WorldWideScience

Sample records for specific physical systems

  1. A Document Analysis of Teacher Evaluation Systems Specific to Physical Education

    Science.gov (United States)

    Norris, Jason M.; van der Mars, Hans; Kulinna, Pamela; Kwon, Jayoun; Amrein-Beardsley, Audrey

    2017-01-01

    Purpose: The purpose of this document analysis study was to examine current teacher evaluation systems, understand current practices, and determine whether the instrumentation is a valid measure of teaching quality as reflected in teacher behavior and effectiveness specific to physical education (PE). Method: An interpretive document analysis…

  2. Engineering safe and secure cyber-physical systems the specification PEARL approach

    CERN Document Server

    Gumzej, Roman

    2016-01-01

    This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system’s safety and using appropriate hardware and software components inherently safe system’s architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels.

  3. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  4. System and method for deriving a process-based specification

    Science.gov (United States)

    Hinchey, Michael Gerard (Inventor); Rash, James Larry (Inventor); Rouff, Christopher A. (Inventor)

    2009-01-01

    A system and method for deriving a process-based specification for a system is disclosed. The process-based specification is mathematically inferred from a trace-based specification. The trace-based specification is derived from a non-empty set of traces or natural language scenarios. The process-based specification is mathematically equivalent to the trace-based specification. Code is generated, if applicable, from the process-based specification. A process, or phases of a process, using the features disclosed can be reversed and repeated to allow for an interactive development and modification of legacy systems. The process is applicable to any class of system, including, but not limited to, biological and physical systems, electrical and electro-mechanical systems in addition to software, hardware and hybrid hardware-software systems.

  5. Accumulation of Domain-Specific Physical Inactivity and Presence of Hypertension in Brazilian Public Healthcare System.

    Science.gov (United States)

    Turi, Bruna Camilo; Codogno, Jamile S; Fernandes, Romulo A; Sui, Xuemei; Lavie, Carl J; Blair, Steven N; Monteiro, Henrique Luiz

    2015-11-01

    Hypertension is one of the most common noncommunicable diseases worldwide, and physical inactivity is a risk factor predisposing to its occurrence and complications. However, it is still unclear the association between physical inactivity domains and hypertension, especially in public healthcare systems. Thus, this study aimed to investigate the association between physical inactivity aggregation in different domains and prevalence of hypertension among users of Brazilian public health system. 963 participants composed the sample. Subjects were divided into quartiles groups according to 3 different domains of physical activity (occupational; physical exercises; and leisure-time and transportation). Hypertension was based on physician diagnosis. Physical inactivity in occupational domain was significantly associated with higher prevalence of hypertension (OR = 1.52 [1.05 to 2.21]). The same pattern occurred for physical inactivity in leisure-time (OR = 1.63 [1.11 to 2.39]) and aggregation of physical inactivity in 3 domains (OR = 2.46 [1.14 to 5.32]). However, the multivariate-adjusted model showed significant association between hypertension and physical inactivity in 3 domains (OR = 2.57 [1.14 to 5.79]). The results suggest an unequal prevalence of hypertension according to physical inactivity across different domains and increasing the promotion of physical activity in the healthcare system is needed.

  6. Cyber-Physical Energy Systems Modeling, Test Specification, and Co-Simulation Based Testing

    DEFF Research Database (Denmark)

    van der Meer, A. A.; Palensky, P.; Heussen, Kai

    2017-01-01

    The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required....... Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real......, and mixed lab settings). This paper describes the formal holistic test case specification method and applies it to a particular co-simulation experimental setup. The various building blocks of such a simulation (i.e., FMI, mosaik, domain-specific simulation federates) are covered in more detail...

  7. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  8. Specific Physical Training in Elite Male Team Handball.

    Science.gov (United States)

    Wagner, Herbert; Gierlinger, Manuel; Adzamija, Nermin; Ajayi, Samuel; Bacharach, David W; von Duvillard, Serge P

    2017-11-01

    Wagner, H, Gierlinger, M, Adzamija, N, Ajayi, S, Bacharach, DW, and von Duvillard, SP. Specific physical training in elite male team handball. J Strength Cond Res 31(11): 3083-3093, 2017-Specific physical training in elite team handball is essential for optimal player's performance; however, scientific knowledge is generally based on temporary training studies with subelite athletes. Therefore, the aim of the study was to analyze the effects of specific physical training in an elite male handball team over the entire season. Twelve players of a male handball team from the First Austrian Handball League conducted a 1-year specific physical training program in addition to their normal (team handball techniques and tactics) weekly training. Performance was measured with 5 general and 4 specific tests as well as game statistics during competition. Repeated measures analysis of variances and paired sample t-test were used to analyze differences in performance during training. We found a significant increase in oxygen uptake, offense time, defense time, fast break time, and jump height in the specific tests. Game performance statistics revealed a lower throwing percentage in the hosting team (59%) compared with the rival teams (63%). Our results indicated that specific endurance and agility are an acceptable modality in elite male team handball. However, performance in competition is strongly influenced by specific techniques and tactics. We recommend to strength and conditioning professionals that they tailor strength and power training, coordination and endurance as specific as possible, using free weights, agility exercises that include change in direction and jumps as well as short (10-15 seconds) high-intensity intervals.

  9. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  10. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1986-03-01

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  11. Software Engineering Issues for Cyber-Physical Systems

    DEFF Research Database (Denmark)

    Al-Jaroodi, Jameela; Mohamed, Nader; Jawhar, Imad

    2016-01-01

    step; however, designing and implementing the right software to integrate and use them effectively is essential. The software facilitates better interfaces, more control and adds smart services, high flexibility and many other added values and features to the CPS. However, software development for CPS......Cyber-Physical Systems (CPS) provide many smart features for enhancing physical processes. These systems are designed with a set of distributed hardware, software, and network components that are embedded in physical systems and environments or attached to humans. Together they function seamlessly...... to offer specific functionalities or features that help enhance human lives, operations or environments. While different CPS components play important roles in a successful CPS development, the software plays the most important role among them. Acquiring and using high quality CPS components is the first...

  12. Control system specification for a cyclotron and neutron therapy facility

    International Nuclear Information System (INIS)

    Jacky, J.; Risler, R.; Kalet, I.; Wootton, P.; Barke, A.; Brossard, S.; Jackson, R.

    1991-01-01

    It is usually considered an essential element of good practice in engineering to produce a specification for a system before building it. However, it has been found to be quite difficult to produce useful specifications of large software systems. The authors have nearly completed a comprehensive specification for the computer control system of a cyclotron and treatment facility that provides particle beams for cancer treatments with fast neutrons, production of medical isotopes, and physics experiments. They describe the control system as thoroughly as is practical using standard technical English, supplemented by tables, diagrams, and some algebraic equations. This specification comprises over 300 single-spaced pages. A more precise and compact specification might be achieved by making greater use of formal mathematical notations instead of English. They have begun work on a formal specification of the system, using the Z and Petri net notations

  13. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  15. Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems

    CERN Document Server

    Tricaud, Christophe

    2012-01-01

    A successful cyber-physical system, a complex interweaving of hardware and software in direct interaction with some parts of the physical environment, relies heavily on proper identification of the, often pre-existing, physical elements. Based on information from that process, a bespoke “cyber” part of the system may then be designed for a specific purpose. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. Such systems are very challenging to measure, their states being distributed throughout a spatial domain. Consequently, optimal strategies are needed and systematic approaches to the optimization of sensor locations have to be devised for parameter estimation. The text begins by reviewing the newer field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research opportunities are then de...

  16. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  17. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  18. Temporary physical protection systems

    International Nuclear Information System (INIS)

    Williams, J.D.; Gangel, D.J.; Madsen, R.W.

    1991-01-01

    Terrorism and other aspects of world political instability have created a high demand for temporary physical protection systems within the nuclear materials management community. They can be used when vehicles carrying important assets are away from their permanent fixed site location, around areas where experiments are being temporarily conducted, around construction areas and one portions of a fixed site physical security system which is temporarily inoperable. Physical security systems can be grouped into four categories: tactical, portable, semi-permanent, and fixed. The resources and experience gained at Sandia National Laboratories in over forty years of developing and implementing security systems for protecting nuclear weapons and fixed nuclear facilities is now being applied to temporary physical security systems. This paper emphasizes temporary physical security systems and their component parts that are presently available and identify additional system-subsystem objectives, requirements, and concepts

  19. Specification and Verification of Hybrid System

    International Nuclear Information System (INIS)

    Widjaja, Belawati H.

    1997-01-01

    Hybrid systems are reactive systems which intermix between two components, discrete components and continuous components. The continuous components are usually called plants, subject to disturbances which cause the state variables of the systems changing continuously by physical laws and/or by the control laws. The discrete components can be digital computers, sensor and actuators controlled by programs. These programs are designed to select, control and supervise the behavior of the continuous components. Specification and verification of hybrid systems has recently become an active area of research in both computer science and control engineering, many papers concerning hybrid system have been published. This paper gives a design methodology for hybrid systems as an example to the specification and verification of hybrid systems. The design methodology is based on the cooperation between two disciplines, control engineering and computer science. The methodology brings into the design of control loops and decision loops. The external behavior of control loops are specified in a notation which is understandable by the two disciplines. The design of control loops which employed theory of differential equation is done by control engineers, and its correctness is also guaranteed analytically or experimentally by control engineers. The decision loops are designed in computing science based on the specifications of control loops. The verification of systems requirements can be done by computing scientists using a formal reasoning mechanism. For illustrating the proposed design, a problem of balancing an inverted pendulum which is a popular experiment device in control theory is considered, and the Mean Value Calculus is chosen as a formal notation for specifying the control loops and designing the decision loops

  20. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  1. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  2. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  3. Semantical Markov Logic Network for Distributed Reasoning in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Abdul-Wahid Mohammed

    2017-01-01

    Full Text Available The challenges associated with developing accurate models for cyber-physical systems are attributable to the intrinsic concurrent and heterogeneous computations of these systems. Even though reasoning based on interconnected domain specific ontologies shows promise in enhancing modularity and joint functionality modelling, it has become necessary to build interoperable cyber-physical systems due to the growing pervasiveness of these systems. In this paper, we propose a semantically oriented distributed reasoning architecture for cyber-physical systems. This model accomplishes reasoning through a combination of heterogeneous models of computation. Using the flexibility of semantic agents as a formal representation for heterogeneous computational platforms, we define autonomous and intelligent agent-based reasoning procedure for distributed cyber-physical systems. Sensor networks underpin the semantic capabilities of this architecture, and semantic reasoning based on Markov logic networks is adopted to address uncertainty in modelling. To illustrate feasibility of this approach, we present a Markov logic based semantic event model for cyber-physical systems and discuss a case study of event handling and processing in a smart home.

  4. A situation-specific theory of Midlife Women's Attitudes Toward Physical Activity (MAPA).

    Science.gov (United States)

    Im, Eun-Ok; Stuifbergen, Alexa K; Walker, Lorraine

    2010-01-01

    This paper presents a situation specific theory-the Midlife Women's Attitudes Toward Physical Activity (MAPA) theory-that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model; a review of the related literature; and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be linked easily to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. Copyright 2010 Mosby, Inc. All rights reserved.

  5. Settings for Physical Activity – Developing a Site-specific Physical Activity Behavior Model based on Multi-level Intervention Studies

    DEFF Research Database (Denmark)

    Troelsen, Jens; Klinker, Charlotte Demant; Breum, Lars

    Settings for Physical Activity – Developing a Site-specific Physical Activity Behavior Model based on Multi-level Intervention Studies Introduction: Ecological models of health behavior have potential as theoretical framework to comprehend the multiple levels of factors influencing physical...... to be taken into consideration. A theoretical implication of this finding is to develop a site-specific physical activity behavior model adding a layered structure to the ecological model representing the determinants related to the specific site. Support: This study was supported by TrygFonden, Realdania...... activity (PA). The potential is shown by the fact that there has been a dramatic increase in application of ecological models in research and practice. One proposed core principle is that an ecological model is most powerful if the model is behavior-specific. However, based on multi-level interventions...

  6. Conceptual Framework for Physical Protection Against Sabotage Considering Plant-specific Radiological Consequences

    International Nuclear Information System (INIS)

    Lee, Joung Hoon; Yu, Dong Han

    2010-01-01

    According to the Generation IV (Gen IV) Technology Roadmap, Gen IV nuclear energy systems (NESs) should highlight proliferation resistance and physical protection (PR and PP) as one of the four goals along with sustainability, safety and reliability, and economics. Especially, physical protection (PP) is the typical important characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDD) and the sabotage of facilities and transportation by subnation entities and other non-Host State adversaries. These two subjects have been studied separately. Proliferation is commonly considered as an international concern and the past work on the PR assessments can be found. On the other hands, PP is regarded as a State security concern, much of which is classified and facility-dependent. Recently, more concern has been focused on the PP design and regulation because of rapid environment changes including radiological consequences by internal sabotage and nuclear terrorism by RDDs. The current PP Regulation has been applied intensively to the existing nuclear facilities and could be a possible guidance for the future GEN-IV NESs. This paper first reviews the IAEA guide document, INFCIRC/225, which was accepted as the standard international guideline in the physical protection area. It has been updated several times up to now, and is undergoing another revision. The paper introduces current substantial changes in the document regarding PP including the national nuclear security and sabotage in the nuclear facilities. Then, it presents a conceptual framework for physical protection against sabotage considering plant-specific radiological consequence after malicious acts within certain vital areas. The framework combines the newly developed method of vital area identification, the current PSA level 2 works, and physical protection concepts. This would help to improve a design concept of new physical protection

  7. Conceptual Framework for Physical Protection Against Sabotage Considering Plant-specific Radiological Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joung Hoon; Yu, Dong Han [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2010-10-15

    According to the Generation IV (Gen IV) Technology Roadmap, Gen IV nuclear energy systems (NESs) should highlight proliferation resistance and physical protection (PR and PP) as one of the four goals along with sustainability, safety and reliability, and economics. Especially, physical protection (PP) is the typical important characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDD) and the sabotage of facilities and transportation by subnation entities and other non-Host State adversaries. These two subjects have been studied separately. Proliferation is commonly considered as an international concern and the past work on the PR assessments can be found. On the other hands, PP is regarded as a State security concern, much of which is classified and facility-dependent. Recently, more concern has been focused on the PP design and regulation because of rapid environment changes including radiological consequences by internal sabotage and nuclear terrorism by RDDs. The current PP Regulation has been applied intensively to the existing nuclear facilities and could be a possible guidance for the future GEN-IV NESs. This paper first reviews the IAEA guide document, INFCIRC/225, which was accepted as the standard international guideline in the physical protection area. It has been updated several times up to now, and is undergoing another revision. The paper introduces current substantial changes in the document regarding PP including the national nuclear security and sabotage in the nuclear facilities. Then, it presents a conceptual framework for physical protection against sabotage considering plant-specific radiological consequence after malicious acts within certain vital areas. The framework combines the newly developed method of vital area identification, the current PSA level 2 works, and physical protection concepts. This would help to improve a design concept of new physical protection

  8. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  9. Physical approach to complex systems

    Science.gov (United States)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  10. Physical Protection System Upgrades - Optimizing for Performance and Cost

    International Nuclear Information System (INIS)

    Hicks, Mary Jane; Bouchard, Ann M.

    1999-01-01

    CPA--Cost and Performance Analysis--is an architecture that supports analysis of physical protection systems and upgrade options. ASSESS (Analytic System and Software for Evaluating Security Systems), a tool for evaluating performance of physical protection systems, currently forms the cornerstone for evaluating detection probabilities and delay times of the system. Cost and performance data are offered to the decision-maker at the systems level and to technologists at the path-element level. A new optimization engine has been attached to the CPA methodology to automate analyses of many combinations (portfolios) of technologies. That engine controls a new analysis sequencer that automatically modifies ASSESS PPS files (facility descriptions), automatically invokes ASSESS Outsider analysis and then saves results for post-processing. Users can constrain the search to an upper bound on total cost, to a lower bound on level of performance, or to include specific technologies or technology types. This process has been applied to a set of technology development proposals to identify those portfolios that provide the most improvement in physical security for the lowest cost to install, operate and maintain at a baseline facility

  11. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    Science.gov (United States)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  12. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  13. PHYSICAL EDUCATION AND INDIVIDUAL CHARACTERISTICS OF THE AGE SPECIFIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Е. М. Revenko

    2017-01-01

    Full Text Available The aim of this paper is scientific substantiation of the importance of the individual characteristics of the age specific youth development which will result in the rational modelling of students’ physical education.Methodology and research methods. The methods involve collection of experimental data carried out by means of evaluation of motor abilities and general intelligence of students. Motor abilities of students were studied by measuring of strength (dead lift dynamometry, strength endurance (pull-up, speed and power abilities (standing jump, as well as speed ability (running 30, 60 or 100 m, depending on age, aerobic endurance (running 1000 or 3000 m, depending on age. The dynamics of integral physical preparedness (DIPP of each student was calculated by calculation the arithmetic mean values of the growth rates of the development of motor abilities. Assessment of General Intelligence (GI of the 8th, 10th and 11th-grades school pupils as well as the 1st to 3rd year students was carried out through the test of R. Amthauer in the adaptation of L. A. Yazykova, and school pupils of the 6th grade were assessed through the Intelligent Test (GIT.Results. Discrepancies in the dynamics of the mental and motor areas development of maturing personality, which are interpreted as individual characteristics of the age specific development are experimentally revealed. Individual psychological differences leading to the different susceptibility to the development of motor and intellectual abilities appearing in adolescence and early adolescence are analysed. A leading role of activity in formation of the individual characteristics of the age specific development is substantiated. The conclusion of necessity to formulate to the students differing in individual characteristics of the age specific development differentiated in the complexity requirements and motor tasks in the course of physical training is made.Scientific novelty. For the first time

  14. Specific features of physical development in extremely premature infants

    Directory of Open Access Journals (Sweden)

    G. A. Alyamovskaya

    2015-01-01

    Full Text Available The literature review deals with the specilic features of physical development in extremely premature infants weighing less than 1500 g at birth. It describes the regularities of an increment in basic physical development parameters (weight, height, and head circumference within the first year of life. Genetic factors, the specific features of a neonatal period, comorbidity, and different feeding types are shown to affect the increment rates of the physical development parameters. Emphasis is placed on the early initiation of enteral feeding and on the long-term use of fortified foods in low birthweight premature babies for the correction of energy deficiency resulting from preterm birth. The review shows that there is a relationship of the long-term outcomes of physical and psychomotor developments in low birthweight premature babies.

  15. Standard Specification for Physical Characteristics of Nonconcentrator Terrestrial Photovoltaic Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification describes the physical requirements for primary and secondary terrestrial nonconcentrator photovoltaic reference cells. A reference cell is defined as a device that meets the requirements of this specification and is calibrated in accordance with Test Method E1125 or Test Method E1362. 1.2 Reference cells are used in the determination of the electrical performance of photovoltaic devices, as stated in Test Methods E948 and E1036. 1.3 Two reference cell physical specifications are described: 1.3.1 Small-Cell Package Design—A small, durable package with a low thermal mass, wide optical field-of-view, and standardized dimensions intended for photovoltaic devices up to 20 by 20 mm, and 1.3.2 Module-Package Design—A package intended to simulate the optical and thermal properties of a photovoltaic module design, but electric connections are made to only one photovoltaic cell in order to eliminate problems with calibrating series and parallel connections of cells. Physical dimensions ...

  16. Cognitive Security of Wireless Communication Systems in the Physical Layer

    Directory of Open Access Journals (Sweden)

    Mustafa Harun Yılmaz

    2017-01-01

    Full Text Available While the wireless communication systems provide the means of connectivity nearly everywhere and all the time, communication security requires more attention. Even though current efforts provide solutions to specific problems under given circumstances, these methods are neither adaptive nor flexible enough to provide security under the dynamic conditions which make the security breaches an important concern. In this paper, a cognitive security (CS concept for wireless communication systems in the physical layer is proposed with the aim of providing a comprehensive solution to wireless security problems. The proposed method will enable the comprehensive security to ensure a robust and reliable communication in the existence of adversaries by providing adaptive security solutions in the communication systems by exploiting the physical layer security from different perspective. The adaptiveness relies on the fact that radio adapts its propagation characteristics to satisfy secure communication based on specific conditions which are given as user density, application specific adaptation, and location within CS concept. Thus, instead of providing any type of new security mechanism, it is proposed that radio can take the necessary precautions based on these conditions before the attacks occur. Various access scenarios are investigated to enable the CS while considering these conditions.

  17. Using Physical Models for Anomaly Detection in Control Systems

    Science.gov (United States)

    Svendsen, Nils; Wolthusen, Stephen

    Supervisory control and data acquisition (SCADA) systems are increasingly used to operate critical infrastructure assets. However, the inclusion of advanced information technology and communications components and elaborate control strategies in SCADA systems increase the threat surface for external and subversion-type attacks. The problems are exacerbated by site-specific properties of SCADA environments that make subversion detection impractical; and by sensor noise and feedback characteristics that degrade conventional anomaly detection systems. Moreover, potential attack mechanisms are ill-defined and may include both physical and logical aspects.

  18. An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

    DEFF Research Database (Denmark)

    Strasser, T. I.; Moyo, C.; Bründlinger, R.

    2017-01-01

    quality and ensure security of supply. At the same time, the increased availability of advanced automation and communication technologies provides new opportunities for the derivation of intelligent solutions to tackle the challenges. Previous work has shown various new methods of operating highly...... interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects...... of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber...

  19. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-01-01

    The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, open-quotes what to protect against whom.close quotes The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given

  20. Physical Layer Security for Cooperative NOMA Systems

    KAUST Repository

    Chen, Jianchao

    2018-01-09

    In this correspondence, we investigate the physical layer security for cooperative non-orthogonal multiple access (NOMA) systems, where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. More specifically, some analytical expressions are derived for secrecy outage probability (SOP) and strictly positive secrecy capacity (SPSC). Results show that AF and DF almost achieve the same secrecy performance. Moreover, asymptotic results demonstrate that the SOP tends to a constant at high signal-to-noise ratio (SNR). Finally, our results show that the secrecy performance of considered NOMA systems is independent of the channel conditions between the relay and the poor user.

  1. Physical Layer Security for Cooperative NOMA Systems

    KAUST Repository

    Chen, Jianchao; Yang, Liang; Alouini, Mohamed-Slim

    2018-01-01

    In this correspondence, we investigate the physical layer security for cooperative non-orthogonal multiple access (NOMA) systems, where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. More specifically, some analytical expressions are derived for secrecy outage probability (SOP) and strictly positive secrecy capacity (SPSC). Results show that AF and DF almost achieve the same secrecy performance. Moreover, asymptotic results demonstrate that the SOP tends to a constant at high signal-to-noise ratio (SNR). Finally, our results show that the secrecy performance of considered NOMA systems is independent of the channel conditions between the relay and the poor user.

  2. Perceived correlates of domain-specific physical activity in rural adults in the Midwest.

    Science.gov (United States)

    Chrisman, Matthew; Nothwehr, Faryle; Yang, Jingzen; Oleson, Jacob

    2014-01-01

    In response to calls for more specificity when measuring physical activity, this study examined perceived correlates of this behavior in rural adults separately by the domain in which this behavior occurs (ie, home care, work, active living, and sport). A cross-sectional survey was completed by 407 adults from 2 rural towns in the Midwest. The questionnaire assessed the perceived social and physical environment, including neighborhood characteristics, as well as barriers to being active. The Kaiser Physical Activity Survey captured domain-specific activity levels. The response rate was 25%. Multiple regression analyses were conducted to examine the associations between social and physical environment factors and domain-specific physical activity. Having a favorable attitude toward using government funds for exercise and activity-friendly neighborhood characteristic were positively associated with active living. Friends encouraging exercise was positively associated with participation in sport. Barriers were inversely associated with active living and sport. Total physical activity was positively associated with workplace incentives for exercise, favorable policy attitudes toward supporting physical education in schools and supporting the use of government funds for biking trails, and it was inversely associated with barriers. There were no factors associated with physical activity in the domains of work or home care. Correlates of physical activity are unique to the domain in which this behavior occurs. Programs to increase physical activity in rural adults should target policy attitudes, neighborhood characteristics, and social support from friends while also working to decrease personal barriers to exercise. © 2014 National Rural Health Association.

  3. System specifications for the NDS Dictionary System

    International Nuclear Information System (INIS)

    Attree, P.M.; Smith, P.M.

    1979-09-01

    The NDS Dictionary System is a computerized system for maintaining and distributing the EXFOR dictionaries and for preparing internal versions of these dictionaries for use in the NDS EXFOR System and other NDS systems. This document is an internal manual for the system specifications of the NDS Dictionary System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. This manual is updated from time to time when system modifications are made; this is the version of January 1979

  4. Real time physics analysis with the ATLAS tau trigger system

    International Nuclear Information System (INIS)

    Casado Lechuga, M. P.

    2009-01-01

    The scope of the ATLAS tau trigger system at the LHC is most ambitious. It aims at reconstructing in real time, a matter of seconds, a detailed picture of the high energy proton proton collisions at the LHC. Such system is mandatory in order to select efficiently data needed for discovery of new physics in a proton proton collision environment where the rates of jets observed in the detector are high and the tau identification is difficult. New physics scenarios targeted specifically by the the ATLAS tau trigger system are Standard Model or Supersymmetric Higgs production, and production of new exotic resonances. This contribution will detail how the analysis techniques developed offline for efficient data analysis have been implemented in the algorithms which run online at the trigger. In particular, the focus will be on how to satisfy the requirements imposed by the physics goals while addressing the limitations from the overall event rate and latency allowed. The prospects for early running during the first LHC collisions and trigger evolution from first collisions to stable running will be also summarized, following change of trigger goals from commissioning of detector to measurement of Standard Model physics and discoveries. (author)

  5. Regulatory control of physical protection systems

    International Nuclear Information System (INIS)

    Rajdeep; Mayya, Y.S.

    2017-01-01

    The safety of facilities in BARC is under the regulatory oversight of BSC. The security architecture for these facilities incorporates multiple layers of Physical Protection Systems. The demands of safety may sometimes conflict with the needs of security. Realizing the need to identify these interfaces and extend the regulatory coverage to Physical Protection Systems, a Standing Committee named Physical Protection System Review Committee (PPSRC) has been constituted as a 2"n"d tier entity of BSC. PPSRC includes experts from various domains concerned with nuclear security, viz. physical protection systems, cyber security, radiation safety, security operations, technical services and security administration

  6. Airborne Collision Avoidance System as a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Andrei C. NAE

    2015-12-01

    Full Text Available In this paper the key concepts of ITS - Intelligent Transport Systems, CPS - Cyber-Physical Systems and SM - Smart Mobility are defined and correlated with the need for ACAS – Airborne Collision Avoidance System, as the last resort safety net and indispensable ingredient in civil aviation. Smart Mobility is addressed from a Cyber Physical-Systems perspective, detailing some of the elements that this entails. Here we consider the Air Transportations System of the future as a Cyber-Physical System and analyze the implications of doing so from different perspectives. The objective is to introduce a 4D collision avoidance shield technology which forms a last resort safety net technology for the next generation air transport (2050 and beyond. The new system will represent a step change over the performance of current technology. As conclusions, the benefits of implementing Transport Cyber-Physical Systems are discussed, as well as what this would require for future deployment.

  7. A Multipurpose Interactive System for Promoting and Assessing the Learning of Physics

    Science.gov (United States)

    Picciarelli, Vittorio; Selvaggi, Giovanna; Stella, Rosa

    2013-01-01

    This paper presents an interactive system designed to facilitate the effective management of both knowledge consolidation and (self-)assessment of the progress made in the learning of physics by upper secondary school students. Via a specific multiple-choice test database, the system proposes several learning paths designed and implemented in an…

  8. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  9. Security analysis of cyber-physical system

    Science.gov (United States)

    Li, Bo; Zhang, Lichen

    2017-05-01

    In recent years, Cyber-Physical System (CPS) has become an important research direction of academic circles and scientific and technological circles at home and abroad, is considered to be following the third wave of world information technology after the computer, the Internet. PS is a multi-dimensional, heterogeneous, deep integration of open systems, Involving the computer, communication, control and other disciplines of knowledge. As the various disciplines in the research theory and methods are significantly different, so the application of CPS has brought great challenges. This paper introduces the definition and characteristics of CPS, analyzes the current situation of CPS, analyzes the security threats faced by CPS, and gives the security solution for security threats. It also discusses CPS-specific security technology, to promote the healthy development of CPS in information security.

  10. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    International Nuclear Information System (INIS)

    Ratta, G.A.; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.; Santos, M.; Pajares, G.; Murari, A.

    2008-01-01

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions

  11. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A. [Asociacion EURATOM/CIEMAT para Fusion (Spain)], E-mail: giuseppe.ratta@ciemat.es; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la [Asociacion EURATOM/CIEMAT para Fusion (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica-UNED, 28040 Madrid (Spain); Santos, M.; Pajares, G. [Dpto. Arquitectura de Computadores y Automatica-UCM, 28040 Madrid (Spain); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, Padua (Italy)

    2008-04-15

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions.

  12. Cyber-physical-social System in Intelligent Transportation

    Institute of Scientific and Technical Information of China (English)

    Gang Xiong; Fenghua Zhu; Xiwei Liu; Xisong Dong; Wuling Huang; Songhang Chen; Kai Zhao

    2015-01-01

    A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliability of a physical system,such as vehicle collision avoidance and zero-net energy buildings systems.It has become a hot R&D and practical area from US to EU and other countries.In fact,most of physical systems and their cyber systems are designed,built and used by human beings in the social and natural environments.So,social systems must be of the same importance as their CPSs.The indivisible cyber,physical and social parts constitute the cyber-physical-social system(CPSS),a typical complex system and it’s a challengeable problem to control and manage it under traditional theories and methods.An artificial systems,computational experiments and parallel execution(ACP) methodology is introduced based on which data-driven models are applied to social system.Artificial systems,i.e.,cyber systems,are applied for the equivalent description of physical-social system(PSS).Computational experiments are applied for control plan validation.And parallel execution finally realizes the stepwise control and management of CPSS.Finally,a CPSS-based intelligent transportation system(ITS) is discussed as a case study,and its architecture,three parts,and application are described in detail.

  13. Modeling Physical Systems Using Vensim PLE Systems Dynamics Software

    Science.gov (United States)

    Widmark, Stephen

    2012-01-01

    Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address…

  14. Management system quality of service radio physics and RR. ISO 9001

    International Nuclear Information System (INIS)

    Gil Agudo, A.; Torres Donaire, J.; Jimenez, J. C.; Carrascosa Fernandez, C.; Arjona Gutierrez, J.

    2011-01-01

    One of the tool increasingly deployed for the optimization of the procedures is the process management system according to a Quality Management. Likewise, for specific areas, such as central services within large institutions such as the General Hospitals of the systems of quality management is the most widely used ISO 9001. We describe in this paper our experience in implementing the system ISO 9001 in our Department of Radio physics and Radiation Protection (SRFPR).

  15. Method for Determining the Sensitivity of a Physical Security System.

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wachtel, Amanda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kittinger, Robert Scott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-23

    Modern systems, such as physical security systems, are often designed to involve complex interactions of technological and human elements. Evaluation of the performance of these systems often overlooks the human element. A method is proposed here to expand the concept of sensitivity—as denoted by d’—from signal detection theory (Green & Swets 1966; Macmillan & Creelman 2005), which came out of the field of psychophysics, to cover not only human threat detection but also other human functions plus the performance of technical systems in a physical security system, thereby including humans in the overall evaluation of system performance. New in this method is the idea that probabilities of hits (accurate identification of threats) and false alarms (saying “threat” when there is not one), which are used to calculate d’ of the system, can be applied to technologies and, furthermore, to different functions in the system beyond simple yes-no threat detection. At the most succinct level, the method returns a single number that represents the effectiveness of a physical security system; specifically, the balance between the handling of actual threats and the distraction of false alarms. The method can be automated, and the constituent parts revealed, such that given an interaction graph that indicates the functional associations of system elements and the individual probabilities of hits and false alarms for those elements, it will return the d’ of the entire system as well as d’ values for individual parts. The method can also return a measure of the response bias* of the system. One finding of this work is that the d’ for a physical security system can be relatively poor in spite of having excellent d’s for each of its individual functional elements.

  16. System specifications for the NDS EXFOR System

    International Nuclear Information System (INIS)

    Attree, P.M.; Smith, P.M.

    1979-07-01

    EXFOR is the agreed exchange format for the magnetic-tape exchange of nuclear reaction data between national and international nuclear data centres for the benefit of nuclear data users in all countries. The NDS EXFOR System is a computerized system for the storage and retrieval of EXFOR information compiled or received by the IAEA. This document is an internal manual for the system specifications of the NDS EXFOR System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. The manual is updated from time to time when system modifications are made

  17. An integrated system for physical protection

    International Nuclear Information System (INIS)

    Kumar, Ranajit

    2001-01-01

    An Integrated Physical Protection System (IPPS) was developed for the consolidation of all sub systems, sensors and elements related to physical protection for an efficient and effective security environment of a facility. An effective physical protection system discharges the functions of detection, delay, communication, response, access control etc. IPPS performs, controls and monitors all the above functionality and helps in taking quick action on occurrence of unusual incidents by instantly reporting the incident in easily understandable audio, video, graphical and textual format and also by initiating automatic interactions among sub-systems

  18. Numerical perturbative methods in the quantum theory of physical systems

    International Nuclear Information System (INIS)

    Adam, G.

    1980-01-01

    During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

  19. Control systems for experimental physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    At an international conference last year at Villars-sur-Ollon (Switzerland), scientists from all over the world looked at the problems of controlling complex physics installations, including particle accelerators, nuclear reactors, large telescopes and high energy physics detectors. The meeting, organized by the European Physical Society's Interdivisional Group on Experimental Physics Control Systems, EPCS, brought together 180 scientists from the world's leading experimental physics research laboratories, universities and industries

  20. Physical system requirements: Overall system

    International Nuclear Information System (INIS)

    1992-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Direct subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. This approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. The functional analysis approach recognizes that just the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being

  1. Stellar physics with the ALHAMBRA photometric system

    International Nuclear Information System (INIS)

    Villegas, T Aparicio; Alfaro, E J; Moles, M; Benítez, N; Perea, J; Olmo, A del; Cristóbal-Hornillos, D; Cervio, M; Delgado, R M González; Márquez, I; Masegosa, J; Prada, F; Cabrera-Caño, J; Fernández-Soto, A; Aguerri, J A L; Cepa, J; Broadhurst, T; Castander, F J; Infante, L; Martínez, V J

    2011-01-01

    The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (T eff , log g, [Fe/H], and color excess E(B – V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used.

  2. TWRSview system requirements specification

    International Nuclear Information System (INIS)

    Caldwell, J.A.; Lee, A.K.

    1995-12-01

    This document provides the system requirements specification for the TWRSview software system. The TWRSview software system is being developed to integrate electronic data supporting the development of the TWRS technical baseline

  3. Flow-specific physical properties of coconut flours

    Science.gov (United States)

    Manikantan, Musuvadi R.; Kingsly Ambrose, Rose P.; Alavi, Sajid

    2015-10-01

    Coconut milk residue and virgin coconut oil cake are important co-products of virgin coconut oil that are used in the animal feed industry. Flour from these products has a number of potential human health benefits and can be used in different food formulations. The objective of this study was to find out the flow-specific physical properties of coconut flours at three moisture levels. Coconut milk residue flour with 4.53 to 8.18% moisture content (w.b.) had bulk density and tapped density of 317.37 to 312.65 and 371.44 to 377.23 kg m-3, respectively; the corresponding values for virgin coconut oil cake flour with 3.85 to 7.98% moisture content (wet basis) were 611.22 to 608.68 and 663.55 to 672.93 kg m-3, respectively. The compressibility index and Hausner ratio increased with moisture. The angle of repose increased with moisture and ranged from 34.12 to 36.20 and 21.07 to 23.82° for coconut milk residue flour and virgin coconut oil cake flour, respectively. The coefficient of static and rolling friction increased with moisture for all test surfaces, with the plywood offering more resistance to flow than other test surfaces. The results of this study will be helpful in designing handling, flow, and processing systems for coconut milk residue and virgin coconut oil cake flours.

  4. System specifications for the NDS EXFOR System

    Energy Technology Data Exchange (ETDEWEB)

    Attree, P M; Smith, P M

    1982-06-01

    EXFOR is the agreed exchange format for the magnetic-tape exchange of nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. The NDS EXFOR System is a computerized system for the storage and retrieval of EXFOR information compiled or received of the IAEA. This document is an internal manual for the system specifications of the NDS EXFOR System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. The manual is updated from time to time when system modifications are made; the first version was issued in July 1979. (author)

  5. Comparison of four specific dynamic office chairs with a conventional office chair: Impact upon muscle activation, physical activity and posture

    NARCIS (Netherlands)

    Ellegast, R.P.; Kraft, K.; Groenesteijn, L.; Krause, F.; Berger, H.; Vink, P.

    2012-01-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore

  6. Signal processing approaches to secure physical layer communications in multi-antenna wireless systems

    CERN Document Server

    Hong, Y-W Peter; Kuo, C-C Jay

    2013-01-01

    This book introduces various signal processing approaches to enhance physical layer secrecy in multi-antenna wireless systems. Wireless physical layer secrecy has attracted much attention in recent years due to the broadcast nature of the wireless medium and its inherent vulnerability to eavesdropping. While most articles on physical layer secrecy focus on the information-theoretic aspect, we focus specifically on the signal processing aspects, including beamforming and precoding techniques for data transmission and discriminatory training schemes for channel estimation. The discussions will c

  7. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  8. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  9. Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance.

    Science.gov (United States)

    Smith, Mitchell R; Coutts, Aaron J; Merlini, Michele; Deprez, Dieter; Lenoir, Matthieu; Marcora, Samuele M

    2016-02-01

    To investigate the effects of mental fatigue on soccer-specific physical and technical performance. This investigation consisted of two separate studies. Study 1 assessed the soccer-specific physical performance of 12 moderately trained soccer players using the Yo-Yo Intermittent Recovery Test, Level 1 (Yo-Yo IR1). Study 2 assessed the soccer-specific technical performance of 14 experienced soccer players using the Loughborough Soccer Passing and Shooting Tests (LSPT, LSST). Each test was performed on two occasions and preceded, in a randomized, counterbalanced order, by 30 min of the Stroop task (mentally fatiguing treatment) or 30 min of reading magazines (control treatment). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort and motivation were measured after treatment. Distance run, heart rate, and ratings of perceived exertion were recorded during the Yo-Yo IR1. LSPT performance time was calculated as original time plus penalty time. LSST performance was assessed using shot speed, shot accuracy, and shot sequence time. Subjective ratings of mental fatigue and effort were higher after the Stroop task in both studies (P motivation was similar between conditions. This mental fatigue significantly reduced running distance in the Yo-Yo IR1 (P performance time were not different between conditions; however, penalty time significantly increased in the mental fatigue condition (P = 0.015). Mental fatigue also impaired shot speed (P = 0.024) and accuracy (P performance.

  10. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    Science.gov (United States)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  11. Technical specification for vacuum systems

    International Nuclear Information System (INIS)

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10 -5 to 10 -11 Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components

  12. Database specification for the Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB)

    Energy Technology Data Exchange (ETDEWEB)

    Faby, E.Z.; Fluker, J.; Hancock, B.R.; Grubb, J.W.; Russell, D.L. [Univ. of Tennessee, Knoxville, TN (United States); Loftis, J.P.; Shipe, P.C.; Truett, L.F. [Oak Ridge National Lab., TN (United States)

    1994-03-01

    This Database Specification for the Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB) describes the database organization and storage allocation, provides the detailed data model of the logical and physical designs, and provides information for the construction of parts of the database such as tables, data elements, and associated dictionaries and diagrams.

  13. High Assurance Control of Cyber-Physical Systems with Application to Unmanned Aircraft Systems

    Science.gov (United States)

    Kwon, Cheolhyeon

    physical and logical process model of the CPS. Specifically, three main tasks are discussed in this presentation: (i) we first investigate diverse granularity of the interactions inside the CPS and propose feasible cyber attack models to characterize the compromised behavior of the CPS with various measures, from its severity to detectability; (ii) based on this risk information, our approach to securing the CPS addresses both monitoring of and high assurance control design against cyber attacks by developing on-line safety assessment and mitigation algorithms; and (iii) by extending the developed theories and methods from a single CPS to multiple CPSs, we examine the security and safety of multi-CPS network that are strongly dependent on the network topology, cooperation protocols between individual CPSs, etc. The effectiveness of the analytical findings is demonstrated and validated with illustrative examples, especially unmanned aircraft system (UAS) applications.

  14. Advanced Analysis to Distinguish between Physical Decrease and Inactivation of Viable Phages in Aerosol by Quantitating Phage-Specific Particles.

    Science.gov (United States)

    Shimasaki, Noriko; Nojima, Yasuhiro; Sakakibara, Masaya; Kikuno, Ritsuko; Iizuka, Chiori; Okaue, Akira; Okuda, Shunji; Shinohara, Katsuaki

    2018-01-01

     Recent studies have investigated the efficacy of air-cleaning products against pathogens in the air. A standard method to evaluate the reduction in airborne viruses caused by an air cleaner has been established using a safe bacteriophage instead of pathogenic viruses; the reduction in airborne viruses is determined by counting the number of viable airborne phages by culture, after operating the air cleaner. The reduction in the number of viable airborne phages could be because of "physical decrease" or "inactivation". Therefore, to understand the mechanism of reduction correctly, an analysis is required to distinguish between physical decrease and inactivation. The purpose of this study was to design an analysis to distinguish between the physical decrease and inactivation of viable phi-X174 phages in aerosols. We established a suitable polymerase chain reaction (PCR) system by selecting an appropriate primer-probe set for PCR and validating the sensitivity, linearity, and specificity of the primer-probe set to robustly quantify phi-X174-specific airborne particles. Using this quantitative PCR system and culture assay, we performed a behavior analysis of the phage aerosol in a small chamber (1 m 3 ) at different levels of humidity, as humidity is known to affect the number of viable airborne phages. The results revealed that the reduction in the number of viable airborne phages was caused not only by physical decrease but also by inactivation under particular levels of humidity. Our study could provide an advanced analysis to differentiate between the physical decrease and inactivation of viable airborne phages.

  15. Perceived functioning has ethnic-specific associations in systemic sclerosis: another dimension of personalized medicine.

    Science.gov (United States)

    McNearney, Terry A; Hunnicutt, Sonya E; Fischbach, Michael; Friedman, Alan W; Aguilar, Martha; Ahn, Chul W; Reveille, John D; Lisse, Jeffrey R; Baethge, Bruce A; Goel, Niti; Mayes, Maureen D

    2009-12-01

    To measure self-reported physical and mental functioning and associated clinical features at study entry in 3 ethnic groups with systemic sclerosis (SSc). Sixty Hispanic, 39 African American, and 104 Caucasian patients with recent-onset SSc ( fatigue scores > IBQ > clinical variables (hypertension, skin score, and percentage predicted DLCO). Scleroderma-HAQ scores had ethnic-specific associations with IBQ > AHI scores > most clinical and laboratory variables. Decreased mental component summary (MCS) scores associated with AHI > ISEL. Ethnic-specific immunogenetic variables HLA-DQB1*0202 (Caucasian) and HLA-DRB 1*11 (African American), and HLA-DQA1*0501 (Hispanic) also associated with MCS. Antinuclear autoantibodies, anti-topoisomerase I, and RNA polymerases I and III also demonstrated associations with functioning in African American and Hispanic groups. Clinical, psychosocial, and immunogenetic variables had ethnic-specific associations with perceived physical and mental functioning. Consideration of ethnic-specific psychological and behavioral support in designing more personalized, relevant therapeutic interventions for the patient may improve therapeutic efficacy in SSc.

  16. A role for relational databases in high energy physics software systems

    International Nuclear Information System (INIS)

    Lauer, R.; Slaughter, A.J.; Wolin, E.

    1987-01-01

    This paper presents the design and initial implementation of software which uses a relational database management system for storage and retrieval of real and Monte Carlo generated events from a charm and beauty spectrometer with a vertex detector. The purpose of the software is to graphically display and interactively manipulate the events, fit tracks and vertices and calculate physics quantities. The INGRES database forms the core of the system, while the DI3000 graphics package is used to plot the events. The paper introduces relational database concepts and their applicability to high energy physics data. It also evaluates the environment provided by INGRES, particularly its usefulness in code development and its Fortran interface. Specifics of the database design we have chosen are detailed as well. (orig.)

  17. PHYSICS UPDATE: The global positioning system

    Science.gov (United States)

    Walton, Alan J.; Black, Richard J.

    1999-01-01

    A hand-held global positioning system receiver displays the operator's latitude, longitude and velocity. Knowledge of GCSE-level physics will allow the basic principles of the system to be understood; knowledge of A-level physics will allow many important aspects of their implementation to be comprehended. A discussion of the system provides many simple numerical calculations relevant to school and first-year undergraduate syllabuses.

  18. [Gender-specific manifestations of daily physical activity and sedentary behaviour in elderly people of Surgut].

    Science.gov (United States)

    Loginov, S I; Malkov, M N; Nikolayev, A Yu

    2017-01-01

    Objective of the study was to establish gender-specific characteristics of physical activity (PA) and sedentary behavior in elderly people living in Yugra North. 295 residents of Surgut (102 men aged 62,9±5,3 years, 35%; 193 women aged 61,9±3,8 years, 65%) were subject to a IPAQ-RU questionnaire. The study revealed the gender-specific differences in body length and mass, body mass and body fat indices. It was detected that more energy is spent on the housework and physical activity in the country (moderate-intensity physical activity for women and high-intensity one for men). The study data showed no statistically significant gender-specific differences in general physical activity. Sedentary behavior is more popular among men rather than women (2543 vs 2441 min/week). 47% of low-active men and 56% of women reported the sitting times of 6-9 hours per day, 42% - 9-12 hours per day. Actions need to be taken to increase physical activity which is low at the moment and decrease sedentary behavior which is currently on the high level.

  19. Three tenets for secure cyber-physical system design and assessment

    Science.gov (United States)

    Hughes, Jeff; Cybenko, George

    2014-06-01

    This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.

  20. Objectively-determined intensity- and domain-specific physical activity and sedentary behavior in relation to percent body fat.

    Science.gov (United States)

    Scheers, Tineke; Philippaerts, Renaat; Lefevre, Johan

    2013-12-01

    This study examined the independent and joint associations of overall, intensity-specific and domain-specific physical activity and sedentary behavior with bioelectrical impedance-determined percent body fat. Physical activity was measured in 442 Flemish adults (41.4 ± 9.8 years) using the SenseWear Armband and an electronic diary. Two-way analyses of covariance investigated the interaction of physical activity and sedentary behavior with percent body fat. Multiple linear regression analyses, adjusted for potential confounders, examined the associations of intensity-specific and domain-specific physical activity and sedentary behavior with percent body fat. Results showed a significant main effect for physical activity in both genders and for sedentary behavior in women, but no interaction effects. Light activity was positively (β = 0.41 for men and 0.43 for women) and moderate (β = -0.64 and -0.41), vigorous (β = -0.21 and -0.24) and moderate-to-vigorous physical activity (MVPA) inversely associated with percent body fat, independent of sedentary time. Regarding domain-specific physical activity, significant associations were present for occupation, leisure time and household chores, irrespective of sedentary time. The positive associations between body fat and total and domain-specific sedentary behavior diminished after MVPA was controlled for. MVPA during leisure time, occupation and household chores may be essential to prevent fat gain. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. IDC System Specification Document.

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, David J.

    2014-12-01

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Reengineering Phase 2 project. Revisions Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Reengineering Project Team Initial delivery M. Harris

  2. Operating systems for experimental physics

    International Nuclear Information System (INIS)

    Davies, H.E.

    1976-01-01

    Modern high energy physics experiments are very dependent on the use of computers and present a fairly well defined list of technical demands on them. It is therefore possible to look at the construction of a computer operating system and to see how the design choices should be made in order to make the systems as useful as possible to physics experiments or, more practically, to look at existing operating systems to see which can most easily be used to do the jobs of rapid data acquisition and checking. In these notes, operating systems are looked at from the point of view of the informed user. Emphasis is placed on systems which are intended for single processor microcomputers of the type frequently used for data acquisition applications. The principles described are, of course, equally valid for other kinds of system. (Auth.)

  3. The physics of disordered systems

    CERN Document Server

    Ray, Purusattam

    2012-01-01

    Disordered systems are ubiquitous in nature and their study remains a profound and challenging subject of current research. Ideas and methods from the physics of Disordered systems have been fruitfully applied to several fields ranging from computer science to neuroscience. This book contains a selection of lectures delivered at the 'SERC School on Disordered Systems', spanning topics from classic results to frontier areas of research in this field. Spin glasses, disordered Ising models, quantum disordered systems, structural glasses, dilute magnets, interfaces in random field systems and disordered vortex systems are among the topics discussed in the text, in chapters authored by active researchers in the field, including Bikas Chakrabarti, Arnab Das, Deepak Kumar, Gautam Menon, G. Ravikumar, Purusattam Ray, Srikanth Sastry and Prabodh Shukla. This book provides a gentle and comprehensive introduction to the physics of disordered systems and is aimed at graduate students and young scientists either working i...

  4. Formal specifications for safety grade systems

    International Nuclear Information System (INIS)

    Chisholm, G.H.; Smith, B.T.; Wojcik, A.S.

    1992-01-01

    The authors describe the findings of a study into the application of formal methods to the specification of a safety system for an operating nuclear reactor. They developed a formal specification that is used to verify and validate that no unsafe condition will result from action or inaction of the system. For this reason, the specification must facilitate thinking about, talking about, and implementing the system. In fact, the specification must provide a bridge between people (designers, engineers, policy makers) and diverse implementations (hardware, software, sensors, power supplies) at all levels. For a specification to serve as an effective linkage, it must have the following properties: (1) completeness, (2) conciseness, (3) unambiguity, and (4) communicativeness. In this paper they describe the development of a specification that has three properties. This development is based on the use of formal methods, i.e., methods that add mathematical rigor to the development, analysis and operation of computer systems and to applications based thereon (Neumann). They demonstrate that a specification derived from a formal basis facilitates development of the design and its subsequent verification

  5. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture.

    Science.gov (United States)

    Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter

    2012-03-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Sensor Network Middleware for Cyber-Physical Systems: Opportunities and Challenges

    Science.gov (United States)

    Singh, G.

    2015-12-01

    Wireless Sensor Network middleware typically provides abstractions for common tasks such as atomicity, synchronization and communication with the intention of isolating the developers of distributed applications from lower-level details of the underlying platforms. Developing middleware to meet the performance constraints of applications is an important challenge. Although one would like to develop generic middleware services which can be used in a variety of different applications, efficiency considerations often force developers to design middleware and algorithms customized to specific operational contexts. This presentation will discuss techniques to design middleware that is customizable to suit the performance needs of specific applications. We also discuss the challenges poised in designing middleware for pervasive sensor networks and cyber-physical systems with specific focus on environmental monitoring.

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  8. On knowledge representation for high energy physics control systems

    International Nuclear Information System (INIS)

    Huuskonen, P.; Kaarela, K.; Meri, M.; Le Goff, J.M.

    1994-01-01

    A framework for knowledge representation in the domain of high energy physics control systems is presented. Models of process equipment, controls, documents, information systems, functional dependencies, physical interconnections, and design decisions are necessary to allow for automated reasoning about such systems. A number of support systems can use these models: alarm processing, fault diagnosis, sensor validation, preventive maintenance, action analysis, information abstraction, intelligent help systems, and on-line documentation. Our aim is to achieve representations that would be understood by end users, could be constructed by domain experts, and would be powerful enough to function as a basis for these support systems. It is proposed to base these models on means-end-analysis, implemented through an entity-relationship type of representation and extended with the notion of contribution. The paper outlines class hierarchies and relation types to form a vocabulary for talking about this specific domain. A number of implementation concerns are raised and some examples of how these representations can be used in real cases are offered. The representations are likely to prove most useful for support systems that function in the user assisting mode, as opposed to fully autonomous systems. Intelligent help and information abstraction applications, in particular, are expected to benefit. The main focus of the work is that of the control information system concepts based on encapsulated real- time objects (CICERO) project at CERN, experiment controls, but the results are usable for accelerator control systems and for industrial control systems in general. (author). 37 refs., 7 figs

  9. System specification for the integrated monitoring and surveillance system

    International Nuclear Information System (INIS)

    1997-09-01

    This System Specification establishes the requirements for the Plutonium Focus Area (PFA) Integrated Monitoring and Surveillance System (IMSS). In this document, ''Integrated Monitoring and Surveillance System'' is used to describe the concept of integrated sensors, computers, personnel, and systems that perform the functions of sensing conditions, acquiring data, monitoring environmental safety and health, controlling and accounting for materials, monitoring material stability, monitoring container integrity, transferring data, and analyzing, reporting, and storing data. This concept encompasses systems (e.g. sensors, personnel, databases, etc.) that are already in place at the sites but may require modifications or additions to meet all identified surveillance requirements. The purpose of this System Specification is to provide Department of Energy (DOE) sites that store plutonium materials with a consolidation of all known requirements for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides. This compilation may be used (1) as a baseline for surveillance system design specifications where 3013 packages of stabilized plutonium metals and oxides will be stored and monitored; (2) as a checklist for evaluating existing surveillance systems to ensure that all requirements are met for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides; and (3) as a baseline for preparing procurement specifications tailored for site specific storage and surveillance of 3013 packages of stabilized plutonium metals and oxides

  10. Cyber-Physical Systems Security: a Systematic Mapping Study

    OpenAIRE

    Lun, Yuriy Zacchia; D'Innocenzo, Alessandro; Malavolta, Ivano; Di Benedetto, Maria Domenica

    2016-01-01

    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds some light on how security is actually addressed when dealing with cyber-physical systems. The provided systematic map of 118 selected studies is based on, for instance, application fields, various system components, relate...

  11. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  12. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  13. Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Weekrakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-10-23

    Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. With the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.

  14. Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.

    Science.gov (United States)

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M

    2003-12-01

    Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.

  15. GET: A generic electronics system for TPCs and nuclear physics instrumentation

    Science.gov (United States)

    Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.

    2018-04-01

    General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.

  16. Technical specification for transferring National Pollutant Discharge Elimination System water data to the Oak Ridge Environmental Information System

    International Nuclear Information System (INIS)

    1996-11-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility (FFA) and the Tennessee Oversight Agreement (TOA) as they pertain to NPDES surface water data maintained in Oak Ridge, Tennessee, by the Department of Energy's Maintenance and Operations (M ampersand O) contractor Martin Marietta Energy Systems and prime contractors to DOE. This technical specification describes the organizational responsibilities for getting NPDES data into OREIS, describes the logical data transfer file required from NPDES, addresses business rules and submission rules, describes the physical data transfer file, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure due to the requirements of NPDES

  17. Construction of physical maps for the sex-specific regions of papaya sex chromosomes

    Directory of Open Access Journals (Sweden)

    Na Jong-Kuk

    2012-05-01

    Full Text Available Abstract Background Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male, XYh (hermaphrodite, and XX (female. The papaya hermaphrodite-specific Yh chromosome region (HSY is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. Results A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89% DNA sequence expansion. Conclusion The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2–3 million years ago. The

  18. Modernization of the physical protection system of IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Suzuki, F.F.

    2001-01-01

    the failure of one component of the physical protection system. Periodic maintenance of physical barriers, as fences, has been performed in order to keep the level of opponent retard. Portable VHP radios have been purchased to improve the security force communication, creating redundancy in the communication channels. The performance of the physical protection system depends largely on the security force personnel. For this reason, the modernization programme dedicates special attention to the training of those professionals. Emphasis is being given to the emergency procedures, because the personnel action in those cases was considered an important point. The specific training on radio communication is also being reinforced. Nowadays the committee is evaluating the creation of an integrated center of physical protection (ICPP), where the central alarm station will be installed. The ICPP will monitor continuously the intrusion sensors to be installed at the institute. In order to assess the alarms, TV cameras will be installed all around the fences of inner and protected areas. The ICPP will be equipped with redundant communication means with the security and response forces and with the high administration of the institution. (author)

  19. Control systems: More for experimental physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-03-15

    The European Physical Society's Interdivisional Group on Experimental Physics Control Systems (EPCS) ended 1989 on an optimistic note, welcoming its 30th member institution and having substantially enlarged its range of activities.

  20. Comparing Domain-Specific Physical Activity Efficacy Level between Turkish Adolescent Girls and Boys

    Science.gov (United States)

    Çatikkas, Fatih

    2017-01-01

    The adolescence period is a very critical developmental period for personality, socializing and promotion of physical activity. In this regard, the aim of this study was to compare domain-specific physical activity efficacy level between adolescent boys and girls. A total of 219 girls (body weight: 57.50 ± 10.44 kg, height: 160.30 ± 7.40 cm, age…

  1. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    Science.gov (United States)

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P positive steps during the cycling exercises (P positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non-stepping physical activities can result in the false detection of steps. This can negatively affect the quantification of physical

  2. Control systems: More for experimental physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The European Physical Society's Interdivisional Group on Experimental Physics Control Systems (EPCS) ended 1989 on an optimistic note, welcoming its 30th member institution and having substantially enlarged its range of activities.

  3. Collective systems:physical and information exergies.

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, Rush D. III (.; ); Wilson, David Gerald

    2007-04-01

    Collective systems are typically defined as a group of agents (physical and/or cyber) that work together to produce a collective behavior with a value greater than the sum of the individual parts. This amplification or synergy can be harnessed by solving an inverse problem via an information-flow/communications grid: given a desired macroscopic/collective behavior find the required microscopic/individual behavior of each agent and the required communications grid. The goal of this report is to describe the fundamental nature of the Hamiltonian function in the design of collective systems (solve the inverse problem) and the connections between and values of physical and information exergies intrinsic to collective systems. In particular, physical and information exergies are shown to be equivalent based on thermodynamics and Hamiltonian mechanics.

  4. Design Specifications for Adaptive Real-Time Systems

    Science.gov (United States)

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  5. Context-specific outdoor time and physical activity among school-children across gender and age: Using accelerometers and GPS to advance methods

    Directory of Open Access Journals (Sweden)

    Charlotte Demant Klinker

    2014-03-01

    Full Text Available Introduction: Being outdoors has a positive influence on health among children. Evidence in this area is limited and many studies have used self-reported measures. Objective context-specific assessment of physical activity patterns and correlates, such as outdoor time, may progress this field.Aims: To employ novel objective measures to assess age and gender differences in context-specific outdoor weekday behavior patterns among school-children (outdoor time and outdoor MVPA and to investigate associations between context-specific outdoor time and MVPA.Methods: A total of 170 children had at least one weekday of nine hours combined accelerometer and GPS data and were included in the analyses. The data were processed using the Personal Activity and Location Measurement System and a purpose-built PostgreSQL database resulting in context-specific measures for outdoor time, outdoor MVPA and overall daily MVPA. In addition, four domains (leisure, school, transport and home and 11 subdomains (e.g. urban green space, sports facilities were created and assessed. Multilevel analyses provided results on age and gender differences and the association between outdoor time and MVPA.Results: Girls compared to boys had fewer outdoors minutes (pConclusion:A new methodology to assess context-specific outdoor time and physical activity patterns has been developed and can be expanded to other populations. Different context-specific patterns were found for gender and age, suggesting different strategies may be needed to promote physical activity

  6. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  7. Real-time virtual EAST physical experiment system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: lidan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China); Xia, J.Y., E-mail: jyxia@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Yang, Fei, E-mail: fyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China)

    2014-05-15

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  8. Real-time virtual EAST physical experiment system

    International Nuclear Information System (INIS)

    Li, Dan; Xiao, B.J.; Xia, J.Y.; Yang, Fei

    2014-01-01

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  9. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    OpenAIRE

    Coughlin, Katie

    2008-01-01

    This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the prob...

  10. Security analysis of socio-technical physical systems

    NARCIS (Netherlands)

    Lenzini, Gabriele; Mauw, Sjouke; Ouchani, Samir

    2015-01-01

    Recent initiatives that evaluate the security of physical systems with objects as assets and people as agents – here called socio-technical physical systems – have limitations: their agent behavior is too simple, they just estimate feasibility and not the likelihood of attacks, or they do estimate

  11. Context-Specific Associations of Physical Activity and Sedentary Behavior With Cognition in Children.

    Science.gov (United States)

    Aggio, Daniel; Smith, Lee; Fisher, Abigail; Hamer, Mark

    2016-06-15

    In the present study, we investigated how overall and specific domains of physical activity and sedentary behavior at the age of 7 years were associated with cognition at the age of 11 years in 8,462 children from the Millennium Cohort Study. Data were collected from 2001 to 2013. Participation in domains of physical activity and sedentary behavior at 7 years of age were reported. Activity levels were also measured objectively. Cognition was assessed using the British Ability Scales. General linear models were used to assess longitudinal associations of physical activity and sedentary behavior, measured both objectively and via self-report, with cognition. Analyses were adjusted for prespecified covariates. Sports/physical activity club attendance (B = 0.6, 95% confidence interval (CI): 0.2, 1.1), doing homework (B = 0.5, 95% CI: 0.0, 0.9), and objectively measured sedentary time (B = 0.8, 95% CI: 0.1, 1.4) at age 7 years were positively associated with cognition at age 11 years in final the models. Television viewing was negatively associated with cognition (B = -1.7, 95% CI: -2.4, -1.0), although the association was attenuated to the null after adjustments for baseline cognition. Objectively measured light physical activity was inversely associated with cognition (B = -0.7, 95% CI: -1.3, -0.1). Moderate-to-vigorous physical activity was also inversely associated with cognition in girls only (B = -1.1, 95% CI: -2.0, -0.3). Associations of physical activity and sedentary behavior with cognition appear to be context-specific in young people. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  12. Physics of Coupled CME and Flare Systems

    Science.gov (United States)

    2016-12-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0162 TR-2016-0162 PHYSICS OF COUPLED CME AND FLARE SYSTEMS K. S. Balasubramaniam, et al. 21 December 2016 Final...30 Sep 2016 4. TITLE AND SUBTITLE Physics of Coupled CME and Flare Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F...objectives for this task were: (i) derive measureable physical properties and discernible structural circumstances in solar active regions that

  13. The physics of living systems

    CERN Document Server

    Cleri, Fabrizio

    2016-01-01

    In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers m...

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  15. ITER ISS system alternative specification study

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-08-01

    Recent comments suggested that the fuel systems, in particular the ISS, could be simplified if the ITER specifications were relaxed from the data specified for ITER. This interim report addresses the first part of the analysis, which considers the impact of design specifications on fuel systems design

  16. Task-Specific Optimization of Mammographic Systems

    National Research Council Canada - National Science Library

    Saunders, Robert

    2005-01-01

    .... This model was verified by a human observer performance experiment. The next objective explored the physical properties of a digital mammographic system, including resolution, noise, efficiency, and lag...

  17. Physical Properties and Specific Heat Capacity of Tamarind (Tamarindus indica Seed

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-04-01

    Full Text Available This study investigated the effect of moisture content on physical properties and specific heat capacity of Tamarindus indica seed. Physical properties investigated were axial dimensions, one thousand seed weight, bulk and true densities, porosity, roundness and sphericity, surface area, angle of repose and static coefficient of friction. The thermal property determined was the specific heat. These properties of Tamarindus indica seed were investigated within the moisture content range of 7.55 - 10.47% (d.b. The length, width and thickness increased from 9.979 to 10.634mm, 8.909 to 10.089mm and 5.039 to 5.658mm, respectively in the above moisture range. One thousand seed weight, surface area, seed volume, true density and porosity, increased from 388.4 to 394.8g, 86.916 to 87.58cm2, 0.353 to 0.366cm3, 1217.5 to 1287.00kg/m3 and 28.22 to 33.87%, respectively, as moisture content increased in the above range, while bulk density decreased from 873.9 to 851.4kg/m3. Roundness and sphericity, and angle of repose also increased from 41 to 42.4% and 73.7 to 76.3% and 36.1 to 38.93o, respectively. Specific heat capacity values increased linearly from 589.00J/kgK to 638.61 J/kgK in the above moisture range.

  18. A New Physical Protection System Design and Evaluation Process

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Kim, Myungsu; Bae, Yeongkyoung; Na, Janghwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    International Atomic Energy Agency(IAEA) had established security-related department and has been strengthening security measures against possible sabotage. IAEA enforces the recommendations for the physical protection of NPPs in the INFCIRC/ 225/Rev.5 to the member states and U.S. NRC also enforces the similar requirements in 10 CFR 73.55. Thus, in order to let Korean NPPs meet the new requirements in INFCIRC/225/Rev.5 or U.S. NRC requirements, Korea nuclear licensee should develop or establish appropriate physical protection system (PPS) design methods for the physical protection of the operating NPPs and new NPPs. KHNP is doing the project of 'Development of APR1400 Physical Protection System Design (2012- 2015, KHNP/KAERI /KEPCO E-C)'. This paper describes overview of a physical protection system (PPS) design and evaluation for an advanced nuclear power plant. It found that a new physical protection system (PPS)design and evaluation. KHNP is doing the project of Physical Protection System design according to U.S. NRC requirements and IAEA requirements in INFCIRC /225 /Rev.5 and will complete by 7.31, 2015 for development of APR1400 Physical Protection System. After completing this project, the results of project are expected to apply new NPPs.

  19. Cyber physical system based on resilient ICT

    Science.gov (United States)

    Iwatsuki, Katsumi

    2016-02-01

    While development of science and technology has built up the sophisticated civilized society, it has also resulted in quite a few disadvantages in global environment and human society. The common recognition has been increasingly shared worldwide on sustainable development society attaching greater importance to the symbiotic relationship with nature and social ethics. After the East Japan Great Earthquake, it is indispensable for sustainable social development to enhance capacity of resistance and restoration of society against natural disaster, so called "resilient society". Our society consists of various Cyber Physical Systems (CPSs) that make up the physical systems by fusing with an Information Communication Technology (ICT). We describe the proposed structure of CPS in order to realize resilient society. The configuration of resilient CPS consisting of ICT and physical system is discussed to introduce "autonomous, distributed, and cooperative" structure, where subsystems of ICT and physical system are simultaneously coordinated and cooperated with Business Continuity Planning (BCP) engine, respectively. We show the disaster response information system and energy network as examples of BCP engine and resilient CPS, respectively. We also propose the structure and key technology of resilient ICT.

  20. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    Directory of Open Access Journals (Sweden)

    Sandra O'Connell

    Full Text Available Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities.Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video.All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025. The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both. The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both.As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non

  1. The neurocognition of conduct disorder behaviors: specificity to physical aggression and theft after controlling for ADHD symptoms.

    Science.gov (United States)

    Barker, Edward D; Tremblay, Richard E; van Lier, Pol A C; Vitaro, Frank; Nagin, Daniel S; Assaad, Jean-Marc; Séguin, Jean R

    2011-01-01

    There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. © 2010 Wiley-Liss, Inc.

  2. Investigation in Query System Framework for High Energy Physics

    CERN Document Server

    Jatuphattharachat, Thanat

    2017-01-01

    We summarize an investigation in query system framework for HEP (High Energy Physics). Our work was an investigation on distributed server part of Femtocode, which is a query language that provides the ability for physicists to make plots and other aggregations in real-time. To make the system more robust and capable of processing large amount of data quickly, it is necessary to deploy the system on a redundant and distributed computing cluster. This project aims to investigate third party coordination and resource management frameworks which fit into the design of real-time distributed query system. Zookeeper, Mesos and Marathon are the main frameworks for this investigation. The results indicate that Zookeeper is good for job coordinator and job tracking as it provides robust, fast, simple and transparent read and write process for all connecting client across distributed Zookeeper server. Furthermore, it also supports high availability access and consistency guarantee within specific time bound.

  3. Identifying Country-Specific Cultures of Physics Education: A differential item functioning approach

    Science.gov (United States)

    Mesic, Vanes

    2012-11-01

    In international large-scale assessments of educational outcomes, student achievement is often represented by unidimensional constructs. This approach allows for drawing general conclusions about country rankings with respect to the given achievement measure, but it typically does not provide specific diagnostic information which is necessary for systematic comparisons and improvements of educational systems. Useful information could be obtained by exploring the differences in national profiles of student achievement between low-achieving and high-achieving countries. In this study, we aimed to identify the relative weaknesses and strengths of eighth graders' physics achievement in Bosnia and Herzegovina in comparison to the achievement of their peers from Slovenia. For this purpose, we ran a secondary analysis of Trends in International Mathematics and Science Study (TIMSS) 2007 data. The student sample consisted of 4,220 students from Bosnia and Herzegovina and 4,043 students from Slovenia. After analysing the cognitive demands of TIMSS 2007 physics items, the correspondent differential item functioning (DIF)/differential group functioning contrasts were estimated. Approximately 40% of items exhibited large DIF contrasts, indicating significant differences between cultures of physics education in Bosnia and Herzegovina and Slovenia. The relative strength of students from Bosnia and Herzegovina showed to be mainly associated with the topic area 'Electricity and magnetism'. Classes of items which required the knowledge of experimental method, counterintuitive thinking, proportional reasoning and/or the use of complex knowledge structures proved to be differentially easier for students from Slovenia. In the light of the presented results, the common practice of ranking countries with respect to universally established cognitive categories seems to be potentially misleading.

  4. The Physics of transmutation systems : system capabilities and performances

    International Nuclear Information System (INIS)

    Finck, P. J.

    2002-01-01

    This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step further towards practical implementation (while recognizing that the practical issues such as technology development and demonstration, and economics, can only be mentioned in a very superficial manner). Section 1 briefly overviews the possible objectives of transmutation systems, and links these different objectives to possible technological paths. It also describes the overall constraints which have to be considered when developing and implementing transmutation systems. In section 2 we briefly overview the technological constraints which need to be accounted for when designing transmutation systems. In section 3 we attempt to provide a simplified classification of transmutation systems in order to clarify later comparisons. It compares heterogeneous and homogeneous recycle strategies, and single and multi-tier systems. Section 4 presents case analyses for assessing the transmutation performance of various individual systems, starting with LWR's ((1) generic results; (2) multirecycle of plutonium; (3) an alternative: transmutation based on a Thorium fuel cycle), followed by Gas-Cooled Reactors (with an emphasis on the ''deep burn'' approach), and followed by Fast Reactors and Accelerator Driven systems ((1) generic results; (2) homogeneous recycle of transuranics; (3) practical limit between Fast Reactors and Accelerator Driven Systems) Section 5 summarizes recent results on integrated system performances. It focuses first on interface effects between the two elements of a dual tier system, and then summarizes the major lessons learned from recent global physics studies

  5. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    Science.gov (United States)

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A Physical Protection Systems Test Bed for International Counter-Trafficking System Development

    International Nuclear Information System (INIS)

    Stinson, Brad J.; Kuhn, Michael J.; Donaldson, Terrence L.; Richardson, Dave; Rowe, Nathan C.; Younkin, James R.; Pickett, Chris A.

    2011-01-01

    Physical protection systems have a widespread impact on the nuclear industry in areas such as nuclear safeguards, arms control, and trafficking of illicit goods (e.g., nuclear materials) across international borders around the world. Many challenges must be overcome in design and deployment of foreign border security systems such as lack of infrastructure, extreme environmental conditions, limited knowledge of terrain, insider threats, and occasional cultural resistance. Successful security systems, whether it be a system designed to secure a single facility or a whole border security system, rely on the entire integrated system composed of multiple subsystems. This test bed is composed of many unique sensors and subsystems, including wireless unattended ground sensors, a buried fiber-optic acoustic sensor, a lossy coaxial distributed sensor, wireless links, pan-tilt-zoom cameras, mobile power generation systems, unmanned aerial vehicles, and fiber-optic-fence intrusion detection systems. A Common Operating Picture software architecture is utilized to integrate a number of these subsystems. We are currently performance testing each system for border security and perimeter security applications by examining metrics such as probability of sense and a qualitative understanding of the sensors vulnerability of defeat. The testing process includes different soil conditions for buried sensors (e.g., dry, wet, and frozen) and an array of different tests including walking, running, stealth detection, and vehicle detection. Also, long term sustainability of systems is tested including performance differences due to seasonal variations (e.g. summer versus winter, while raining, in foggy conditions). The capabilities of the test bed are discussed. Performance testing results, both at the individual component level and integrated into a larger system for a specific deployment (in situ), help illustrate the usefulness and need for integrated testing facilities to carry out this

  7. Resilient control of cyber-physical systems against intelligent attacker: a hierarchal stackelberg game approach

    Science.gov (United States)

    Yuan, Yuan; Sun, Fuchun; Liu, Huaping

    2016-07-01

    This paper is concerned with the resilient control under denial-of-service attack launched by the intelligent attacker. The resilient control system is modelled as a multi-stage hierarchical game with a corresponding hierarchy of decisions made at cyber and physical layer, respectively. Specifically, the interaction in the cyber layer between different security agents is modelled as a static infinite Stackelberg game, while in the underlying physical layer the full-information H∞ minimax control with package drops is modelled as a different Stackelberg game. Both games are solved sequentially, which is consistent with the actual situations. Finally, the proposed method is applied to the load frequency control of the power system, which demonstrates its effectiveness.

  8. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    Science.gov (United States)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  9. Engaging students in the study of physics: an investigation of physics teachers’ belief systems about teaching and learning physics

    OpenAIRE

    Belo, Neeltje Annigje Hendrika

    2013-01-01

    This doctoral thesis comprises two questionnaire studies and two small-scale interview studies on the content and structure of physics teachers’ belief systems. The studies focused on teachers’ beliefs about the goals and pedagogy of teaching and learning physics, and the nature of science. The samples consisted of physics teachers working at secondary schools in the Netherlands (students aged 12-18). The questionnaire studies showed that, on average, teachers’ belief systems about teaching a...

  10. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  11. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  12. Medical cyber-physical systems: A survey.

    Science.gov (United States)

    Dey, Nilanjan; Ashour, Amira S; Shi, Fuqian; Fong, Simon James; Tavares, João Manuel R S

    2018-03-10

    Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device's network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included.

  13. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  14. Development of Intelligent Auxiliary System for Customized Physical Fitness and Healthcare

    Directory of Open Access Journals (Sweden)

    Huang Chung-Chi

    2016-01-01

    Full Text Available With the advent of global high-tech industry and commerce era, the sedentary reduces opportunities of physical activity. And physical fitness and health of people is getting worse and worse. At present, the shortage of physical fitness instructors greatly affected the effectiveness of health promotion. Therefore, it is necessary to develop an auxiliary system which can reduce the workload of instructors and enhance physical fitness and health for people. But current general physical fitness and healthcare system is hard to meet individualized needs. The main purpose of this research is to develop an intelligent auxiliary system for customized physical fitness and healthcare. It records all processes of physical fitness and healthcare system by wireless sensors network. The results of intelligent auxiliary systems for customized physical fitness and healthcare will be generated by fuzzy logic Inference. It will improve individualized physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent auxiliary system for customized physical fitness and healthcare.

  15. Physical and mental health functioning after all-cause and diagnosis-specific sickness absence: a register-linkage follow-up study among ageing employees

    Directory of Open Access Journals (Sweden)

    Minna Mänty

    2017-01-01

    Full Text Available Abstract Background Sickness absence has been shown to be a risk marker for severe future health outcomes, such as disability retirement and premature death. However, it is poorly understood how all-cause and diagnosis-specific sickness absence is reflected in subsequent physical and mental health functioning over time. The aim of this study was to examine the association of all-cause and diagnosis-specific sickness absence with subsequent changes in physical and mental health functioning among ageing municipal employees. Methods Prospective survey and register data from the Finnish Helsinki Health Study and the Social Insurance Institution of Finland were used. Register based records for medically certified all-cause and diagnostic-specific sickness absence spells (>14 consecutive calendar days in 2004–2007 were examined in relation to subsequent physical and mental health functioning measured by Short-Form 36 questionnaire in 2007 and 2012. In total, 3079 respondents who were continuously employed over the sickness absence follow-up were included in the analyses. Repeated-measures analysis was used to examine the associations. Results During the 3-year follow-up, 30% of the participants had at least one spell of medically certified sickness absence. All-cause sickness absence was associated with lower subsequent physical and mental health functioning in a stepwise manner: the more absence days, the poorer the subsequent physical and mental health functioning. These differences remained but narrowed slightly during the follow-up. Furthermore, the adverse association for physical health functioning was strongest among those with sickness absence due to diseases of musculoskeletal or respiratory systems, and on mental functioning among those with sickness absence due to mental disorders. Conclusions Sickness absence showed a persistent adverse stepwise association with subsequent physical and mental health functioning. Evidence on health

  16. Physical and mental health functioning after all-cause and diagnosis-specific sickness absence: a register-linkage follow-up study among ageing employees.

    Science.gov (United States)

    Mänty, Minna; Lallukka, Tea; Lahti, Jouni; Pietiläinen, Olli; Laaksonen, Mikko; Lahelma, Eero; Rahkonen, Ossi

    2017-01-25

    Sickness absence has been shown to be a risk marker for severe future health outcomes, such as disability retirement and premature death. However, it is poorly understood how all-cause and diagnosis-specific sickness absence is reflected in subsequent physical and mental health functioning over time. The aim of this study was to examine the association of all-cause and diagnosis-specific sickness absence with subsequent changes in physical and mental health functioning among ageing municipal employees. Prospective survey and register data from the Finnish Helsinki Health Study and the Social Insurance Institution of Finland were used. Register based records for medically certified all-cause and diagnostic-specific sickness absence spells (>14 consecutive calendar days) in 2004-2007 were examined in relation to subsequent physical and mental health functioning measured by Short-Form 36 questionnaire in 2007 and 2012. In total, 3079 respondents who were continuously employed over the sickness absence follow-up were included in the analyses. Repeated-measures analysis was used to examine the associations. During the 3-year follow-up, 30% of the participants had at least one spell of medically certified sickness absence. All-cause sickness absence was associated with lower subsequent physical and mental health functioning in a stepwise manner: the more absence days, the poorer the subsequent physical and mental health functioning. These differences remained but narrowed slightly during the follow-up. Furthermore, the adverse association for physical health functioning was strongest among those with sickness absence due to diseases of musculoskeletal or respiratory systems, and on mental functioning among those with sickness absence due to mental disorders. Sickness absence showed a persistent adverse stepwise association with subsequent physical and mental health functioning. Evidence on health-related outcomes after long-term sickness absence may provide useful

  17. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  18. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  19. Integrating Simulated Physics and Device Virtualization in Control System Testbeds

    OpenAIRE

    Redwood , Owen; Reynolds , Jason; Burmester , Mike

    2016-01-01

    Part 3: INFRASTRUCTURE MODELING AND SIMULATION; International audience; Malware and forensic analyses of embedded cyber-physical systems are tedious, manual processes that testbeds are commonly not designed to support. Additionally, attesting the physics impact of embedded cyber-physical system malware has no formal methodologies and is currently an art. This chapter describes a novel testbed design methodology that integrates virtualized embedded industrial control systems and physics simula...

  20. Fifty Years of Physics of Living Systems.

    Science.gov (United States)

    Latash, Mark L

    2016-01-01

    The equilibrium-point hypothesis and its more recent version, the referent configuration hypothesis, represent the physical approach to the neural control of action. This hypothesis can be naturally combined with the idea of hierarchical control of movements and of synergic organization of the abundant systems involved in all actions. Any action starts with defining trajectories of a few referent coordinates for a handful of salient task-specific variables. Further, referent coordinates at hierarchically lower levels emerge down to thresholds of the tonic stretch reflex for the participating muscles. Stability of performance with respect to salient variables is reflected in the structure of inter-trial variance and phenomena of motor equivalence. Three lines of recent research within this framework are reviewed. First, synergic adjustments of the referent coordinate and apparent stiffness have been demonstrated during finger force production supporting the main idea of control with referent coordinates. Second, the notion of unintentional voluntary movements has been introduced reflecting unintentional drifts in referent coordinates. Two types of unintentional movements have been observed with different characteristic times. Third, this framework has been applied to studies of impaired movements in neurological patients. Overall, the physical approach searching for laws of nature underlying biological movement has been highly stimulating and productive.

  1. Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.

    Science.gov (United States)

    Diego, Vincent P; de Chaves, Raquel Nichele; Blangero, John; de Souza, Michele Caroline; Santos, Daniel; Gomes, Thayse Natacha; dos Santos, Fernanda Karina; Garganta, Rui; Katzmarzyk, Peter T; Maia, José A R

    2015-08-01

    The objective of this study is to present a model to estimate sex-specific genetic effects on physical activity (PA) levels and sedentary behaviour (SB) using three generation families. The sample consisted of 100 families covering three generations from Portugal. PA and SB were assessed via the International Physical Activity Questionnaire short form (IPAQ-SF). Sex-specific effects were assessed by genotype-by-sex interaction (GSI) models and sex-specific heritabilities. GSI effects and heterogeneity were tested in the residual environmental variance. SPSS 17 and SOLAR v. 4.1 were used in all computations. The genetic component for PA and SB domains varied from low to moderate (11% to 46%), when analyzing both genders combined. We found GSI effects for vigorous PA (p = 0.02) and time spent watching television (WT) (p < 0.001) that showed significantly higher additive genetic variance estimates in males. The heterogeneity in the residual environmental variance was significant for moderate PA (p = 0.02), vigorous PA (p = 0.006) and total PA (p = 0.001). Sex-specific heritability estimates were significantly higher in males only for WT, with a male-to-female difference in heritability of 42.5 (95% confidence interval: 6.4, 70.4). Low to moderate genetic effects on PA and SB traits were found. Results from the GSI model show that there are sex-specific effects in two phenotypes, VPA and WT with a stronger genetic influence in males.

  2. On the Computational Capabilities of Physical Systems. Part 1; The Impossibility of Infallible Computation

    Science.gov (United States)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this first of two papers, strong limits on the accuracy of physical computation are established. First it is proven that there cannot be a physical computer C to which one can pose any and all computational tasks concerning the physical universe. Next it is proven that no physical computer C can correctly carry out any computational task in the subset of such tasks that can be posed to C. This result holds whether the computational tasks concern a system that is physically isolated from C, or instead concern a system that is coupled to C. As a particular example, this result means that there cannot be a physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly 'processing information faster than the universe does'. The results also mean that there cannot exist an infallible, general-purpose observation apparatus, and that there cannot be an infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - a definition of 'physical computation' - is needed to address the issues considered in these papers. While this definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. The second in this pair of papers presents a preliminary exploration of some of this mathematical structure, including in particular that of prediction complexity, which is a 'physical computation

  3. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  4. Fundamental Characteristics of Industrial Variant Specification Systems

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Hvam, Lars

    2004-01-01

    fundamental concepts related to this task, which are relevant to understand for academia and practitioners working with the subject. This is done through a description of variant specification tasks and typical aspects of system solutions. To support the description of variant specification tasks and systems...

  5. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  6. Occupational medical prophylaxis for the musculoskeletal system: A function-oriented system for physical examination of the locomotor system in occupational medicine (fokus(C

    Directory of Open Access Journals (Sweden)

    Schwarze Sieglinde

    2007-10-01

    Full Text Available Abstract Occupational physicians are very often confronted with questions as to the fitness of the postural and locomotor systems, especially the spinal column. Occupational medical assessment and advice can be required by patients with acute symptoms, at routine check-ups, by persons who have problems doing certain jobs, and for expert medical reports as to the fitness of persons with chronic disorders or after operations. Therefore, for occupational medical purposes a physical examination must aim primarily to investigate functions and not structures or radiologic evidence. The physical examination should be structured systematically and according to regions of the body and, together with a specific (pain anamnesis should provide a basis for the medical assessment. This paper presents a function-oriented system for physical examination of the locomotor system, named fokus(C (Funktionsorientierte Koerperliche Untersuchungssystematik, also available on DVD. fokus(C has been developed with a view to its relevance for occupational medical practice and does not aim primarily to provide a precise diagnosis. Decisive for an occupational medical assessment of disorders of the musculoskeletal system is rather information about functional disorders and any impairment of performance or mobility which they can cause. The division of the physical examination into a rapid screening phase and a subsequent more intensive functional diagnostic phase has proved its practicability in many years of day-to-day use. Here, in contrast to the very extensive measures recommended for orthopaedic and manual diagnosis, for reasons of efficiency and usability of the system in routine occupational medical examinations the examination is structured according to the findings. So it is reduced to that which is most necessary and feasible.

  7. Intelligent scheduling of execution for customized physical fitness and healthcare system.

    Science.gov (United States)

    Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin

    2015-01-01

    Physical fitness and health of white collar business person is getting worse and worse in recent years. Therefore, it is necessary to develop a system which can enhance physical fitness and health for people. Although the exercise prescription can be generated after diagnosing for customized physical fitness and healthcare. It is hard to meet individual execution needs for general scheduling of physical fitness and healthcare system. So the main purpose of this research is to develop an intelligent scheduling of execution for customized physical fitness and healthcare system. The results of diagnosis and prescription for customized physical fitness and healthcare system will be generated by fuzzy logic Inference. Then the results of diagnosis and prescription for customized physical fitness and healthcare system will be scheduled and executed by intelligent computing. The scheduling of execution is generated by using genetic algorithm method. It will improve traditional scheduling of exercise prescription for physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent scheduling of execution for customized physical fitness and healthcare system.

  8. Statistical physics of complex systems a concise introduction

    CERN Document Server

    Bertin, Eric

    2016-01-01

    This course-tested primer provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting units, and on the other to predict the macroscopic, collective behavior of the system considered from the perspective of the microscopic laws governing the dynamics of the individual entities. These two goals are essentially also shared by what is now called 'complex systems science', and as such, systems studied in the framework of statistical physics may be considered to be among the simplest examples of complex systems – while also offering a rather well developed mathematical treatment. The second ...

  9. Particle physics data system at IHEP

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Grudtsin, S.N.; Demidov, N.G.; Ezhela, V.V.

    1981-01-01

    This note presents the description of information search and retrieval facilities supplied by the Berkeley Database Management System - BDMS V2.2 implemented for ICL-1906A computers at IHEP. The system is used for creation and maintenance of archieve Particle Physics Data Bases [ru

  10. Visiting Power Laws in Cyber-Physical Networking Systems

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Cyber-physical networking systems (CPNSs are made up of various physical systems that are heterogeneous in nature. Therefore, exploring universalities in CPNSs for either data or systems is desired in its fundamental theory. This paper is in the aspect of data, aiming at addressing that power laws may yet be a universality of data in CPNSs. The contributions of this paper are in triple folds. First, we provide a short tutorial about power laws. Then, we address the power laws related to some physical systems. Finally, we discuss that power-law-type data may be governed by stochastically differential equations of fractional order. As a side product, we present the point of view that the upper bound of data flow at large-time scaling and the small one also follows power laws.

  11. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  12. The ALADDIN atomic physics database system

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1990-01-01

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. 8AB The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to be ALADDIN design, leading to the use of straightforward text files with concatentated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and database, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes

  13. Is generic physical activity or specific exercise associated with motor abilities?

    Science.gov (United States)

    Rinne, Marjo; Pasanen, Matti; Miilunpalo, Seppo; Mälkiä, Esko

    2010-09-01

    Evidence of the effect of leisure time physical activity (LTPA) modes on the motor abilities of a mature population is scarce. The purpose of this study was to compare the motor abilities of physically active and inactive men and women and to examine the associations of different exercise modes and former and recent LTPA (R-LTPA) with motor ability and various physical tests. The LTPA of the participants (men n = 69, women n = 79; aged 41-47 yr) was ascertained by a modified Physical Activity Readiness Questionnaire, including questions on the frequency, duration, and intensity of R-LTPA and former LTPA and on exercise modes. Motor abilities in terms of balance, agility, and coordination were assessed with a battery of nine tests supplemented with five physical fitness tests. Multiple statistical methods were used in analyses that were conducted separately for men and women. The MET-hours per week of R-LTPA correlated statistically significantly with the tests of agility and static balance (rs = -0.28, P = 0.022; rs = -0.25, P = 0.043, respectively) among men and with the static balance (rs = 0.41), 2-km walking (rs = 0.36), step squat (rs = 0.36) (P women. In the stepwise regression among men, the most frequent statistically significant predictor was the playing of several games. For women, a history of LTPA for more than 3 yr was the strongest predictor for good results in almost all tests. Participants with long-term and regular LTPA had better motor performance, and especially a variety of games improve components of motor ability. Diverse, regular, and long-term exercise including both specific training and general activity develops both motor abilities and physical fitness.

  14. Reported frequency of physical activity in a large epidemiological study: relationship to specific activities and repeatability over time

    Directory of Open Access Journals (Sweden)

    Reeves Gillian K

    2011-06-01

    Full Text Available Abstract Background How overall physical activity relates to specific activities and how reported activity changes over time may influence interpretation of observed associations between physical activity and health. We examine the relationships between various physical activities self-reported at different times in a large cohort study of middle-aged UK women. Methods At recruitment, Million Women Study participants completed a baseline questionnaire including questions on frequency of strenuous and of any physical activity. About 3 years later 589,896 women also completed a follow-up questionnaire reporting the hours they spent on a range of specific activities. Time spent on each activity was used to estimate the associated excess metabolic equivalent hours (MET-hours and this value was compared across categories of physical activity reported at recruitment. Additionally, 18,655 women completed the baseline questionnaire twice, at intervals of up to 4 years; repeatability over time was assessed using the weighted kappa coefficient (κweighted and absolute percentage agreement. Results The average number of hours per week women reported doing specific activities was 14.0 for housework, 4.5 for walking, 3.0 for gardening, 0.2 for cycling, and 1.4 for all strenuous activity. Time spent and the estimated excess MET-hours associated with each activity increased with increasing frequency of any or strenuous physical activity reported at baseline (tests for trend, P weighted = 0.71 for questionnaires administered less than 6 months apart, and 52% (κweighted = 0.51 for questionnaires more than 2 years apart. Corresponding values for any physical activity were 57% (κweighted = 0.67 and 47% (κweighted = 0.58. Conclusions In this cohort, responses to simple questions on the frequency of any physical activity and of strenuous activity asked at baseline were associated with hours spent on specific activities and the associated estimated excess MET

  15. Work-specific physical assessment of minimum physical fitness ...

    African Journals Online (AJOL)

    The idea was to establish one powerful and complete measuring tool, which would enable the relevant company to measure the physical work capacities of the relevant workers. The target population consisted of 550 possible participants of which 356 were tested and 344 were used for the calculation of the MPR.

  16. Cyber physical systems role in manufacturing technologies

    Science.gov (United States)

    Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al

    2018-04-01

    Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.

  17. The neurocognition of conduct disorder behaviors: specificity to physical aggression and theft after controlling for ADHD symptoms

    NARCIS (Netherlands)

    Barker, E.D.; Tremblay, R.E.; van Lier, P.A.C.; Vitaro, F.; Nagin, D.S.; Assaad, J.M.; Seguin, J.R.

    2011-01-01

    There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been

  18. Predictive modeling of coupled multi-physics systems: I. Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2014-01-01

    Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially

  19. Systematic evaluation of the Cernavoda nuclear power plant physical protection system

    International Nuclear Information System (INIS)

    Ionescu, D.S.

    2002-01-01

    Full text: For three years at Cernavoda NPP is working a process to systematic evaluating the effectiveness of the Physical Protection System (PPS). Due to the fact that this evaluation has to be continuous, the first important step is to define a baseline to compare periodically the performance of PPS against it. The necessity of that process has been identified as follows: the continuous changes in the field of perceived threats against Cernavoda NPP and the necessary measures to respond to that changing climate; the needful to improve the performance of PPS against certain threats in conjunction with the needful to allocate substantially financial and human resources to cover the discovered weakness in the system; an assistant to take the appropriate measure in case of indisponibility of one or more components or parts of the PPS. The second step is the continuous tracking of the behavior of PPS in order to determine: the maintenance resource allocation and the priorities of the work; the predictive behavior of installed components to determine the future appropriate measures, including budget dimensioning. SAVI is a PC compatible program developed by SANDIA Laboratory (USA) for comprehensive analysis of PPS effectiveness. That program is organized in two modules: the Adversary Sequence Diagram (ASD) module and the outsider module modeling trough specific codes both the characteristics of PPS and of the predicted adversary. Combining the two modules related to a specific PPS and adversary is possible to find out the effectiveness of the physical protection system for each vital zone along to ten possible paths to penetrate by adversary, starting with the most vulnerable one. Because of two conservative assumption considered by the SAVI algorithm (adversary know the PPS characteristics and they use an optimal penetration strategy), the measure of effectiveness (probability of interruption - P I ) is very realistic and conservative related to the necessary

  20. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure

    Directory of Open Access Journals (Sweden)

    Yaniv Mordecai

    2017-07-01

    Full Text Available The cyber-physical gap (CPG is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS. Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME, a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework.

  1. Generic Guide Specification for Geothermal Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required

  2. Physical activity and gastric residuals as biomarkers for region-specific NEC lesions in preterm neonates

    DEFF Research Database (Denmark)

    Cao, Muqing; Andersen, Anders Daniel; Li, Yanqi

    2016-01-01

    onset of NEC can be predicted by decreased physical activity during the first few days after birth. Methods: Cesarean-delivered preterm pigs were fed parenteral nutrition and increasing amounts of formula for 5 days after birth (n = 120). Their physical activity was quantified by a continuous camera....... Results: Half of the pigs (48%) showed clear NEC-like lesions on day 5, and these individuals had more adverse clinical symptoms from day 3 but decreased physical activity already from day 2 relative to the unaffected pigs (both p ... physical activity on days 2 and 3, and the increased volume of gastric residuals was specifically related to colon lesions (both p physical activity precedes the clinical symptoms of NEC in the small intestine of preterm pigs, and increased gastric residuals predict NEC...

  3. Calibration of context-specific survey items to assess youth physical activity behaviour.

    Science.gov (United States)

    Saint-Maurice, Pedro F; Welk, Gregory J; Bartee, R Todd; Heelan, Kate

    2017-05-01

    This study tests calibration models to re-scale context-specific physical activity (PA) items to accelerometer-derived PA. A total of 195 4th-12th grades children wore an Actigraph monitor and completed the Physical Activity Questionnaire (PAQ) one week later. The relative time spent in moderate-to-vigorous PA (MVPA % ) obtained from the Actigraph at recess, PE, lunch, after-school, evening and weekend was matched with a respective item score obtained from the PAQ's. Item scores from 145 participants were calibrated against objective MVPA % using multiple linear regression with age, and sex as additional predictors. Predicted minutes of MVPA for school, out-of-school and total week were tested in the remaining sample (n = 50) using equivalence testing. The results showed that PAQ β-weights ranged from 0.06 (lunch) to 4.94 (PE) MVPA % (P PAQ and accelerometer MVPA at school and out-of-school ranged from -15.6 to +3.8 min and the PAQ was within 10-15% of accelerometer measured activity. This study demonstrated that context-specific items can be calibrated to predict minutes of MVPA in groups of youth during in- and out-of-school periods.

  4. Cost and performance analysis of physical security systems

    International Nuclear Information System (INIS)

    Hicks, M.J.; Yates, D.; Jago, W.H.; Phillips, A.W.

    1998-04-01

    Analysis of cost and performance of physical security systems can be a complex, multi-dimensional problem. There are a number of point tools that address various aspects of cost and performance analysis. Increased interest in cost tradeoffs of physical security alternatives has motivated development of an architecture called Cost and Performance Analysis (CPA), which takes a top-down approach to aligning cost and performance metrics. CPA incorporates results generated by existing physical security system performance analysis tools, and utilizes an existing cost analysis tool. The objective of this architecture is to offer comprehensive visualization of complex data to security analysts and decision-makers

  5. Vulnerability Analysis of Physical Protection System at Hypothetical Facility

    International Nuclear Information System (INIS)

    Jung, Won Moog; Lee, Ho Jin; Yu, Dong Han; Min, Gyung Sik

    2006-01-01

    Since the 9/11 event in the U.S.A, International terror possibilities has been increasing for nuclear facilities including nuclear power plants(NPPs). It is necessary to evaluate the performance of an existing physical protection system(PPS) at nuclear facilities based on such malevolent acts. A PPS is a complex configuration of detection, delay, and response elements. Detection, delay, and response elements are all important to the analysis and evaluation of a PPS and its effectiveness. Methods are available to analyze a PPS and evaluate its effectiveness. Sandia National Laboratory(SNL) in the U.S.A was developed a System Analysis of Vulnerability to Intrusion (SAVI) computer code for evaluating the effectiveness of PPS against outsider threats. This study presents the vulnerability analysis of the PPS at hypothetical facility using SAVI code that the basic input parameters are from PPS of Hanaro Research Reactor at Korea Atomic Energy Research Institution. It is understand that PPS of research reactor and critical assemblies are deficient that that of NPP and nuclear materials of RRCAS are compact to transport For analysis, first, the site-specific Adversary Sequence Diagrams(ASDs) of the PPS is constructed. It helps to understand the functions of the existing PPS composed of physical areas and Protection Elements(PEs). Then, the most vulnerable path of an ASD as a measure of effectiveness is determined. The results in the analysis can used to suggest the possible PPS upgrades to the most vulnerable paths for the system like research reactor

  6. Domain-specific physical activity and health-related quality of life in university students.

    Science.gov (United States)

    Pedišić, Zeljko; Rakovac, Marija; Titze, Sylvia; Jurakić, Danijel; Oja, Pekka

    2014-01-01

    Information on the relationship between domain-specific physical activity (PA) and health-related quality of life (HRQoL) in the general population and specific groups is still scarce. The aim of this study was to determine the relationship between PA in work, transport, domestic and leisure-time domains and HRQoL among university students. PA and HRQoL were assessed in a random stratified sample of 1750 university students using the International Physical Activity Questionnaire - long form and 12-item Short Form Health Survey, respectively. The Spearman's rank correlations, adjusted for age, community size, personal monthly budget, body mass index, smoking habits and alcohol intake ranged from -0.11 to 0.18 in female students and -0.29 to 0.19 in male students. Leisure-time, domestic, transport-related PA and total PA were positively related to HRQoL. Inverse correlations with HRQoL were only found for work-related PA in male students. Multiple linear regression analysis showed that only leisure-time PA was related to the Physical Summary Component score (β = 0.08 for females and β = 0.10 for males, P leisure-time, transport and domestic PA with HRQoL can potentially be used to support evidence-based promotion of PA in a university setting, and as a hypothesis for future longitudinal studies on such potential causal relationships.

  7. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  8. NOAA’s Physical Oceanographic Real-Time Systems (PORTS(Registered))

    Science.gov (United States)

    2010-06-01

    1 NOAA’s Physical Oceanographic Real - Time Systems (PORTS®) Darren Wright and Robert Bassett National Oceanic and Atmospheric Administration...operation of several Physical Oceanographic Real - Time Systems (PORTS®). 0-933957-38-1 ©2009 MTS Report Documentation Page Form ApprovedOMB No. 0704-0188...TITLE AND SUBTITLE NOAAs Physical Oceanographic Real - Time Systems (PORTS®) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  9. Supporting the material control and accountancy system with physical protection system features

    International Nuclear Information System (INIS)

    Miyoshi, D.S.; Olson, C.E.; Caskey, D.L.

    1984-01-01

    Most physical security functions can be accomplished by a range of alternative features. Careful design can provide comparable levels of security regardless of which option is chosen, albeit with possible differences in cost and efficiency. However, the effectiveness and especially the cost and efficiency of the material control and accounting system may be strongly influenced by the selection of a particular design approach to physical security. In this paper, a series of examples are cited to illustrate the effects that particular physical protection design choices may have. The examples have been chosen from several systems engineering projects at facilities within the DOE nuclear community. These examples are generalized, and a series of design principles are proposed for integrating physical security with material control and accounting by appropriate selection of alternative features. 2 references, 6 figures

  10. Supporting the material control and accountancy system with physical protection system features

    International Nuclear Information System (INIS)

    Miyoshi, D.S.; Caskey, D.L.; Olson, C.E.

    1984-01-01

    Most physical security functions can be accomplished by a range of alternative features. Careful design can provide comparable levels of security regardless of which option is chosen, albeit with possible differences in cost and efficiency. However, the effectiveness and especially the cost and efficiency of the material control and accounting system may be strongly influenced by the selection of a particular design approach to physical security. In this paper, a series of examples are cited to illustrate the effects that particular physical protection design choices may have. The examples have been chosen from several systems engineering projects at facilities within the DOE nuclear community. These examples are generalized, and a series of design principles are proposed for integrating physical security with MC and A by appropriate selection of alternative features

  11. Stephen Jay Kline on systems, or physics, complex systems, and the gap between.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip LaRoche

    2011-06-01

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers are of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.

  12. Reliability of Cyber Physical Systems with Focus on Building Management Systems

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Shaker, Hamid Reza; Mohamed, Nader

    2016-01-01

    with our focus CPS, i.e. building management systems (BMS), which are not always safety critical per se, but under special circumstances they can become such. This certainly depends on the purpose of the building. We can easily imagine BMS of hospital buildings as safety-critical, but also BMS of buildings......Cyber-physical systems are slowly emerging to dominate our world. Cyber-physical systems (CPS) are systems that tightly integrates users, devices and software. Whereas many of these systems are obviously safety-critical systems, some of them become so under special circumstances. This is the case...... that store sensitive materials and equipment that could be of biological nature or encompassing sensitive technology that would need special temperature, humidity and light settings. For this reason, in this paper we would like to emphasize on the importance of reliability of CPS in general, with a special...

  13. Development of an accelerometer-linked online intervention system to promote physical activity in adolescents.

    Science.gov (United States)

    Guthrie, Nicole; Bradlyn, Andrew; Thompson, Sharon K; Yen, Sophia; Haritatos, Jana; Dillon, Fred; Cole, Steve W

    2015-01-01

    Most adolescents do not achieve the recommended levels of moderate-to-vigorous physical activity (MVPA), placing them at increased risk for a diverse array of chronic diseases in adulthood. There is a great need for scalable and effective interventions that can increase MVPA in adolescents. Here we report the results of a measurement validation study and a preliminary proof-of-concept experiment testing the impact of Zamzee, an accelerometer-linked online intervention system that combines proximal performance feedback and incentive motivation features to promote MVPA. In a calibration study that parametrically varied levels of physical activity in 31 12-14 year-old children, the Zamzee activity meter was shown to provide a valid measure of MVPA (sensitivity in detecting MVPA = 85.9%, specificity = 97.5%, and r = .94 correspondence with the benchmark RT3 accelerometer system; all p videogame (p adolescents.

  14. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  15. Impact of Y2K problem on physical protection system

    International Nuclear Information System (INIS)

    Kumar, R.; Swadia, N.S.; Zanwar, P.S.; Mishra, G.P.; Salunke, A.S.; Nigam, R.K.

    1999-01-01

    Year 2000 related system failures/problems in Physical Protection System pose no threat to general safety and functioning of any nuclear facility. But there can be potential security threats having radiation safety and non-proliferation concern and hence should be given due importance. Reviewing and testing Physical Protection System for Y2K compliance are easier than other systems as it does not directly affect operation of the plant. The existing emergency response capability at the nuclear facilities should be utilizes effectively to mitigate any Y2K induced events on Physical Protection System with dedicated manpower and channeled efforts

  16. Manual therapy compared with physical therapy in patients with non-specific neck pain : A randomized controlled trial

    NARCIS (Netherlands)

    Groeneweg, Ruud; van Assen, Luite; Kropman, Hans; Leopold, Huco; Mulder, Jan; Smits-Engelsman, Bouwien C.M.; Ostelo, Raymond W.J.G.; Oostendorp, R.A.B.; van Tulder, Maurits W.

    2017-01-01

    Background: Manual therapy according to the School of Manual Therapy Utrecht (MTU) is a specific type of passive manual joint mobilization. MTU has not yet been systematically compared to other manual therapies and physical therapy. In this study the effectiveness of MTU is compared to physical

  17. MPM4CPS: multi-pardigm modelling for cyber-physical systems

    NARCIS (Netherlands)

    Vangeheluwe, Hans; Ameral, Vasco; Giese, Holger; Broenink, Johannes F.; Schätz, Bernhard; Norta, Alexander; Carreira, Paulo; Lukovic, Ivan; Mayerhofer, Tanja; Wimmer, Manuel; Vellecillo, Antonio

    2016-01-01

    The last decades have seen the emergence of truly complex, designed systems, known as Cyber-Physical Systems (CPS). Engineering such systems requires integrating physical, software, and network aspects. To date, neither a unifying theory nor systematic design methods, techniques and tools exist to

  18. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  19. Sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women.

    Science.gov (United States)

    Straight, Chad R; Brady, Anne O; Evans, Ellen

    2015-03-01

    This study aims to determine the sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women. Seventy-nine community-dwelling men (n = 39; mean [SD] age, 76.1 [6.2] y; mean [SD] body mass index, 27.3 [3.8] kg/m(2)) and women (n = 40; mean [SD] age, 75.8 [5.5] y; mean [SD] body mass index, 27.0 [3.8] kg/m(2)) were assessed for physical activity via questionnaire, body composition via dual-energy x-ray absorptiometry scanning, leg extension power using the Nottingham power rig, and muscle quality (W/kg; the ratio of leg extension power [W] to lower-body mineral-free lean mass [kg]). A composite measure of physical function was obtained by summing Z scores from the 6-minute walk, 8-ft up-and-go test, and 30-second chair-stand test. As expected, men had significantly greater levels of physical activity, lower adiposity, greater lean mass, higher leg extension power, and greater muscle quality compared with women (all P physical activity were the strongest predictors of lower-extremity physical function in men and independently explained 42% and 29% of the variance, respectively. In women, muscle quality (16%) and percent body fat (12%) were independent predictors after adjustment for covariates. Muscle quality is the strongest predictor of lower-extremity physical function in men and women, but sex impacts the importance of physical activity and adiposity. These findings suggest that older men and women may benefit from different intervention strategies for preventing physical disability and also highlight the importance of weight management for older women to preserve physical function.

  20. Quantization of non-Hamiltonian physical systems

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    1998-09-01

    We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)

  1. Cooperative Autonomous Resilient Defense Platform for Cyber-Physical Systems

    OpenAIRE

    Azab, Mohamed Mahmoud Mahmoud

    2013-01-01

    Cyber-Physical Systems (CPS) entail the tight integration of and coordination between computational and physical resources. These systems are increasingly becoming vital to modernizing the national critical infrastructure systems ranging from healthcare, to transportation and energy, to homeland security and national defense. Advances in CPS technology are needed to help improve their current capabilities as well as their adaptability, autonomicity, efficiency, reliability, safety and usabili...

  2. The Measurement and Role of Ecological Resilience Systems Theory Across Domain-Specific Outcomes: The Domain-Specific Resilient Systems Scales.

    Science.gov (United States)

    Maltby, John; Day, Liz; Hall, Sophie S; Chivers, Sally

    2017-10-01

    Research suggests that trait resilience may be best understood within an ecological resilient systems theory, comprising engineering, ecological, and adaptive capacity resilience. However, there is no evidence as to how this theory translates to specific life domains. Data from two samples (the United States, n = 1,278; the United Kingdom, n = 211) facilitated five studies that introduce the Domain-Specific Resilient Systems Scales for assessing ecological resilient systems theory within work, health, marriage, friendships, and education. The Domain-Specific Resilient Systems Scales are found to predict unique variance in job satisfaction, lower job burnout, quality-of-life following illness, marriage commitment, and educational engagement, while controlling for factors including sex, age, personality, cognitive ability, and trait resilience. The findings also suggest a distinction between the three resilience dimensions in terms of the types of systems to which they contribute. Engineering resilience may contribute most to life domains where an established system needs to be maintained, for example, one's health. Ecological resilience may contribute most to life domains where the system needs sustainability in terms of present and future goal orientation, for example, one's work. Adaptive Capacity may contribute most to life domains where the system needs to be retained, preventing it from reaching a crisis state, for example, work burnout.

  3. Gender-specific associations between physical functioning, bone quality and fracture risk in older people

    NARCIS (Netherlands)

    Furrer, R.; van Schoor, N.M.; de Haan, A.; Lips, P.; de Jongh, R.T.

    2014-01-01

    The aim of this study was to investigate which parameters of physical functioning are associated with bone quality and fracture risk and whether gender-specific differences exist within these associations. We studied 1,486 participants of the Longitudinal Aging Study Amsterdam. As measures of

  4. Time-lapse videos for physics education: specific examples

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-05-01

    There are many physics experiments with long time scales such that they are usually neither shown in the physics class room nor in student labs. However, they can be easily recorded with time-lapse cameras and the respective time-lapse videos allow qualitative and/or quantitative analysis of the underlying physics. Here, we present some examples from thermal physics (melting, evaporation, cooling) as well as diffusion processes

  5. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators.

    Science.gov (United States)

    Sánchez, Borja Bordel; Alcarria, Ramón; Sánchez-Picot, Álvaro; Sánchez-de-Rivera, Diego

    2017-09-22

    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users' needs and requirements and various additional factors such as the development team's experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.

  6. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators

    Directory of Open Access Journals (Sweden)

    Borja Bordel Sánchez

    2017-09-01

    Full Text Available Cyber-Physical Social Sensing (CPSS is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.

  7. Psycho-social and environmental correlates of location-specific physical activity among 9- and 15- year-old Norwegian boys and girls: the European Youth Heart Study

    Directory of Open Access Journals (Sweden)

    Anderssen Sigmund A

    2006-09-01

    Full Text Available Abstract Objective Little is known about the existence of independent location- or context specific forms of physical activity. This study sought to identify location-specific forms of physical activity in a sample of 9 and 15 years-olds Norwegian boys and girls, and examined their associations to psycho-social and environmental factors. Methods A cross-sectional study of 9 and 15-year-olds (N = 760; 379 boys and 381 girls was conducted in which participants responded to a computer-based questionnaire (PEACH tapping potentially location specific forms of physical activity as well as psycho-social and environmental correlates. Results Exploratory factor analysis indicated that the nine and fifteen year-olds self-reported their physical activity as located in three separate and specific contexts: a school commuting, b informal games play at school and c organized sport, structured exercise and games play in leisure time. Dependent of location, psycho-social and environmental correlates explained between 15 and 55 percent of the variance in physical activity. The impact of peer support, enjoyment and perceived competence in physical activity generalized across the three locations. Enjoyment of physical education classes, parental support and teacher support, in contrast, confined to particular location-specific forms of physical activity. Generally, behavioural beliefs and environmental factors represented marginal correlates of all location-specific forms of activity. Conclusion Young peoples' physical activity was identified as taking place in multiply genuine locations, and the psychosocial correlates of their physical activity seem to some extent to be location specific. Results may inform intervention efforts suggesting that targeting specific sets of psycho-social factors may prove efficient across physical activity locations, gender and age groups. Others, in contrast may prove effective in facilitating location specific physical activity

  8. Construction of database server system for fuel thermo-physical properties

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kwon Ho; Song, Kee Chan

    2003-12-01

    To perform the evaluation of various fuels in the nuclear reactors, not only the mechanical properties but also thermo-physical properties are required as one of most important inputs for fuel performance code system. The main objective of this study is to make a database system for fuel thermo-physical properties and a PC-based hardware system has been constructed for ease use for the public with visualization such as web-based server system. This report deals with the hardware and software which are used in the database server system for nuclear fuel thermo-physical properties. It is expected to be highly useful to obtain nuclear fuel data without such a difficulty through opening the database of fuel properties to the public and is also helpful to research of development of various fuel of nuclear industry. Furthermore, the proposed models of nuclear fuel thermo-physical properties will be enough utilized to the fuel performance code system

  9. Meta II: Multi-Model Language Suite for Cyber Physical Systems

    Science.gov (United States)

    2013-03-01

    AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling

  10. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  11. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  12. Quantum physics in one dimension

    CERN Document Server

    Giamarchi, Thierry

    2004-01-01

    This book presents in a pedagogical yet complete way correlated systems in one dimension. Recent progress in nanotechnology and material research have made one dimensional systems a crucial part of today's physics. After an introduction to the basic concepts of correlated systems, the book gives a step by step description of the techniques needed to treat one dimension, and discusses the resulting physics. Then specific experimental realizations of one dimensional systems such asspin chains, quantum wires, nanotubes, organic superconductors etc. are examined. Given its progressive and pedagogi

  13. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  14. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  15. Physics of zero- and one-dimensional nanoscopic systems

    CERN Document Server

    Maiti, Santanu; Chowdhury, Jayeeta

    2007-01-01

    In recent years submicron and nanoscale systems have featured strongly on the research agenda due to the technological progress and new physics that have emerged from studies of ultra-small systems. A fundamental understanding of basic physical phenomena on the mesoscopic and nanoscopic scales is required to exploit the technological potential offered by these exotic materials. The present book contains review-like chapters by some of the leading experts in the field, covering topics such as the Kondo effect, electron transport, disorder and quantum coherence with electron-electron interaction, persistent current, thermoelectric phenomena, etc. in quantum dots, quantum wires, carbon nanotubes and more. This book will be valuable to researchers and students in condensed matter physics.

  16. Engaging students in the study of physics : an investigation of physics teachers’ belief systems about teaching and learning physics

    NARCIS (Netherlands)

    Belo, Neeltje Annigje Hendrika

    2013-01-01

    This doctoral thesis comprises two questionnaire studies and two small-scale interview studies on the content and structure of physics teachers’ belief systems. The studies focused on teachers’ beliefs about the goals and pedagogy of teaching and learning physics, and the nature of science. The

  17. Computational intelligence for decision support in cyber-physical systems

    CERN Document Server

    Ali, A; Riaz, Zahid

    2014-01-01

    This book is dedicated to applied computational intelligence and soft computing techniques with special reference to decision support in Cyber Physical Systems (CPS), where the physical as well as the communication segment of the networked entities interact with each other. The joint dynamics of such systems result in a complex combination of computers, software, networks and physical processes all combined to establish a process flow at system level. This volume provides the audience with an in-depth vision about how to ensure dependability, safety, security and efficiency in real time by making use of computational intelligence in various CPS applications ranging from the nano-world to large scale wide area systems of systems. Key application areas include healthcare, transportation, energy, process control and robotics where intelligent decision support has key significance in establishing dynamic, ever-changing and high confidence future technologies. A recommended text for graduate students and researche...

  18. Development of industrial variant specification systems

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer

    be developed from a holistic and strategically anchored point of view. Another assumption is that this is a challenge for many industrial companies. Even though the literature presents many considerations on general issues covering new information technology, little work is found on the business perspectives...... are discussed. A list of structural variables and solution components has been created. These are related to four design aspects in the holistic system design covering the aspects of process design, selection of resources (such as hardware, software and humans), the design of information structures...... solution elements and structural variables to be used in the design of variant specification systems. The thesis presents a “top-down” procedure to be used to develop variant specification systems from a strategically anchored and holistic point of view. A methodology and related task variables...

  19. Comparative Evaluations of Four Specification Methods for Real-Time Systems

    Science.gov (United States)

    1989-12-01

    December 1989 Comparative Evaluations of Four Specification Methods for Real - Time Systems David P. Wood William G. Wood Specification and Design Methods...Methods for Real - Time Systems Abstract: A number of methods have been proposed in the last decade for the specification of system and software requirements...and software specification for real - time systems . Our process for the identification of methods that meet the above criteria is described in greater

  20. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  1. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

    Science.gov (United States)

    Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N

    2012-06-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.

  2. [Longitudinal and specific analyses of physical performance in handball].

    Science.gov (United States)

    Schwesig, R; Fieseler, G; Jungermann, P; Noack, F; Irlenbusch, L; Leuchte, S; Fischer, D

    2012-09-01

    Sports-specific, biomechanical measuring stations and measuring-station trainings have become common practice in many forms of sports and are an essential element of the complex assessment of physical performance. In handball, however, there is still considerable research potential in this respect as well as in the systematic generation and acquisition of the requirements profile and progress of strain. The prime objective of the longitudinal study was to determine the potential performance and development of handball players (3 rd league) in general and in terms of handball sport in particular. Another objective was to establish correlations between tests and indicators of performance in competitions. 13 handball players (age: 26.5 ± 3.6 years) were tested three times (before and after the pre-season preparation phase and at the end of the first half of the season) on two test days each. The examination was composed of sprint test (ST, day 1), handball-specific complex test (HBKT, day 1) and assessment of treadmill diagnostics (LD, day 2). The surveyed parameters were lactate and heart rate (LD/HBKT) as well as time (ST, HBKT) and the number of errors (HBKT). The cardiac (Hfmax = 201 min-1) and metabolic strain (lactate = 17.8 mmol/L) in the HBKT were very high. In the preparatory phase, the average magnitudes of effect registered were at d = 0.31 (ST parameter), d = 0.68 (HBKT parameter) and d = 0.98 (LD parameter). The most significant improvements throughout the entire period of time were registered in the parameters v2 (LD; η2 = 0.371), total goal-throwing time (HBKT; η2 = 0.250), total penalty time (HBKT; η2 = 0.236) and total round 2 (HBKT; η2 = 0.227). In HBKT and LD, the performance level was stabilised by the end of the first half of the season. In terms of speed, however, there was a decline in performance abilities. The competition performance has its highest degree of correlation with cardial (defense: r = -0.656) and metabolic (offensive: r = -0

  3. About role of human factors in the building of physical protection system

    International Nuclear Information System (INIS)

    Ivanov, P.

    2002-01-01

    Full text: A special role in establishing the physical protection system (at all levels) pertains to the human factor. It is necessary to specify a place of this matter within the overall security system. The nuclear energy sector security (as well as of other national industry sectors) is based on the people: developers, personnel, different level management responsible for decision-making process, the representative of regulatory, controlling and legal structures, and therefore, in general, the rote of the human factor can be considered to be significant. The operative situation while being formed during the physical protection ensuring, first of all, is affected by the following factors: political, social and economic, spiritual wealth and cultural factors and etc. In addition, a new problem suddenly appeared related to the safety and security of the energy complex, that is: uncontrolled processes such as: non-payment, debts on salary for several month period; all this factors effect negatively the level of safety and security. In this clear, that in such a difficult situation the role of an individual is increasing. Ignorance of the above factors or their non-objective (incomplete, partial ignorance) accounting (consideration) finally can lead to the negative and irremediable consequences. Thus, the content and the extent of the security of a society, in general, and every person, in particular, directly depend on the functioning of all society's structure, and, first of all, on the economic, social, political and legal structures. As a result, the physical protection system acquires a complex or comprehensive structure and I shall describe its specifics in the paper. (author)

  4. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  5. Specification of EDITH motion control system

    International Nuclear Information System (INIS)

    Breitwieser, H.; Frank, A.; Holler, E.; Suess, U.; Leinemann, K.

    1990-09-01

    EDITH is an experimental device for in vessel handling at NET/ITER. The purpose of EDITH is: Testing of ABS (articulated boom system) components; testing and validation of remote handling procedures; testing and validation of ABS end-effectors; testing of ABS control system features and verification of control system concepts. This document, after describing the environment in which the control system is to operate, specifies architecture and functionality to be implemented by the EDITH motion control system software, thereby taking full reference to the control system specification for TARM, which was decided to be the base for the implementation. (orig.) [de

  6. Grid architecture for future distribution system — A cyber-physical system perspective

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Leonardo Diaz Aldana, Nelson

    2017-01-01

    system need more insight into the system architecture of the grid. In this paper, in light of the start-of-the-art control strategies for microgrids which rely on power electronics systems, a grid architecture model for future distribution system is proposed based on microgrid clusters. Both the physical...

  7. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  8. Physical protection as the most important part of the national system of combating illicit trafficking

    International Nuclear Information System (INIS)

    Ivanov, P.; Kokhan, V.D.

    2001-01-01

    renders services related to physical protection and illicit trafficking to member states as well as is setting up the database and data-processing systems on illicit trafficking. The international regime should be based on national systems of combating illicit trafficking which include measures for prevention, detection and response regarding illicit trafficking in each specific state or across its borders. When undertaking these measures one should take into account specific characteristics of the state, its unique features and its geography, political and economic situation, as well as different types of potential threat of proliferation of nuclear weapons, availability of materials subjected to illicit trafficking in this state, general situation of criminal trafficking in this state, general situation of criminal trafficking with radioactive materials, potential consumers and suppliers, market features, possible incentives for crime etc. Vital components of national systems for combating illicit trafficking are: 1) legislation; 2) state control systems; 3) operator responsibilities; 4) physical protection of nuclear and radioactive materials and equipment; 5) export/import control of nuclear and radioactive materials and equipment; 6) clear definition of goals and responsibilities of national legislative authorities; 7) co-ordination of activities between national authorities as well as with international organizations. Eighty percent of all nuclear and radioactive materials in the Ukraine are concentrated at the companies and institutions supervised by the Ministry of Energy and Fuel. In view hereof we see the establishment of powerful and efficient systems of physical protection, accountancy and control directed against theft and unauthorized transportation of nuclear and radioactive materials as well as against acts of sabotage at nuclear installation performed by individuals or groups, as our contribution to combating illicit trafficking. These activities are

  9. New evaluation system for antisabotage physical protection

    International Nuclear Information System (INIS)

    Itakura, Shuichiro; Nakagome, Yoshihiro

    2008-01-01

    The discussion on an appropriate level of physical protection has not been elaborated so far because of the confidentiality of its nature, thus resulting in a lack of consensus on this issue. In view of this context, a new system for the evaluation of antisabotage physical protection systems is proposed in this paper, in which we introduce openness to a certain extent in the process of the evaluation. The proposed system is composed of the following three elements; (1) establishment of an evaluation basis threat (EBT), which should be less strong but more likely to occur than the design basis threat (DBT); (2) employment of realistic standard scenarios in the process of evaluation; (3) disclosure of results of evaluation implemented based on the above EBT and standard scenarios. It is expected that this considerably open system will foment peace of mind among citizens as well as create a deterrent effect that would minimize the occurrence of sabotage on nuclear facilities. (author)

  10. RELATIONS BETWEEN MOTORIC ABILITIES AND SPECIFIC MOTORIC BASKETBALL SKILLS IN PHYSICAL EDUCATION CLASSES

    Directory of Open Access Journals (Sweden)

    Dejan Milenković

    2014-06-01

    Full Text Available The aim of this study was to determine the relation between motoric and specific motoric basketball skills in physical education classes for elementary school students. The sample was taken from a population of boys and girls in four elementary schools in Niš. Boys (66 and girls (58, have been students of elementary school, 10 years old and all of them have been attending regular physical education classes three times a week. For the assessment of motoric abilities, a set of 12 motoric tests was applied: Explosive strength: squat jump, squat jump arms swing and drop jump; Speed: 20m running from a low start, orbiting hand and orbiting leg; Coordination: jumping over the horizontal rope, envelope test and figure „8“ with bending; Accuracy: darts, shooting with the ball at horizontal target and stiletto. For the assessment of specific motoric basketball skills a set of six tests was applied: elevations precision of ball passing with two hands, horizontal precision of  ball passing with two hands, orbiting ball around the body, orbiting ball through the legs (figure „8“, dribble around a central circle of the basketball court and dribble two "small eights" around two adjacent circles of basketball court. In data processing canonical correlation and regression analysis were used. The results showed that motoric abilities significantly contributed to success of specific motoric tests performance both with boys and also with girls.

  11. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  12. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic......In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... a domain specific language for modeling of waste-management systems on the basis of our framework. We evaluate the language by providing a set of case studies. The contributions of this thesis are; addressing separation of concerns in Flow-based programming and providing the formal specification of its...

  13. Middleware Challenges for Cyber-Physical Systems

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja

    2017-01-01

    enhancements for improving physical processes, the development of such complex systems composed of many distributed and heterogeneous components is extremely difficult. This is due to the many communication, computing, and networking challenges. Using an appropriate middleware that provides a framework...

  14. Technical specification for transferring tank construction data to the Oak Ridge Environmental Information System (OREIS)

    International Nuclear Information System (INIS)

    1996-06-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility Agreement (FFA) and the Tennessee Oversight Agreement as they pertain to tank construction data maintained in Oak Ridge, Tennessee, by the US Department of Energy's Maintenance and Operations contractor Lockheed Martin Energy Systems, Inc., and prime contractors to the Department of Energy. This technical specification describes the organizational responsibilities for loading tank construction data into OREIS, describes the logical and physical data transfer files, addresses business rules and submission rules, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure based on site requirements. This technical specification addresses the tank construction data maintained by the Y-12, K-25, and ORNL sites that will be sent to OREIS. The initial submission of data will include only inactive Environmental Restoration tanks as specified by the FFA

  15. Time-Lapse Videos for Physics Education: Specific Examples

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-01-01

    There are many physics experiments with long time scales such that they are usually neither shown in the physics class room nor in student labs. However, they can be easily recorded with time-lapse cameras and the respective time-lapse videos allow qualitative and/or quantitative analysis of the underlying physics. Here, we present some examples…

  16. A system of networks and continuing education for physical therapists in rheumatology: a feasibility study

    Directory of Open Access Journals (Sweden)

    J. Verhoef

    2004-07-01

    Full Text Available Purpose: To evaluate the feasibility of regional physical therapy networks including continuing education in rheumatology. The aim of these networks was to improve care provided by primary care physical therapists by improving specific knowledge, technical and communicative skills and the collaboration with rheumatologists. Methods: In two regions in The Netherlands continuing education (CE programmes, consisting of a 5-day postgraduate training course followed by bimonthly workshops and teaching practices, were organised simultaneously. Network activities included consultations, newsletters and the development of a communication guideline. Endpoint measures included the participation rate, compliance, quality of the CE programme, teaching practices, knowledge, network activities, communication, number of patients treated and patient satisfaction. Results: Sixty-three physical therapists out of 193 practices (33% participated in the project. They all completed the education programmes and were formally registered. All evaluations of the education programmes showed positive scores. Knowledge scores increased significantly directly after the training course and at 18 months. A draft guideline on communication between physical therapists and rheumatologists was developed, and 4 newsletters were distributed. A substantial proportion of physical therapists and rheumatologists reported improved communication at 18 months. The mean number of patients treated by physical therapists participating in the networks increased significantly. Patients' satisfaction scores within the networks were significantly higher than those from outside the networks at 18 months. Conclusions: Setting up a system of networks for continuing education for physical therapists regarding the treatment of patients with rheumatic diseases is feasible. Further research will focus on the effectiveness of the system and its implementation on a larger scale.

  17. Physical layer approaches for securing wireless communication systems

    CERN Document Server

    Wen, Hong

    2013-01-01

    This book surveys the outstanding work of physical-layer (PHY) security, including  the recent achievements of confidentiality and authentication for wireless communication systems by channel identification. A practical approach to building unconditional confidentiality for Wireless Communication security by feedback and error correcting code is introduced and a framework of PHY security based on space time block code (STBC) MIMO system is demonstrated.  Also discussed is a scheme which combines cryptographic techniques implemented in the higher layer with the physical layer security approach

  18. Testable physics by design

    International Nuclear Information System (INIS)

    Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Kim, Sung Hun; Hoff, Gabriela; Pia, Maria Grazia; Saracco, Paolo; Weidenspointner, Georg

    2015-01-01

    The ability to test scientific software needs to be supported by adequate software design. Legacy software systems are often characterized by the difficulty to test parts of the software, mainly due to existing dependencies on other parts. Methods to improve the testability of physics software are discussed, along with open issues specific to physics software for Monte Carlo particle transport. The discussion is supported by examples drawn from the experience with validating Geant4 physics. (paper)

  19. Establishing an Information Security System related to Physical Protection

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2009-01-01

    A physical protection system (PPS) integrates people, procedures and equipment for the protection of assets or facilities against theft, sabotage or other malevolent attacks. In the physical protection field, it is important the maintain confidentiality of PPS related information, such as the alarm system layout, detailed maps of buildings, and guard schedules. In this abstract, we suggest establishing a methodology for an information security system. The first step in this methodology is to determine the information to protect and possible adversaries. Next, system designers should draw all possible paths to the information and arrange appropriate protection elements. Finally he/she should analyze and upgrade their information security system

  20. Quantitative evaluation of physical protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Sun Yahua; Li Bin; Li Shiju

    2009-01-01

    Based on the prompt detection analysis, this paper introduced one analysis model of intrusion path in nuclear power plant by means of morphology analysis and developed the evaluation software for path model analysis of physical protection system. Quantitative analysis on three elements (detection, delay, and response) of physical protection system was presented with an imaginary intrusion event example in Mac Arthur nuclear center. The results indicated that the path prompt detection analysis worked effectively to find the weak point of the physical protection system in NPP, and meantime we can also get the high cost-effectiveness improved measures. It is an effective approach to evaluate the overall performance of the system. (authors)

  1. The formation of a systemic view of the notional content of physics

    International Nuclear Information System (INIS)

    Ciascai, L.; Predescu, C.

    1993-01-01

    Unlike the previous ones the new physics curricula will have to draw the teachers' attention upon a very important objective of their teaching: the formation of a systemic, unitary view of a notional content of physics. Starting from the definition of a system (Restian 1989) the system called the Notional Content of Physics at a certain level (educational cycle, year of study, theme, etc) is defined as the set of concepts referring to the various physical systems, phenomena, processes, quantities devices studied at the respective level. The unitary character of the system is guaranteed by the fact that all these concepts are explained on the bases of the four fundamental physical interactions: gravitational, electromagnetic, strong nuclear and weak nuclear. (Author)

  2. A data acquisition system for elementary particle physics

    International Nuclear Information System (INIS)

    Grittenden, J.A.; Benenson, G.; Cunitz, H.; Hsuing, Y.B.; Kaplan, D.M.; Sippach, W.; Stern, B.

    1984-01-01

    The data acquisition system experiment 605 at the Fermi National Accelerator Laboratory employs a set of data transfer protocols developed at Columbia University and implemented in the Nevis Laboratories Data Transport System. The authors describe the logical design of the Transport System, its physical realization, and its particular application during the Spring, 1982 data run of experiment 605. During that run it served as the interface between the data latches and a megabyte of fast memory, operating at a data transfer rate of 200 nsec/16-bit word. Up to two thousand events were read out during the one second beam spill, each event consisting of about 250 words. Included are details of proposed improvements to the data acquisition system and append a brief comment of the need for inexpensive, versatile readout systems in experimental elementary particle physics

  3. Multiple physical signs detection and decision support system for hospitalized older adults

    International Nuclear Information System (INIS)

    Baig, Mirza Mansoor; GholamHosseini, Hamid; Connolly, Martin J

    2015-01-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way healthcare is currently delivered. Smart monitoring systems automate patient monitoring tasks and thereby improve patient workflow management. Moreover, expert systems have the potential to assist clinicians and improve their performance by accurately executing repetitive tasks, to which humans are ill-suited. Clinicians working in hospital wards are responsible for conducting a multitude of tasks which require constant vigilance, and thus the need for a smart decision support system has arisen. In particular, wireless patient monitoring systems are emerging as a low cost, reliable and accurate means of healthcare delivery.Vital signs monitoring systems are rapidly becoming part of today’s healthcare delivery. The paradigm has shifted from traditional and manual recording to computer-based electronic records and, further, to handheld devices as versatile and innovative healthcare monitoring systems. The current study focuses on interpreting multiple physical signs and early warning for hospitalized older adults so that severe consequences can be minimized. Data from a total of 30 patients have been collated in New Zealand hospitals under local and national ethics approvals. The system records blood pressure, heart rate (pulse), oxygen saturation (SpO2), ear temperature and blood glucose levels from hospitalized patients and transfers this information to a web-based software application for remote monitoring and further interpretation. Ultimately, this system is aimed to achieve a high level of agreement with clinicians’ interpretation when assessing specific physical signs such as bradycardia, tachycardia, hypertension, hypotension, hypoxaemia, fever and hypothermia to generate early warnings. The performance of the vital signs interpretation system was validated through off-line as well as real-time tests with a high level of agreement between

  4. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  5. A new formalism for non extensive physical systems: Tsallis Thermo statistics

    International Nuclear Information System (INIS)

    Tirnakli, U.; Bueyuekkilic, F.; Demirhan, D.

    1999-01-01

    Although Boltzmann-Gibbs (BG) statistics provides a suitable tool which enables us to handle a large number of physical systems satisfactorily, it has some basic restrictions. Recently a non extensive thermo statistics has been proposed by C.Tsallis to handle the non extensive physical systems and up to now, besides the generalization of some of the conventional concepts, the formalism has been prosperous in some of the physical applications. In this study, our effort is to introduce Tsallis thermo statistics in some details and to emphasize its achievements on physical systems by noting the recent developments on this line

  6. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  7. Physical activity influences the immune system of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2017-01-01

    Full Text Available It has been suggested that physical activity in breast cancer patients can not only improve quality of life. Influences on physical and psychological levels have been evaluated, but effects on the immune system of breast cancer patients are hardly known. A PubMed search identified relevant trials and meta-analyses from 1970 to 2013. This review summarizes the results of international studies and the current discussion of effects of physical activity on the immune system of breast cancer patients. Highlighted are effects of physical activity on the immune system. Seven original articles and 14 reviews included in this review. Two original and the review articles includes other tumor entities besides breast cancer.Evaluated methods such as dose-response relationships for exercise in oncology, hardly exist. Increased immunological anti-cancer activity due to physical activity is probably mediated via an increase in number and cytotoxicity of monocytes and natural killer cells and cytokines.

  8. Gravitational physics of stellar and galactic systems

    International Nuclear Information System (INIS)

    Saslaw, W.C.

    1985-01-01

    The book concerns the gravitational interactions and evolution of astronomical systems on all scales, and is aimed at the graduate student of physics and astronomy. The text is divided into four parts, and each describes areas of the subject in order of decreasing symmetry. The four parts include: idealized homogeneous systems-basic ideas and gentle relaxation; infinite inhomogeneous systems and galaxy clustering; finite spherical systems including clusters of galaxies; galactic nuclei and globular clusters; and finite flattened systems and galaxies. (U.K.)

  9. Cyber physical systems approach to smart electric power grid

    CERN Document Server

    Khaitan, Siddhartha Kumar; Liu, Chen Ching

    2015-01-01

    This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the power grids of tomorrow. This book will be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policy-makers.

  10. Structured flowcharts for control logic specification in the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Nielson, C.W.; Claborn, G.W.

    1983-01-01

    The Tritium Systems Test Assembly (TSTA) contains several subsystems employing sophisticated chemical and physical processes to purify, transport, and capture the isotopes of hydrogen. The ultimate responsibility for the correct and safe operation of these subsystems lies with their designers. However, the logic is implemented in a computer system with program control. A means to insure unambiguous specification of the control logic in a form understandable to both the non-programming designers and the software staff was required. The computer programs are written in RATFOR, a language providing clear control structures and powerful symbol definition facilities. However, the actual code was considered unsatisfactory as a means of primary specification by the non-programming designers. On the other hand, simple English language descriptions of the desired behavior were not precise enough to insure correctness. Experimentation with traditional flowcharts proved that they were more difficult to follow than the RATFOR code. On the other hand, the use of structured flowcharts derived from those introduced by Nassi and Shneidermanl have proven to be very powerful. Using simple geometric forms for the basic control structures such as loops and conditional tests, and by using expansion rather than connection as the means of reducing any flowchart to a single page, a specification that is both understandable and precise has been obtained. A computer code automates the production and modification of these flowcharts. Combining these flowcharts with primitive subroutines which hide most of the details of control implementation has provided an effective medium for algorithm specification and validation. Examples of the flowcharts and the language used to specify them will be given

  11. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve ''control loops'' between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  12. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely-activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve (control loops) between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  13. Preservice Teachers' Belief Systems toward Curricular Outcomes for Physical Education

    Science.gov (United States)

    Kulinna, Pamela Hodges; Brusseau, Timothy; Ferry, Matthew; Cothran, Donetta

    2010-01-01

    This study was grounded in the belief systems and physical activity literature and investigated preservice teachers' belief systems toward curricular outcomes for physical education programs. Preservice teachers (N = 486; men = 62%, women = 38%) from 18 U.S. colleges/universities shared their beliefs about curricular outcomes. Preservice teachers…

  14. Safe Cooperating Cyber-Physical Systems using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Sljivo, Irfan

    2017-01-01

    This paper presents an overview of the ECSEL project entitled ―Safe Cooperating Cyber-Physical Systems using Wireless Communication‖ (SafeCOP), which runs during the period 2016–2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  15. The physics of distributed information systems

    International Nuclear Information System (INIS)

    Aurell, Erik

    2013-01-01

    This paper aims to introduce Distributed Systems as a field where the ideas and methods of physics can potentially be applied, and to provide entry points to a wide literature. The contributions of Leslie Lamport, inspired by Relativity Theory, and of Edsger Dijkstra, which has the flavor of a growth process, are discussed at some length. The intent of the author is primarily to stimulate interest in the statistical physics community, and the discussions are therefore framed in a non-technical language; the author apologizes in advance to readers from the computer science side for the unavoidable impreciseness and ambiguities

  16. Physical constraints in cell fate specification. A case in point: Microgravity and phenotypes differentiation.

    Science.gov (United States)

    Masiello, Maria Grazia; Verna, Roberto; Cucina, Alessandra; Bizzarri, Mariano

    2018-05-01

    Data obtained by studying mammalian cells in absence of gravity strongly support the notion that cell fate specification cannot be understood according to the current molecular model. A paradigmatic case in point is provided by studying cell populations growing in absence of gravity. When the physical constraint (gravity) is 'experimentally removed', cells spontaneously allocate into two morphologically different phenotypes. Such phenomenon is likely enacted by the intrinsic stochasticity, which, in turn, is successively 'canalized' by a specific gene regulatory network. Both phenotypes are thermodynamically and functionally 'compatibles' with the new, modified environment. However, when the two cell subsets are reseeded into the 1g gravity field the two phenotypes collapse into one. Gravity constraints the system in adopting only one phenotype, not by selecting a pre-existing configuration, but more precisely shaping it de-novo through the modification of the cytoskeleton three-dimensional structure. Overall, those findings highlight how macro-scale features are irreducible to lower-scale explanations. The identification of macroscale control parameters - as those depending on the field (gravity, electromagnetic fields) or emerging from the cooperativity among the field's components (tissue stiffness, cell-to-cell connectivity) - are mandatory for assessing boundary conditions for models at lower scales, thus providing a concrete instantiation of top-down effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Ensemble annealing of complex physical systems

    OpenAIRE

    Habeck, Michael

    2015-01-01

    Algorithms for simulating complex physical systems or solving difficult optimization problems often resort to an annealing process. Rather than simulating the system at the temperature of interest, an annealing algorithm starts at a temperature that is high enough to ensure ergodicity and gradually decreases it until the destination temperature is reached. This idea is used in popular algorithms such as parallel tempering and simulated annealing. A general problem with annealing methods is th...

  18. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.

    Science.gov (United States)

    Cianelli, Daniela; D'Alelio, Domenico; Uttieri, Marco; Sarno, Diana; Zingone, Adriana; Zambianchi, Enrico; d'Alcalà, Maurizio Ribera

    2017-11-20

    This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.

  19. Physics rationale for the engineering specifications for ZTH

    International Nuclear Information System (INIS)

    Dimarco, J.N.

    1987-01-01

    This report presents the physics rationale that established the engineering design of ZTH. The physics criteria are given and the implications regarding the engineering design are presented. Experimental and theoretical background evidence is given in support of the criteria but the justification is left to other reports and peer reviews. The physics criteria discussed here are limited to the ones deemed to be of highest engineering priority. 32 refs., 9 figs

  20. Cyber-physical-social systems and constructs in electric power engineering

    CERN Document Server

    Suryanarayanan, Siddharth; Roche, Robin

    2016-01-01

    Cyber-physical-social systems (CPSS) integrate computing, physical assets and human networks. Divided into four application areas to the electric grid, this book describes state-of-the-art CPSS in electric power systems, including detailed approaches on social constructs which are a critical aspect of the end-user realm.

  1. Generalized Tellegen Principle and Physical Correctness of System Representations

    Directory of Open Access Journals (Sweden)

    Vaclav Cerny

    2006-06-01

    Full Text Available The paper deals with a new problem of physical correctness detection in the area of strictly causal system representations. The proposed approach to the problem solution is based on generalization of Tellegen's theorem well known from electrical engineering. Consequently, mathematically as well as physically correct results are obtained. Some known and often used system representation structures are discussed from the developed point of view as an addition.

  2. Constraints for system specifications for the double-shell and single-shell tank systems

    International Nuclear Information System (INIS)

    SHAW, C.P.

    1999-01-01

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations

  3. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  4. A Model of Discrete-Continuum Time for a Simple Physical System

    Directory of Open Access Journals (Sweden)

    Karimov A. R.

    2008-04-01

    Full Text Available Proceeding from the assumption that the time flow of an individual object is a real physical value, in the framework of a physical kinetics approach we propose an analogy between time and temperature. The use of such an analogy makes it possible to work out a discrete-continuum model of time for a simple physical system. The possible physical properties of time for the single object and time for the whole system are discussed.

  5. Allele-specific physical interactions regulate the heterotic traits in hybrids of Arabidopsis thaliana ecotypes

    Directory of Open Access Journals (Sweden)

    Babita Singh

    2017-10-01

    Full Text Available Heterosis is an important phenomenon for the breeding in agricultural crops as it influences yield related traits such as biomass yield, seed number and weight, adaptive and reproductive traits. However, the level of heterosis greatly varies for different traits and different genotypes. The present study focuses on identification of physical interactions between alleles and their role in transcriptional regulation in heterotic plants. Here, we used two Arabidopsis ecotypes; Col-0 and C24 as parent for crosses. We performed crossing between these ecotypes and screened the F1 hybrids on the basis of different SSR markers. Further, we used Hi-C to capture intra- and inter-chromosomal physical interactions between alleles on genome-wide level. Then, we identified allele-specific chromatin interactions and constructed genome-wide allele-specific contact maps at different resolutions for the entire chromosome. We also performed RNA-seq of hybrids and their parents. RNA-seq analysis identified several differentially expressed genes and non-additively expressed genes in hybrids with respect to their parents. Further, to understand the biological significance of these chromatin interactions, we annotated these interactions and correlated with the transcriptome data. Thus, our study provides alleles-specific chromatin interactions in genome-wide fashion which play a crucial role in regulation of different genes that may be important for heterosis.

  6. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-11-01

    The design of an effective physical protection system (PPS) includes the determination of the PPS objectives, the initial design of a PPS, the evaluation of the design, and probably, the redesign or refinement of the system. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the PPS, that is, ''what to protect against whom.'' The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control devices, communication devices, procedures, and protective force personnel to meet the objectives of the system. Once a PPS is designed, it must be analyzed and evaluated to ensure it meets the PPS objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. After the system is installed, the threat and system parameters may change with time. If they do, the analysis must be performed periodically to ensure the system objectives are still being met

  7. Physical system requirements - Accept waste

    International Nuclear Information System (INIS)

    1992-08-01

    The Nuclear Waste Policy Act (NWPA) assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the OCRWM Director subsequently issued the Management Systems improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. Thus, a comprehensive functional analysis effort has been undertaken which is intended to: Identify the functions that must be performed to fulfill the waste disposal mission; Identify the corresponding requirements imposed on each of the functions; and Identify the conceptual architecture that will be used to satisfy the requirements. The principal purpose of this requirements document is to present the results that were obtained from the conduct of a functional analysis effort for the Accept Waste mission

  8. Functional modelling for integration of human-software-hardware in complex physical systems

    International Nuclear Information System (INIS)

    Modarres, M.

    1996-01-01

    A framework describing the properties of complex physical systems composed of human-software-hardware interactions in terms of their functions is described. It is argued that such a framework is domain-general, so that functional primitives present a language that is more general than most other modeling methods such as mathematical simulation. The characteristics and types of functional models are described. Examples of uses of the framework in modeling physical systems composed of human-software-hardware (hereby we refer to them as only physical systems) are presented. It is concluded that a function-centered model of a physical system provides a capability for generating a high-level simulation of the system for intelligent diagnostic, control or other similar applications

  9. A Hierarchical Security Architecture for Cyber-Physical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Quanyan Zhu; Tamer Basar

    2011-08-01

    Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.

  10. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  11. Coulomb systems distorted at short distances in atomic and nuclear physics

    International Nuclear Information System (INIS)

    Popov, V.S.

    1987-01-01

    In systems bound by the Coulomb interaction distorted at short distances there may appear, under certain conditions, a rearrangment of atomic spectrum (or the Zel'dovich effect). Specific features of this effect are discussed for states with an arbitrary angular momentum l (both with and without the absorption). The equation is studied which connects nuclear level shifts with the low-energy scattering parameters a l , r l . The conditions have been found under which the rearrangement of spectrum is replaced by oscillations of atomic levels. The Coulomb renormalization of scattering lengths and that of effective ranges is discussed. Some manifestations of the Zel'dovich effect in the physics of hadronic atoms and mesomolecules are considered

  12. Arizona TeleMedicine Network: System Procurement Specifications.

    Science.gov (United States)

    Atlantic Research Corp., Alexandria, VA.

    Providing general specifications and system descriptions for segments within the Arizona TeleMedicine Project (a telecommunication system designed to deliver health services to rurally isolated American Indians in Arizona), this document, when used with the appropriate route segment document, will completely describe the project's required…

  13. Evidence for consciousness-related anomalies in random physical systems

    Science.gov (United States)

    Radin, Dean I.; Nelson, Roger D.

    1989-12-01

    Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.

  14. Comparing non-specific physical symptoms in environmentally sensitive patients: prevalence, duration, functional status and illness behavior.

    NARCIS (Netherlands)

    Baliatsas, C.; Kamp, I. van; Hooiveld, M.; Yzermans, J.; Lebret, E.

    2014-01-01

    Objective: Little is known about the potential clinical relevance of non-specific physical symptoms (NSPS) reported by patients with self-reported environmental sensitivities. This study aimed to assess NSPS in people with general environmental sensitivity (GES) and idiopathic environmental

  15. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  16. On The Computational Capabilities of Physical Systems. Part 2; Relationship With Conventional Computer Science

    Science.gov (United States)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In the first of this pair of papers, it was proven that there cannot be a physical computer to which one can properly pose any and all computational tasks concerning the physical universe. It was then further proven that no physical computer C can correctly carry out all computational tasks that can be posed to C. As a particular example, this result means that no physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly "processing information faster than the universe does". These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - "physical computation" - is needed to address the issues considered in these papers, which concern real physical computers. While this novel definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. This second paper of the pair presents a preliminary exploration of some of this mathematical structure. Analogues of Chomskian results concerning universal Turing Machines and the Halting theorem are derived, as are results concerning the (im)possibility of certain kinds of error-correcting codes. In addition, an analogue of algorithmic information complexity, "prediction complexity", is elaborated. A task-independent bound is derived on how much the prediction complexity of a computational task can differ for two different reference universal physical computers used to solve that task

  17. Physics Requirements for the ALICE DAQ system

    CERN Document Server

    Vande Vyvre, P

    2000-01-01

    Abstract Abstract The goal of this note is to review the requirements for the DAQ system originated from the various physics topics that will be studied by the ALICE experiment. It summarises all the current requirements both for Pb-Pb and p-p interactions. The consequences in terms of throughput at different stages of the DAQ system are presented for different running scenarios.

  18. Non-equilibrium statistical physics with application to disordered systems

    CERN Document Server

    Cáceres, Manuel Osvaldo

    2017-01-01

    This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluc...

  19. Statistical physics of networks, information and complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.

  20. Usability Requirements for Complex Cyber-Physical Systems in a Totally Networked World

    OpenAIRE

    Kölmel , Bernhard; Bulander , Rebecca; Dittmann , Uwe; Schätter , Alfred; Würtz , Günther

    2014-01-01

    Part 7: Cyber-Physical Systems; International audience; “The Internet has made the world “flat” by transcending space. […] The Internet has transformed how we conduct research, studies, business, services, and entertainment.” [1] Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, an...

  1. VME as a front-end electronics system in high energy physics experiments

    International Nuclear Information System (INIS)

    Ohska, T.K.

    1990-01-01

    It is only a few years since the VME became a standard system, yet the VME system is already so much more popular than other systems. The VME system was developed for industrial applications and not for the scientific research, and high energy physics field is a tiny market when compared with the industrial market. Considerations made here indicate that the VME system would be a good one for a rear-end system, but would not be a good candidate for front-end electronics in physics experiments. Furthermore, there is a fear that the VXI bus could become popular in this field of instrumentation since the VXI system is backed up by major suppliers of instrumentation in the high energy physics field. VXI would not be an adequate system for front-end electronics, yet advertised to be one. It would be worse to see the VXI system to become a standard system for high energy physics instrumentation than the VME system to be one. The VXI system would do a mediocre job so that people might be misled to think that the VXI system can be used as front-end system. (N.K.)

  2. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  3. IDC System Specification Document Version 1.1.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lober, Randall R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Reengineering Phase 2 project. Revisions Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Reengineering Project Team Initial delivery M. Harris V1.1 2/2015 IDC Reengineering Project Team Iteration I2 Review Comments M. Harris

  4. Associations among workplace environment, self-regulation, and domain-specific physical activities among white-collar workers: a multilevel longitudinal study.

    Science.gov (United States)

    Watanabe, Kazuhiro; Kawakami, Norito; Otsuka, Yasumasa; Inoue, Shigeru

    2018-05-31

    Psychological and environmental determinants have been discussed for promoting physical activity among workers. However, few studies have investigated effects of both workplace environment and psychological determinants on physical activity. It is also unknown which domains of physical activities are promoted by these determinants. This study aimed to investigate main and interaction effects of workplace environment and individual self-regulation for physical activity on domain-specific physical activities among white-collar workers. A multi-site longitudinal study was conducted at baseline and about 5-month follow-up. A total of 49 worksites and employees within the worksites were recruited. Inclusion criteria for the worksites (a) were located in the Kanto area, Japan and (b) employed two or more employees. Employee inclusion criteria were (a) employed by the worksites, (b) aged 18 years or older, and (c) white-collar workers. For outcomes, three domain-specific physical activities (occupational, transport-related, and leisure-time) at baseline and follow-up were measured. For independent variables, self-regulation for physical activity, workplace environments (parking/bike, signs/bulletin boards/advertisements, stairs/elevators, physical activity/fitness facilities, work rules, written policies, and health promotion programs), and covariates at baseline were measured. Hierarchical Linear Modeling was conducted to investigate multilevel associations. Of the recruited worksites, 23 worksites and 562 employees, and 22 worksites and 459 employees completed the baseline and the follow-up surveys. As results of Hierarchical Linear Modeling, stairs/elevator (γ=3.80 [SE=1.80], ppsychological approaches to increase effect sizes to promote overall physical activity.

  5. Prototype for an automated technical specification information system

    International Nuclear Information System (INIS)

    Quinn, E.L.; Mills, R.H.; Groves, J.E.

    1985-01-01

    The Southern California Edison (SCE) Automated Technical Specification Information System (ATSIS) at the San Onofre nuclear generating station (SONGS) has been developed as a prototype for an on-line information management system. This system provides an appropriate level of update, inquiry, and report generation capabilities to help support plant operators at SONGS in their efforts to anticipate, identify, document, and track certain actions and activities associated with plant technical specifications and associated limiting conditions of operation (LCOs). Substantially increased emphasis is being placed on adherence to nuclear regulatory requirements and commitments contained on the operating licenses of nuclear power plants. Additionally, as each year passes, such requirements are becoming increasingly detailed and complex, making it more and more difficult to track and ensure total compliance with the many and varied requirements. To assist the operations department at SONGs in meeting their regulatory commitments, in January 1985 SCE commenced gathering together the leading technical expertise available in the industry to develop a computerized system to track all technical specification-related equipment for operability and impact on LCOs

  6. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  7. Nondeducibility-Based Analysis of Cyber-Physical Systems

    Science.gov (United States)

    Gamage, Thoshitha; McMillin, Bruce

    Controlling information flow in a cyber-physical system (CPS) is challenging because cyber domain decisions and actions manifest themselves as visible changes in the physical domain. This paper presents a nondeducibility-based observability analysis for CPSs. In many CPSs, the capacity of a low-level (LL) observer to deduce high-level (HL) actions ranges from limited to none. However, a collaborative set of observers strategically located in a network may be able to deduce all the HL actions. This paper models a distributed power electronics control device network using a simple DC circuit in order to understand the effect of multiple observers in a CPS. The analysis reveals that the number of observers required to deduce all the HL actions in a system increases linearly with the number of configurable units. A simple definition of nondeducibility based on the uniqueness of low-level projections is also presented. This definition is used to show that a system with two security domain levels could be considered “nondeducibility secure” if no unique LL projections exist.

  8. Model-Based Dependability Analysis of Physical Systems with Modelica

    Directory of Open Access Journals (Sweden)

    Andrea Tundis

    2017-01-01

    Full Text Available Modelica is an innovative, equation-based, and acausal language that allows modeling complex physical systems, which are made of mechanical, electrical, and electrotechnical components, and evaluates their design through simulation techniques. Unfortunately, the increasing complexity and accuracy of such physical systems require new, more powerful, and flexible tools and techniques for evaluating important system properties and, in particular, the dependability ones such as reliability, safety, and maintainability. In this context, the paper describes some extensions of the Modelica language to support the modeling of system requirements and their relationships. Such extensions enable the requirement verification analysis through native constructs in the Modelica language. Furthermore, they allow exporting a Modelica-based system design as a Bayesian Network in order to analyze its dependability by employing a probabilistic approach. The proposal is exemplified through a case study concerning the dependability analysis of a Tank System.

  9. Thermodynamics of small systems by nanocalorimetry: From physical to biological nano-objects

    International Nuclear Information System (INIS)

    Garden, J.-L.; Guillou, H.; Lopeandia, A.F.; Richard, J.; Heron, J.-S.; Souche, G.M.; Ong, F.R.; Vianay, B.; Bourgeois, O.

    2009-01-01

    Membrane based nanocalorimeters have been developed for ac-calorimetry experiments. It has allowed highly sensitive measurements of heat capacity from solid state physics to complex systems like polymers and proteins. In this article we review what has been developed in ac-calorimetry toward the measurement of very small systems. Firstly, at low temperature ac-calorimetry using silicon membrane permits the measurement of superconducting sample having geometry down to the nanometer scale. New phase transitions have been found in these nanosystems illustrated by heat capacity jumps versus the applied magnetic field. Secondly, a sensor based on ultra-thin polymer membrane will be presented. It has been devoted to thermal measurements of nanomagnetic systems at intermediate temperature (20-300 K). Thirdly, three specific polyimide membrane based sensors have been designed for room temperature measurements. One is devoted to phase transitions detection in polymer, the second one to protein folding/unfolding studies and the third one will be used for the study of heat release in living cells. The possibility of measuring systems out of equilibrium will be emphasized.

  10. A Baseline Patient Model to Support Testing of Medical Cyber-Physical Systems.

    Science.gov (United States)

    Silva, Lenardo C; Perkusich, Mirko; Almeida, Hyggo O; Perkusich, Angelo; Lima, Mateus A M; Gorgônio, Kyller C

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are currently a trending topic of research. The main challenges are related to the integration and interoperability of connected medical devices, patient safety, physiologic closed-loop control, and the verification and validation of these systems. In this paper, we focus on patient safety and MCPS validation. We present a formal patient model to be used in health care systems validation without jeopardizing the patient's health. To determine the basic patient conditions, our model considers the four main vital signs: heart rate, respiratory rate, blood pressure and body temperature. To generate the vital signs we used regression models based on statistical analysis of a clinical database. Our solution should be used as a starting point for a behavioral patient model and adapted to specific clinical scenarios. We present the modeling process of the baseline patient model and show its evaluation. The conception process may be used to build different patient models. The results show the feasibility of the proposed model as an alternative to the immediate need for clinical trials to test these medical systems.

  11. Physically unclonable functions constructions, properties and applications

    CERN Document Server

    Maes, Roel

    2013-01-01

    Physically unclonable functions (PUFs) are innovative physical security primitives that produce unclonable and inherent instance-specific measurements of physical objects; in many ways they are the inanimate equivalent of biometrics for human beings. Since they are able to securely generate and store secrets, they allow us to bootstrap the physical implementation of an information security system. In this book the author discusses PUFs in all their facets: the multitude of their physical constructions, the algorithmic and physical properties which describe them, and the techniques required to

  12. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    International Nuclear Information System (INIS)

    Habib, T.F.; Koksal, C.G.; Moskal, T.E.; Rush, G.C.; Gloudemans, J.R.

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs

  13. Study of Physical Protection System at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ina, I.; Zarina Masood

    2016-01-01

    Physical protection program at PUSPATI TRIGA Reactor (RTP) which is located at Nuklear Malaysia, Bangi Complex has been strengthened and upgraded from time to time to accommodate current situation needs. However, there is always room for improvement. Hence, study have been made to look deeper into physical protection components such as delay systems, external sensors, PPS intruder alarm sensors, use of video system, personnel security or insider threats, access control operation system operation rules and security culture that may need to take into consideration. (author)

  14. Physics case for a multiparticle detector system

    International Nuclear Information System (INIS)

    Horn, Dag.

    1984-04-01

    This report is an examination of the physics which would be accessible to a large multiparticle detector system when used with heavy ion beams of 10 to 50 MeV/u from the Chalk River Tandem Accelerator Superconducting Cyclotron Complex (TASCC)

  15. Specification styles in distributed systems design and verification

    NARCIS (Netherlands)

    Vissers, C.A.; Scollo, Giuseppe; van Sinderen, Marten J.; Brinksma, Hendrik

    1991-01-01

    Substantial experience with the use of formal specification languages in the design of distributed systems has shown that finding appropriate structures for formal specifications presents a serious, and often underestimated problem. Its solutions are of great importance for ensuring the quality of

  16. Status of physical protection systems of nuclear facilities; survey report

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kwack, Eun Ho; Ahn, Jin Soo; Lee, Hyun Chul; Kim, Jung Soo

    2002-02-01

    This report presents a survey on the physical protection equipment for a nuclear power plant. This survey was conducted by Korea Atomic Energy Research Institute as a part of the project, 'Development of Technologies for National Control of and Accountancy for Nuclear Material,' funded by the Ministry of Science and Technology of Korea. A physical protection system of a nuclear plant includes outer and inner fences, intrusion detection sensors, alarm generation system, illumination equipment, central monitoring and control station, entry control and management system, etc. The outermost fence indicates the boundary of the plant area and prevents a simple or unintentional intrusion. The inner fence area of each plant unit associated with intrusion detection sensors, illuminators, monitoring cameras, serves the key role for physical protection function for the nuclear plant

  17. Modular specification of real-time systems

    DEFF Research Database (Denmark)

    Inal, Recep

    1994-01-01

    Duration Calculus, a real-time interval logic, has been embedded in the Z specification language to provide a notation for real-time systems that combines the modularisation and abstraction facilities of Z with a logic suitable for reasoning about real-time properties. In this article the notation...

  18. HAL/S-360 compiler system specification

    Science.gov (United States)

    Johnson, A. E.; Newbold, P. N.; Schulenberg, C. W.; Avakian, A. E.; Varga, S.; Helmers, P. H.; Helmers, C. T., Jr.; Hotz, R. L.

    1974-01-01

    A three phase language compiler is described which produces IBM 360/370 compatible object modules and a set of simulation tables to aid in run time verification. A link edit step augments the standard OS linkage editor. A comprehensive run time system and library provide the HAL/S operating environment, error handling, a pseudo real time executive, and an extensive set of mathematical, conversion, I/O, and diagnostic routines. The specifications of the information flow and content for this system are also considered.

  19. Game theoretic analysis of physical protection system design

    International Nuclear Information System (INIS)

    Canion, B.; Schneider, E.; Bickel, E.; Hadlock, C.; Morton, D.

    2013-01-01

    The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget

  20. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  1. A Concise Introduction to the Statistical Physics of Complex Systems

    CERN Document Server

    Bertin, Eric

    2012-01-01

    This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics.  Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict...

  2. Complex systems: from nuclear physics to financial markets

    International Nuclear Information System (INIS)

    Speth, J.; Drozdz, S.; Gruemmer, F.

    2010-01-01

    We compare correlations and coherent structures in nuclei and financial markets. In the nuclear physics part we review giant resonances which can be interpreted as a coherent structure embedded in chaos. With similar methods we investigate the financial empirical correlation matrix of the DAX and Dow Jones. We will show, that if the time-zone delay is properly accounted for, the two distinct markets largely merge into one. This is reflected by the largest eigenvalue that develops a gap relative to the remaining, chaotic eigenvalues. By extending investigations of the specific character of financial collectivity we also discuss the criticality-analog phenomenon of the financial log-periodicity and show specific examples.

  3. Complex systems: from nuclear physics to financial markets

    Science.gov (United States)

    Speth, J.; Drożdż, S.; Grümmer, F.

    2010-11-01

    We compare correlations and coherent structures in nuclei and financial markets. In the nuclear physics part we review giant resonances which can be interpreted as a coherent structure embedded in chaos. With similar methods we investigate the financial empirical correlation matrix of the DAX and Dow Jones. We will show, that if the time-zone delay is properly accounted for, the two distinct markets largely merge into one. This is reflected by the largest eigenvalue that develops a gap relative to the remaining, chaotic eigenvalues. By extending investigations of the specific character of financial collectivity we also discuss the criticality-analog phenomenon of the financial log-periodicity and show specific examples.

  4. Generation of initial geometries for the simulation of the physical system in the DualPHYsics code

    International Nuclear Information System (INIS)

    Segura Q, E.

    2013-01-01

    In the diverse research areas of the Instituto Nacional de Investigaciones Nucleares (ININ) are different activities related to science and technology, one of great interest is the study and treatment of the collection and storage of radioactive waste. Therefore at ININ the draft on the simulation of the pollutants diffusion in the soil through a porous medium (third stage) has this problem inherent aspects, hence a need for such a situation is to generate the initial geometry of the physical system For the realization of the simulation method is implemented smoothed particle hydrodynamics (SPH). This method runs in DualSPHysics code, which has great versatility and ability to simulate phenomena of any physical system where hydrodynamic aspects combine. In order to simulate a physical system DualSPHysics code, you need to preset the initial geometry of the system of interest, then this is included in the input file of the code. The simulation sets the initial geometry through regular geometric bodies positioned at different points in space. This was done through a programming language (Fortran, C + +, Java, etc..). This methodology will provide the basis to simulate more complex geometries future positions and form. (Author)

  5. Brayton Isotope Power System (BIPS) facility specification

    International Nuclear Information System (INIS)

    1976-01-01

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included

  6. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  7. Sandia's experience in designing and implementing integrated high security physical protection systems

    International Nuclear Information System (INIS)

    Caskey, D.L.

    1986-01-01

    As DOE's lead laboratory for physical security, Sandia National Laboratories has had a major physical security program for over ten years. Activities have ranged from component development and evaluation, to full scale system design and implementation. This paper presents some of the lessons learned in designing and implementing state-of-the-art high security physical protection systems for a number of government facilities. A generic system design is discussed for illustration purposes. Sandia efforts to transfer technology to industry are described

  8. Resonances: from nuclear physics to mesoscopic systems

    International Nuclear Information System (INIS)

    Ferreira, Lidia S.; Maglione, Enrico

    2007-01-01

    Resonances are one of the most interesting phenomena in many fields of physics which lead to important findings. In the quantum world, systems with electrons, hadrons or atoms provide enormous amount of data on resonances, leading to the discovery of new states of matter. In nuclear physics, the recent findings on exotic nuclei, added to the list many new examples, which are important not only as direct data on resonances, but also for the production of new isotopes in regions of the nuclear chart which were 'terra incognita', until recently. With recent developments in microelectronics it is possible to create in the laboratory almost two dimensional wave guides where the motion of the electrons can exhibit typical quantum effects. The geometry of systems, such as bends, corners or crosses, has a strong influence on the conduction properties of the electrons, since it can create the appropriate conditions required for the formation of bound states or resonances in the conduction channels. Therefore it is quite important to have an accurate description of the relation between geometry and observables, which in a theoretical perspective emerges naturally from the solution of a multichannel eigenvalue problem. The study of resonances and their behaviour in these domains of physics, will be the purpose of the lecture. (Author)

  9. White Paper: Movement System Diagnoses in Neurologic Physical Therapy.

    Science.gov (United States)

    Hedman, Lois D; Quinn, Lori; Gill-Body, Kathleen; Brown, David A; Quiben, Myla; Riley, Nora; Scheets, Patricia L

    2018-04-01

    The APTA recently established a vision for physical therapists to transform society by optimizing movement to promote health and wellness, mitigate impairments, and prevent disability. An important element of this vision entails the integration of the movement system into the profession, and necessitates the development of movement system diagnoses by physical therapists. At this point in time, the profession as a whole has not agreed upon diagnostic classifications or guidelines to assist in developing movement system diagnoses that will consistently capture an individual's movement problems. We propose that, going forward, diagnostic classifications of movement system problems need to be developed, tested, and validated. The Academy of Neurologic Physical Therapy's Movement System Task Force was convened to address these issues with respect to management of movement system problems in patients with neurologic conditions. The purpose of this article is to report on the work and recommendations of the Task Force. The Task Force identified 4 essential elements necessary to develop and implement movement system diagnoses for patients with primarily neurologic involvement from existing movement system classifications. The Task Force considered the potential impact of using movement system diagnoses on clinical practice, education and, research. Recommendations were developed and provided recommendations for potential next steps to broaden this discussion and foster the development of movement system diagnostic classifications. The Task Force proposes that diagnostic classifications of movement system problems need to be developed, tested, and validated with the long-range goal to reach consensus on and adoption of a movement system diagnostic framework for clients with neurologic injury or disease states.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A198).

  10. Ergodic theory and dynamical systems from a physical point of view

    International Nuclear Information System (INIS)

    Sabbagan, M.; Nasertayoob, P.

    2008-01-01

    Ergodic theory and a large part of dynamical systems are in essence some mathematical modeling, which belongs to statistical physics. This paper is an attempt to present some of the results and principles in ergodic theory and dynamical systems from certain view points of physics such as thermodynamics and classical mechanics. The significance of the varational principle in the statistical physics, the relation between classical approach and statistical approach, also comparison between reversibility from statistical of view are discussed. (author)

  11. The application of AFS in the high energy physics computing system

    International Nuclear Information System (INIS)

    Xu Dong; Yan Xiaofei; Chen Yaodong; Chen Gang; Yu Chuansong

    2010-01-01

    With the development of high energy physics, physics experiments are producing large amount of data. The workload of data analysis is very large, and the analysis work needs to be finished by many scientists together. So, the computing system must provide more secure user manage function and higher level of data-sharing ability. The article introduces a solution based on AFS in the high energy physics computing system, which not only make user management safer, but also make data-sharing easier. (authors)

  12. Problems of improving physical training at this stage of the transformation of the system of physical education

    Directory of Open Access Journals (Sweden)

    Oleksandr Aghyppo

    2016-02-01

    Full Text Available Purpose: building a system of recreational physical culture on the basis of taking into account the individual characteristics of physical development and physical condition of the local population. Material & Methods: analytical review of the scientific literature on the issue of the research; use the results of previous studies carried out in KSAFC in this area and published in «Slobozhanskyi science and sport bulletin» during 2015 year; the use methods of similarity and analogy, also signs semantic spaces. Results: insolubility of the problem individual approach in organizing recreational physical culture in the previous period explained lack of representation of the content of individual of norm in the assessment of physical development and methods of comparison measure the differences being compared multicomponent objects. In held scientific research were developed signs semantic spaces with the introducted in its a single measure of comparable signs it possible to establish the qualitative structure of objects to be compared with any number of comparable parameters. Obtained methods separation of equifinality results into its component quality components. It is possible to obtain methods of estimating the biological age with the establishment of the individual characteristics of its course; divide the physical condition of its component parts; obtain methods for determining the available physical preparedness depending on the characteristics of the flow of biological age and current physical condition. Conclusions: Obtained results of the research make it possible to proceed to the development of monitoring physical development, physical preparedness and physical condition of the various population groups and on this basis to create a scientifically based of system improving physical training on the basis of which to develop a complex of "ready to work and defense of the fatherland".

  13. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  14. Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response

    Science.gov (United States)

    Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei

    2018-01-01

    Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.

  15. Temporal Specification and Verification of Real-Time Systems.

    Science.gov (United States)

    1991-08-30

    of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .

  16. Using Robots and Contract Learning to Teach Cyber-Physical Systems to Undergraduates

    Science.gov (United States)

    Crenshaw, T. L. A.

    2013-01-01

    Cyber-physical systems are a genre of networked real-time systems that monitor and control the physical world. Examples include unmanned aerial vehicles and industrial robotics. The experts who develop these complex systems are retiring much faster than universities are graduating engineering majors. As a result, it is important for undergraduates…

  17. Isotope Specific Remediation Media and Systems - 13614

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States); Morita, Keisuke [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)

    2013-07-01

    On March 11, 2011, now two years ago, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. While, of course, most of the outcome of this unprecedented natural and manmade disaster was a negative, both in Japan and worldwide, there have been some extremely invaluable lessons learned and new emergency recovery technologies and systems developed. As always, the mother of invention is necessity. Among these developments has been the development and full-scale implementation of proven isotope specific media (ISMs) with the intent of surgically removing specific hazardous isotopes for the purpose of minimizing dose to workers and the environment. The first such ISMs to be deployed at the Fukushima site were those removing cesium (Cs-137) and iodine (I-129). Since deployment on June 17, 2011, along with treated cooling water recycle, some 70% of the curies in the building liquid wastes have been removed by the Kurion system alone. The current levels of cesium are now only 2% of the original levels. Such an unprecedented, 'external cooling system' not only allowed the eventual cold shut down of the reactors in mid-December, 2011, but has allowed workers to concentrate on the cleanup of other areas of the site. Water treatment will continue for quite some time due to continued leakage into the buildings and the eventual goal of cleaning up the reactors and fuel pools themselves. With the cesium removal now in routine operation, other isotopes of concern are likely to become priorities. One such isotope is that of strontium, and yttrium (Sr-90 and Y-90), which is still at original levels causing further dose issues as well as impediments to discharge of the treated waste waters. For over a year now, a new synthetic strontium specific media has been under development and testing both in our licensed facility in Oak Ridge, Tennessee, but also in confirmatory tests by the Japan Atomic Energy Agency (JAEA) in Japan for Tokyo

  18. Physics of atomic nuclei

    CERN Document Server

    Zelevinsky, Vladimir

    2017-01-01

    This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.

  19. Physics of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zelevinsky, Vladimir [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Volya, Alexander [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2017-07-01

    This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.

  20. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Fernando Castaño

    2017-09-01

    Full Text Available Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.. The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors’ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.

  1. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System.

    Science.gov (United States)

    Castaño, Fernando; Beruvides, Gerardo; Haber, Rodolfo E; Artuñedo, Antonio

    2017-09-14

    Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors' knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.

  2. White blood cell counts mediate the effects of physical activity on prostate-specific antigen levels.

    Science.gov (United States)

    Loprinzi, Paul D; Richart, Sarah M

    2014-09-01

    The purpose of this study was to examine whether white blood cell (WBC) level mediated the relationship between physical activity and prostate-specific antigen (PSA) levels. Data from the 2003-2006 National Health and Nutrition Examination Survey were used; 1,726 U.S. adult men (aged 40 years or older) provided complete data on the study variables. Participants wore an ActiGraph 7164 accelerometer for a 7-day period to measure their physical activity behavior, and PSA and WBC levels were obtained from a blood sample. After adjustments, results showed that moderate-to-vigorous physical activity (MVPA) was inversely associated with WBC count (b = - .03; 95% CI [ - 0.04, - 0.006; p = .01), and WBC count (b = .10; 95% CI [0.009, 0.18; p = .04) was positively associated with PSA. Both the Sobel (coef. = - .004, SE = .002; z = - 2.0; p = .03) and the Aroian (coef. = - .004, SE = .002; z = - 1.9; p = .03) tests demonstrated that WBC mediated the relationship between physical activity and PSA. Additionally, among 107 participants with prostate cancer, survivors engaging in more MVPA had lower levels of WBC (b = - .04; 95% CI [ - 0.09, - 0.0009; p = .04). Conclusion Physical activity may influence PSA levels through WBC modulation; however, future research is needed to determine the direction of causality. Additionally, prostate cancer survivors engaging in higher levels of MVPA had lower levels of WBC, underscoring the importance of promoting physical activity among prostate cancer survivors.

  3. Effects of physical exercise on the female reproductive system.

    Science.gov (United States)

    Orio, F; Muscogiuri, G; Ascione, A; Marciano, F; Volpe, A; La Sala, G; Savastano, S; Colao, A; Palomba, S

    2013-09-01

    The excess in physical activity could be closely linked to considerable negative consequences on the whole body. These dysfunctions called as "female athlete triad"' by the American College of Sports Medicine (ACSM) include amenorrhea, osteoporosis and disorder eating. The female athlete triad poses serious health risks, both on the short and on the long term, to the overall well-being of affected individuals. Sustained low energy availability can impair health, causing many medical complications within skeletal, endocrine, cardiovascular, reproductive and central nervous system. On the contrary, several studies have shown, that physical activity improves cardiovascular risk factors, hormonal profile and reproductive function. These improvements include a decrease in abdominal fat, blood glucose, blood lipids and insulin resistance, as well as improvements in menstrual cyclicity, ovulation and fertility, decreases in testosterone levels and Free Androgen Index (FAI) and increases in sex hormone binding globulin (SHBG). Other studies reported that physical activity improved self-esteem, depression and anxiety. Thus, the aim of this review is to elucidate the effect of physical exercise on female reproductive system and viceversa the impact of hormonal status on physical activity and metabolism. In addition this review supports the idea that physical exercise is a helpful tool for the management of obesity, prevention of cardiovascular, metabolic diseases and female reproductive organs related diseases (e.g. breast cancer). When the excess in physical activity leads up to the female athlete triad, it is imperative to treat each component of the triad by employing both pharmacological and non pharmacological treatments.

  4. The use of physical model simulation to emulate an AGV material handling system

    International Nuclear Information System (INIS)

    Hurley, R.G.; Coffman, P.E.; Dixon, J.R.; Walacavage, J.G.

    1987-01-01

    This paper describes an application of physical modeling to the simulation of a prototype AGV (Automatic Guided Vehicle) material handling system. Physical modeling is the study of complex automated manufacturing and material handling systems through the use of small scale components controlled by mini and/or microcomputers. By modeling the mechanical operations of the proposed AGV material handling system, it was determined that control algorithms and AGV dispatch rules could be developed and evaluated. This paper presents a brief explanation of physical modeling as a simulation tool and addresses in detail the development of the control algorithm, dispatching rules, and a prototype physical model of a flexible machining system

  5. Superconductivity and superfluidity as universal emergent phenomena in diverse physical systems

    International Nuclear Information System (INIS)

    Guidry, Mike

    2014-01-01

    Superconductivity and superfluidity are observed across a strikingly broad range of physical systems. This universality seems unlikely to be coincidental but a unified understanding of superconductivity and superfluidity across these highly disparate fields seems impossible in traditional microscopic terms. I give an overview of superconductivity and superfluidity found in various fermionic condensed matter, nuclear physics, and neutron star systems, and propose that all result from generic algebraic structures for the emergent effective Hamiltonian, with the role of underlying microscopic physics largely relegated to influence on parameter values

  6. Socio-technical Systems as Place-specific Matters of Concern

    DEFF Research Database (Denmark)

    Jensen, J. S.; Fratini, C. F.; Cashmore, M. A.

    2016-01-01

    that urban governance of the wastewater system was influenced by a particular concern with developing attractive and competitive urban spaces. The wastewater system emerged as a ‘place-bound’ and even ‘place-making’ governance concern; as such, the boundaries and functions of the system were subject...... to continuous redefinition at the city level. This urban framing conflicted with the national-level, efficiency-oriented framing of the wastewater system as homogenous, without regard to place-specific differences. The research findings suggest that a distinct characteristic of urban-level governance is concern...... for place-specific development; this concern can be transformative because it leads to ongoing reinterpretation of traditional boundaries and dependencies between large-scale systems and local contexts....

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journal of Chemical Sciences · Journal of Earth System Science · Journal of Genetics · Pramana ... Pramana – Journal of Physics was launched in July 1973. ... with the Indian National Science Academy and Indian Physics Association. ... special issues devoted to advances in specific areas of physics and proceedings of ...

  8. MEASURING SPORT-SPECIFIC PHYSICAL ABILITIES IN MALE GYMNASTS: THE MEN'S GYMNASTICS FUNCTIONAL MEASUREMENT TOOL

    Science.gov (United States)

    Kenyon, Lisa K.; Elliott, James M; Cheng, M. Samuel

    2016-01-01

    Purpose/Background Despite the availability of various field-tests for many competitive sports, a reliable and valid test specifically developed for use in men's gymnastics has not yet been developed. The Men's Gymnastics Functional Measurement Tool (MGFMT) was designed to assess sport-specific physical abilities in male competitive gymnasts. The purpose of this study was to develop the MGFMT by establishing a scoring system for individual test items and to initiate the process of establishing test-retest reliability and construct validity. Methods A total of 83 competitive male gymnasts ages 7-18 underwent testing using the MGFMT. Thirty of these subjects underwent re-testing one week later in order to assess test-retest reliability. Construct validity was assessed using a simple regression analysis between total MGFMT scores and the gymnasts’ USA-Gymnastics competitive level to calculate the coefficient of determination (r2). Test-retest reliability was analyzed using Model 1 Intraclass correlation coefficients (ICC). Statistical significance was set at the p<0.05 level. Results The relationship between total MGFMT scores and subjects’ current USA-Gymnastics competitive level was found to be good (r2 = 0.63). Reliability testing of the MGFMT composite test score showed excellent test-retest reliability over a one-week period (ICC = 0.97). Test-retest reliability of the individual component tests ranged from good to excellent (ICC = 0.75-0.97). Conclusions The results of this study provide initial support for the construct validity and test-retest reliability of the MGFMT. Level of Evidence Level 3 PMID:27999723

  9. Nonlinear optical and atomic systems at the interface of physics and mathematics

    CERN Document Server

    Garreau, Jean-Claude

    2015-01-01

    Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is  an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics.   Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

  10. Fitness-Specific Epistemic Beliefs, Effort Regulation, Outcomes, and Indices of Motivation in High School Physical Education

    Science.gov (United States)

    Lodewyk, Ken R.; Gao, Zan

    2013-01-01

    Epistemic beliefs are deeply held convictions about the nature of knowledge, knowing, and learning. In this study, approximately 500 ninth and tenth-grade physical education (PE) students completed fitness-specific measures assessing their epistemic beliefs in the simplicity and stability of knowledge and the speed of its acquisition along with…

  11. Physics of far-from-equilibrium systems and self-organization

    International Nuclear Information System (INIS)

    Nicolis, G.

    1993-01-01

    The status of self-organization phenomena from the stand point of the physical sciences are analyzed. Non linear dynamics and the presence of constraints maintaining the system far from equilibrium are shown to be the basic mechanism involved in the emergence of these phenomena. Some particularly representative experiments are first presented: thermal conversion, chemical reactions (Benard problem), biological systems, and their explanation through order, disorder, non-linearity, irreversibility, stability, bifurcation, symmetry breaking, etc., concepts. Then it is shown how the self-organization paradigm allows to model problems outside the traditional realm of the physical sciences. 29 figs., 27 refs

  12. Reactor helium system, design specification, operation and handling

    International Nuclear Information System (INIS)

    Badrljica, R.

    1984-06-01

    Apart from detailed design specification of the helium cover gas system of the Ra reactor, this document includes description of the operating regime, instructions for manipulations in the system with the aim of achieving and maintaining stationary gas circulation [sr

  13. Resilient and Fractionated Cyber Physical System

    Science.gov (United States)

    2014-09-01

    actuating through heterogeneous and widely distributed physical devices and computation components”25. This synergy depends heavily on a resilient...framework of the Internet of Things ( IOT ), or Industry 2.0. In the Global Information Technology Report 2012, the World Economic Forum reports...on the hyperconnected internet of sensors, actuators and plants, which, in turn, is depending more on the autonomous satellite system in order to

  14. Specification and testing of optics for LIS system

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Gantayet, L.M.

    2005-01-01

    Optical component specification for the high average power lasers and laser beam transport system used in the laser isotope separation demonstration facility must address demanding system performance requirements. In a typical demonstration facility a few thousand of commercial and custom optical components are required. The optical system is expected to perform at a high level of optical efficiency and reliability. Evaluation and testing of optical components used in LIS plant is critical for qualification of suppliers and assurance of performance in the actual process. The stringent specifications require specialized test equipment and techniques, which are not routine. Careful planning with the optics manufacturer, detailed quality assurance plan, comprehensive procedures for testing and evaluation, and a plan for corrective action are required. The specifications are given on material characteristics, surface quality and flatness, reflectance or transmittance and high average power laser damage. Our approach to specifying, testing the performance characteristics and assuring quality of optical components required for the technology demonstration of laser based isotopic clean-up of 233 U project is presented. (author)

  15. System requirement specifications for the Z-plant materials information tracking system (ZMITS)

    International Nuclear Information System (INIS)

    NEGIN, C.A.

    1999-01-01

    This is a system requirement specification for a database which will be developed to track classified information related to nuclear materials stored at PFP. The system will supplement existing databases to support both processing and disposition information needs

  16. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    Science.gov (United States)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    at regional and sub-regional scale and along specific vertical layers (temperature and salinity); while velocity fields are daily validated against in situ coastal moorings. Since the velocity skill cannot be accurately assessed through coastal measurements due to the actual model horizontal resolution (~6.5 km), new validation metrics and procedures are under investigation. Chlorophyll is the only biogeochemical variable that can be validated routinely at the temporal and spatial scale of the weekly forecast, while nutrients and oxygen predictions can be validated locally or at sub-basin and seasonal scales. For the other biogeochemical variables (i.e. primary production, carbonate system variables) only the accuracy of the average dynamics and model consistency can be evaluated. Then, we discuss the limiting factors of the present validation framework, and the quality and extension of the observing system that would be needed for improving the reliability of the physical and biogeochemical Mediterranean forecast services.

  17. Specification and Design of Electrical Flight System Architectures with SysML

    Science.gov (United States)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  18. Computerized health physics record system at a Canadian fabrication facility

    International Nuclear Information System (INIS)

    Thind, K.S.

    1984-01-01

    This poster session will describe the types of Health Physics data input into a Hewlett-Packard 3000 computer. The Health Physics data base at this facility includes the following: employee hours data, airborne uranium concentrations, external dosemetry (badge readings), internal dosemetry (bioassay) and environmental health physics (stack sample results) data. It will describe the types of outputs achievable in the form of various reports, such as: individual employee health physics report for a given period, a general health physics summary report for a given period, individual urinalysis report, local air concentration report and graphs. The use of this computerized health physics record system in the overall radiation protection program at this facility is discussed

  19. Domain-Specific Self-Reported and Objectively Measured Physical Activity in Children

    Directory of Open Access Journals (Sweden)

    Ole Sprengeler

    2017-03-01

    Full Text Available Little is known about the extent that different domains contribute to total sedentary (SED, light (LPA and moderate-to-vigorous physical activity (MVPA. We aimed to identify domain-specific physical activity (PA patterns in school-aged children who were assessed by questionnaire and accelerometry. For the study, 298 German school children and adolescents aged 6–17 years wore an accelerometer for one week and completed a PA recall-questionnaire for the same period. Spearman coefficients (r were used to evaluate the agreement between self-reported and objectively measured PA in five domains (transport, school hours, physical education, leisure-time, organized sports activities. School hours mainly contributed to the total objectively measured SED, LPA and MVPA (55%, 53% and 46%, respectively, whilst sports activities contributed only 24% to total MVPA. Compared to accelerometry, the proportion of self-reported LPA and MVPA during school hours was substantially underestimated but overestimated during leisure-time. The agreement of self-reported and objectively measured PA was low for total LPA (r = 0.09, 95% CI (confidence interval: −0.03–0.20 and total MVPA (r = 0.21, 95% CI: 0.10–0.32, while moderate agreement was only found for total SED (r = 0.44, 95% CI: 0.34–0.53, LPA during transport (r = 0.59; 95% CI: 0.49–0.67 and MVPA during organized sports activities (r = 0.54; 95% CI: 0.38–0.67. Since school hours mainly contribute to total SED, LPA and MVPA and self-reported LPA and MVPA during school were importantly underestimated compared to objectively measured LPA and MVPA, the application of objective measurements is compulsory to characterize the entire activity pattern of school-aged children.

  20. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...

  1. Systems and models with anticipation in physics and its applications

    International Nuclear Information System (INIS)

    Makarenko, A

    2012-01-01

    Investigations of recent physics processes and real applications of models require the new more and more improved models which should involved new properties. One of such properties is anticipation (that is taking into accounting some advanced effects).It is considered the special kind of advanced systems – namely a strong anticipatory systems introduced by D. Dubois. Some definitions, examples and peculiarities of solutions are described. The main feature is presumable multivaluedness of the solutions. Presumable physical examples of such systems are proposed: self-organization problems; dynamical chaos; synchronization; advanced potentials; structures in micro-, meso- and macro- levels; cellular automata; computing; neural network theory. Also some applications for modeling social, economical, technical and natural systems are described.

  2. [Validity of a standard questionnaire to assess physical activity for specific medical checkups and health guidance].

    Science.gov (United States)

    Kawakami, Ryoko; Miyachi, Motohiko

    2010-10-01

    This study aimed to determine the validity of a standard questionnaire to assess amount of physical activity (PA) and cardiorespiratory fitness (VO2peak). A total of 483 men and women, aged 20 to 69 years, participated. The standard questionnaire included 3 items about exercise, PA, and walking speed. All questions were designed to require an answer of Yes or No. Subjects were classified into one of four groups regarding the number of Yes answers to the three questions, giving activity levels of 0 to 3. The amount of PA was measured objectively with a tn-axial accelerometer which could also calculate daily step counts, and the amounts of PA under 3 metabolic equivalents (METs) and at 3 METs or more. VO2peak. was measured by incremental cycle exercise tests with indirect calorimetry. The daily step counts, the amount of PA at 3 METs or more, and the VO2peak. were significantly higher in subjects who answered Yes to each question than in those who answered No. Sensitivity and specificity of each question were 62-73% and 45-71% for the amount of PA established with the "Exercise and Physical Activity Reference for Health Promotion 2006 (EPAR2006)". The sum of sensitivity and specificity was the highest when the cutoff value was activity level 2 (sensitivity 73%, specificity 68%). Sensitivity and specificity for VO2max established by EPAR2006 were lower than those for the amount of PA. These results suggest that only answering simple questions with a standard questionnaire is sufficient for estimation of PA levels for specific medical checkups and health guidance, even though the accuracy is somewhat limited.

  3. Physical literacy

    OpenAIRE

    Roučka, Ladislav

    2013-01-01

    Topic: Physical literacy Goals: The aproximation of physical literacy, collection and evaluation questionnaires of physical literacy knowledge and students anamnesis. Description of applicants progress in the specific movement skills. Method: Unified questionnaires was used for obtaining informations. We make video for movement analysis. Results: The results didn't obtain our expectation that students are able to express precisely the content of physical literacy by specific skills. However, ...

  4. Cyber-physical system design with sensor networking technologies

    CERN Document Server

    Zeadally, Sherali

    2016-01-01

    This book describes how wireless sensor networking technologies can help in establishing and maintaining seamless communications between the physical and cyber systems to enable efficient, secure, reliable acquisition, management, and routing of data.

  5. Computational Physics Simulation of Classical and Quantum Systems

    CERN Document Server

    Scherer, Philipp O. J

    2010-01-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

  6. Security and privacy in cyber-physical systems foundations, principles, and applications

    CERN Document Server

    Song, Houbing; Jeschke, Sabina

    2017-01-01

    Written by a team of experts at the forefront of the cyber-physical systems (CPS) revolution, this book provides an in-depth look at security and privacy, two of the most critical challenges facing both the CPS research and development community and ICT professionals. It explores, in depth, the key technical, social, and legal issues at stake, and it provides readers with the information they need to advance research and development in this exciting area. Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability far in excess of what today's simple embedded systems can provide. Just as the Internet revolutionized the way we interact with information, CPS technology has already begun to transform the way people interact with engineered systems. In the years ahead, smart CPS will drive innovat...

  7. Simulation and modeling of data acquisition systems for future high energy physics experiments

    International Nuclear Information System (INIS)

    Booth, A.; Black, D.; Walsh, D.; Bowden, M.; Barsotti, E.

    1991-01-01

    With the ever-increasing complexity of detectors and their associated data acquisition (DAQ) systems, it is important to bring together a set of tools to enable system designers, both hardware and software, to understand the behavioral aspects of the system was a whole, as well as the interaction between different functional units within the system. For complex systems, human intuition is inadequate since there are simply too many variables for system designers to begin to predict how varying any subset of them affects the total system. On the other hand, exact analysis, even to the extent of investing in disposable hardware prototypes, is much too time consuming and costly. Simulation bridges the gap between physical intuition and exact analysis by providing a learning vehicle in which the effects of varying many parameters can be analyzed and understood. Simulation techniques are being used in the development of the Scalable Parallel Open Architecture Data Acquisition System at Fermilab in which several sophisticated tools have been brought together to provide an integrated systems engineering environment specifically aimed at designing, DAQ systems. Also presented are results of simulation experiments in which the effects of varying trigger rates, event sizes and event distribution over processors, are clearly seen in terms of throughput and buffer usage in an event-building switch

  8. Formal specification and implementation of operations in information management systems

    International Nuclear Information System (INIS)

    Sandewall, E.

    1983-02-01

    Among information management systems we include general purpose systems, such as text editors and data editors (forms management systems), as well as special purpose systems such as mail systems and computer based calendars. Based on a method for formal specification of some aspects of IMS, namely the structure of the data base, the update operations, and the user dialogue, the paper shows how reasonable procedures for executing IMS operations can be written in the notation of a first-order theory, in such a way that the procedure is a logical consequence of the specification. (Author)

  9. Cost and performance analysis of physical protection systems - a case study

    International Nuclear Information System (INIS)

    Hicks, M.J.; Snell, M.S.; Sandoval, J.S.; Potter, C.S.

    1998-01-01

    Design and analysis of physical protection systems requires (1) identification of mission critical assets; (2) identification of potential threats that might undermine mission capability; (3) identification of the consequences of loss of mission-critical assets (e.g., time and cost to recover required capability and impact on operational readiness); and (4) analysis of the effectiveness of physical protection elements. CPA -- Cost and Performance Analysis -- addresses the fourth of these four issues. CPA is a methodology that joins Activity Based Cost estimation with performance-based analysis of physical protection systems. CPA offers system managers an approach that supports both tactical decision making and strategic planning. Current exploratory applications of the CPA methodology address analysis of alternative conceptual designs. Hypothetical data is used to illustrate this process

  10. Teaching the fundamentals of the modelling of cyber-physical systems

    OpenAIRE

    Tendeloo, Van, Yentl; Vangheluwe, Hans

    2016-01-01

    Abstract: Current Cyber-Physical Systems are becoming too complex to model and simulate using the usual approaches. This complexity is not only due to a large number of components, but also by the increasing diversity of components and problem aspects. In this paper, we report on over a decade of experience in teaching the modelling and simulation of complex Cyber-Physical Systems, at both McGill University, and the University of Antwerp. We tackle complexity through the use of multiple forma...

  11. Development of intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Canhui; Li Xiang; Huang Liyuan; Fu Guoen; Hu Hai

    2008-01-01

    In this paper, the Intelligent physical start-up system for nuclear reactor introduced the system composing, hardware design and software design. The system has some merits such as handy operation, fast and accurate mathematic and nicer human-machine interface. (authors)

  12. Transactions in domain-specific information systems

    Science.gov (United States)

    Zacek, Jaroslav

    2017-07-01

    Substantial number of the current information system (IS) implementations is based on transaction approach. In addition, most of the implementations are domain-specific (e.g. accounting IS, resource planning IS). Therefore, we have to have a generic transaction model to build and verify domain-specific IS. The paper proposes a new transaction model for domain-specific ontologies. This model is based on value oriented business process modelling technique. The transaction model is formalized by the Petri Net theory. First part of the paper presents common business processes and analyses related to business process modeling. Second part defines the transactional model delimited by REA enterprise ontology paradigm and introduces states of the generic transaction model. The generic model proposal is defined and visualized by the Petri Net modelling tool. Third part shows application of the generic transaction model. Last part of the paper concludes results and discusses a practical usability of the generic transaction model.

  13. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    International Nuclear Information System (INIS)

    Antoine, C.; Foley, M.; Dhanaraj, N.

    2011-01-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  14. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, C.; Foley, M.; Dhanaraj, N.; /Fermilab

    2011-07-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  15. Study and application of digital physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Qu Ronghong; Li Baoxiang; Xu Xiaolin

    2004-01-01

    The digital physical start-up system for nuclear reactor is introduced. The system was used successfully in physical start-up experiment of 10 MW high-temperature gas-cooled reactor. It is proved practically that the system not only runs reliably and calculates both rapidly and correctly and relieves the loads of operators, but also has the better characters of monitoring and showing the real-time results of experiments than the analog systems. (author)

  16. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fab fragment specific... Test Systems § 866.5520 Immunoglobulin G (Fab fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fab fragment specific) immunological test system is a device that consists...

  17. 21 CFR 866.5540 - Immunoglobulin G (Fd fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fd fragment specific... Test Systems § 866.5540 Immunoglobulin G (Fd fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fd fragment specific) immunological test system is a device that consists of...

  18. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fc fragment specific... Test Systems § 866.5530 Immunoglobulin G (Fc fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fc fragment specific) immunological test system is a device that consists of...

  19. Audit program for physical security systems at nuclear power plants

    International Nuclear Information System (INIS)

    Minichino, C.

    1982-01-01

    Licensees of nuclear power plants conduct audits of their physical security systems to meet the requirements of 10 CFR 73, Physical Protection of Plants and Materials. Section 73.55, Requirements for physical Protection of Licensed Activities in Nuclear Power Reactors Against Radiological Sabotage, requires that the security programs be reviewed at least every 12 months, that the audit be conducted by individuals independent of both security management and security supervision, and that the audit program review all aspects of the physical security system: hardware, personnel, and operational and maintenance procedures. This report contains information for the Nuclear Regulatory Commission (NRC) and for the licensees of nuclear power reactors who carry out these comprehensive audits. Guidance on the overall management of the audit function includes organizational structure and issues concerning the auditors who perform the review: qualifications, independence, due professional care, and standards. Guidance in the audit program includes purpose and scope of the audit, planning, techniques, post-audit procedures, reporting, and follow-up

  20. Advancement adopted for physical protection system at BARC facilities Tarapur

    International Nuclear Information System (INIS)

    Jaroli, Manish; Ameta, Rohit; Patil, V.H.; Dubey, K.

    2015-01-01

    Considering the prevailing security situation and threat perception to the nuclear installations in particular, it has become essential to strengthen security system at BARC Tarapur in an effective manner to avert any attempt of sabotage and to ensure smooth functioning of security and safety of the nuclear installations. International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various security guides for the physical protection system (PPS) for nuclear installations and there has been advancement in physical and personnel protection system due to evolution of new technologies. In line with this, latest technologies have been adopted in PPS for BARC facilities, Tarapur recently. This includes state of art RFID card based access control, visitor and contractor management system, electronic key management system. Digital signature based biometric visitor and contractor management system; Digital signature based leave management system; Distress alarm system (DAS); Guard tour monitoring system (GTMS); Secure network access system (SNAS) as well as multilayered access control system at plant level. This will strengthen the surveillance and monitoring of personnel and visitors at BARC facilities. (author)

  1. Cybernetical Physics From Control of Chaos to Quantum Control

    CERN Document Server

    Fradkov, Alexander L

    2007-01-01

    The control of complex systems is one of the most important aspects in dealing with systems exhibiting nonlinear behaviour or similar features that defy traditional control techniques. This specific subject is gradually becoming known as cybernetical physics, borrowing methods from both theoretical physics and control engineering. This book is, perhaps, the first attempt to present a unified exposition of the subject and methodology of cybernetical physics as well as solutions to some of its problems. Emphasis of the book is on the examination of fundamental limits on energy transformation by means of control procedures in both conservative and dissipative systems. A survey of application in physics includes the control of chaos, synchronisation of coupled oscillators, pendulum chains, reactions in physical chemistry and of quantum systems such as the dissociation of diatomic molecules. This book has been written having researchers from various backgrounds in physics, mathematics and engineering in mind and i...

  2. Computational physics. Simulation of classical and quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Philipp O.J. [TU Muenchen (Germany). Physikdepartment T38

    2010-07-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills. (orig.)

  3. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    Bradley, R.T.; Olson, A.W.; Rogue, F.; Scala, S.; Richard, E.W.

    1980-01-01

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  4. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system

    Science.gov (United States)

    Karimova, Madina; Abi-Ghanem, Josephine; Berger, Nicolas; Surendranath, Vineeth; Pisabarro, Maria Teresa; Buchholz, Frank

    2013-01-01

    Targeted genome engineering has become an important research area for diverse disciplines, with site-specific recombinases (SSRs) being among the most popular genome engineering tools. Their ability to trigger excision, integration, inversion and translocation has made SSRs an invaluable tool to manipulate DNA in vitro and in vivo. However, sophisticated strategies that combine different SSR systems are ever increasing. Hence, the demand for additional precise and efficient recombinases is dictated by the increasing complexity of the genetic studies. Here, we describe a novel site-specific recombination system designated Vika/vox. Vika originates from a degenerate bacteriophage of Vibrio coralliilyticus and shares low sequence similarity to other tyrosine recombinases, but functionally carries out a similar type of reaction. We demonstrate that Vika is highly specific in catalyzing vox recombination without recombining target sites from other SSR systems. We also compare the recombination activity of Vika/vox with other SSR systems, providing a guideline for deciding on the most suitable enzyme for a particular application and demonstrate that Vika expression does not cause cytotoxicity in mammalian cells. Our results show that Vika/vox is a novel powerful and safe instrument in the ‘genetic toolbox’ that can be used alone or in combination with other SSRs in heterologous hosts. PMID:23143104

  5. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training

    Directory of Open Access Journals (Sweden)

    Ann Van de Winckel

    2017-11-01

    Full Text Available Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years without cognitive decline (Mini Mental State Examination-brief version ≥13/16 and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years. Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01. Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38

  6. Behavior Management in Physical Education, Recreation, and Sport: A Bibliography.

    Science.gov (United States)

    Lavay, Barry

    1986-01-01

    This bibliography contains references specifically pertaining to physical education, recreation, or sport and to behavior management. The references are classified into areas of behavior management overview, reinforcement systems, motor performance, physical fitness, recreation, and sport. (MT)

  7. Are total, intensity- and domain-specific physical activity levels associated with life satisfaction among university students?

    Science.gov (United States)

    Pedišić, Željko; Greblo, Zrinka; Phongsavan, Philayrath; Milton, Karen; Bauman, Adrian E

    2015-01-01

    Thorough information about the relationship between physical activity (PA) and life satisfaction is still lacking. Therefore, this study examined the cross-sectional relationships between life satisfaction and meeting the World Health Organization (WHO) moderate to vigorous-intensity PA recommendations, total volume and duration of PA, intensity-specific PA (walking, moderate- and vigorous-intensity), domain-specific PA (work, transport-related, domestic, and leisure-time), and 11 domain and intensity-specific PA types among university students. Additionally, we examined the associations between life satisfaction and gender, age, disposable income, community size, smoking, alcohol intake, body mass index (BMI), and self-rated health. The study included a random sample of 1750 university students in Zagreb, Croatia (response rate = 71.7%; 62.4% females; mean age 21.5 ± 1.8 years), using the International Physical Activity Questionnaire-long form and the Satisfaction with Life Scale. Higher life satisfaction was associated with female gender (β = 0.13; p = leisure-time vigorous-intensity PA was significantly associated with life satisfaction after adjustments for socio-demographic characteristics, lifestyle and self-rated general health (β = 0.06; p = 0.045). This study indicated a weak positive relationship between leisure-time vigorous-intensity PA and life satisfaction, whilst no such association was found for other PA variables. These findings underscore the importance of analyzing domain and intensity-specific PA levels in future studies among university students, as drawing conclusions about the relationship between PA and life satisfaction based on total PA levels only may be misleading.

  8. Reliability of specific physical examination tests for the diagnosis of shoulder pathologies: a systematic review and meta-analysis.

    Science.gov (United States)

    Lange, Toni; Matthijs, Omer; Jain, Nitin B; Schmitt, Jochen; Lützner, Jörg; Kopkow, Christian

    2017-03-01

    Shoulder pain in the general population is common and to identify the aetiology of shoulder pain, history, motion and muscle testing, and physical examination tests are usually performed. The aim of this systematic review was to summarise and evaluate intrarater and inter-rater reliability of physical examination tests in the diagnosis of shoulder pathologies. A comprehensive systematic literature search was conducted using MEDLINE, EMBASE, Allied and Complementary Medicine Database (AMED) and Physiotherapy Evidence Database (PEDro) through 20 March 2015. Methodological quality was assessed using the Quality Appraisal of Reliability Studies (QAREL) tool by 2 independent reviewers. The search strategy revealed 3259 articles, of which 18 finally met the inclusion criteria. These studies evaluated the reliability of 62 test and test variations used for the specific physical examination tests for the diagnosis of shoulder pathologies. Methodological quality ranged from 2 to 7 positive criteria of the 11 items of the QAREL tool. This review identified a lack of high-quality studies evaluating inter-rater as well as intrarater reliability of specific physical examination tests for the diagnosis of shoulder pathologies. In addition, reliability measures differed between included studies hindering proper cross-study comparisons. PROSPERO CRD42014009018. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Health physics information management

    International Nuclear Information System (INIS)

    Schauss, R.D.

    1982-01-01

    The records that men have kept over the centuries have made the civilizations of man possible. Recorded history shows that our progress is closely correlated to man's ability to communicate recorded facts to others, and to effectively use knowledge gained by others. During the past few decades our ability to store and use information, and to reach larger audiences has grown dramatically. The advent of computers is discussed and their evolution to the state-of-the-art is described. Data bases, batch and on-line processing, centralized and distributed processing as well as other computer jargon are generally explained and examples are given as they apply specifically to health physics programs. It is proposed that systems designed to manage information cannot be adapted to health physics problems without extensive involvement of the HP who must use the computerized program. Specific problems which arise during the development of a computerized health physics program are explained

  10. Multiplex measuring systems in physics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1980-01-01

    The principles of operation of multiplex devices used in different spheres of physics are discussed. The ''multiplex'' notion means that the data output of the device is an integral image of the functional dependence under investigation, but not its readings as in usual instruments. The analysis of the present state of developments of the multiplex systems in optics, nuclear magnetic resonance spectroscopy, in time-of-flight spectrometers for slow and fast neutrons, as well as elementary particle detectors, is given. The construction algorithms for the digital codes are presented, the history of development of the multiplex measuring principle is given [ru

  11. Security-aware design for cyber-physical systems a platform-based approach

    CERN Document Server

    Lin, Chung-Wei

    2017-01-01

    Addressing the rising security issues during the design stages of cyber-physical systems, this book develops a systematic approach to address security at early design stages together with all other design constraints. Cyber-attacks become more threatening as systems are becoming more connected with the surrounding environment, infrastructures, and other systems. Security mechanisms can be designed to protect against attacks and meet security requirements, but there are many challenges of applying security mechanisms to cyber-physical systems including open environments, limited resources, strict timing requirements, and large number of devices. Designed for researchers and professionals, this book is valuable for individuals working in network systems, security mechanisms, and system design. It is also suitable for advanced-level students of computer science. .

  12. Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.

    Science.gov (United States)

    Selesnick, S A; Rawling, J P; Piccinini, Gualtiero

    2017-09-01

    Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.

  13. Modelling physics detectors in a computer aided design system for simulation purposes

    International Nuclear Information System (INIS)

    Ahvenainen, J.; Oksakivi, T.; Vuoskoski, J.

    1995-01-01

    The possibility of transferring physics detector models from computer aided design systems into physics simulation packages like GEANT is receiving increasing attention. The problem of exporting detector models constructed in CAD systems into GEANT is well known. We discuss the problem and describe an application, called DDT, which allows one to design detector models in a CAD system and then transfer the models into GEANT for simulation purposes. (orig.)

  14. The medical physics specialization system in Poland.

    Science.gov (United States)

    Bulski, Wojciech; Kukołowicz, Paweł; Skrzyński, Witold

    2016-07-01

    This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. An Integrated Simulation Module for Cyber-Physical Automation Systems

    Directory of Open Access Journals (Sweden)

    Francesco Ferracuti

    2016-05-01

    Full Text Available The integration of Wireless Sensors Networks (WSNs into Cyber Physical Systems (CPSs is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA, a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called “GILOO” (Graphical Integration of Labview and cOOja. It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA, etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new “Advanced Sky GUI” have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been

  16. An Integrated Simulation Module for Cyber-Physical Automation Systems.

    Science.gov (United States)

    Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario

    2016-05-05

    The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called "GILOO" (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new "Advanced Sky GUI" have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home

  17. A Review of Cyber-Physical Energy System Security Assessment

    DEFF Research Database (Denmark)

    Rasmussen, Theis Bo; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    Increasing penetration of renewable energy resources (RES) and electrification of services by implementing distributed energy resources (DER) has caused a paradigm shift in the operation of the power system. The controllability of the power system is predicted to be shifted from the generation side...... to the consumption side. This transition entails that the future power system evolves into a complex cyber-physical energy system (CPES) with strong interactions between the power, communication and neighboring energy systems. Current power system security assessment methods are based on centralized computation...

  18. Enhancement the physical protection system of the WWR-SM reactor at Institute of Nuclear Physics of Academy of Science of the Republic of Uzbekistan

    International Nuclear Information System (INIS)

    Karabaev, Kh.Kh.; Rakhimbaev, A.T.; Rakhmanov, A.B.; Salikhbaev, U.S.; Yuldashev, B.S.

    2004-01-01

    Full text: Joining of the Republic of Uzbekistan to Non-Proliferation Treaty required the revision of nuclear fuel protection system and radioactive sources from illegal access in all stages of work with nuclear materials. One of the primary technical actions of ensuring non-proliferation of nuclear materials is physical protection. The project was worked out on upgrading and enhancement of the physical protection of the reactor building. In cooperation with Sandia National Laboratory and support of the Department of Energy (DOE) USA The first stage of the physical protection upgrading provided for fresh fuel protection: - the new fresh fuel storage room was built and equipped with the modern control and detection system, - the reactor building was equipped with detection devices and access control, - the central alarm station (CAS) has been built and equipped with computer control and observing system, - code access system has been implemented. The first stage of upgrading of physical protection system was accomplished for 4 months, and put into operation in 1996. The second stage of physical protection system modernization included the construction of the second barrier of the physical protection, equipping it with observation and control devices and also extension of the CAS. The perimeter around the reactor building was cleaned from trees, bushed and in a short time a two-fence barrier was erected. The access control point provided the secured intensified control of the access to the reactor territory. The physical protection system was supplied with equipment for safeguard and TV observation of perimeter, access control to the territory of the reactor: - the CAS was extended and computer observation control system was upgraded, - the badge station has been constructed, equipped and set up, - all doors, windows, reactor hall gate have been replaced by strengthened metal ones, - uninterruptible power supply (UPS) and diesel-generator have been installed, - the

  19. Some open problems in the physics of disordered systems

    Indian Academy of Sciences (India)

    Some problems in the physics of disordered systems are pointed out; most of these arise from experiments. Keywords. Disordered systems; electron localization; metal insulator transitions. PACS Nos 71.55. .... overlapping the free electron Fermi sphere, the Fermi surface is cut up into a large number of small electron and ...

  20. Non-Hermitian quantum mechanics and localization in physical systems

    International Nuclear Information System (INIS)

    Hatano, Naomichi

    1998-01-01

    Recent studies on a delocalization phenomenon of a non-Hermitian random system is reviewed. The complex spectrum of the system indicates delocalization transition of its eigenfunctions. It is emphasized that the delocalization is related to various physical phenomena such as flux-line pinning in superconductors and population biology of bacteria colony

  1. System for measurements and data processing in neutron physics researches

    International Nuclear Information System (INIS)

    Kadashevich, V.I.; Kondurov, I.A.; Nikolaev, S.N.; Ryabov, Yu.F.

    1976-01-01

    A system of measuring and computing means created for automation of studies in the field of the neutron physics is discussed. Within the framework of this system each experiment is provided with its individual measuring station which consists of a set of analog and digital modules implemented in accordance with the CAMAC standard. On the higher level of this system there are measuring-computing centres (MCC) which simultaneously serve a number of physical installations. These MCCs are based on ''Minsk-22'' computers whose computational facilities are used for the preliminary processing and for creation of temporary data archives. In its turn, all the MCCs are users of the time-sharing system on the basis of the ''Minsk-32'' computers. This system extends possibilities for user's fast data processing, archive creation and provides transfer of required information to the main computing system based on the BESM-6 computer. Transfer of information and preliminary processing are performed by remote terminals with the help of a special directive language

  2. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  3. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  4. HTR core physics and transient analyses by the Panthermix code system

    International Nuclear Information System (INIS)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.

    2005-01-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes

  5. Cyber attack analysis on cyber-physical systems: Detectability, severity, and attenuation strategy

    Science.gov (United States)

    Kwon, Cheolhyeon

    Security of Cyber-Physical Systems (CPS) against malicious cyber attacks is an important yet challenging problem. Since most cyber attacks happen in erratic ways, it is usually intractable to describe and diagnose them systematically. Motivated by such difficulties, this thesis presents a set of theories and algorithms for a cyber-secure architecture of the CPS within the control theoretic perspective. Here, instead of identifying a specific cyber attack model, we are focused on analyzing the system's response during cyber attacks. Firstly, we investigate the detectability of the cyber attacks from the system's behavior under cyber attacks. Specifically, we conduct a study on the vulnerabilities in the CPS's monitoring system against the stealthy cyber attack that is carefully designed to avoid being detected by its detection scheme. After classifying three kinds of cyber attacks according to the attacker's ability to compromise the system, we derive the necessary and sufficient conditions under which such stealthy cyber attacks can be designed to cause the unbounded estimation error while not being detected. Then, the analytical design method of the optimal stealthy cyber attack that maximizes the estimation error is developed. The proposed stealthy cyber attack analysis is demonstrated with illustrative examples on Air Traffic Control (ATC) system and Unmanned Aerial Vehicle (UAV) navigation system applications. Secondly, in an attempt to study the CPSs' vulnerabilities in more detail, we further discuss a methodology to identify potential cyber threats inherent in the given CPSs and quantify the attack severity accordingly. We then develop an analytical algorithm to test the behavior of the CPS under various cyber attack combinations. Compared to a numerical approach, the analytical algorithm enables the prediction of the most effective cyber attack combinations without computing the severity of all possible attack combinations, thereby greatly reducing the

  6. Preliminary level 2 specification for the nested, fixed-depth sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This preliminary Level 2 Component Specification establishes the performance, design, development, and test requirements for the in-tank sampling system which will support the BNFL contract in the final disposal of Hanford's High Level Wastes (HLW) and Low Activity Wastes (LAW). The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by BNFL from double-shell feed tanks. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume? representative samples without the environmental, radiation exposure, and sample volume Impacts of the current base-line ''grab'' sampling method. This preliminary Level 2 Component Specification is not a general specification for tank sampling, but is based on a ''record of decision'', AGA (HNF-SD-TWR-AGA-001 ), the System Specification for the Double Shell Tank System (HNF-SD-WM-TRD-O07), and the BNFL privatization contract

  7. Simulations of oscillatory systems with award-winning software, physics of oscillations

    CERN Document Server

    Butikov, Eugene I

    2015-01-01

    Deepen Your Students' Understanding of Oscillations through Interactive Experiments Simulations of Oscillatory Systems: with Award-Winning Software, Physics of Oscillations provides a hands-on way of visualizing and understanding the fundamental concepts of the physics of oscillations. Both the textbook and software are designed as exploration-oriented supplements for courses in general physics and the theory of oscillations. The book is conveniently structured according to mathematical complexity. Each chapter in Part I contains activities, questions, exercises, and problems of varying levels of difficulty, from straightforward to quite challenging. Part II presents more sophisticated, highly mathematical material that delves into the serious theoretical background for the computer-aided study of oscillations. The software package allows students to observe the motion of linear and nonlinear mechanical oscillatory systems and to obtain plots of the variables that describe the systems along with phase diagram...

  8. Physical Activity Throughout the Adult Life Span and Domain-Specific Cognitive Function in Old Age: A Systematic Review of Cross-Sectional and Longitudinal Data.

    Science.gov (United States)

    Engeroff, Tobias; Ingmann, Tobias; Banzer, Winfried

    2018-06-01

    A growing body of literature suggests that physical activity might alleviate the age-related neurodegeneration and decline of cognitive function. However, most of this evidence is based on data investigating the association of exercise interventions or current physical activity behavior with cognitive function in elderly subjects. We performed a systematic review and hypothesize that physical activity during the adult life span is connected with maintained domain-specific cognitive functions during late adulthood defined as age 60+ years. We performed a systematic literature search up to November 2017 in PubMed, Web of Science, and Google Scholar without language limitations for studies analyzing the association of leisure physical activity during the adult life span (age 18+ years) and domain-specific cognitive functions in older adults (age 60+ years). The literature review yielded 14,294 articles and after applying inclusion and exclusion criteria, nine cross-sectional and 14 longitudinal studies were included. Moderate- and vigorous-intensity leisure physical activity was associated with global cognitive function and specific cognitive domains including executive functions and memory but not attention or working memory. Most studies assessed mid- to late-adulthood physical activity, thus information concerning the influence of young adult life-span physical activity is currently lacking. Observational evidence that moderate- and vigorous-intensity leisure physical activity is beneficially associated with maintained cognitive functions during old age is accumulating. Further studies are necessary to confirm a causal link by assessing objective physical activity data and the decline of cognitive functions at multiple time points during old age.

  9. Health physics appraisal guidelines for fusion/confinement devices

    International Nuclear Information System (INIS)

    Neeson, P.M.

    1987-01-01

    Several types of fusion/confinement devices have been developed for a variety of research applications. The health physics considerations for these devices can vary, depending on a number of parameters. This paper presents guidelines for health physics appraisal of such devices, which can be tailored to apply to specific systems. The guidelines can also be useful for establishing ongoing health physics programs for safe operation of the devices

  10. Simulation and modeling of data acquisition systems for future high energy physics experiments

    International Nuclear Information System (INIS)

    Booth, A.; Black, D.; Walsh, D.; Bowden, M.; Barsotti, E.

    1990-01-01

    With the ever-increasing complexity of detectors and their associated data acquisition (DAQ) systems, it is important to bring together a set of tools to enable system designers, both hardware and software, to understand the behavorial aspects of the system as a whole, as well as the interaction between different functional units within the system. For complex systems, human intuition is inadequate since there are simply too many variables for system designers to begin to predict how varying any subset of them affects the total system. On the other hand, exact analysis, even to the extent of investing in disposable hardware prototypes, is much too time consuming and costly. Simulation bridges the gap between physical intuition and exact analysis by providing a learning vehicle in which the effects of varying many parameters can be analyzed and understood. Simulation techniques are being used in the development of the Scalable Parallel Open Architecture Data Acquisition System at Fermilab. This paper describes the work undertaken at Fermilab in which several sophisticated tools have been brought together to provide an integrated systems engineering environment specifically aimed at designing DAQ systems. Also presented are results of simulation experiments in which the effects of varying trigger rates, event sizes and event distribution over processors, are clearly seen in terms of throughput and buffer usage in an event-building switch

  11. C++ Toolbox for Object-Oriented Modeling and Dynamic Simulation of Physical Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1999-01-01

    This paper presents the efforts made in an ongoing project that exploits the advantages of using object-oriented methodologies for describing and simulating dynamical systems. The background for this work is a search for new and better ways to simulate physical systems.......This paper presents the efforts made in an ongoing project that exploits the advantages of using object-oriented methodologies for describing and simulating dynamical systems. The background for this work is a search for new and better ways to simulate physical systems....

  12. CORESAFE: A Formal Approach against Code Replacement Attacks on Cyber Physical Systems

    Science.gov (United States)

    2018-04-19

    AFRL-AFOSR-JP-TR-2018-0035 CORESAFE:A Formal Approach against Code Replacement Attacks on Cyber Physical Systems Sandeep Shukla INDIAN INSTITUTE OF...Formal Approach against Code Replacement Attacks on Cyber Physical Systems 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4099 5c.  PROGRAM ELEMENT...SUPPLEMENTARY NOTES 14.  ABSTRACT Industrial Control Systems (ICS) used in manufacturing, power generators and other critical infrastructure monitoring and

  13. A federation of simulations based on cellular automata in cyber-physical systems

    Directory of Open Access Journals (Sweden)

    Hoang Van Tran

    2016-02-01

    Full Text Available In cyber-physical system (CPS, cooperation between a variety of computational and physical elements usually poses difficulties to current modelling and simulation tools. Although much research has proposed to address those challenges, most solutions do not completely cover uncertain interactions in CPS. In this paper, we present a new approach to federate simulations for CPS. A federation is a combination of, and coordination between simulations upon a standard of communication. In addition, a mixed simulation is defined as several parallel simulations federated in a common time progress. Such simulations run on the models of physical systems, which are built based on cellular automata theory. The experimental results are performed on a federation of three simulations of forest fire spread, river pollution diffusion and wireless sensor network. The obtained results can be utilized to observe and predict the behaviours of physical systems in their interactions.

  14. Interactive physically-based structural modeling of hydrocarbon systems

    International Nuclear Information System (INIS)

    Bosson, Mael; Grudinin, Sergei; Bouju, Xavier; Redon, Stephane

    2012-01-01

    Hydrocarbon systems have been intensively studied via numerical methods, including electronic structure computations, molecular dynamics and Monte Carlo simulations. Typically, these methods require an initial structural model (atomic positions and types, topology, etc.) that may be produced using scripts and/or modeling tools. For many systems, however, these building methods may be ineffective, as the user may have to specify the positions of numerous atoms while maintaining structural plausibility. In this paper, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are also influenced by the Brenner potential, a well-known bond-order reactive potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm, as well as a novel algorithm to incrementally update the forces and the total potential energy based on the list of updated relative atomic positions. The computational cost of the adaptive simulation algorithm depends on user-defined error thresholds, and our potential update algorithm depends linearly with the number of updated bonds. This allows us to enable efficient physically-based editing, since the computational cost is decoupled from the number of atoms in the system. We show that our approach may be used to effectively build realistic models of hydrocarbon structures that would be difficult or impossible to produce using other tools.

  15. Causal fermion systems as a candidate for a unified physical theory

    Science.gov (United States)

    Finster, Felix; Kleiner, Johannes

    2015-07-01

    The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.

  16. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  17. Non-specific physical symptoms in relation to actual and perceived proximity to mobile phone base stations and powerlines.

    NARCIS (Netherlands)

    Baliatsas, C.; Kamp, I. van; Kelfkens, G.; Schipper, M.; Bolte, J.; Yzermans, J.; Lebret, E.

    2011-01-01

    BACKGROUND: Evidence about a possible causal relationship between non-specific physical symptoms (NSPS) and exposure to electromagnetic fields (EMF) emitted by sources such as mobile phone base stations (BS) and powerlines is insufficient. So far little epidemiological research has been published on

  18. Non-specific physical symptoms in relation to actual and perceived exposure to electromagnetic fields (EMF) : A multidisciplinary approach

    NARCIS (Netherlands)

    Baliatsas, C.

    2015-01-01

    The association between non-specific physical symptoms (NSPS) such as headache, fatigue, nausea and sleep problems and exposure to electromagnetic fields (EMF) in the general population has been a subject of ongoing scientific debate and public concern. A limited number of epidemiological studies

  19. Development and Testing of the Observational System for Recording Physical Activity in Children: Elementary School

    Science.gov (United States)

    McIver, Kerry L.; Brown, William H.; Pfeiffer, Karin A.; Dowda, Marsha; Pate, Russell R.

    2016-01-01

    Purpose: This study describes the development and pilot testing of the Observational System for Recording Physical Activity-Elementary School (OSRAC-E) Version. Method: This system was developed to observe and document the levels and types of physical activity and physical and social contexts of physical activity in elementary school students…

  20. Assessment of physical activity of the human body considering the thermodynamic system.

    Science.gov (United States)

    Hochstein, Stefan; Rauschenberger, Philipp; Weigand, Bernhard; Siebert, Tobias; Schmitt, Syn; Schlicht, Wolfgang; Převorovská, Světlana; Maršík, František

    2016-01-01

    Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier-Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human-technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.

  1. Vulnerability Analysis for Physical Protection System at Hypothetical Facility of a Different Type Reactor

    International Nuclear Information System (INIS)

    Jung, Won-Moog; Kim, Jung-Soo; Kim, Jae-Kwang; Yoo, Ho-Sik; Kwak, Sung-Ho; Jang, Sung-Soon

    2007-01-01

    Since the 9/11 event in the U.S.A, International terror possibilities has been increased for nuclear facilities including nuclear power plants(NPPs). It is necessary to evaluate the performance of an existing physical protection system(PPS) at nuclear facilities based on such malevolent acts. Detection, delay, and response elements are all important to PPS. They are used for the analysis and evaluation of a PPS and its effectiveness. Methods are available to analyze a PPS and evaluate its effectiveness. Sandia National Laboratory(SNL) in the U.S.A developed a System Analysis of Vulnerability to Intrusion (SAVI) computer code for evaluating the effectiveness of PPS against outsider threats. This study presents the vulnerability analysis of the PPS at hypothetical facility of a different type using SAVI code that the basic input parameters are from PPS of a different type. For analysis, first, the site-specific Adversary Sequence Diagrams(ASDs) of the PPS is designed. It helps to understand the functions of the existing PPS composed of physical areas and Protection Elements(PEs). Then, the most vulnerable path of an ASD as a measure of effectiveness is determined. The results in the analysis can compare with the most vulnerable paths at a different type

  2. Are context-specific measures of parental-reported physical activity and sedentary behaviour associated with accelerometer data in 2-9-year-old European children?

    Science.gov (United States)

    Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin; Barba, Gianvincenzo; Hadjigeorgiou, Charalambos; Eiben, Gabriele; Konstabel, Kenn; Kovács, Eva; Pitsiladis, Yannis; Reisch, Lucia; Santaliestra-Pasías, Alba M; Maes, Lea; De Bourdeaudhuij, Ilse

    2015-04-01

    The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Cross-sectional study. Seven European countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Data were analysed from 2-9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity/sedentary behaviour measures. Parents reported their children's daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Sports participation, OPC- and OPRQ-derived outdoor play were positively associated with accelerometer-derived physical activity. Television viewing and computer use were positively associated with accelerometer-derived sedentary time. All parental-reported measures that were significantly associated with accelerometer outcomes explained only a minor part of the variance in accelerometer-derived physical activity or sedentary time. Parental-reported measures of physical activity and sedentary behaviour are not useful as a proxy for 2-9-year-old children's physical activity and sedentary time. Findings do not preclude the use of context-specific measures but imply that conclusions should be limited to the context-specific behaviours that are actually measured. Depending on the aim of the study, future research should carefully consider the choice of measurements, including the use of subjective or objective measures of the behaviour of interest or a combination of both.

  3. Engineering embedded systems physics, programs, circuits

    CERN Document Server

    Hintenaus, Peter

    2015-01-01

    This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like ...

  4. Association of Physical Activity by Type and Intensity With Digestive System Cancer Risk.

    Science.gov (United States)

    Keum, NaNa; Bao, Ying; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Giovannucci, Edward L

    2016-09-01

    Accumulating evidence indicates that common carcinogenic pathways may underlie digestive system cancers. Physical activity may influence these pathways. Yet, to our knowledge, no previous study has evaluated the role of physical activity in overall digestive system cancer risk. To examine the association between physical activity and digestive system cancer risk, accounