. The participants first completed the jumps without any modification to their normal landing technique. They were then given oral instruction to land softly and to increase their knee flexion angle during landing. Lower body kinematics and kinetics were measured before and after the modification using an optoelectronic motion capture system. The knee flexion angle after the modification significantly increased from 11.2° to 15.2° at initial contact and from 67.8° to 100.7° at maximum flexion, and the time between initial contact and maximum flexion increased from 177.4 to 399.4 milliseconds. The flexion modification produced a substantial reduction in vertical ground-reaction force (243.1 to 187.8 %BW) with a concomitant reduction in the maximum flexion moment. Interestingly, the flexion modification only affected the abduction angle and abduction moment for the group of participants that landed in an initial adducted position before the modification and had no significant effect on the group that landed in an abducted position. Increasing the knee flexion angle during jump landing may be an effective intervention to improve knee biomechanical risk factors associated with an ACL injury. However, the fact that the flexion modification only influenced critical risk factors (the abduction angle and abduction moment) in participants who initially

  17. Akt3 is a privileged first responder in isozyme-specific electrophile response.

    Science.gov (United States)

    Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2017-03-01

    Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.

  18. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    Science.gov (United States)

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  19. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications.

    Science.gov (United States)

    Petit, Tristan; Lange, Kathrin M; Conrad, Gerrit; Yamamoto, Kenji; Schwanke, Christoph; Hodeck, Kai F; Dantz, Marcus; Brandenburg, Tim; Suljoti, Edlira; Aziz, Emad F

    2014-05-01

    The effect of monovalent cations (Li(+), K(+), NH4 (+), Na(+)) on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS) of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  20. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Lyon, David; Young, Clifford

    2017-01-01

    that were co-modified by ubiquitylation, acetylation and methylation. Notably, 9% of the identified SUMOylome occurred proximal to phosphorylation, and numerous SUMOylation sites were found to be fully dependent on prior phosphorylation events. SUMO-proximal phosphorylation occurred primarily in a proline......-directed manner, and inhibition of cyclin-dependent kinases dynamically affected co-modification. Collectively, we present a comprehensive analysis of the SUMOylated proteome, uncovering the structural preferences for SUMO and providing system-wide evidence for a remarkable degree of cross-talk between...

  1. Crosstalk between histone modifications maintains the developmental pattern of gene expression on a tissue-specific locus.

    Science.gov (United States)

    Hosey, Alison M; Chaturvedi, Chandra-Prakash; Brand, Marjorie

    2010-05-16

    Genome wide studies have provided a wealth of information related to histone modifications. Particular modifications, which can encompass both broad and discrete regions, are associated with certain genomic elements and gene expression status. Here we focus on how studies on the beta-globin gene cluster can complement the genome wide effort through the thorough dissection of histone modifying protein crosstalk. The beta-globin locus serves as a model system to study both regulation of gene expression driven at a distance by enhancers and mechanisms of developmental switching of clustered genes. We investigate recent studies, which uncover that histone methyltransferases, recruited at the beta-globin enhancer, control gene expression by long range propagation on chromatin. Specifically, we focus on how seemingly antagonistic complexes, such as those including MLL2, G9a and UTX, can cooperate to functionally regulate developmentally controlled gene expression. Finally, we speculate on the mechanisms of chromatin modifying complex propagation on genomic domains.

  2. Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-01-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories. PMID:21508930

  3. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response

    Directory of Open Access Journals (Sweden)

    Ze Wu

    2018-03-01

    Full Text Available Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B from lily (Lilium longiflorum, which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE, and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215–245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  4. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response.

    Science.gov (United States)

    Wu, Ze; Liang, Jiahui; Zhang, Shuai; Zhang, Bing; Zhao, Qingcui; Li, Guoqing; Yang, Xi; Wang, Chengpeng; He, Junna; Yi, Mingfang

    2018-01-01

    Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B) from lily ( Lilium longiflorum ), which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE), and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215-245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  5. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications

    Directory of Open Access Journals (Sweden)

    Tristan Petit

    2014-05-01

    Full Text Available The effect of monovalent cations (Li+, K+, NH4+, Na+ on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS, X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  6. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    Science.gov (United States)

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for

  7. Histone modifications influence mediator interactions with chromatin

    Science.gov (United States)

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  8. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    Science.gov (United States)

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  9. Barley peroxidase isozymes. Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry

    DEFF Research Database (Denmark)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per

    2007-01-01

    spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination...

  10. Post-translational protein modifications in type 1 diabetes: a role for the repair enzyme protein-L-isoaspartate (D-aspartate) O-methyltransferase?

    DEFF Research Database (Denmark)

    Wägner, A M; Cloos, P; Bergholdt, R

    2007-01-01

    that recognises and repairs isomerised Asn and Asp residues in proteins. The aim of this study was to assess the role of PIMT in the development of type 1 diabetes. MATERIALS AND METHODS: Immunohistochemical analysis of 59 normal human tissues was performed with a monoclonal PIMT antibody. CGP3466B, which induces...... expression of Pcmt1, was tested on MIN6 and INS1 cells, to assess its effect on Pcmt1 mRNA and PIMT levels (RT-PCR and western blot) and apoptosis. Forty-five diabetes-prone BioBreeding (BB) Ottawa Karlsburg (OK) rats were randomised to receive 0, 14 or 500 microg/kg (denoted as the control, low......-dose and high-dose group, respectively) of CGP3466B from week 5 to week 20. RESULTS: A high level of PIMT protein was detected in beta cells. CGP3466B induced a two- to threefold increase in Pcmt1 mRNA levels and reduced apoptosis by 10% in MIN6 cells. No significant effect was seen on cytokine...

  11. In-Depth Glyco-Peptidomics Approach Reveals Unexpected Diversity of Glycosylated Peptides and Atypical Post-Translational Modifications in Dendroaspis angusticeps Snake Venom.

    Science.gov (United States)

    Degueldre, Michel; Echterbille, Julien; Smargiasso, Nicolas; Damblon, Christian; Gouin, Charlotte; Mourier, Gilles; Gilles, Nicolas; De Pauw, Edwin; Quinton, Loïc

    2017-11-18

    Animal venoms represent a valuable source of bioactive peptides that can be derived into useful pharmacological tools, or even innovative drugs. In this way, the venom of Dendroaspis angusticeps (DA), the Eastern Green Mamba, has been intensively studied during recent years. It mainly contains hundreds of large toxins from 6 to 9 kDa, each displaying several disulfide bridges. These toxins are the main target of venom-based studies due to their valuable activities obtained by selectively targeting membrane receptors, such as ion channels or G-protein coupled receptors. This study aims to demonstrate that the knowledge of venom composition is still limited and that animal venoms contain unexpected diversity and surprises. A previous study has shown that Dendroaspis angusticeps venom contains not only a cocktail of classical toxins, but also small glycosylated peptides. Following this work, a deep exploration of DA glycopeptidome by a dual nano liquid chromatography coupled to electrospray ionization mass spectrometry (nanoLC-ESI-MS) and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) analyses was initiated. This study reveals unsuspected structural diversity of compounds such as 221 glycopeptides, displaying different glycan structures. Sequence alignments underline structural similarities with natriuretic peptides already characterized in Elapidae venoms. Finally, the presence of an S -cysteinylation and hydroxylation of proline on four glycopeptides, never described to date in snake venoms, is also revealed by proteomics and affined by nuclear magnetic resonance (NMR) experiments.

  12. Analysis of the primary structure and post-translational modifications of the Schistosoma mansoni antigen Smp28 by electrospray mass spectrometry

    NARCIS (Netherlands)

    Bouchon, B.; Jaquinod, M.; Klarskov, K.; Trottein, F.; Klein, Michele; Van Dorsselaer, A.; Bischoff, Rainer; Roitsch, C.

    1994-01-01

    The Schistosoma mansoni glutathione-S-transferase with an apparent molecular mass of 28 kDa, Smp28, has a blocked N-terminus which has been elucidated with the aid of the cDNA sequence combined with mass spectrometry and amino acid composition analysis of the N-terminal tryptic peptide. The blocked

  13. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol.

    Science.gov (United States)

    Abu-Fanne, Rami; Maraga, Emad; Abd-Elrahman, Ihab; Hankin, Aviel; Blum, Galia; Abdeen, Suhair; Hijazi, Nuha; Cines, Douglas B; Higazi, Abd Al-Roof

    2016-02-05

    Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Giessing, Anders; Ingrell, Christian R

    2007-01-01

    We have tested the effect of m-nitrobenzyl alcohol (m-NBA) as a method to increase the average charge state of protonated gas-phase molecular ions generated by ESI from tryptic peptides and phosphopeptides. Various concentrations of m-NBA were added to the mobile phases of a liquid chromatography...

  15. Comparative Study of the Life Cycle Dependent Post-Translation Modifications of Protein Synthesis Elongation Factor Tu Present in the Membrane Proteome of Streptomycetes and Mycobacteria

    Czech Academy of Sciences Publication Activity Database

    Holub, Martin; Bezoušková, Silvia; Petráčková, Denisa; Kalachová, Ladislava; Kofroňová, Olga; Benada, Oldřich; Weiser, Jaroslav

    2010-01-01

    Roč. 55, č. 3 (2010), s. 203-210 ISSN 0015-5632 R&D Projects: GA AV ČR IAA600200702; GA AV ČR IAA500200913 Institutional research plan: CEZ:AV0Z50200510 Keywords : ESCHERICHIA-COLI * COELICOLOR A3(2) * OUTER-MEMBRANE Subject RIV: EE - Microbiology, Virology Impact factor: 0.977, year: 2010

  16. In-Depth Glyco-Peptidomics Approach Reveals Unexpected Diversity of Glycosylated Peptides and Atypical Post-Translational Modifications in Dendroaspis angusticeps Snake Venom

    Directory of Open Access Journals (Sweden)

    Michel Degueldre

    2017-11-01

    Full Text Available Animal venoms represent a valuable source of bioactive peptides that can be derived into useful pharmacological tools, or even innovative drugs. In this way, the venom of Dendroaspis angusticeps (DA, the Eastern Green Mamba, has been intensively studied during recent years. It mainly contains hundreds of large toxins from 6 to 9 kDa, each displaying several disulfide bridges. These toxins are the main target of venom-based studies due to their valuable activities obtained by selectively targeting membrane receptors, such as ion channels or G-protein coupled receptors. This study aims to demonstrate that the knowledge of venom composition is still limited and that animal venoms contain unexpected diversity and surprises. A previous study has shown that Dendroaspis angusticeps venom contains not only a cocktail of classical toxins, but also small glycosylated peptides. Following this work, a deep exploration of DA glycopeptidome by a dual nano liquid chromatography coupled to electrospray ionization mass spectrometry (nanoLC-ESI-MS and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS analyses was initiated. This study reveals unsuspected structural diversity of compounds such as 221 glycopeptides, displaying different glycan structures. Sequence alignments underline structural similarities with natriuretic peptides already characterized in Elapidae venoms. Finally, the presence of an S-cysteinylation and hydroxylation of proline on four glycopeptides, never described to date in snake venoms, is also revealed by proteomics and affined by nuclear magnetic resonance (NMR experiments.

  17. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  18. Specific de-SUMOylation triggered by acquisition of spatial learning is related to epigenetic changes in the rat hippocampus.

    Science.gov (United States)

    Castro-Gomez, Sergio; Barrera-Ocampo, Alvaro; Machado-Rodriguez, Gloria; Castro-Alvarez, John F; Glatzel, Markus; Giraldo, Marco; Sepulveda-Falla, Diego

    2013-12-04

    Histone acetyltransferase activity by transcriptional cofactors such as CREB-binding protein (CBP) and post-translational modifications by small ubiquitin-like modifier-1 (SUMO-1) have shown to be relevant for synaptic and neuronal activity. Here, we investigate whether SUMOylation of CBP plays a role in spatial learning. We assessed protein levels of CBP/p300, SUMO-1, and CBP SUMOylation in the hippocampi of rats trained on the Morris water maze task. Furthermore, we evaluated the post-translational modifications at Zif268, BDNF, and Arc/Arg3.1 promoters using chromatin immunoprecipitation with anti-Acetyl-Histone H3-Lys14 (H3K14Ac) and SUMO-1. We found that CBP/p300 protein expression is unchanged in animals trained for 7 days. However, H3K14Ac-specific histone acetyltransferase activity showed specific hyperacetylation at promoters of Zif268 and BDNF-pI but not of Arc/Arg3.1 and BDNF-pIV. In naive animals, CBP is selectively SUMOylated and the Arc/Arg3.1 promoter is differentially occupied by SUMO-1, although SUMO-1 levels are unchanged. These results suggest a specific negative regulation by SUMO-1 on CBP function and its effect on epigenetic changes triggered by spatial learning and memory processes.

  19. Sensitive and Specific Guest Recognition through Pyridinium-Modification in Spindle-Like Coordination Containers.

    Science.gov (United States)

    Bhuvaneswari, Nagarajan; Dai, Feng-Rong; Chen, Zhong-Ning

    2018-05-02

    An elaborately designed pyridinium-functionalized octanuclear zinc(II) coordination container 1-Zn was prepared through the self-assembly of Zn 2+ , p-tert-butylsulfonylcalix[4]arene, and pyridinium-functionalized angular flexible dicarboxylate linker (H 2 BrL1). The structure was determined by a single-crystal X-ray diffractometer. 1-Zn displays highly sensitive and specific recognition to 2-picolylamine as revealed by drastic blueshifts of the absorption and emission spectra, ascribed to the decrease of intramolecular charge transfer (ICT) character of the container and the occurrence of intermolecular charge transfer between the host and guest molecules. The intramolecular charge transfer plays a key role in the modulation of the electronic properties and is tunable through endo-encapsulation of specific guest molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  1. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications

    Science.gov (United States)

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michèle; Alfano, Christian

    2016-01-01

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. DOI: http://dx.doi.org/10.7554/eLife.09531.001 PMID:26814051

  2. Technical evaluation report on the proposed design modifications and technical-specification changes on grid voltage degradation for the San Onofre Nuclear Genetating Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the San Onofre Nuclear Generating Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the proposed design modifications and Technical Specification changes will ensure that the Class 1E equipment will be protected from sustained voltage degradation

  3. Epigenomic landscape modified by histone modification correlated with activation of IGF2 gene

    Science.gov (United States)

    The links of histone post-translational modifications and chromatin structure to cell cycle progression, DNA replication, and overall chromosome functions are very clear. The modulation of genome expression as a consequence of chromatin structural changes is most likely a basic mechanism. The epige...

  4. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome

    DEFF Research Database (Denmark)

    Feizi, Amir; Gatto, Francesco; Uhlén, Mathias

    2017-01-01

    Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level...... in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post......-translational modifications in each tissue's secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications....

  5. Air pollution and mortality: Effect modification by personal characteristics and specific cause of death in a case-only study

    International Nuclear Information System (INIS)

    Qiu, Hong; Tian, Linwei; Ho, Kin-fai; Pun, Vivian C.; Wang, Xiaorong; Yu, Ignatius T.S.

    2015-01-01

    Short-term effects of air pollution on mortality have been well documented in the literature worldwide. Less is known about which subpopulations are more vulnerable to air pollution. We conducted a case-only study in Hong Kong to examine the potential effect modification by personal characteristics and specific causes of death. Individual information of 402,184 deaths of non-external causes and daily mean concentrations of air pollution were collected from 2001 to 2011. For a 10 μg/m 3 increase of pollution concentration, people aged ≥∇65 years (compared with younger ages) had a 0.9–1.8% additional increase in mortality related to PM, NO 2 , and SO 2 . People dying from cardiorespiratory diseases (compared with other non-external causes) had a 1.6–2.3% additional increase in PM and NO 2 related mortality. Other subgroups that were particularly susceptible were females and those economically inactive. Lower socioeconomic status and causes of cardiorespiratory diseases would increase the likelihood of death associated with air pollution. - Highlights: • We conducted a case-only study in Hong Kong to examine the effect modification. • We identified the subpopulations particularly vulnerable to air pollution related death. • Elderly, female and those economically inactive would increase the risk of air pollution. • Specific causes of cardiorespiratory death showed vulnerability to air pollution. - We conducted a case-only study to identify several personal characteristics and specific cardiorespiratory causes that vulnerable to air pollution related mortality

  6. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Directory of Open Access Journals (Sweden)

    Zhou Jiangfeng

    2003-11-01

    Full Text Available Abstract The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  7. Geometrical modification transfer between specific meshes of each coupled physical codes. Application to the Jules Horowitz research reactor experimental devices

    International Nuclear Information System (INIS)

    Duplex, B.

    2011-01-01

    The CEA develops and uses scientific software, called physical codes, in various physical disciplines to optimize installation and experimentation costs. During a study, several physical phenomena interact, so a code coupling and some data exchanges between different physical codes are required. Each physical code computes on a particular geometry, usually represented by a mesh composed of thousands to millions of elements. This PhD Thesis focuses on the geometrical modification transfer between specific meshes of each coupled physical code. First, it presents a physical code coupling method where deformations are computed by one of these codes. Next, it discusses the establishment of a model, common to different physical codes, grouping all the shared data. Finally, it covers the deformation transfers between meshes of the same geometry or adjacent geometries. Geometrical modifications are discrete data because they are based on a mesh. In order to permit every code to access deformations and to transfer them, a continuous representation is computed. Two functions are developed, one with a global support, and the other with a local support. Both functions combine a simplification method and a radial basis function network. A whole use case is dedicated to the Jules Horowitz reactor. The effect of differential dilatations on experimental device cooling is studied. (author) [fr

  8. PLMD: An updated data resource of protein lysine modifications.

    Science.gov (United States)

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  9. Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis.

    Science.gov (United States)

    Komiya, Dai; Hori, Akane; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Koseki, Takuya; Fushinobu, Shinya

    2017-10-15

    Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis ( Al AXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. Al AXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that Al AXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of A lAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan. IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of

  10. Solid Waste Information Tracking System (SWITS), Backlog Waste Modifications, Software Requirements Specification (SRS)

    International Nuclear Information System (INIS)

    Clark, R.E.

    1995-01-01

    Purpose of this document is to define the system requirements necessary to improve computer support for the WHC backlog waste business process through enhancements to the backlog waste function of the SWITS system. This SRS document covers enhancements to the SWITS system to support changes to the existing Backlog Waste screens including new data elements, label changes, and new pop-up screens. The pop-ups will allow the user to flag the processes that a waste container must have performed on it, and will provide history tracking of changes to data. A new screen will also be provided allowing Acceptable Services to perform mass updates to specific data in Backlog Waste table. The SWITS Backlog Waste enhancements in this document will support the project goals in WHC-SD-WM-003 and its Revision 1 (Radioactive Solid Waste Tracking System Conceptual Definition) for the control, tracing, and inventory management of waste as the packages are generated and moved through final disposal (cradle-to-grave)

  11. 45S5 bioglass: modifications in the structural arrangement to meet specific needs in bone regeneration

    International Nuclear Information System (INIS)

    Silva, A.C.; Braga, J.F.C.; Aparecida, A.H.

    2011-01-01

    After surgical implantation the osteoinductivity property, observed in bioactive materials, is mainly due to the formation of calcium phosphate on these materials surface when in body fluids contact. The dissolution and diffusion phenomena in bioglass are result of it's structural arrangement and govern the osteoinductivity property. In structural arrangement of bioglass, silica segments are linked by phosphate groups, defining the distance between the vitreous network segments and thereby influence of cations diffusion rate through the network and the dissolution rate. Thus, the induced changes in arrangement of phosphate groups can control the intensity of material osteoinductivity in order to fit bone regeneration requirements. In this study, P_2O_5 nanoclusters formation were induced in bioglass 45S5 network structure. The bioactive glasses were prepared by melting at 1500°C in platinum crucibles and annealed between 2 and 24 h at 500°C. The characterization was performed using the following techniques, X-ray diffraction (XRD), Infrared spectroscopy (FT-IR) and hydrolytic resistance. In bioglasses 24 hours heat-treated, there was evidence of nanocrystals formation, dissolution rate, significant increase and consequently the property of osteoinductive. The obtained results indicated the potential of development of biomaterials for specific applications in bone regeneration. (author)

  12. Muscle-Specific PPARβ/δ Agonism May Provide Synergistic Benefits with Life Style Modifications

    Directory of Open Access Journals (Sweden)

    Adnan Erol

    2007-01-01

    Full Text Available Peroxisome proliferator-activated receptor β/δ (PPARβ/δ has emerged as a powerful metabolic regulator in diverse tissues including fat, skeletal muscle, and the heart. It is now established that activation of PPARβ/δ promotes fatty acid oxidation in several tissues, such as skeletal muscle and adipose tissue. In muscle, PPARβ/δ appears to act as a central regulator of fatty acid catabolism. PPARβ/δ contents are increased in muscle during physiological situations such as physical exercise or long-term fasting, characterized by increased fatty acid oxidation. Targeted expression of an activated form of PPARβ/δ in skeletal muscle induces a switch to form increased numbers of type I muscle fibers resembling the fiber type transition by endurance training. Activation of PPARβ/δ also enhances mitochondrial capacity and fat oxidation in the skeletal muscle that resembles the effect of regular exercise. Therefore, it is hypothesized that muscle-specific PPARβ/δ agonists could be a key strategy to support the poor cardiorespiratory fitness associated with metabolic disorders.

  13. Exploring oxidative modifications of tyrosine

    DEFF Research Database (Denmark)

    Houée-Lévin, C; Bobrowski, K; Horakova, L

    2015-01-01

    residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different...... effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor...... residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation...

  14. Chromatin modifications and the DNA damage response to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.

  15. Role of Transcription Factor Modifications in the Pathogenesis of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mi-Young Kim

    2012-01-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance.

  16. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification

    Science.gov (United States)

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J.; Nielsen, Michael L.; Kouzarides, Tony

    2014-01-01

    Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.

  17. Purification, physicochemical characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica.

    Science.gov (United States)

    Sultan, Nabil Ali Mohammed; Kenoth, Roopa; Swamy, Musti J

    2004-12-15

    A new galactose-specific lectin has been purified from the extracts of Trichosanthes dioica seeds by affinity chromatography on cross-linked guar gum. The purified lectin (T. dioica seed lectin, TDSL) moved as a single symmetrical peak on gel filtration on Superose-12 in the presence of 0.1 M lactose with an M(r) of 55 kDa. In the absence of ligand, the movement was retarded, indicating a possible interaction of the lectin with the column matrix. In SDS-PAGE, in the presence of beta-mercaptoethanol, two non-identical bands of M(r) 24 and 37 kDa were observed, whereas in the absence of beta-mercaptoethanol, the lectin yielded a single band corresponding to approximately 55,000 Da, indicating that the two subunits of TDSL are connected by one or more disulfide bridges. TDSL is a glycoprotein with about 4.9% covalently bound neutral sugar. Analysis of near-UV CD spectrum by three different methods (CDSSTR, CONTINLL, and SELCON3) shows that TDSL contains 13.3% alpha-helix, 36.7% beta-sheet, 19.4% beta-turns, and 31.6% unordered structure. Among a battery of sugars investigated, TDSL was inhibited strongly by beta-d-galactopyranosides, with 4-methylumbelliferyl-beta-d-galactopyranoside being the best ligand. Chemical modification studies indicate that tyrosine residues are important for the carbohydrate-binding and hemagglutinating activities of the lectin. A partial protection was observed when the tyrosine modification was performed in the presence of 0.2 M lactose. The tryptophan residues of TDSL appear to be buried in the protein interior as they could not be modified under native conditions, whereas upon denaturation with 8 M urea two Trp residues could be selectively modified by N-bromosuccinimide. The subunit composition and size, secondary structure, and sugar specificity of this lectin are similar to those of type-2 ribosome inactivating proteins, suggesting that TDSL may belong to this protein family.

  18. Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Sidoli, Simone; Haldbo, Simon

    2013-01-01

    Post-translational modifications (PTMs) of histones play a major role in regulating chromatin dynamics and influence processes such as transcription and DNA replication. Here, we report 114 distinct combinations of coexisting PTMs of histone H3 obtained from mouse embryonic stem (ES) cells. Histo...

  19. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    International Nuclear Information System (INIS)

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-01-01

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26 tm1Sor , revealed that treatment of 1-cell or 2-cell embryos with 3 μM of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  20. Grouping subjects based on conditioning criteria reveals differences in acquisition rates and in strength of conditioning-specific reflex modification.

    Science.gov (United States)

    Smith-Bell, Carrie A; Schreurs, Bernard G

    2017-11-01

    Averaging behavioral data such as the nictitating membrane response (NMR) across subjects can conceal important individual and group differences. Analyses were conducted of NMR data from rabbits that were grouped based on the point during NMR conditioning when subjects produced 8 conditioned responses (CR) in a set of 10 trials. This resulted in five groups (Early Day 1, Late Day 1, Early Day 2, Late Day 2, Early Day 3) in which group differences in CR acquisition rates were found. Percent (%) CRs were not found to increase monotonically and between-session differences in % CR were found. Conditioning-specific reflex modification (CRM) of the NMR is a type of enhanced reflexive responding of the NMR that is detected when the unconditioned stimulus (US) is presented in the absence of the conditioned stimulus (CS) following paired classical conditioning. CRM occurred in some subjects in all five groups. Subjects from both the group that was fastest and the group that was slowest to reach the learning criterion had unconditioned response (UR) topographies following NMR conditioning that strongly resembled the CR-UR response sequence elicited during NMR conditioning. This finding was most pronounced when the US duration used to assess CRM was equivalent to that used during NMR conditioning, further evidence to support the hypothesis that CRM is a CR that has generalized from the CS to the US. While grouping data based on conditioning criteria did not facilitate identifying individuals more predisposed to exhibiting CRM, strong CRM only occurred in the groups that reached the conditioning criterion the fastest. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Prediction of protein modification sites of pyrrolidone carboxylic acid using mRMR feature selection and analysis.

    Directory of Open Access Journals (Sweden)

    Lu-Lu Zheng

    Full Text Available Pyrrolidone carboxylic acid (PCA is formed during a common post-translational modification (PTM of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR and incremental feature selection (IFS. We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations.

  2. Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity

    Directory of Open Access Journals (Sweden)

    Nicolas Huguenin-Dezot

    2016-07-01

    Full Text Available Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages.

  3. Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production.

    Science.gov (United States)

    Xu, Jian-Zhong; Yang, Han-Kun; Liu, Li-Ming; Wang, Ying-Yu; Zhang, Wei-Guo

    2018-03-25

    l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L -1 ), carbon yield (from 0.35 to 0.44 g [g glucose] -1 ) and productivity (from 2.07 to 2.93 g L -1  hr -1 ) of l-lysine in JL-6 ΔdapB::Ec-dapB C115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapB C115G,G116C , followed by JL-6 Cg-dapB C37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapB C46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity. © 2018 Wiley Periodicals, Inc.

  4. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  5. An ion-current mutant of Paramecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin

    International Nuclear Information System (INIS)

    Wallen-Friedman, M.A.

    1988-01-01

    My work on pantophobiac A 2 (pntA 2 ), a behavioral mutant of Paramecium tetraurelia, suggest that the Ca ++ -binding protein calmodulin (CaM), and post-translation N-methylation of CaM, are important for Ca ++ -related ion-current function. Calmodulin from wild-type Paramecium has two sites of lysine-N-methylation. Both of these sites are almost fully methylated in vivo; thus wild-type calmodulin is a poor substrate for N-methylation in vitro. In contrast, pntA/ 2 CaM can be heavily N-methylated in vitro, suggesting that the mutant calmodulin is under-methylated in vivo. Amino-acid composition analysis showed that CaM lysine 115 is undermethylated in pntA 2 . Once pntA 2 CaM is N-methylated, the [methyl- 3 H] group does not turn over in either wild-type or pntA 2 cytoplasmic fractions. The methylating enzymes in pntA 2 high-speed supernatant fractions are active, but may be less robust than those of the wild type, suggesting a possible control of these enzymes by CaM

  6. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Science.gov (United States)

    Guo, Weiwei; Zhang, Jinxia; Zhang, Ning; Xin, Mingming; Peng, Huiru; Hu, Zhaorong; Ni, Zhongfu; Du, Jinkun

    2015-01-01

    Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  7. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.

  8. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    Directory of Open Access Journals (Sweden)

    Cody Caba

    2018-02-01

    Full Text Available Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI, the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin. A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  9. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation.

    Science.gov (United States)

    Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent

    2018-01-01

    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys 57 and Lys 401 of human PDI in vitro . Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys 57 and Lys 401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys 57 and acLys 401 . The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  10. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

    Science.gov (United States)

    Lin, Yuan; Liu, Jun; Liu, Xun; Ou, Yongbin; Li, Meng; Zhang, Huiling; Song, Botao; Xie, Conghua

    2013-12-01

    The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Microtubule proteins and their post-translational forms in the cerebrospinal fluid of patients with paraparesis associated with HTLV-I infection and in SH-SY5Y cells: An in vitro model of HTLV-I-induced disease

    Directory of Open Access Journals (Sweden)

    HORACIO MALDONADO

    2008-01-01

    Full Text Available HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP is characterized by axonal degeneration of the corticospinal tracts. The specific requirements for transport of proteins and organelles to the distal part of the long axon are crucial in the corticospinal tracts. Microtubule dysfunction could be involved in this disease, configuring an axonal transport disease. We measured tubulin and its post-translational modified forms (acetylated and tyrosinated in CSF of patients and controls, as well as tau and its phosphorylated forms. There were no significant differences in the contents of tubulin and acetyl-tubulin between patients and controls; tyrosyl-tubulin was not detected. In HAM/TSP, tau levéis were significantly reduced, while the ratio of pT181/total tau was higher in patients than in controls, this being completely different from what is reported in other neurodegenerative diseases. Phosphorylation at T181 was also confirmed by Mass Spectrometry analysis. Western Blotting with monospecific polyclonal antibodies against pS199, pT205, pT231, pS262, pS356, pS396, pS404 and pS422 did not show differences in phosphorylation in these residues between patients and controls. Treating human SH-SY5Y neuroblastoma cells, a well-known in vitro neurite retraction model, with culture supernatant of MT-2 cells (HTLV-I infected cell line that secretes the viral Tax protein we observed neurite retraction and an increase in tau phosphorylation at T181. A disruption of normal phosphorylation of tau protein in T181 could result in its dysfunction, contributing to axonal damage.

  12. Designing and Producing Modified, New-to-Nature Peptides with Antimicrobial Activity by Use of a Combination of Various Lantibiotic Modification Enzymes

    NARCIS (Netherlands)

    van Heel, Auke J.; Mu, Dongdong; Montalban-Lopez, Manuel; Hendriks, Djoke; Kuipers, Oscar P.

    Lanthipeptides are peptides that contain several post-translationally modified amino acid residues and commonly show considerable antimicrobial activity. After translation, the amino acid residues of these peptides are modified by a distinct set of modification enzymes. This process results in

  13. Technical evaluation of the proposed design modifications and technical specification changes on grid voltage degradation (Part A) for the Pilgrim Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    White, R.L.

    1980-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the Pilgrim Nuclear Power Station. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation compares the submittals made by the licensee with the NRC staff positions and the review criteria and presents the reviewer's conclusion on the acceptability of the proposed system

  14. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.

    Science.gov (United States)

    Xue, Yu; Liu, Zexian; Cao, Jun; Ma, Qian; Gao, Xinjiao; Wang, Qingqi; Jin, Changjiang; Zhou, Yanhong; Wen, Longping; Ren, Jian

    2011-03-01

    As the most important post-translational modification of proteins, phosphorylation plays essential roles in all aspects of biological processes. Besides experimental approaches, computational prediction of phosphorylated proteins with their kinase-specific phosphorylation sites has also emerged as a popular strategy, for its low-cost, fast-speed and convenience. In this work, we developed a kinase-specific phosphorylation sites predictor of GPS 2.1 (Group-based Prediction System), with a novel but simple approach of motif length selection (MLS). By this approach, the robustness of the prediction system was greatly improved. All algorithms in GPS old versions were also reserved and integrated in GPS 2.1. The online service and local packages of GPS 2.1 were implemented in JAVA 1.5 (J2SE 5.0) and freely available for academic researches at: http://gps.biocuckoo.org.

  15. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  16. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification.

    Science.gov (United States)

    Ekman, Martin; Tollbäck, Petter; Bergman, Birgitta

    2008-01-01

    Cyanobacteria are able to form stable nitrogen-fixing symbioses with diverse eukaryotes. To extend our understanding of adaptations imposed by plant hosts, two-dimensional gel electrophoresis and mass spectrometry (MS) were used for comparative protein expression profiling of a cyanobacterium (cyanobiont) dwelling in leaf cavities of the water-fern Azolla filiculoides. Homology-based protein identification using peptide mass fingerprinting [matrix-assisted laser desorption ionization-time of flight (MALDI-TOF-MS)], tandem MS analyses, and sequence homology searches resulted in an identification success rate of 79% of proteins analysed in the unsequenced cyanobiont. Compared with a free-living strain, processes related to energy production, nitrogen and carbon metabolism, and stress-related functions were up-regulated in the cyanobiont while photosynthesis and metabolic turnover rates were down-regulated, stressing a slow heterotrophic mode of growth, as well as high heterocyst frequencies and nitrogen-fixing capacities. The first molecular data set on the nature of the NifH post-translational modification in cyanobacteria was also obtained: peptide mass spectra of the protein demonstrated the presence of a 300-400 Da protein modification localized to a specific 13 amino acid sequence, within the part of the protein that is ADP-ribosylated in other bacteria and close to the active site of nitrogenase. Furthermore, the distribution of the highest scoring database hits for the identified proteins points to the possibility of using proteomic data in taxonomy.

  17. Infection Reveals a Modification of SIRT2 Critical for Chromatin Association

    Directory of Open Access Journals (Sweden)

    Jorge M. Pereira

    2018-04-01

    Full Text Available Summary: Sirtuin 2 is a nicotinamide-adenine-dinucleotide-dependent deacetylase that regulates cell processes such as carcinogenesis, cell cycle, DNA damage, and infection. Subcellular localization of SIRT2 is crucial for its function but is poorly understood. Infection with the bacterial pathogen Listeria monocytogenes, which relocalizes SIRT2 from the cytoplasm to the chromatin, provides an ideal stimulus for the molecular study of this process. In this report, we provide a map of SIRT2 post-translational modification sites and focus on serine 25 phosphorylation. We show that infection specifically induces dephosphorylation of S25, an event essential for SIRT2 chromatin association. Furthermore, we identify a nuclear complex formed by the phosphatases PPM1A and PPM1B, with SIRT2 essential for controlling H3K18 deacetylation and SIRT2-mediated gene repression during infection and necessary for a productive Listeria infection. This study reveals a molecular mechanism regulating SIRT2 function and localization, paving the way for understanding other SIRT2-regulated cellular processes. : Sirtuins are enzymes critical for various processes, including genomic stability, metabolism, and aging. Through study of Listeria monocytogenes, a bacterial pathogen that exploits SIRT2 for productive infection, Pereira et al. uncover a SIRT2 modification necessary for chromatin association and function. Keywords: chromatin, sirtuin, Listeria monocytogenes, phosphorylation, PPM1, histone acetylation, H3K18, infection, subcellular localization

  18. Ezh2 regulates transcriptional and post-translational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice1

    Science.gov (United States)

    Tong, Qing; He, Shan; Xie, Fang; Mochizuki, Kazuhiro; Liu, Yongnian; Mochizuki, Izumi; Meng, Lijun; Sun, Hongxing; Zhang, Yanyun; Guo, Yajun; Hexner, Elizabeth; Zhang, Yi

    2014-01-01

    Acquired aplastic anemia (AA) is a potentially fatal bone marrow (BM) failure syndrome. IFN-γ-producing T helper (Th)1 CD4+ T cells mediate the immune destruction of hematopoietic cells, and are central to the pathogenesis. However, the molecular events that control the development of BM-destructive Th1 cells remain largely unknown. Ezh2 is a chromatin-modifying enzyme that regulates multiple cellular processes primarily by silencing gene expression. We recently reported that Ezh2 is crucial for inflammatory T cell responses after allogeneic BM transplantation. To elucidate whether Ezh2 mediates pathogenic Th1 responses in AA and the mechanism of Ezh2 action in regulating Th1 cells, we studied the effects of Ezh2 inhibition in CD4+ T cells using a mouse model of human AA. Conditionally deleting Ezh2 in mature T cells dramatically reduced the production of BM-destructive Th1 cells in vivo, decreased BM-infiltrating Th1 cells, and rescued mice from BM failure. Ezh2 inhibition resulted in significant decrease in the expression of Tbx21 and Stat4 (which encode transcription factors T-bet and STAT4, respectively). Introduction of T-bet but not STAT4 into Ezh2-deficient T cells fully rescued their differentiation into Th1 cells mediating AA. Ezh2 bound to the Tbx21 promoter in Th1 cells, and directly activated Tbx21 transcription. Unexpectedly, Ezh2 was also required to prevent proteasome-mediated degradation of T-bet protein in Th1 cells. Our results identify T-bet as the transcriptional and post-translational Ezh2 target that acts together to generate BM-destructive Th1 cells, and highlight the therapeutic potential of Ezh2 inhibition in reducing AA and other autoimmune diseases. PMID:24760151

  19. Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2011-05-01

    Full Text Available Abstract Background Gene expression is regulated at both the DNA sequence level and through modification of chromatin. However, the effect of chromatin on tissue/cell-type specific gene regulation (TCSR is largely unknown. In this paper, we present a method to elucidate the relationship between histone modification/variation (HMV and TCSR. Results A classifier for differentiating CD4+ T cell-specific genes from housekeeping genes using HMV data was built. We found HMV in both promoter and gene body regions to be predictive of genes which are targets of TCSR. For example, the histone modification types H3K4me3 and H3K27ac were identified as the most predictive for CpG-related promoters, whereas H3K4me3 and H3K79me3 were the most predictive for nonCpG-related promoters. However, genes targeted by TCSR can be predicted using other type of HMVs as well. Such redundancy implies that multiple type of underlying regulatory elements, such as enhancers or intragenic alternative promoters, which can regulate gene expression in a tissue/cell-type specific fashion, may be marked by the HMVs. Finally, we show that the predictive power of HMV for TCSR is not limited to protein-coding genes in CD4+ T cells, as we successfully predicted TCSR targeted genes in muscle cells, as well as microRNA genes with expression specific to CD4+ T cells, by the same classifier which was trained on HMV data of protein-coding genes in CD4+ T cells. Conclusion We have begun to understand the HMV patterns that guide gene expression in both tissue/cell-type specific and ubiquitous manner.

  20. Highly sensitive and specific protein detection via combined capillary isoelectric focusing and proximity ligation

    NARCIS (Netherlands)

    Padhan, N.; Yan, J.; Boge, A.; Scrivener, E.; Birgisson, H.; Zieba, A.; Gullberg, M.; Kamali-Moghaddam, M.; Claesson-Welsh, L.; Landegren, U.

    2017-01-01

    Detection and quantification of proteins and their post-translational modifications are crucial to decipher functions of complex protein networks in cell biology and medicine. Capillary isoelectric focusing together with antibody-based detection can resolve and identify proteins and their isoforms

  1. A race-specific interaction between vitamin K status and statin use during warfarin therapy initiation

    Science.gov (United States)

    Vitamin K (VK) is required for the post-translational modification of several clotting factors. Warfarin is a vitamin K antagonist and anticoagulant. The most common dietary and circulating form of VK is phylloquinone (PK). PK is lipid soluble, carried by triglyceride-rich lipoproteins, and shares a...

  2. Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon.

    Directory of Open Access Journals (Sweden)

    Albert Ruzo

    Full Text Available Huntington's disease (HD is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT. HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease.

  3. Discovery of Novel Isoforms of Huntingtin Reveals a New Hominid-Specific Exon

    Science.gov (United States)

    Popowski, Melissa; Haremaki, Tomomi; Croft, Gist F.; Deglincerti, Alessia; Brivanlou, Ali H.

    2015-01-01

    Huntington’s disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease. PMID:26010866

  4. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Zhang, Jing; Biggar, Kyle K; Storey, Kenneth B

    2013-01-15

    The red-eared slider turtle (Trachemys scripta elegans) exhibits well-developed natural anoxia tolerance that depends on multiple biochemical adaptations, including anoxia-induced hypometabolism. We hypothesized that signaling by the p53 protein could aid in establishing the hypometabolic state by arresting the cell cycle, protecting against DNA damage as well as altering pathways of energy metabolism. Immunoblotting was used to evaluate the regulation and post-transcriptional modifications of p53 in liver and skeletal muscle of red-eared slider turtles subjected to 5h or 20h of anoxic submergence. Tissue specific regulation of p53 was observed with the liver showing a more rapid activation of p53 in response to anoxia as well as differential expression of seven serine phosphorylation and two lysine acetylation sites when compared with skeletal muscle. Protein expression of MDM2, a major p53 inhibitor, was also examined but did not change during anoxia. Reverse-transcriptase PCR was used to assess transcript levels of selected p53 target genes (14-3-3σ, Gadd45α and Pgm) and one microRNA (miR-34a); results showed down-regulation of Pgm and up-regulation of the other three. These findings show an activation of p53 in response to anoxia exposure and suggest an important role for the p53 stress response pathway in regulating natural anoxia tolerance and hypometabolism in a vertebrate facultative anaerobe. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Functional significance of O-GlcNAc modification in regulating neuronal properties.

    Science.gov (United States)

    Hwang, Hongik; Rhim, Hyewhon

    2018-03-01

    Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Post-Translational Regulation of Polycystin-2 Protein Expression as a Novel Mechanism of Cholangiocyte Reaction and Repair from Biliary Damage

    Science.gov (United States)

    Spirli, Carlo; Villani, Ambra; Mariotti, Valeria; Fabris, Luca; Fiorotto, Romina; Strazzabosco, Mario

    2015-01-01

    Polycystin-2 (PC2 /TRPP2), a member of the transient receptor potential channels (TRP) family, is a non-selective calcium channel. Mutations in PC2/TRPP2 are associated with Polycystic Liver Diseases. PC2-defective cholangiocytes shows increased production of cAMP, PKA-dependent activation of the ERK1/2 pathway, HIF1α-mediated VEGF production, and stimulation of cyst growth and progression. Activation of the ERK/HIF1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF1α/VEGF pathway. Results PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2−/−-KO, bile duct ligation, DDC-treatment). Treatment of colangiocytes with pro-inflammatory cytokines, nitric oxide (NO) donors and ER stressors), increased ERK1/2 phosphorylation, HIF1α transcriptional activity, secretion of VEGF, VEGFR2 phosphorylation and downregulated PC2 protein expression without affecting PC2 gene expression. Expression of Herp and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation was increased. Pre-treatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with NO donors or with ER stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of DDC-mice and of Mdr2−/−-mice with the proteasome inhibitor bortezomib, restored PC2 expression and significantly reduced the ductular reaction, fibrosis and p-ERK1/2. In conclusion, in response to biliary damage, PC2 expression is modulated post-translationally by the proteasome or the autophagy pathways. PC2-dowregulation is associated with activation of ERK1/2 and increase of HIF1α-mediated VEGF secretion. Treatments able to restore PC2 expression and to reduce ductular reaction

  7. Technical evaluation report on the proposed design modifications and technical specification changes on grid voltage degradation for the Millstone Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification change for protection of Class 1E equipment from grid voltage degradation for the Millstone Nuclear Power Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the licensee has not provided sufficient information on the undervoltage protection system to allow a complete evaluation into the adequacy of protecting the Class 1E equipment from sustained voltage degradation

  8. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner

    Directory of Open Access Journals (Sweden)

    Simon Lecoutre

    2017-08-01

    Conclusions: Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.

  9. Human Tregs Made Antigen Specific by Gene Modification: The Power to Treat Autoimmunity and Antidrug Antibodies with Precision

    Directory of Open Access Journals (Sweden)

    Patrick R. Adair

    2017-09-01

    Full Text Available Human regulatory CD4+ T cells (Tregs are potent immunosuppressive lymphocytes responsible for immune tolerance and homeostasis. Since the seminal reports identifying Tregs, vast research has been channeled into understanding their genesis, signature molecular markers, mechanisms of suppression, and role in disease. This research has opened the doors for Tregs as a potential therapeutic for diseases and disorders such as multiple sclerosis, type I diabetes, transplantation, and immune responses to protein therapeutics, like factor VIII. Seminal clinical trials have used polyclonal Tregs, but the frequency of antigen-specific Tregs among polyclonal populations is low, and polyclonal Tregs may risk non-specific immunosuppression. Antigen-specific Treg therapy, which uses genetically modified Tregs expressing receptors specific for target antigens, greatly mitigates this risk. Building on the principles of T-cell receptor cloning, chimeric antigen receptors (CARs, and a novel CAR derivative, called B-cell antibody receptors, our lab has developed different types of antigen-specific Tregs. This review discusses the current research and optimization of gene-modified antigen-specific human Tregs in our lab in several disease models. The preparations and considerations for clinical use of such Tregs also are discussed.

  10. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  11. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification

    Directory of Open Access Journals (Sweden)

    Friederike Knipping

    2017-03-01

    Full Text Available In T cells with transgenic high-avidity T cell receptors (TCRs, endogenous and transferred TCR chains compete for surface expression and may pair inappropriately, potentially causing autoimmunity. To knock out endogenous TCR expression, we assembled 12 transcription activator-like effector nucleases (TALENs and five guide RNAs (gRNAs from the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas9 system. Using TALEN mRNA, TCR knockout was successful in up to 81% of T cells. Additionally, we were able to verify targeted gene addition of a GFP gene by homology-directed repair at the TALEN target site, using a donor suitable for replacement of the reporter transgene with therapeutic TCR chains. Remarkably, analysis of TALEN and CRISPR/Cas9 specificity using integrase-defective lentiviral vector capture revealed only one off-target site for one of the gRNAs and three off-target sites for both of the TALENs, indicating a high level of specificity. Collectively, our work shows highly efficient and specific nucleases for T cell engineering.

  12. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?

    Science.gov (United States)

    Andreu-Vieyra, Claudia; Matzuk, Martin M

    2007-02-01

    Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.

  13. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    Energy Technology Data Exchange (ETDEWEB)

    Siew, E.L. (State Univ. of New York, Albany, NY (USA). Dept. of Chemistry); Habraken, Yvette; Ludlum, D.B. (Massachusetts Univ., Worcester, MA (USA). Medical School)

    1991-02-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-{sup 3}H-ethyl)-N'-cyclohexyl-N-nitrosourea ({sup 3}H-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author).

  14. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    International Nuclear Information System (INIS)

    Siew, E.L.; Habraken, Yvette; Ludlum, D.B.

    1991-01-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-[ 3 H-ethyl)-N'-cyclohexyl-N-nitrosourea ([ 3 H]-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author)

  15. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    Science.gov (United States)

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  16. Mining Proteomic Data to Expose Protein Modifications in Methanosarcina mazei strain Gö1

    Directory of Open Access Journals (Sweden)

    Deborah eLeon

    2015-03-01

    Full Text Available Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to mine information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling. Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more.This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.

  17. The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

    Science.gov (United States)

    O'Neill, M; Chen, A; Murray, N E

    1997-12-23

    Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

  18. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  19. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Directory of Open Access Journals (Sweden)

    Schwarzenbach Heidi

    2010-06-01

    Full Text Available Abstract Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3 at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one

  20. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    International Nuclear Information System (INIS)

    Müller, Imke; Wischnewski, Frank; Pantel, Klaus; Schwarzenbach, Heidi

    2010-01-01

    The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. This study is one of the first to reveal the histone code and MBD profile

  1. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes.

    Science.gov (United States)

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria

    2016-08-12

    To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the

  2. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  3. The Human Thioredoxin System: Modifications and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Seyed Isaac Hashemy

    2011-03-01

    Full Text Available The thioredoxin system, comprising thioredoxin (Trx, thioredoxin reductase (TrxR and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site (-Trp-Cys-Gly-Pro-Cys-Lys-. Different factors are involved in the regulation of Trx activity, including its expression level, localization, protein-protein interactions, post-translational modifications and some chemical inhibitors. Mammalian TrxRs are selenoproteins which have a –Cys-Val-Asn-Val-Gly-Cys- N-terminal active site, as well as a C-terminal selenium-containing active site. Besides two Cys-residues in the redox-regulatory domain of cytosolic Trx (Trx1, human Trx1 has three additional Cys-residues. Post-translational modifications of human Trx1 which are involved in the regulation of its activity can happen via modification of Cys-residues including thiol oxidation, glutathionylation and S-nitrosylation or via modification of other amino acid residues such as nitration of Tyr-49. Because of the numerous functions of the thioredoxin system, its inhibition (mainly happens via the targeting TrxR can result in major cellular consequences, which are potentially pro-oxidant in nature, leading to cell death via necrosis or apoptosis if overexpression of Trx and other antioxidative enzymes can not recuperate cell response. Considering this feature, several anticancer drugs have been used which can inhibit TrxR. Elevated levels of Trx and/or TrxR have been reported in many different human malignancies, positively correlated with aggressive tumor growth and poor prognosis. Moreover, anti-oxidative and anti-apoptotic effects of Trx are reasons to study its clinical application as a drug.

  4. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection

    International Nuclear Information System (INIS)

    Rosenke, Kyle; Samuel, Melanie A.; McDowell, Eric T.; Toerne, Melissa A.; Fortunato, Elizabeth A.

    2006-01-01

    The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection

  5. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  6. Directed modification of L-LcLDH1, an L-lactate dehydrogenase from Lactobacillus casei, to improve its specific activity and catalytic efficiency towards phenylpyruvic acid.

    Science.gov (United States)

    Li, Jian-Fang; Li, Xue-Qing; Liu, Yan; Yuan, Feng-Jiao; Zhang, Ting; Wu, Min-Chen; Zhang, Ji-Ru

    2018-05-22

    To improve the specific activity and catalytic efficiency of L-LcLDH1, an NADH-dependent allosteric L-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1 Q88R , Lcldh1 I229A and Lcldh1 T235G , were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, L-LcLDH1 Q88R or L-LcLDH1 I229A , displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded L-phenyllactic acid (PLA) with an enantiomeric excess (ee p ) more than 99%. Their catalytic efficiencies (k cat /K m ) without D-fructose-1,6-diphosphate (D-FDP) were 4.8- and 5.2-fold that of L-LcLDH1. Additionally, the k cat /K m values of L-LcLDH1 Q88R and L-LcLDH1 I229A with D-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without D-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in L-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of L-LcLDH1. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling

    Czech Academy of Sciences Publication Activity Database

    Doubravská, Lenka; Krausová, Michaela; Gradl, D.; Vojtěchová, Martina; Tůmová, Lucie; Lukáš, Jan; Valenta, Tomáš; Pospíchalová, Vendula; Fafílek, Bohumil; Plachý, Jiří; Sebesta, O.; Kořínek, Vladimír

    2011-01-01

    Roč. 23, č. 5 (2011), s. 837-848 ISSN 0898-6568 R&D Projects: GA ČR(CZ) GA204/07/1567; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : Wnt signaling * post-translational modification * acylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.058, year: 2011

  8. Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation.

    Science.gov (United States)

    Zimnik, Susan; Gaestel, Matthias; Niedenthal, Rainer

    2009-03-01

    Post-translational modifications control the physiological activity of the signal transducer and activator of transcription STAT1. While phosphorylation at tyrosine Y701 is a prerequisite for STAT1 dimerization, its SUMOylation represses the transcriptional activity. Recently, we have demonstrated that SUMOylation at lysine K703 inhibits the phosphorylation of nearby localized Y701 of STAT1. Here, we analysed the influence of phosphorylation of Y701 on SUMOylation of K703 in vivo. For that reason, an Ubc9/substrate dimerization-dependent SUMOylation (USDDS) system was developed, which consists of fusions of the SUMOylation substrate and of the SUMO-conjugating enzyme Ubc9 to the chemically activatable heterodimerization domains FKBP and FRB, respectively. When FKBP fusion proteins of STAT1, p53, CRSP9, FOS, CSNK2B, HES1, TCF21 and MYF6 are coexpressed with Ubc9-FRB, treatment of HEK293 cells with the rapamycin-related dimerizer compound AP21967 induces SUMOylation of these proteins in vivo. For STAT1-FKBP and p53-FKBP we show that this SUMOylation takes place at their specific SUMOylation sites in vivo. Using USDDS, we then demonstrate that STAT1 phosphorylation at Y701 induced by interferon-beta treatment inhibits SUMOylation of K703 in vivo. Thus, pY701 and SUMO-K703 of STAT1 represent mutually exclusive modifications, which prevent signal integration at this molecule and probably ensure the existence of differentially modified subpopulations of STAT1 necessary for its regulated nuclear cytoplasmic activation/inactivation cycle.

  9. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function

    Directory of Open Access Journals (Sweden)

    Brendan E. Russ

    2017-12-01

    Full Text Available Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs, we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+ chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.

  10. SUMO Signaling by Hypoxic Inactivation of SUMO-Specific Isopeptidases

    Directory of Open Access Journals (Sweden)

    Kathrin Kunz

    2016-09-01

    Full Text Available Post-translational modification of proteins with ubiquitin-like SUMO modifiers is a tightly regulated and highly dynamic process. The SENP family of SUMO-specific isopeptidases comprises six cysteine proteases. They are instrumental in counterbalancing SUMO conjugation, but their regulation is not well understood. We demonstrate that in hypoxic cell extracts, the catalytic activity of SENP family members, in particular SENP1 and SENP3, is inhibited in a rapid and fully reversible process. Comparative mass spectrometry from normoxic and hypoxic cells defines a subset of hypoxia-induced SUMO1 targets, including SUMO ligases RanBP2 and PIAS2, glucose transporter 1, and transcriptional regulators. Among the most strongly induced targets, we identified the transcriptional co-repressor BHLHE40, which controls hypoxic gene expression programs. We provide evidence that SUMOylation of BHLHE40 is reversed by SENP1 and contributes to transcriptional repression of the metabolic master regulator gene PGC-1α. We propose a pathway that connects oxygen-controlled SENP activity to hypoxic reprogramming of metabolism.

  11. Sequence specific DNA binding by P53 is enhanced by ionizing radiation and is mediated via DNA-PK activity

    International Nuclear Information System (INIS)

    Kachnic, L.A.; Wunsch, H.; Mekeel, K.L.; De Frank, J.S.; Powell, S.N.

    1996-01-01

    Purpose: P53 is known to be involved in the cellular response to DNA damage. It mediates many of its effects by acting as a transcription factor via sequence-specific DNA binding. The half-life of p53 is prolonged following DNA damage, and this results in elevated levels of p53 for a period of 2-8 hours. The increase in p53 is often relatively small, but this produces significant stimulation of a downstream gene such as p21(WAF1/cip1). We investigated post-translational modification of p53 following ionizing radiation damage. Materials and Methods: The response of normal Balb-C mouse fibroblasts (FC) to ionizing radiation (IR, 8 Gy) was measured at 0,3,6,9 and 24 hours, by the levels of p53, p21, flow cytometry and the electrophoretic mobility shift assay (EMSA). EMSA utilized a 26 bp consensus sequence end-labeled oligonucleotide to measure sequence-specific p53 binding. P53 specificity was confirmed by an enhanced mobility shift (retardation) when using p53 antibody. Comparison was made with scid fibroblasts (FS) and FC cells transfected with a plasmid (CX3) containing mutant p53 (alanine-143) or infected with a retrovirus containing the E6 protein of human papilloma virus type 16. Results: The response of p53 to DNA damage shows a 3-fold increase at 3-6 hours, and was not significantly different between FC and FS. FC-CX3 showed detectable basal levels of p53, and a 2-fold further induction of p53 after IR. FC-E6 showed no detectable levels of p53 before or after IR. No induction of p21 or G1/S arrest was seen in FC-CX3 or FC-E6, as has been observed previously. The induction of p21 in FS cells was attenuated and delayed: a 2-3-fold increase seen maximally at 9 hours, compared with a 5-fold increase seen maximally at 3-6 hours in FC cells. The accumulation of cells at the G1/S junction after IR showed the same kinetics as p21 induction: the peak of cells in G1 occurs at 3-6 hours in FC, but not until 9-24 hours in FS. The response is reminiscent of that seen in

  12. Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin

    Science.gov (United States)

    André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric

    2000-01-01

    Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346

  13. Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO2 Chromatography.

    Science.gov (United States)

    Ibáñez-Vea, María; Huang, Honggang; Martínez de Morentin, Xabier; Pérez, Estela; Gato, Maria; Zuazo, Miren; Arasanz, Hugo; Fernández-Irigoyen, Joaquin; Santamaría, Enrique; Fernandez-Hinojal, Gonzalo; Larsen, Martin R; Escors, David; Kochan, Grazyna

    2018-03-02

    Protein S-nitrosylation is a cysteine post-translational modification mediated by nitric oxide. An increasing number of studies highlight S-nitrosylation as an important regulator of signaling involved in numerous cellular processes. Despite the significant progress in the development of redox proteomic methods, identification and quantification of endogeneous S-nitrosylation using high-throughput mass-spectrometry-based methods is a technical challenge because this modification is highly labile. To overcome this drawback, most methods induce S-nitrosylation chemically in proteins using nitrosylating compounds before analysis, with the risk of introducing nonphysiological S-nitrosylation. Here we present a novel method to efficiently identify endogenous S-nitrosopeptides in the macrophage total proteome. Our approach is based on the labeling of S-nitrosopeptides reduced by ascorbate with a cysteine specific phosphonate adaptable tag (CysPAT), followed by titanium dioxide (TiO 2 ) chromatography enrichment prior to nLC-MS/MS analysis. To test our procedure, we performed a large-scale analysis of this low-abundant modification in a murine macrophage cell line. We identified 569 endogeneous S-nitrosylated proteins compared with 795 following exogenous chemically induced S-nitrosylation. Importantly, we discovered 579 novel S-nitrosylation sites. The large number of identified endogenous S-nitrosylated peptides allowed the definition of two S-nitrosylation consensus sites, highlighting protein translation and redox processes as key S-nitrosylation targets in macrophages.

  14. Protein-RNA linkage and posttranslational modifications of feline calicivirus and murine norovirus VPg proteins

    Directory of Open Access Journals (Sweden)

    Allan Olspert

    2016-06-01

    Full Text Available Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV and murine norovirus (MNV. These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5′ end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle.

  15. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  16. Extracting histones for the specific purpose of label-free MS.

    Science.gov (United States)

    Govaert, Elisabeth; Van Steendam, Katleen; Scheerlinck, Ellen; Vossaert, Liesbeth; Meert, Paulien; Stella, Martina; Willems, Sander; De Clerck, Laura; Dhaenens, Maarten; Deforce, Dieter

    2016-12-01

    Extracting histones from cells is the first step in studies that aim to characterize histones and their post-translational modifications (hPTMs) with MS. In the last decade, label-free quantification is more frequently being used for MS-based histone characterization. However, many histone extraction protocols were not specifically designed for label-free MS. While label-free quantification has its advantages, it is also very susceptible to technical variation. Here, we adjust an established histone extraction protocol according to general label-free MS guidelines with a specific focus on minimizing sample handling. These protocols are first evaluated using SDS-PAGE. Hereafter, a selection of extraction protocols was used in a complete histone workflow for label-free MS. All protocols display nearly identical relative quantification of hPTMs. We thus show that, depending on the cell type under investigation and at the cost of some additional contaminating proteins, minimizing sample handling can be done during histone isolation. This allows analyzing bigger sample batches, leads to reduced technical variation and minimizes the chance of in vitro alterations to the hPTM snapshot. Overall, these results allow researchers to determine the best protocol depending on the resources and goal of their specific study. Data are available via ProteomeXchange with identifier PXD002885. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells

    Directory of Open Access Journals (Sweden)

    Collins Hilary M

    2013-01-01

    Full Text Available Abstract Background Post-translational modifications (PTMs of histones and other proteins are perturbed in tumours. For example, reduced levels of acetylated H4K16 and trimethylated H4K20 are associated with high tumour grade and poor survival in breast cancer. Drug-like molecules that can reprogram selected histone PTMs in tumour cells are therefore of interest as potential cancer chemopreventive agents. In this study we assessed the effects of the phytocompounds garcinol and curcumin on histone and p53 modification in cancer cells, focussing on the breast tumour cell line MCF7. Methods Cell viability/proliferation assays, cell cycle analysis by flow cytometry, immunodetection of specific histone and p53 acetylation marks, western blotting, siRNA and RT-qPCR. Results Although treatment with curcumin, garcinol or the garcinol derivative LTK-14 hampered MCF7 cell proliferation, differential effects of these compounds on histone modifications were observed. Garcinol treatment resulted in a strong reduction in H3K18 acetylation, which is required for S phase progression. Similar effects of garcinol on H3K18 acetylation were observed in the osteosarcoma cells lines U2OS and SaOS2. In contrast, global levels of acetylated H4K16 and trimethylated H4K20 in MCF7 cells were elevated after garcinol treatment. This was accompanied by upregulation of DNA damage signalling markers such as γH2A.X, H3K56Ac, p53 and TIP60. In contrast, exposure of MCF7 cells to curcumin resulted in increased global levels of acetylated H3K18 and H4K16, and was less effective in inducing DNA damage markers. In addition to its effects on histone modifications, garcinol was found to block CBP/p300-mediated acetylation of the C-terminal activation domain of p53, but resulted in enhanced acetylation of p53K120, and accumulation of p53 in the cytoplasmic compartment. Finally, we show that the elevation of H4K20Me3 levels by garcinol correlated with increased expression of SUV420H2

  18. Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells

    International Nuclear Information System (INIS)

    Collins, Hilary M; Kundu, Tapas K; Heery, David M; Abdelghany, Magdy K; Messmer, Marie; Yue, Baigong; Deeves, Sian E; Kindle, Karin B; Mantelingu, Kempegowda; Aslam, Akhmed; Winkler, G Sebastiaan

    2013-01-01

    Post-translational modifications (PTMs) of histones and other proteins are perturbed in tumours. For example, reduced levels of acetylated H4K16 and trimethylated H4K20 are associated with high tumour grade and poor survival in breast cancer. Drug-like molecules that can reprogram selected histone PTMs in tumour cells are therefore of interest as potential cancer chemopreventive agents. In this study we assessed the effects of the phytocompounds garcinol and curcumin on histone and p53 modification in cancer cells, focussing on the breast tumour cell line MCF7. Cell viability/proliferation assays, cell cycle analysis by flow cytometry, immunodetection of specific histone and p53 acetylation marks, western blotting, siRNA and RT-qPCR. Although treatment with curcumin, garcinol or the garcinol derivative LTK-14 hampered MCF7 cell proliferation, differential effects of these compounds on histone modifications were observed. Garcinol treatment resulted in a strong reduction in H3K18 acetylation, which is required for S phase progression. Similar effects of garcinol on H3K18 acetylation were observed in the osteosarcoma cells lines U2OS and SaOS2. In contrast, global levels of acetylated H4K16 and trimethylated H4K20 in MCF7 cells were elevated after garcinol treatment. This was accompanied by upregulation of DNA damage signalling markers such as γH2A.X, H3K56Ac, p53 and TIP60. In contrast, exposure of MCF7 cells to curcumin resulted in increased global levels of acetylated H3K18 and H4K16, and was less effective in inducing DNA damage markers. In addition to its effects on histone modifications, garcinol was found to block CBP/p300-mediated acetylation of the C-terminal activation domain of p53, but resulted in enhanced acetylation of p53K120, and accumulation of p53 in the cytoplasmic compartment. Finally, we show that the elevation of H4K20Me3 levels by garcinol correlated with increased expression of SUV420H2, and was prevented by siRNA targeting of SUV420H2. In

  19. Posttranslational modifications in human plasma MBL and human recombinant MBL

    DEFF Research Database (Denmark)

    Jensen, Pia Hønnerup; Laursen, Inga; Matthiesen, Finn

    2007-01-01

    the intact protein in its active conformation. For the first time, positions and occupation frequency of partial hydroxylations and partial glycosylations are reported in MBL. Hydroxylation and glycosylation patterns of both recombinant and plasma derived MBL were determined, using a combination of mass......Mannan-binding lectin (MBL) is a complex serum protein that plays an important role in innate immunity. In addition to assuming several different oligomeric forms, the polypeptide itself is highly heterogeneous. This heterogeneity is due to post-translational modifications, which help to stabilize......(202)) was modified in trace amounts to dehydroalanine, as detected by a 34 Da mass loss. This impairs the formation of a disulphide bond in the carbohydrate recognition domain. The dehydroalanine was identified in similar small amounts in both recombinant and plasma-derived MBL....

  20. Fast Multi-blind Modification Search through Tandem Mass Spectrometry*

    Science.gov (United States)

    Na, Seungjin; Bandeira, Nuno; Paek, Eunok

    2012-01-01

    With great biological interest in post-translational modifications (PTMs), various approaches have been introduced to identify PTMs using MS/MS. Recent developments for PTM identification have focused on an unrestrictive approach that searches MS/MS spectra for all known and possibly even unknown types of PTMs at once. However, the resulting expanded search space requires much longer search time and also increases the number of false positives (incorrect identifications) and false negatives (missed true identifications), thus creating a bottleneck in high throughput analysis. Here we introduce MODa, a novel “multi-blind” spectral alignment algorithm that allows for fast unrestrictive PTM searches with no limitation on the number of modifications per peptide while featuring over an order of magnitude speedup in relation to existing approaches. We demonstrate the sensitivity of MODa on human shotgun proteomics data where it reveals multiple mutations, a wide range of modifications (including glycosylation), and evidence for several putative novel modifications. Based on the reported findings, we argue that the efficiency and sensitivity of MODa make it the first unrestrictive search tool with the potential to fully replace conventional restrictive identification of proteomics mass spectrometry data. PMID:22186716

  1. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes

    OpenAIRE

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, S?ren; Rudzka, Justyna; Szcz?sny, Pawe?; Antosiewicz, Danuta Maria

    2016-01-01

    Background To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, thos...

  2. Consequences of intra-specific metabolic diversity in plants for soil organisms : a baseline approach for evaluating ecological effects of genetic modifications

    NARCIS (Netherlands)

    Kabouw, P.

    2012-01-01

    Plant intra-specific variation, i.e. variation within a plant species, is known to affect organisms that are directly associated to plants. These effects may be due to for example differences in nutritional quality or defensive metabolites. Plant intra-specific variation can also affect

  3. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges

    Science.gov (United States)

    Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian

    2016-01-01

    Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR. PMID:27956830

  4. Modification site localization scoring integrated into a search engine.

    Science.gov (United States)

    Baker, Peter R; Trinidad, Jonathan C; Chalkley, Robert J

    2011-07-01

    Large proteomic data sets identifying hundreds or thousands of modified peptides are becoming increasingly common in the literature. Several methods for assessing the reliability of peptide identifications both at the individual peptide or data set level have become established. However, tools for measuring the confidence of modification site assignments are sparse and are not often employed. A few tools for estimating phosphorylation site assignment reliabilities have been developed, but these are not integral to a search engine, so require a particular search engine output for a second step of processing. They may also require use of a particular fragmentation method and are mostly only applicable for phosphorylation analysis, rather than post-translational modifications analysis in general. In this study, we present the performance of site assignment scoring that is directly integrated into the search engine Protein Prospector, which allows site assignment reliability to be automatically reported for all modifications present in an identified peptide. It clearly indicates when a site assignment is ambiguous (and if so, between which residues), and reports an assignment score that can be translated into a reliability measure for individual site assignments.

  5. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    Science.gov (United States)

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  6. Technical evaluation of the proposed design modifications and technical specification changes for the R.E. Ginna Nuclear Power Plant, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1980-01-01

    The present design uses undervoltage relays to sense the loss of offsite power. There are no Class 1E loads on the 4160-volt buses. This design consists of two relays per 480-volt Class 1E bus (two Class 1E buses per redundant load group) for the first level of undervoltage protection. An undervoltage condition (loss-of-voltage) will result in isolating the Class 1E buses from all offsite sources, initiating emergency diesel generator start and load shedding on the Class 1E buses, permitting closure of the diesel generator supply breakers, and lastly, the loads will be automatically time-sequenced onto the buses. Actuation begins with loss of voltage to 368 volts (77% of 480 volts). The existing system does not bypass the load-shedding feature once the emergency diesel generators are energizing the Class 1E buses. The licensee has proposed a design change which includes automatic degraded voltage protection. This modification consists of the addition of two time-delayed, undervoltage relays on each 480-volt Class 1E bus, to provide the second level of undervoltage protection

  7. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Su, Xiong [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Liu, Jialiu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Sundaresan, Sinju [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Stahl, Philip D., E-mail: pstahl@wustl.edu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  8. O-GlcNAcylation modulates PKA-CREB signaling in a manner specific to PKA catalytic subunit isoforms.

    Science.gov (United States)

    Jin, Nana; Ma, Denglei; Gu, Jianlan; Shi, Jianhua; Xu, Xiaotao; Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei; Chu, Dandan

    2018-02-26

    O-GlcNAcylation is a post-translational modification of proteins. Protein kinase A (PKA)-cAMP response element binding protein (CREB) signaling plays critical roles in multiple biological processes. Isoforms α and β of PKA catalytic subunit (PKAc) and CREB are modified by O-GlcNAcylation. In the present study, we determined the role of O-GlcNAcylation in PKAc isoform-specific CREB signaling. We found that up-regulation of O-GlcNAcylation enhanced CREB phosphorylation, but suppressed CREB expression in exogenous PKAc isoform-unspecific manner. PKAc isoforms affected exogenous expression of OGT or OGA and protein O-GlcNAcylation differently. Up-regulation of O-GlcNAcylation did not significantly affect net PKAcα-CREB signaling, but enhanced PKAcβ-CREB signaling. The role of O-GlcNAcylation in PKA-CREB signaling was desensitized by insulin treatment. This study suggests a role of O-GlcNAcylation in PKA-CREB signaling by affecting phosphorylation of CREB in a PKAc isoform-specific manner. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification

    Science.gov (United States)

    O'Neil, Gina L.; Goodall, Jonathan L.; Watson, Layne T.

    2018-04-01

    Wetlands are important ecosystems that provide many ecological benefits, and their quality and presence are protected by federal regulations. These regulations require wetland delineations, which can be costly and time-consuming to perform. Computer models can assist in this process, but lack the accuracy necessary for environmental planning-scale wetland identification. In this study, the potential for improvement of wetland identification models through modification of digital elevation model (DEM) derivatives, derived from high-resolution and increasingly available light detection and ranging (LiDAR) data, at a scale necessary for small-scale wetland delineations is evaluated. A novel approach of flow convergence modelling is presented where Topographic Wetness Index (TWI), curvature, and Cartographic Depth-to-Water index (DTW), are modified to better distinguish wetland from upland areas, combined with ancillary soil data, and used in a Random Forest classification. This approach is applied to four study sites in Virginia, implemented as an ArcGIS model. The model resulted in significant improvement in average wetland accuracy compared to the commonly used National Wetland Inventory (84.9% vs. 32.1%), at the expense of a moderately lower average non-wetland accuracy (85.6% vs. 98.0%) and average overall accuracy (85.6% vs. 92.0%). From this, we concluded that modifying TWI, curvature, and DTW provides more robust wetland and non-wetland signatures to the models by improving accuracy rates compared to classifications using the original indices. The resulting ArcGIS model is a general tool able to modify these local LiDAR DEM derivatives based on site characteristics to identify wetlands at a high resolution.

  10. Refurbishment and modification of existing protective shipping packages (for 30-inch UF{sub 6} cylinders) per USDOT specification No. USA-DOT-21PF-1A

    Energy Technology Data Exchange (ETDEWEB)

    Housholder, W.R. [Nuclear Containers, Incorporated, Elizabethton, TN (United States)

    1991-12-31

    This paper addresses the refurbishment procedures for existing shipping containers for 30-inch diameter UF{sub 6} cylinders in accordance with DOT Specification 21PF-1 and the criteria used to determine rejection when such packages are unsuitable for refurbishment.

  11. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D.

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-03-01

    Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite

  12. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.

    Science.gov (United States)

    Gao, Jianjiong; Thelen, Jay J; Dunker, A Keith; Xu, Dong

    2010-12-01

    Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models

  13. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  14. Effect of the UV modification of α-crystallin on its ability to suppress nonspecific aggregation

    International Nuclear Information System (INIS)

    Ellozy, A.R.; Ceger, Patricia; Wang, R.H.; Dillon, James

    1996-01-01

    Recent studies have shown that structural modifications of α-crystallin during lens aging decrease it's effectiveness as a molecular chaperone. Some of these post-translational modifications have been linked to UV radiation, and this study was undertaken to investigate the effect of UV irradiation on the ability of α-crystallin to suppress nonspecific aggregation. The effect of 3-hydroxykynurenine (3-HK) was also investigated as a model for its glucoside (3-HKG), a main lens chromophore that has been linked to photochemical changes in the human lens. Alpha- and γ-crystallin solutions (1 mg/mL, 1:0.125 wt/wt) were photolyzed (transmission above 295nm) for various time intervals. Thermal denaturation of γ-crystallin with or without α-crystallin was carried out at 70 o C and increases in light scattering were measured at 360 nm. We found that (1) irradiation of γ-crystallin increased its susceptibility to heat-induced scattering. The addition of α-crystallin protects it against thermal denaturation, although its ability to do so decreases the longer γ-crystallin is irradiated and (2) irradiation of α-crystallin decreases its ability to suppress nonspecific aggregation and the presence of 3-HK during irradiation decreases its further. Our results indicate that post-translational modifications of α-crystallin due to UV irradiation affect the sites and mechanisms by which it interacts with γ-crystallin. The kinetics of γ-crystallin unfolding during thermal denaturation were also analyzed. We found that a simple two state model applied for nonirradiated γ-crystallin. This model does not hold when γ-crystallin is irradiated in the prescence or absence of α-crystallin. In these cases, two step or multistep mechanisms are more likely. (Author)

  15. Lithium-Induced Neuroprotection is Associated with Epigenetic Modification of Specific BDNF Gene Promoter and Altered Expression of Apoptotic-Regulatory Proteins

    Directory of Open Access Journals (Sweden)

    Tushar eDwivedi

    2015-01-01

    Full Text Available Bipolar disorder (BD, one of the most debilitating mental disorders, is associated with increased morbidity and mortality. Lithium is the first line of treatment option for BD and is often used for maintenance therapy. Recently, the neuroprotective action of lithium has gained tremendous attention, given that BD is associated with structural and functional abnormalities of the brain. However, the precise molecular mechanism by which lithium exerts its neuroprotective action is not clearly understood. In hippocampal neurons, the effects of lithium on neuronal viability against glutamate-induced cytotoxicity, dendritic length and number, and expression and methylation of BDNF promoter exons and expression of apoptotic regulatory genes were studied. In rat hippocampal neurons, lithium not only increased dendritic length and number, but also neuronal viability against glutamate-induced cytotoxicity. While lithium increased the expression of BDNF as well as genes associated with neuroprotection such as Bcl2 and Bcl-XL, it decreased the expression of pro-apoptotic genes Bax, Bad, and caspases 3. Interestingly, lithium activated transcription of specific exon IV to induce BDNF gene expression. This was accompanied by hypomethylation of BDNF exon IV promoter. This study delineates mechanisms by which lithium mediates its effects in protecting neurons.

  16. Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies.

    Directory of Open Access Journals (Sweden)

    Bernhard Zatloukal

    Full Text Available The in situ proximity ligation assay (isPLA is an increasingly used technology for in situ detection of protein interactions, post-translational modifications, and spatial relationships of antigens in cells and tissues, in general. In order to test its performance we compared isPLA with immunofluorescence microscopy by analyzing protein interactions in cytoplasmic protein aggregates, so-called Mallory Denk bodies (MDBs. These structures represent protein inclusions in hepatocytes typically found in human steatohepatitis and they can be generated in mice by feeding of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC. We investigated the colocalization of all three key MDB components, namely keratin 8 (K8, keratin 18 (K18, and p62 (sequestosome 1 by isPLA and immunofluorescence microscopy. Sensitivity and specificity of isPLA was assessed by using Krt8-/- and Krt18-/- mice as biological controls, along with a series of technical controls. isPLA signal visualization is a robust technology with excellent sensitivity and specificity. The biological relevance of signals generated critically depends on the performance of antibodies used, which requires careful testing of antibodies like in immunofluorescence microscopy. There is a clear advantage of isPLA in visualizing protein co-localization, particularly when antigens are present at markedly different concentrations. Furthermore, isPLA is superior to confocal microscopy with respect to spatial resolution of colocalizing antigens. Disadvantages compared to immunofluorescence are increased costs and longer duration of the laboratory protocol.

  17. Requirement of Gamma-Carboxyglutamic Acid Modification and Phosphatidylserine Binding for the Activation of Tyro3, Axl, and Mertk Receptors by Growth Arrest-Specific 6

    Directory of Open Access Journals (Sweden)

    Ke Geng

    2017-11-01

    Full Text Available The Tyro3, Axl, and Mertk (TAM receptors are homologous type I receptor tyrosine kinases that have critical functions in the clearance of apoptotic cells in multicellular organisms. TAMs are activated by their endogenous ligands, growth arrest-specific 6 (Gas6, and protein S (Pros1, that function as bridging molecules between externalized phosphatidylserine (PS on apoptotic cells and the TAM ectodomains. However, the molecular mechanisms by which Gas6/Pros1 promote TAM activation remains elusive. Using TAM/IFNγR1 reporter cell lines to monitor functional TAM activity, we found that Gas6 activity was exquisitely dependent on vitamin K-mediated γ-carboxylation, whereby replacing vitamin K with anticoagulant warfarin, or by substituting glutamic acid residues involved in PS binding, completely abrogated Gas6 activity as a TAM ligand. Furthermore, using domain and point mutagenesis, Gas6 activity also required both an intact Gla domain and intact EGF-like domains, suggesting these domains function cooperatively in order to achieve TAM activation. Despite the requirement of γ-carboxylation and the functional Gla domain, non-γ-carboxylated Gas6 and Gla deletion/EGF-like domain deletion mutants still retained their ability to bind TAMs and acted as blocking decoy ligands. Finally, we found that distinct sources of PS-positive cells/vesicles (including apoptotic cells, calcium-induced stressed cells, and exosomes bound Gas6 and acted as cell-derived or exosome-derived ligands to activate TAMs. Taken together, our findings indicate that PS is indispensable for TAM activation by Gas6, and by inference, provides new perspectives on how PS, regulates TAM receptors and efferocytosis.

  18. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    Science.gov (United States)

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  19. Evaluation of proteomic search engines for the analysis of histone modifications.

    Science.gov (United States)

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  20. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mark Samson

    2014-10-01

    Full Text Available In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs, and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  1. O-GlcNAc modification: why so intimately associated with phosphorylation?

    Directory of Open Access Journals (Sweden)

    Ande Sudharsana R

    2011-01-01

    Full Text Available Abstract Post-translational modification of proteins at serine and threonine side chains by β-N-acetylglucosamine (O-GlcNAc mediated by the enzyme β-N-acetylglucosamine transferase has been emerging as a fundamental regulatory mechanism encompassing a wide range of proteins involved in cell division, metabolism, transcription and cell signaling. Furthermore, an extensive interplay between O-GlcNAc modification and serine/threonine phosphorylation in a variety of proteins has been reported to exist. However, our understanding of the regulatory mechanisms involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins is still elusive. Recent success in the mapping of O-GlcNAc modification sites in proteins as a result of technological advancement in mass spectrometry have revealed two important clues which may be inherently connected to the regulation of O-GlcNAc modification and its interplay with phosphorylation in proteins. First, almost all O-GlcNAc modified proteins are known phospho proteins. Second, the prevalence of tyrosine phosphorylation among O-GlcNAc modified proteins is exceptionally higher (~68% than its normal occurrence (~2% alone. We hypothesize that phosphorylation may be a requisite for O-GlcNAc modification and tyrosine phosphorylation plays a role in the interplay between O-GlcNAc modification and serine/threonine phosphorylation in proteins. In other words, the interplay between O-GlcNAc modification and phosphorylation is not limited to serine/threonine phosphorylation but also includes tyrosine phosphorylation. Our hypothesis provides an opportunity to understand the underlying mechanism involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins. Furthermore, implication of our hypothesis extends to tyrosine kinase signaling.

  2. Predicting the Retention Behavior of Specific O-Linked Glycopeptides.

    Science.gov (United States)

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2017-09-01

    O -Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O -glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O - N -acetylgalactosamine ( O -GalNAc), O - N -acetylglucosamine ( O -GlcNAc), and O -fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.

  3. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.

    Science.gov (United States)

    Hains, Peter G; Robinson, Phillip J

    2017-09-01

    Iodoacetamide is by far the most commonly used agent for alkylation of cysteine during sample preparation for proteomics. An alternative, 2-chloroacetamide, has recently been suggested to reduce the alkylation of residues other than cysteine, such as the N-terminus, Asp, Glu, Lys, Ser, Thr, and Tyr. Here we show that although 2-chloroacetamide reduces the level of off-target alkylation, it exhibits a range of adverse effects. The most significant of these is methionine oxidation, which increases to a maximum of 40% of all Met-containing peptides, compared with 2-5% with iodoacetamide. Increases were also observed for mono- and dioxidized tryptophan. No additional differences between the alkylating reagents were observed for a range of other post-translational modifications and digestion parameters. The deleterious effects were observed for 2-chloroacetamide from three separate suppliers. The adverse impact of 2-chloroacetamide on methionine oxidation suggests that it is not the ideal alkylating reagent for proteomics.

  4. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  5. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Liqing Wang

    2016-11-01

    Full Text Available Foxp3+ T-regulatory (Treg cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or “secondary” modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3+ Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy.

  6. Individualizing pharmacotherapy in patients with renal impairment: the validity of the Modification of Diet in Renal Disease formula in specific patient populations with a glomerular filtration rate below 60 ml/min. A systematic review.

    Directory of Open Access Journals (Sweden)

    Willemijn L Eppenga

    Full Text Available The Modification of Diet in Renal Disease (MDRD formula is widely used in clinical practice to assess the correct drug dose. This formula is based on serum creatinine levels which might be influenced by chronic diseases itself or the effects of the chronic diseases. We conducted a systematic review to determine the validity of the MDRD formula in specific patient populations with renal impairment: elderly, hospitalized and obese patients, patients with cardiovascular disease, cancer, chronic respiratory diseases, diabetes mellitus, liver cirrhosis and human immunodeficiency virus.We searched for articles in Pubmed published from January 1999 through January 2014. Selection criteria were (1 patients with a glomerular filtration rate (GFR < 60 ml/min (/1.73 m2, (2 MDRD formula compared with a gold standard and (3 statistical analysis focused on bias, precision and/or accuracy. Data extraction was done by the first author and checked by a second author. A bias of 20% or less, a precision of 30% or less and an accuracy expressed as P30% of 80% or higher were indicators of the validity of the MDRD formula. In total we included 27 studies. The number of patients included ranged from 8 to 1831. The gold standard and measurement method used varied across the studies. For none of the specific patient populations the studies provided sufficient evidence of validity of the MDRD formula regarding the three parameters. For patients with diabetes mellitus and liver cirrhosis, hospitalized patients and elderly with moderate to severe renal impairment we concluded that the MDRD formula is not valid. Limitations of the review are the lack of considering the method of measuring serum creatinine levels and the type of gold standard used.In several specific patient populations with renal impairment the use of the MDRD formula is not valid or has uncertain validity.

  7. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Science.gov (United States)

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  8. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  9. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.

    Science.gov (United States)

    Arnaudo, Anna M; Link, A James; Garcia, Benjamin A

    2016-03-18

    The nucleosome is an octamer containing DNA wrapped around one histone H3-H4 tetramer and two histone H2A-H2B dimers. Within the nucleosome, histones are decorated with post-translational modifications. Previous studies indicate that the H3-H4 tetramer is conserved during DNA replication, suggesting that old tetramers serve as a template for the modification of newly synthesized tetramers. Here, we present a method that merges bioorthogonal chemistry with mass spectrometry for the study of modifications on newly synthesized histones in mammalian cells. HeLa S3 cells are dually labeled with the methionine analog azidohomoalanine and heavy (13)C6,(15)N4 isotope labeled arginine. Heavy amino acid labeling marks newly synthesized histones while azidohomoalanine incorporation allows for their isolation using bioorthogonal ligation. Labeled mononucleosomes were covalently linked via a copper catalyzed reaction to a FLAG-GGR-alkyne peptide, immunoprecipitated, and subjected to mass spectrometry for quantitative modification analysis. Mononucleosomes containing new histones were successfully isolated using this approach. Additionally, the development of this method highlights the potential deleterious effects of azidohomoalanine labeling on protein PTMs and cell cycle progression, which should be considered for future studies utilizing bioorthogonal labeling strategies in mammalian cells.

  10. Site-selective protein-modification chemistry for basic biology and drug development.

    Science.gov (United States)

    Krall, Nikolaus; da Cruz, Filipa P; Boutureira, Omar; Bernardes, Gonçalo J L

    2016-02-01

    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

  11. Specific mixing facilitates the comparative quantification of phosphorylation sites with significant dysregulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Bo [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Liu, Zheyi; Dong, Mingming; Mao, Jiawei; Zhou, Ye; Chen, Jin [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Fangjun, E-mail: wangfj@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Zou, Hanfa [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China)

    2017-01-15

    Mass spectrometry (MS) based quantitative analyses of proteome and proteome post-translational modifications (PTMs) play more and more important roles in biological, pharmaceutical and clinical studies. However, it is still a big challenge to accurately quantify the proteins or proteins PTM sites with extreme relative abundances in comparative protein samples, such as the significantly dysregulated ones. Herein, a novel quantification strategy, Mixing at Specific Ratio (MaSR) before isotope labeling, had been developed to improve the quantification accuracy and coverage of extreme proteins and protein phosphorylation sites. Briefly, the comparative protein samples were firstly mixed together at specific ratios of 9:1 and 1:9 (w/w), followed with mass differentiate light and heavy isotope labeling, respectively. The extreme proteins and protein phosphorylation sites, even if the newly expressed or disappeared ones, could be accurately quantified due to all of the proteins' relative abundances had been adjusted to 2 orders of magnitude (1/9-9) by this strategy. The number of quantified phosphorylation sites with more than 20 folds changes was improved about 10 times in comparative quantification of pervanadate stimulated phosphoproteome of HeLa cells, and 134 newly generated and 21 disappeared phosphorylation sites were solely quantified by the MaSR strategy. The significantly up-regulated phosphorylation sites were mainly involved in the key phosphoproteins regulating the insulin-related pathways, such as PI3K-AKT and RAS-MAPK pathways. Therefore, the MaSR strategy exhibits as a promising way in elucidating the biological processes with significant dysregulations. - Highlights: • All the proteins' relative abundances were adjusted into 2 orders of magnitude (1/9-9). • The quantification accuracy and coverage of extreme proteins and protein phosphorylation sites had been improved. • The newly expressed or disappeared proteins and protein

  12. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    Full Text Available S-glutathionylation, the covalent attachment of a glutathione (GSH to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA. TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN and human protein tyrosine phosphatase 1b (PTP1B. Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/, for identifying uncharacterized GSH substrate sites on the protein sequences.

  13. Regulation of Wnt/β-catenin signaling by posttranslational modifications

    Science.gov (United States)

    2014-01-01

    The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin. PMID:24594309

  14. Methylglyoxal-induced modification causes aggregation of myoglobin

    Science.gov (United States)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  15. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    International Nuclear Information System (INIS)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M.

    2015-01-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult

  16. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M., E-mail: aallan@salud.unm.edu

    2015-10-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult

  17. Behavior Modification in Coaching.

    Science.gov (United States)

    Lynch, Annette Rutt; Stillman, Stephen M.

    1979-01-01

    An example of behavior modification used in athletic coaching is presented. The case study involves a member of a women's basketball team and details the use of behavior modification for both weight reduction and skill improvement. (JMF)

  18. Nuclear Plant Modification in a Risk-Informed Environment

    International Nuclear Information System (INIS)

    Gallucci, Raymond H.V.

    2002-01-01

    This paper examines a specific nuclear power plant modification performed in a risk-informed regulatory environment. It quantifies both the permanent and temporary effects of the modification, and performs a cost-benefit evaluation. (authors)

  19. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline

    2015-01-01

    has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......-specific pro-CCK assays, peptide purification, and mass spectrometry, we demonstrate that the mammalian heart expresses pro-CCK in amounts comparable to natriuretic prohormones and processes it to a unique, triple-sulfated, and N-terminally truncated product distinct from intestinal and cerebral CCK peptides...

  20. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.

    Science.gov (United States)

    Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K

    2013-01-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Copyright © 2012 Wiley Periodicals, Inc.

  1. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon

    Science.gov (United States)

    Guariglia-Oropeza, Veronica; Orsi, Renato H.; Guldimann, Claudia; Wiedmann, Martin; Boor, Kathryn J.

    2018-01-01

    Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters. PMID:29467736

  2. Nuclear transfer alters placental gene expression and associated histone modifications of the placental-specific imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2) in cattle.

    Science.gov (United States)

    Arnold, Daniel R; Gaspar, Roberta C; da Rocha, Carlos V; Sangalli, Juliano R; de Bem, Tiago H C; Corrêa, Carolina A P; Penteado, João C T; Meirelles, Flavio V; Lopes, Flavia L

    2017-03-01

    Abnormal placental development is frequent in nuclear transfer (NT) pregnancies and is likely to be associated with altered epigenetic reprogramming. In the present study, fetal and placental measurements were taken on Day 60 of gestation in cows with pregnancies produced by AI, IVF and NT. Placentas were collected and subjected to histological evaluation, the expression of genes important in trophoblast differentiation and expression of the placental imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2), as well as chromatin immunoprecipitation (ChIP) for histone marks within the promoter of PHLDA2. Fewer binucleated cells were observed in NT cotyledons, followed by IVF and AI cotyledons (P<0.05). Expression of heart and neural crest derivatives expressed 1 (HAND1), placental lactogen (PL), pregnancy-associated glycoprotein 9 (PAG-9) and PHLDA2 was elevated in NT cotyledons compared with AI cotyledons. Expression of PHLDA2 was higher in IVF than AI samples (P<0.05). ChIP revealed an increase in the permissive mark dimethylation of lysine 4 on histone H3 (H3K4me2), surprisingly associated with the silent allele of PHLDA2, and a decrease in the inhibitory mark H3K9me2 in NT samples. Thus, genes critical for placental development were altered in NT placentas, including an imprinted gene. Allele-specific changes in the permissive histone mark in the PHLDA2 promoter indicate misregulation of imprinting in clones. Abnormal trophoblast differentiation could have resulted in lower numbers of binucleated cells following NT. These results suggest that the altered expression of imprinted genes associated with NT are also caused by changes in histone modifications.

  3. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.

    Directory of Open Access Journals (Sweden)

    Tzong-Yi Lee

    Full Text Available S-nitrosylation, the covalent attachment of a nitric oxide to (NO the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-nitrosylation remains unknown. Based on a total of 586 experimentally identified S-nitrosylation sites from SNAP/L-cysteine-stimulated mouse endothelial cells, this work presents an informatics investigation on S-nitrosylation sites including structural factors such as the flanking amino acids composition, the accessible surface area (ASA and physicochemical properties, i.e. positive charge and side chain interaction parameter. Due to the difficulty to obtain the conserved motifs by conventional motif analysis, maximal dependence decomposition (MDD has been applied to obtain statistically significant conserved motifs. Support vector machine (SVM is applied to generate predictive model for each MDD-clustered motif. According to five-fold cross-validation, the MDD-clustered SVMs could achieve an accuracy of 0.902, and provides a promising performance in an independent test set. The effectiveness of the model was demonstrated on the correct identification of previously reported S-nitrosylation sites of Bos taurus dimethylarginine dimethylaminohydrolase 1 (DDAH1 and human hemoglobin subunit beta (HBB. Finally, the MDD-clustered model was adopted to construct an effective web-based tool, named SNOSite (http://csb.cse.yzu.edu.tw/SNOSite/, for identifying S-nitrosylation sites on the uncharacterized protein sequences.

  4. The impact of chromatin modification on the development of chronic complications in patients with diabetes

    Directory of Open Access Journals (Sweden)

    Małgorzata Wegner

    2015-08-01

    Full Text Available Diabetes is a chronic, metabolic disease. Over 347 million people worldwide have diabetes. Chronic complications (retinopathy, nephropathy or neuropathy are the major dangerous outcome of this disease. Recent studies indicate a significant role of epigenetic regulation in the development of chronic complications in patients with diabetes. Hyperglycemia could cause abnormal regulation of the activity of enzymes participating in the post-translational histone modifications (PTHMs and initiation of changes in patterns of DNA methylation. It leads to modification of chromatin structure. These epigenetic abnormalities result in changes in the expression of genes involved in development of chronic inflammation, such as NF-KAPPAB (nuclear factor kappaB gene, TNFα (tumor necrosis factor a gene, IL6 (interleukin 6 gene or MCP1 (monocyte chemoattractant protein 1 gene. It enhances endothelial cell dysfunction, which plays an important role in development of chronic, diabetic complications. In addition, caused by hyperglycemia epigenetic modifications changes in structure of chromatin explains “metabolic memory”, a phenomenon of presence of pathological pathways related to the prolonged hyperglycemia in the past, despite maintaining good metabolic control later on.

  5. Characterization of the E.coli proteome and its modifications during growth and ethanol stress

    Directory of Open Access Journals (Sweden)

    Boumediene eSoufi

    2015-02-01

    Full Text Available We set out to provide a resource to the microbiology community especially with respect to systems biology based endeavors. To this end, we generated a comprehensive dataset monitoring the changes in protein expression, copy number, and post translational modifications in a systematic fashion during growth and ethanol stress in E.coli. We utilized high-resolution mass spectrometry combined with the Super-SILAC approach. In a single experiment, we have identified over 2,300 proteins, which represent approximately 88% of the estimated expressed proteome of E. coli and estimated protein copy numbers using the Intensity Based Absolute Quantitation (IBAQ. The dynamic range of protein expression spanned up to six orders of magnitude, with the highest protein copy per cell estimated at approximately 300,000. We focused on the proteome dynamics involved during stationary phase growth. A global up-regulation of proteins related to stress response was detected in later stages of growth. We observed the down-regulation of the methyl directed mismatch repair system containing MutS and MutL of E. coli growing in long term growth cultures, confirming that higher incidence of mutations presents an important mechanism in the increase in genetic diversity and stationary phase survival in E.coli. During ethanol stress, known markers such as alcohol dehydrogenase and aldehyde dehydrogenase were induced, further validating the dataset. Finally, we performed unbiased protein modification detection and revealed changes of many known and unknown protein modifications in both experimental conditions.

  6. Direct analysis of site-specific N-glycopeptides of serological proteins in dried blood spot samples.

    Science.gov (United States)

    Choi, Na Young; Hwang, Heeyoun; Ji, Eun Sun; Park, Gun Wook; Lee, Ju Yeon; Lee, Hyun Kyoung; Kim, Jin Young; Yoo, Jong Shin

    2017-08-01

    Dried blood spot (DBS) samples have a number of advantages, especially with respect to ease of collection, transportation, and storage and to reduce biohazard risk. N-glycosylation is a major post-translational modification of proteins in human blood that is related to a variety of biological functions, including metastasis, cell-cell interactions, inflammation, and immunization. Here, we directly analyzed tryptic N-glycopeptides from glycoproteins in DBS samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS) without centrifugation of blood samples, depletion of major proteins, desalting of tryptic peptides, and enrichment of N-glycopeptides. Using this simple method, we identified a total of 41 site-specific N-glycopeptides from 16 glycoproteins in the DBS samples, from immunoglobulin gamma 1 (IgG-1, 10 mg/mL) down to complement component C7 (50 μg/mL). Of these, 32 N-glycopeptides from 14 glycoproteins were consistently quantified over 180 days stored at room temperature. The major abundant glycoproteins in the DBS samples were IgG-1 and IgG-2, which contain nine asialo-fucosylated complex types of 16 different N-glycopeptide isoforms. Sialo-non-fucosylated complex types were primarily detected in the other glycoproteins such as alpha-1-acid glycoprotein 1, 2, alpha-1-antitypsin, alpha-2-macroglobulin, haptoglobin, hemopexin, Ig alpha 1, 2 chain C region, kininogen-1, prothrombin, and serotransferrin. We first report the characterization of site-specific N-glycoproteins in DBS samples by LC-MS/MS with minimal sample preparation.

  7. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.

    Science.gov (United States)

    Zhao, Xiaowei; Ning, Qiao; Ai, Meiyue; Chai, Haiting; Yang, Guifu

    2016-06-07

    As a selective and reversible protein post-translational modification, S-glutathionylation generates mixed disulfides between glutathione (GSH) and cysteine residues, and plays an important role in regulating protein activity, stability, and redox regulation. To fully understand S-glutathionylation mechanisms, identification of substrates and specific S-Glutathionylated sites is crucial. Experimental identification of S-glutathionylated sites is labor-intensive and time consuming, so establishing an effective computational method is much desirable due to their convenient and fast speed. Therefore, in this study, a new bioinformatics tool named SSGlu (Species-Specific identification of Protein S-glutathionylation Sites) was developed to identify species-specific protein S-glutathionylated sites, utilizing support vector machines that combine multiple sequence-derived features with a two-step feature selection. By 5-fold cross validation, the performance of SSGlu was measured with an AUC of 0.8105 and 0.8041 for Homo sapiens and Mus musculus, respectively. Additionally, SSGlu was compared with the existing methods, and the higher MCC and AUC of SSGlu demonstrated that SSGlu was very promising to predict S-glutathionylated sites. Furthermore, a site-specific analysis showed that S-glutathionylation intimately correlated with the features derived from its surrounding sites. The conclusions derived from this study might help to understand more of the S-glutathionylation mechanism and guide the related experimental validation. For public access, SSGlu is freely accessible at http://59.73.198.144:8080/SSGlu/. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modification Semantics in Now-Relative Databases

    DEFF Research Database (Denmark)

    Torp, Kristian; Jensen, Christian Søndergaard; Snodgrass, R. T.

    2004-01-01

    Most real-world databases record time-varying information. In such databases, the notion of ??the current time,?? or NOW, occurs naturally and prominently. For example, when capturing the past states of a relation using begin and end time columns, tuples that are part of the current state have some...... past time as their begin time and NOW as their end time. While the semantics of such variable databases has been described in detail and is well understood, the modification of variable databases remains unexplored. This paper defines the semantics of modifications involving the variable NOW. More...... specifically,  the problems with modifications in the presence of NOW are explored, illustrating that the main problems are with modifications of tuples that reach into the future. The paper defines the semantics of modifications?including insertions, deletions, and updates?of databases without NOW, with NOW...

  9. Individualizing Pharmacotherapy in Patients with Renal Impairment: The Validity of the Modification of Diet in Renal Disease Formula in Specific Patient Populations with a Glomerular Filtration Rate below 60 Ml/Min. A Systematic Review

    NARCIS (Netherlands)

    Eppenga, W.L.; Kramers, C.; Derijks, H.J.; Wensing, M.; Wetzels, J.F.M.; Smet, P.A.G.M. de

    2015-01-01

    BACKGROUND: The Modification of Diet in Renal Disease (MDRD) formula is widely used in clinical practice to assess the correct drug dose. This formula is based on serum creatinine levels which might be influenced by chronic diseases itself or the effects of the chronic diseases. We conducted a

  10. Permit application modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils.

  11. The management of modifications

    International Nuclear Information System (INIS)

    Bernard, C.

    1992-01-01

    Description of the management methods of modifications at EDF. To maintain safety standards of the nuclear power station the 'Direction de l'Equipment' and the 'Direction du Parc en Exploitation' have jointly fixed the modalities of management for all modifications and recorded them in a 'Practical Guide'

  12. Permit application modifications

    International Nuclear Information System (INIS)

    1995-11-01

    This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils

  13. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  14. Modifications to POISSON

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed

  15. A central role for ubiquitination within a circadian clock protein modification code

    Directory of Open Access Journals (Sweden)

    Katarina eStojkovic

    2014-08-01

    Full Text Available Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components, but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.

  16. Accommodating for plant modifications

    International Nuclear Information System (INIS)

    Weirich, P.H.

    1977-01-01

    Modification to a nuclear power plant may have different causes: 1) new instructions by the authorities; 2) changes of the marginal conditions on the construction site; 3) progress in the technological development. - Examples from different plants are supposed to demonstrate how such changes influence the planning or the construction and how they are integrated in the process of preparation. A distinction can be made between modifications before the completion of the submission of the order, during the phase of preparatory planning and during the construction phase. Of great importance are especially modifications made after the beginning of the construction works, since, in general, there is little scope for technical modifications and since consequences for the time schedule are to be expected. (orig.) [de

  17. Structural dynamic modification

    Indian Academy of Sciences (India)

    and stiffness matrices) andaor modal parameters, in order to acquire some ... For the above reasons, another modification approach is presented here ... The data necessary to solve the direct problem are dynamic behaviour of the original.

  18. The development and application of a quantitative peptide microarray platform to SH2 domain specificity space

    Science.gov (United States)

    Engelmann, Brett Warren

    The Src homology 2 (SH2) domains evolved alongside protein tyrosine kinases (PTKs) and phosphatases (PTPs) in metazoans to recognize the phosphotyrosine (pY) post-translational modification. The human genome encodes 121 SH2 domains within 111 SH2 domain containing proteins that represent the primary mechanism for cellular signal transduction immediately downstream of PTKs. Despite pY recognition contributing to roughly half of the binding energy, SH2 domains possess substantial binding specificity, or affinity discrimination between phosphopeptide ligands. This specificity is largely imparted by amino acids (AAs) adjacent to the pY, typically from positions +1 to +4 C-terminal to the pY. Much experimental effort has been undertaken to construct preferred binding motifs for many SH2 domains. However, due to limitations in previous experimental methodologies these motifs do not account for the interplay between AAs. It was therefore not known how AAs within the context of individual peptides function to impart SH2 domain specificity. In this work we identified the critical role context plays in defining SH2 domain specificity for physiological ligands. We also constructed a high quality interactome using 50 SH2 domains and 192 physiological ligands. We next developed a quantitative high-throughput (Q-HTP) peptide microarray platform to assess the affinities four SH2 domains have for 124 physiological ligands. We demonstrated the superior characteristics of our platform relative to preceding approaches and validated our results using established biophysical techniques, literature corroboration, and predictive algorithms. The quantitative information provided by the arrays was leveraged to investigate SH2 domain binding distributions and identify points of binding overlap. Our microarray derived affinity estimates were integrated to produce quantitative interaction motifs capable of predicting interactions. Furthermore, our microarrays proved capable of resolving

  19. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  20. Pragmatic Graph Rewriting Modifications

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    1999-01-01

    We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...

  1. Modification of JRR-2

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1978-01-01

    This report gives an outline of some of the main modifications carried out around the Reactor Core on the Research Reactor JRR-2, at the Tokai Research Establishment of JAERI. The JRR-2 was shut down in December 1973, to improve it in heavy water leakage from the metal packing between core tank and support ring, corrosion of the lower shielding plug, and fault in the control-rod mechanism. Main modifications were a standing seal weld at the support ring to stop heavy water leakage, replacement of the reactor top shield and improvement of the helium system. The control-rod assemblies and the refueling devices were replaced by the newly designed ones also. In addition to the modification plan, the irradiated air exhaust system was improved to reduce radioactive argon gas release through the stack. Works were completed successfully in September 1975. But a light water leakage occurred at the stand pipe below the light water tank on November 11, 1975, which was repaired in about 4 months. When considering the operation of above 5,000 hours after the modification, however, the quality of the modification work may be said to be quite satisfactory. The present report in which works to the completion are described may be valuable as a record of reactor modification which is a new experience at JAERI. (auth.)

  2. LpMab-12 Established by CasMab Technology Specifically Detects Sialylated O-Glycan on Thr52 of Platelet Aggregation-Stimulating Domain of Human Podoplanin.

    Directory of Open Access Journals (Sweden)

    Yukinari Kato

    Full Text Available Podoplanin (PDPN, also known as Aggrus, possesses three tandem repeat of platelet aggregation-stimulating (PLAG domains in its N-terminus. Among the PLAG domains, sialylated O-glycan on Thr52 of PLAG3 is essential for the binding to C-type lectin-like receptor-2 (CLEC-2 and the platelet-aggregating activity of human PDPN (hPDPN. Although various anti-hPDPN monoclonal antibodies (mAbs have been generated, no specific mAb has been reported to target the epitope containing glycosylated Thr52. We recently established CasMab technology to develop mAbs against glycosylated membrane proteins. Herein, we report the development of a novel anti-glycopeptide mAb (GpMab, LpMab-12. LpMab-12 detected endogenous hPDPN by flow cytometry. Immunohistochemical analyses also showed that hPDPN-expressing lymphatic endothelial and cancer cells were clearly labeled by LpMab-12. The minimal epitope of LpMab-12 was identified as Asp49-Pro53 of hPDPN. Furthermore, LpMab-12 reacted with the synthetic glycopeptide of hPDPN, corresponding to 38-54 amino acids (hpp3854: 38-EGGVAMPGAEDDVVTPG-54, which carries α2-6 sialylated N-acetyl-D-galactosamine (GalNAc on Thr52. LpMab-12 did not recognize non-sialylated GalNAc-attached glycopeptide, indicating that sialylated GalNAc on Thr52 is necessary for the binding of LpMab-12 to hPDPN. Thus, LpMab-12 could serve as a new diagnostic tool for determining whether hPDPN possesses the sialylation on Thr52, a site-specific post-translational modification critical for the hPDPN association with CLEC-2.

  3. MODIFICATION OF PAPERMAKING GRADE FILLERS: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-08-01

    Full Text Available The use of fillers in paper products can provide cost and energy savings, improved paper properties, increased productivities, and specifically desired paper functionalities. There are many problems associated with the use of fillers, such as unsuitability of calcium carbonate fillers in acid papermaking, negative effects of filler loading on paper strength, sizing, and retention, and tendencies of fillers to cause abrasion and dusting. In order to solve these problems and to make better use of fillers, many methods have been proposed, among which filler modification has been a hot topic. The available technologies of filler modification mainly include modification with inorganic substances, modification with natural polymers or their derivatives, modification with water-soluble synthetic polymers, modification with surfactants, modification with polymer latexes, hydrophobic modification, cationic modification, surface nano-structuring, physical modification by compressing, calcination or grinding, and modification for use in functional papers. The methods of filler modification can provide improved acid tolerant and optical properties of fillers, enhanced fiber-filler bonding, improved filler retention and filler sizabilities, alleviated filler abrasiveness, improved filler dispersability, and functionalization of filled papers. Filler modification has been an indispensable way to accelerate the development of high filler technology in papermaking, which is likely to create additional benefits to papermaking industry in the future.

  4. Human Rights and Behavior Modification

    Science.gov (United States)

    Roos, Philip

    1974-01-01

    Criticisms of behavior modification, which charge that it violates ethical and legal principles, are discussed and reasons are presented to explain behavior modification's susceptibility to attack. (GW)

  5. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    International Nuclear Information System (INIS)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay

    2015-01-01

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair

  6. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  7. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

    Directory of Open Access Journals (Sweden)

    Sylva Brabencová

    2017-12-01

    Full Text Available Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0 and Wassilewskija (Ws homogenized by two techniques (grinding in a cryomill or with a mortar and pestle. We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants. Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  8. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors.

    Science.gov (United States)

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  9. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  10. The PTEN protein: cellular localization and post-translational regulation.

    Science.gov (United States)

    Leslie, Nick R; Kriplani, Nisha; Hermida, Miguel A; Alvarez-Garcia, Virginia; Wise, Helen M

    2016-02-01

    The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation. © 2016 Authors; published by Portland Press Limited.

  11. Value-impact assessment of safety-related modifications

    International Nuclear Information System (INIS)

    Knowles, W.M.C.; Dinnie, K.S.; Gordon, C.W.

    1992-01-01

    Like other nuclear utilities, Ontario Hydro, as part of its risk management activities, continually assesses the safety of its nuclear operations. In addition, new regulatory requirements are being applied to the older nuclear power plants. Both of these result in proposed plant modifications designed to reduce the risk to the public. However, modifications to an operating plant can have serious economic effects, and the resources, both financial and personnel, required for the implementation of these modifications are limited. Thus, all potential benefits and effects of a proposed modification must be thoroughly investigated to judge whether the modification is beneficial. Ontario Hydro has begun to use comprehensive value-impact assessments, utilizing plant-specific probabilistic risk assessments (PRAs), as tools to provide an informed basis for judgments on the benefit of safety-related modifications. The results from value-impact assessments can also be used to prioritize the implementation of these modifications

  12. iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2014-05-01

    Full Text Available Post-translational modifications (PTMs play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers. With the avalanche of protein sequences generated in the post-genomic age, it is highly desired to develop computational methods to address this problem. In view of this, a new predictor called “iHyd-PseAAC” (identify hydroxylation by pseudo amino acid composition was proposed by incorporating the dipeptide position-specific propensity into the general form of pseudo amino acid composition. It was demonstrated by rigorous cross-validation tests on stringent benchmark datasets that the new predictor is quite promising and may become a useful high throughput tool in this area. A user-friendly web-server for iHyd-PseAAC is accessible at http://app.aporc.org/iHyd-PseAAC/. Furthermore, for the convenience of the majority of experimental scientists, a step-by-step guide on how to use the web-server is given. Users can easily obtain their desired results by following these steps without the need of understanding the complicated mathematical equations presented in this paper just for its integrity.

  13. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Juvvadi, Praveen Rao; Belina, Detti; Soderblom, Erik J.; Moseley, M. Arthur; Steinbach, William J.

    2013-01-01

    Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated in vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems

  14. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Juvvadi, Praveen Rao; Belina, Detti [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Soderblom, Erik J.; Moseley, M. Arthur [Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC (United States); Steinbach, William J., E-mail: bill.steinbach@duke.edu [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (United States)

    2013-02-15

    Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated in vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems.

  15. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  16. Radiation modification of materials

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1987-01-01

    Industrial and radiation chemical processes of material modification based on cross-linking of polymers as a result of radiation are considered. Among them are production of cables and rods with irradiated modified insulation, production of hardened and thermo-shrinkaging polymer products (films, tubes, fashioned products), production of radiation cross-linked polyethylene foam, technology of radiation vulcanization of elastomers. Attention is paid to radiation plants on the basis of γ-sources and electron acceleratos as well as to radiation conditions

  17. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Van Dam, N.M.; Van der Putten, W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant

  18. Behavior Modification in the Classroom

    Science.gov (United States)

    Whitman, Mryon; Whitman, Joan

    1971-01-01

    This article presents the theoretical rationale for behavior modification, principally through its comparison with traditional psychotherapies, and suggests some behavior modification techniques for the classroom management of maladaptive behavior. (Author)

  19. Modification in CSF specific gravity in acutely decompensated cirrhosis and acute on chronic liver failure independent of encephalopathy, evidences for an early blood-CSF barrier dysfunction in cirrhosis.

    Science.gov (United States)

    Weiss, Nicolas; Rosselli, Matteo; Mouri, Sarah; Galanaud, Damien; Puybasset, Louis; Agarwal, Banwari; Thabut, Dominique; Jalan, Rajiv

    2017-04-01

    Although hepatic encephalopathy (HE) on the background of acute on chronic liver failure (ACLF) is associated with high mortality rates, it is unknown whether this is due to increased blood-brain barrier permeability. Specific gravity of cerebrospinal fluid measured by CT is able to estimate blood-cerebrospinal fluid-barrier permeability. This study aimed to assess cerebrospinal fluid specific gravity in acutely decompensated cirrhosis and to compare it in patients with or without ACLF and with or without hepatic encephalopathy. We identified all the patients admitted for acute decompensation of cirrhosis who underwent a brain CT-scan. Those patients could present acute decompensation with or without ACLF. The presence of hepatic encephalopathy was noted. They were compared to a group of stable cirrhotic patients and healthy controls. Quantitative brain CT analysis used the Brainview software that gives the weight, the volume and the specific gravity of each determined brain regions. Results are given as median and interquartile ranges and as relative variation compared to the control/baseline group. 36 patients presented an acute decompensation of cirrhosis. Among them, 25 presented with ACLF and 11 without ACLF; 20 presented with hepatic encephalopathy grade ≥ 2. They were compared to 31 stable cirrhosis patients and 61 healthy controls. Cirrhotic patients had increased cerebrospinal fluid specific gravity (CSF-SG) compared to healthy controls (+0.4 %, p encephalopathy did not modify CSF-SG (-0.09 %, p = 0.1757). Specific gravity did not differ between different brain regions according to the presence or absence of either ACLF or HE. In patients with acute decompensation of cirrhosis, and those with ACLF, CSF specific gravity is modified compared to both stable cirrhotic patients and healthy controls. This pattern is observed even in the absence of hepatic encephalopathy suggesting that blood-CSF barrier impairment is manifest even in absence of overt

  20. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  1. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.

    Science.gov (United States)

    Pesavento, James J; Bullock, Courtney R; LeDuc, Richard D; Mizzen, Craig A; Kelleher, Neil L

    2008-05-30

    Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.

  2. Proposed design modifications and technical specification changes on grid voltage degradation for the Point Beach Nuclear Plant, Units 1 and 2 (Docket Nos. 50-266 and 50-301). Technical evaluation report

    International Nuclear Information System (INIS)

    White, R.L.

    1981-01-01

    This report documents the technical evaluation of the proposed design mofifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the Point Beach Nuclear Plant, Units 1 and 2. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation compares the submittals made by the licensee with the NRC staff positions and the review criteria and presents the reviewer's conclusion on the acceptability of the proposed system

  3. Genetic modification and genetic determinism

    Science.gov (United States)

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  4. Safety improvement plant modifications at Forsmark 3, 1986-1995

    Energy Technology Data Exchange (ETDEWEB)

    Kjellander, M. [Kaernkraftsaekerhet och utbildning, Nykoeping (Sweden)

    1998-10-01

    All important plant modifications implemented in safety-related equipment or software at Forsmark 3 are compiled in this report. The report covers the period from the start of commercial operation in 1985 up to and including 1995. The plant modifications, which were carried out by different suppliers during the guarantee period, are not included in the report since they have not been administered by the Forsmark organisation. The report contains references to relevant modification notices and to files and file divider numbers. These data refer to the Safety Department central archives. The report is based on Forsmark 3 Technical Specifications (STF) which means that Chapter 3 is divided into the same sections as in the STF. Modifications, which cannot be directly attributed to any specific STF chapter, and major modifications are described separately

  5. The ethics of molecular memory modification.

    Science.gov (United States)

    Hui, Katrina; Fisher, Carl E

    2015-07-01

    Novel molecular interventions have recently shown the potential to erase, enhance and alter specific long-term memories. Unique features of this form of memory modification call for a close examination of its possible applications. While there have been discussions of the ethics of memory modification in the literature, molecular memory modification (MMM) can provide special insights. Previously raised ethical concerns regarding memory enhancement, such as safety issues, the 'duty to remember', selfhood and personal identity, require re-evaluation in light of MMM. As a technology that exploits the brain's updating processes, MMM helps correct the common misconception that memory is a static entity by demonstrating how memory is plastic and subject to revision even in the absence of external manipulation. Furthermore, while putatively safer than other speculative technologies because of its high specificity, MMM raises notable safety issues, including potential insidious effects on the agent's emotions and personal identity. Nonetheless, MMM possesses characteristics of a more permissible form of modification, not only because it is theoretically safer, but because its unique mechanism of action requires a heightened level of cooperation from the agent. Discussions of memory modification must consider the specific mechanisms of action, which can alter the weight and relevance of various ethical concerns. MMM also highlights the need for conceptual accuracy regarding the term 'enhancement'; this umbrella term will have to be differentiated as new technologies are applied to a widening array of purposes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Effect of surface modification and hybridization on dynamic ...

    Indian Academy of Sciences (India)

    Epoxy; Roystonea regia; glass; surface modification; hybridization; dynamic mechanical ... other advantages such as light weight, low cost, high specific ... ful technique to study the mechanical behaviour of mate- ... The test reveals response.

  7. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Marco Proietto

    2015-07-01

    Full Text Available Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC, a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ, the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM. The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.

  8. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region.

    Directory of Open Access Journals (Sweden)

    Veronika N Bade

    Full Text Available The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls, ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation. ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no

  9. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost......-efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through the enzymatic hydrolysis of sphingomyelin have been studied. sphingomyelin is a ubiquitous membrane-lipid and rich in dairy products or by-products. It has been verified...... that sphingomyelin modification gives a feasible approach to the potential production of ceramide. The reaction system has been improved through system evaluation and the optimization of several important factors, and phospholipase C from Clostridium perfringens shows higher activity towards the hydrolysis reaction...

  10. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07

    NARCIS (Netherlands)

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA

  11. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  12. Infections associated with body modification

    Directory of Open Access Journals (Sweden)

    Samson Sai-Yin Wong

    2012-12-01

    Full Text Available Although exact statistics are lacking, body modifications for cosmetic purposes are performed in many countries. The commonest forms include tattooing, body piercing, and breast and facial augmentation using implants or injectable fillers. Liposuction and, to a lesser extent, mesotherapy are also practiced in many countries. Infective complications of these procedures include local infections, transmission of bloodborne pathogens (viral hepatitis and human immunodeficiency virus, and distant infections such as infective endocarditis. Presence of foreign bodies, long healing time of piercing wounds, and poor compliance with infection control practices of some practitioners all predispose the recipients to infections. Apart from the endogenous microbial flora of the skin and mucosae, atypical mycobacteria, especially the rapid growers, have emerged as some of the most important pathogens in such settings. Outbreaks of infection are commonly reported. We hereby review the current knowledge of the topic with specific focus on infections associated with tattooing, body piercing, breast augmentation, mesotherapy, liposuction, and tissue filler injections. Greater awareness among consumers and health-care professionals, as well as more stringent regulations by the health authorities, is essential to minimize the health risks arising from these procedures.

  13. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    Science.gov (United States)

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  14. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Directory of Open Access Journals (Sweden)

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  15. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen

    2016-12-19

    Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies

  16. Histogram specification as a method of density modification

    International Nuclear Information System (INIS)

    Harrison, R.W.

    1988-01-01

    A new method for improving the quality and extending the resolution of Fourier maps is described. The method is based on a histogram analysis of the electron density. The distribution of electron density values in the map is forced to be 'ideal'. The 'ideal' distribution is assumed to be Gaussian. The application of the method to improve the electron density map for the protein Acinetobacter asparaginase, which is a tetrameric enzyme of molecular weight 140000 daltons, is described. (orig.)

  17. Histogram specification as a method of density modification

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, R.W.

    1988-12-01

    A new method for improving the quality and extending the resolution of Fourier maps is described. The method is based on a histogram analysis of the electron density. The distribution of electron density values in the map is forced to be 'ideal'. The 'ideal' distribution is assumed to be Gaussian. The application of the method to improve the electron density map for the protein Acinetobacter asparaginase, which is a tetrameric enzyme of molecular weight 140000 daltons, is described.

  18. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated local mode can be excited cleanly, and is usually well-separated in energy from the phonon bath. These basic dynamical studies have provided new insights for example into the fundamental mechanisms that control proton diffusion in these oxides. This area of materials science has largely fulfilled its promise to identify degradation mechanisms in electronic and optoelectronic devices, and to advance solid oxide proton conductors for fuel cells, gas sensors and proton-exchange membrane applications. It also provides the basis for innovations in materials synthesis involving atomic-selective diffusion and desorption.

  19. Site-specific modification of the lactose operator with acetylaminofluorene

    Energy Technology Data Exchange (ETDEWEB)

    Stoerhrer, G; Osband, J A; Alvarado-Urbina, G

    1983-01-01

    The authors have synthesized the tetradecamer GAGCXGATAACAAG containing a part of the sequence of the lactose operator. A guanine base in the sequence is replaced by the adduct of the carcinogen 2-acetylaminofluorene with guanine. Under the standard conditions of de-protection, the fluorene moiety is lost, leaving behind a guanine oxidation product. New conditions of de-protection have been developed which allow the isolation of an oligonucleotide containing the adduct of 2-aminofluorene with guanine. The presence of the amino-fluorene adduct greatly increases retention on reverse phase chromatography and produces a unique pattern of sequencing bands. 10 references, 6 figures.

  20. Regulation of the tumor suppressor PML by sequential posttranslational modifications

    Directory of Open Access Journals (Sweden)

    Lienhard eSchmitz

    2012-12-01

    Full Text Available Posttranslational modifications (PTMs regulate multiple biological functions of the PML (promyelocytic leukemia protein and also the fission, disassembly and rebuilding of PML nuclear bodies (PML-NBs during the cell cycle. Pathway-specific PML modification patterns ensure proper signal output from PML-NBs that suit the specific functional requirements. Here we comprehensively review the signaling pathways and enzymes that modify PML and also the oncogenic PML-RARα fusion protein. Many PTMs occur in a hierarchical and timely organized fashion. Phosphorylation or acetylation constitute typical starting points for many PML modifying events, while degradative ubiquitination is an irreversible end point of the modification cascade. As this hierarchical organization of PTMs frequently turns phosphorylation events as primordial events, kinases or phosphatases regulating PML phosphorylation may be interesting drug targets to manipulate the downstream modifications and thus the stability and function of PML or PML-RARα.

  1. Diagonal chromatography to study plant protein modifications.

    Science.gov (United States)

    Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris

    2016-08-01

    An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Chemical modifications and reactions in DNA nanostructures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2017-01-01

    such as hydrocarbons or steroids have been introduced to change the surface properties of DNA origami structures, either to protect the DNA nanostructure or to dock it into membranes and other hydrophobic surfaces. DNA nanostructures have also been used to control covalent chemical reactions. This article provides......DNA nanotechnology has the power to form self-assembled and well-defined nanostructures, such as DNA origami, where the relative positions of each atom are known with subnanometer precision. Our ability to synthesize oligonucleotides with chemical modifications in almost any desired position...... provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can...

  3. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  4. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  5. Repair-modification of radiodamaged genes

    International Nuclear Information System (INIS)

    Volpe, P.; Institute of Experimental Medicine, Rome; Eremenko, T.

    1995-01-01

    It is proposed that through repair-modification, the modified base 5mC may have facilitated the divergent evolution of coding (hypomethylated exon) and uncoding (hypermethylated promoter and intron) sequences in eukaryotic genes. The radioinduced repair patches appearing in regions lacking 5mC are fully reconstructed by excision-repair, whereas those appearing in regions containing 5mC are incompletely reconstructed by this conventional mechanism. Such a second class of repair patches may, however, become fully reconstructed, in the S phase, by repair-modification. In fact, while DNA polymerase β - which is a key enzyme of excision-repair - is active through the whole interphase. DNA methylase - which is responsible for post-synthetic DNA modification - is essentially active in S. Uncoupling of these two enzyme systems, outside S, might explain why in unsynchronised cells repair patches of non-replicating strands are hypomethylated when compared with specific methylation of replicating strands. In other words, excision-repair would always be able to re-establish the primary ATGC language of both damaged unmethylated and methylated regions, while repair-modification would be able to re-establish the modified ATGC(5mC) language of the damaged methylated regions, only in S, but not in G 1 or G 2 . In these two phases, when DNA methylation is inversely correlated with pre-mRNA transcription (as in the case of many tissue-specific genes), such demethylation might induce a silent transcriptional unit to become active. (Author)

  6. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).

  7. Modifications to Replacement Costs System

    International Nuclear Information System (INIS)

    Godec, M.

    1989-01-01

    The purpose of this memorandum is to document the improvements and modifications made to the Replacement Costs of Crude Oil (REPCO) Supply Analysis System. While some of this work was performed under our previous support contract to DOE/ASFE, we are presenting all modifications and improvements are presented here for completeness. The memo primarily documents revisions made to the Lower-48 Onshore Model. Revisions and modifications made to other components and models in the REPCO system which are documented elsewhere are only highlighted in this memo. Generally, the modifications made to the Lower-48 Onshore Model reflect changes that have occurred in domestic drilling, oil field costs, and reserves since 1982, the date of the most recent available data used for the original Replacement Costs report, published in 1985

  8. Standard approach to plant modifications

    International Nuclear Information System (INIS)

    Mecredy, R.C.

    1988-01-01

    Organizational and management approaches to the design, installation, and turnover of nuclear plant modifications have changed dramatically in the last 10 to 15 yr. In response to these changes, organizational and individual responsibilities have been defined and management systems have been established at Rochester Gas and Electric (RG and E) Corporation to ensure that high-quality plant modifications are installed in a timely manner that satisfies user needs at minimal cost

  9. Particle Distribution Modification by Low Amplitude Modes

    International Nuclear Information System (INIS)

    White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.

    2009-01-01

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  10. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  11. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  12. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  13. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  14. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    Science.gov (United States)

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  15. Drug Addiction and DNA Modifications.

    Science.gov (United States)

    Brown, Amber N; Feng, Jian

    2017-01-01

    Drug addiction is a complex disorder which can be influenced by both genetic and environmental factors. Research has shown that epigenetic modifications can translate environmental signals into changes in gene expression, suggesting that epigenetic changes may underlie the causes and possibly treatment of substance use disorders. This chapter will focus on epigenetic modifications to DNA, which include DNA methylation and several recently defined additional DNA epigenetic changes. We will discuss the functions of DNA modifications and methods for detecting them, followed by a description of the research investigating the function and consequences of drug-induced changes in DNA methylation patterns. Understanding these epigenetic changes may provide us translational tools for the diagnosis and treatment of addiction in the future.

  16. Minimal modification to tribimaximal mixing

    International Nuclear Information System (INIS)

    He Xiaogang; Zee, A.

    2011-01-01

    We explore some ways of minimally modifying the neutrino mixing matrix from tribimaximal, characterized by introducing at most one mixing angle and a CP violating phase thus extending our earlier work. One minimal modification, motivated to some extent by group theoretic considerations, is a simple case with the elements V α2 of the second column in the mixing matrix equal to 1/√(3). Modifications by keeping one of the columns or one of the rows unchanged from tribimaximal mixing all belong to the class of minimal modification. Some of the cases have interesting experimentally testable consequences. In particular, the T2K and MINOS collaborations have recently reported indications of a nonzero θ 13 . For the cases we consider, the new data sharply constrain the CP violating phase angle δ, with δ close to 0 (in some cases) and π disfavored.

  17. DNA modification by alkylating compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kruglyakova, E.E.

    1985-09-01

    Results are given for research on the physico-chemical properties of alkylating compounds - nitroso alkyl ureas (NAU) which possess a broad spectrum of biological activity, such as mutagenic, carcinogenic, and anti-tumor action that is due to the alkylation and carbamoylation of DNA as well as other cellular components. Identified chemical products of NAU interaction with DNA and its components are cited. Structural conversions of a DNA macromolecule resulting from its chemical modification are examined. NAU are used to discuss possible biological consequences of DNA modification. 148 references.

  18. Corrosion principles and surface modification

    International Nuclear Information System (INIS)

    Kruger, J.

    1982-01-01

    This chapter examines the important strategies provided by the newer ideas of corrosion science and engineering that surface modification techniques must utilize to help prevent corrosion, especially the most damaging kind of aqueous corrosion, localized corrosion. Provides a brief introduction to the principles underlying the phenomenon of corrosion in order to use them to discuss surface modification strategies to combat corrosion. Discusses the electrochemistry of corrosion; the thermodynamics of corrosion; the kinetics of corrosion; thermodynamic strategies; and kinetic strategies (formation of more protective passive films; resistance to breakdown; ductility; repassivation)

  19. Autoantibodies to Posttranslational Modifications in Rheumatoid Arthritis

    Science.gov (United States)

    Burska, Agata N.; Hunt, Laura; Strollo, Rocky; Ryan, Brent J.; Vital, Ed; Nissim, Ahuva; Winyard, Paul G.; Emery, Paul; Ponchel, Frederique

    2014-01-01

    Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential. PMID:24782594

  20. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available the treatment with fluorinated or silicon compounds)1-4 and by enhancing the surface roughness with a fractal structure5-8. Cotton, a cellulose-based material, that is greatly hydrophilic, is more benefited when made hydrophobic. Modification of cotton...

  1. Antibodies to H2a and H2b histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones.

    Science.gov (United States)

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A

    2017-06-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecules when they are released into the extracellular space. Administration of histones to animals leads to systemic inflammatory and toxic responses. Autoantibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Electrophoretically homogeneous IgGs containing no canonical enzymes were isolated from the sera of HIV-infected patients by chromatography on several affinity sorbents including anti-histone Sepharose. In contrast to canonical proteases (trypsin, chymotrypsin, proteinase K), IgGs from HIV-infected patients specifically hydrolyzed only histones but not many other tested globular proteins. Using MALDI mass spectrometry the sites of H2a and H2b histone cleavage by anti-histone IgGs were determined for the first time. One cluster of H2a hydrolysis contains two major (↕) and four moderate (↓) cleavage sites: 31-H↓R↓L↓L↓R↕K G↕N-38. One major and two moderate sites of cleavage were revealed in the second cluster: 14-A↕KSRS↓SRA↓G-22. The third cluster corresponding to the H2a C-terminal part contains only five minor (†) sites of cleavage: 82-H†LQLAIRNDEELN†KLLG†RV†T†I-102. It was shown that two major and four moderate sites of cleavage were present in the main cluster of H2b hydrolysis: 46-K↕QvhpD↓TgiS↓SkA↓M↕GiM↓N-63. Two moderate sites of cleavage correspond to a relatively short 6-mer cluster: 12-K↓GskK↓A-17. The third relatively long 9-mer cluster contains one major and two minor sites of H2b cleavage: 80-L↕AHYN†KRS†T-88. In the nucleosome core particle, most of the major and moderate cleavage sites are located at the H2a/H2b interaction interface. Minor cleavage sites of H2a are involved in binding with H3 in the nucleosome core. Two moderate cleavage sites of H2b and one

  2. Trophic interaction modifications: an empirical and theoretical framework.

    Science.gov (United States)

    Terry, J Christopher D; Morris, Rebecca J; Bonsall, Michael B

    2017-10-01

    Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  3. High-throughput discovery of T cell epitopes in type 1 diabetes using DNA barcode labelledpeptide-MHC multimers

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Bentzen, Amalie Kai; Overgaard, A. Julie

    2016-01-01

    applying a novel technology where the selection of MHC-multimer binding T cells is followed by amplification and sequencing of MHC multimer-associated DNA barcodes revealing their recognition. This technique enables simultaneous detection of >1000 specificities. Identifying post translational modifications...

  4. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  5. Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness

    DEFF Research Database (Denmark)

    Olsen, Johan Gotthardt; Teilum, Kaare; Kragelund, Birthe Brandt

    2017-01-01

    in their malleability, which enables them to bind several different partners with high specificity. In addition, their interactions with other macromolecules can be regulated by a variable amount of chemically diverse post-translational modifications. Four kinetically and energetically different types of complexes...

  6. A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry

    Science.gov (United States)

    Glycosylation is a common post-translational modification of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has b...

  7. Endoplasmic reticulum-directed recombinant mRNA displays subcellular localization equal to endogenous mRNA during transient expression in CHO cells

    DEFF Research Database (Denmark)

    Beuchert Kallehauge, Thomas; Kol, Stefan; Andersen, Mikael Rørdam

    2016-01-01

    When expressing pharmaceutical recombinant proteins in mammalian cells, the protein is commonly directed through the secretory pathway, in a signal peptide-dependent manner, to acquire specific post-translational modifications and to facilitate secretion into the culture medium. One key premise...

  8. OCCASIONAL ADNOMINAL IDIOM MODIFICATION - A COGNITIVE LINGUISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Andreas Langlotz

    2006-06-01

    Full Text Available occasional Adnominal Idiom Modification - A Cognitive Linguistic Approach From a cognitive-linguistic perspective, this paper explores alternative types of adnoniinal modification in occasional variants of English verbal idioms. Being discussed against data extracted from the British National Corpiis (BNC, the model claims that in idioni-production idiomatic constructions are activated as complex linguistic schemas to code a context-specific target-conceptualisation. Adnominal pre- and postmodifications are one specific form of creative alteration to adapt the idiom for this purpose. Semantically, idiom-interna1 NPextension is not a uniforni process. It is necessary to distinguish two systematic types of adnominal modification: external and internal modification (Ernst 1981. While external NPmodification has adverbial function, ¡.e. it modifies the idiom as a unit, internal modification directly applies to the head-noun and thus depends on the degree of motivation and analysability of a given idiom. Following the cognitive-linguistic framework, these dimensions of idiom-transparency result from the language user's ability to remotivate the bipartite semantic structure by conceptual metaphors and metonymies.

  9. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques

  10. 78 FR 57336 - Disadvantaged Business Enterprise: Program Implementation Modifications

    Science.gov (United States)

    2013-09-18

    ... 2105-AE08 Disadvantaged Business Enterprise: Program Implementation Modifications AGENCY: Office of the... Business Enterprise (DBE) Program. In a later notice published on October 25, 2012, the Department extended... writing on specific aspects of the NPRM noted below. DATES: A public listening session will be held on...

  11. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  12. 76 FR 78827 - Loan Guaranty Revised Loan Modification Procedures

    Science.gov (United States)

    2011-12-20

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 36 RIN 2900-AN78 Loan Guaranty Revised Loan... amends a Department of Veterans Affairs (VA) Loan Guaranty regulation related to modification of guaranteed housing loans in default. Specifically, changes are made to requirements related to maximum...

  13. Early cytoskeletal protein modifications precede overt structural degeneration in the DBA/2J mouse model of glaucoma

    Directory of Open Access Journals (Sweden)

    Gina Nicole Wilson

    2016-11-01

    Full Text Available Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau, calpain-mediated spectrin breakdown product (145/150kDa, β –tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC, the main retinal target in mice. Phosphorylated neurofilament-heavy chain (pNF-H was elevated within the optic nerve (ON and SC of 8-10 month-old DBA/2J mice, but was not evident in the retina until 12-15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau occurred in ON and SC between 3-8 month of age while retinal ptau accumulations occurred at 12-15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein, dynactin. We observed a transport-related decrease of β-tubulin in ON of 10-12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport

  14. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  15. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  16. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    An historical overview of the main advances in the understanding of bombardment-induced surface topography is presented. The implantation and sputtering mechanisms which are relevant to ion bombardment modification of surfaces and consequent structural, electronic and compositional changes are described. Descriptions of plasma and ion-beam sputtering-induced film formation, primary ion-beam deposition, dual beam techniques, cluster of molecule ion-beam deposition, and modification of thin film properties by ion bombardment during deposition are presented. A detailed account is given of the analytical and computational modelling of topography from the viewpoint of first erosion theory. Finally, an account of the possible application and/or importance of textured surfaces in technologies and/or experimental techniques not considered in previous chapters is presented. refs.; figs.; tabs

  17. Epigenetic modifications in prostate cancer.

    Science.gov (United States)

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  18. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  19. The NEDD8 modification pathway in plants

    Directory of Open Access Journals (Sweden)

    Claus eSchwechheimer

    2014-03-01

    Full Text Available NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB, is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a posttranslational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.

  20. Posttranslational Modifications and the Immunogenicity of Biotherapeutics

    Directory of Open Access Journals (Sweden)

    Roy Jefferis

    2016-01-01

    Full Text Available Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs, including quality control (QC in the endoplasmic reticulum (ER and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA; aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs, a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.

  1. Heavy flavored jet modification in CMS

    CERN Document Server

    AUTHOR|(CDS)2084335

    2016-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets (from charm and bottom quarks) in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the heavy flavor jet spectra and measurements of the nuclear modification factors in both PbPb and pPb as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013. Finally, we also will present a proposal for c-jet tagging methodology to be used for the upcoming hi...

  2. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    Directory of Open Access Journals (Sweden)

    Eikan Mishima

    Full Text Available The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A, N6-methyladenosine (m6A, pseudouridine, and 5-methylcytidine (m5C showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  3. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    Science.gov (United States)

    Mishima, Eikan; Jinno, Daisuke; Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  4. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    Ion bombardment-induced modification of surfaces may be considered one of the significant scientific and technological developments of the last two decades. The understanding acquired concerning the underlying mechanisms of several phenomena occurring during ion-surface interactions has led to applications within different modern technologies. These include microelectronics, surface acoustical and optical technologies, solar energy conversion, thin film technology, ion implantation metallurgy, nuclear track technology, thermonuclear fusion, vacuum technology, cold welding technology, biomedicine (implantology). It has become clear that information on many relevant advances, regarding ion bombardment modification of surfaces is dispersed among journals involving fields sometimes not clearly related. This may result, in some cases, in a loss of the type of interdisciplinary exchange of ideas, which has proved to be so fruitful for the advancement of science and technology. This book has been planned in an attempt to collect at least some of today's relevant information about the experimental and theoretical knowledge related to surface modification and its application to technology. (Auth.)

  5. Qualified equipment for spare parts and modifications in Belgium

    International Nuclear Information System (INIS)

    Berthe, J.

    1993-01-01

    This paper describes the procedure followed for the procurement of components for spare parts and systems modifications, the legal and quality assurance environment and the specific measures taken to cope with various codes and standards. For pressure components, the regulation aspects of the American code used during the construction phase of plants had to be adapted to the Belgian context and to the actual industry situation. Obsolescence of products is treated either by qualification of a new product or by design modifications, or by replacement with an already qualified product. In these cases, the work is handled by the utility's engineering organization. 2 figs

  6. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  7. BIOCHAR MODIFICATION, THERMAL STABILITY AND TOXICITY OF PRODUCTS MODIFICATION

    Directory of Open Access Journals (Sweden)

    Romana FRIEDRICHOVÁ

    2017-12-01

    Full Text Available Biochar is a product obtained from processing of waste biomass. The main application of biochar is in soil and environment remediation. Some new applications of this carbonaceous material take advantage of its adsorption capacity use it as a heterogeneous catalyst for energy storage and conversion etc. This contribution describes thermal stability of the original biochar. It discusses biochar modified by chemical and physical methods including a new compound of biochar-graphene oxide. The purpose of the modifications is to increase its active surface to introduce active functional groups into the carbon structure of biochar in relation to fire safety and toxicity of those products.

  8. Genetic modification of stem cells for transplantation.

    Science.gov (United States)

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  9. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  10. A study of microbial profile modification

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.H.; Lee, H.O.

    1995-12-31

    A microbial profile modification method using spores was investigated. A halotolerant, spore-forming, biopolymer-producing mesophile was used in Berea cores with a specifically formulated nutrient package to reduce the permeability of the rock. The degree of permeability reduction varied widely depending on the stimulation protocols used. The incubation period had a significant impact on permeability reduction, and there appeared to be an optimum incubation time for maximum permeability reduction. The reduction persisted for many PV of brine injection and appeared very stable. For our microbes used in this study, the permeability reduction was about the same when the NaCl concentration was above 2 wt% in the range from 0 wt% to 10 wt%.

  11. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  12. Recent advances in the chemical modification of unsaturated polymers

    Science.gov (United States)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  13. Disparity modifications and the emotional effects of stereoscopic images

    Science.gov (United States)

    Kawai, Takashi; Atsuta, Daiki; Tomiyama, Yuya; Kim, Sanghyun; Morikawa, Hiroyuki; Mitsuya, Reiko; Häkkinen, Jukka

    2014-03-01

    This paper describes a study that focuses on disparity changes in emotional scenes of stereoscopic (3D) images, in which an examination of the effects on pleasant and arousal was carried out by adding binocular disparity to 2D images that evoke specific emotions, and applying disparity modification based on the disparity analysis of famous 3D movies. From the results of the experiment, for pleasant, a significant difference was found only for the main effect of the emotions. On the other hand, for arousal, there was a trend of increasing the evaluation values in the order 2D condition, 3D condition and 3D condition applied the disparity modification for happiness, surprise, and fear. This suggests the possibility that binocular disparity and the modification affect arousal.

  14. Epigenetic modifications and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marpadga A. Reddy

    2012-09-01

    Full Text Available Diabetic nephropathy (DN is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a “metabolic memory” of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.

  15. Modification Propagation in Complex Networks

    Science.gov (United States)

    Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador

    To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.

  16. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120*

    Science.gov (United States)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.

    2009-01-01

    The crystal structure of the cyanobacterial cytochrome b6f complex has previously been solved to 3.0-Å resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b6f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b6f complex. Purified b6f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b6f complex, determined to a resolution of 3.0Å (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme bp that is rotated 180° about the α- and γ-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides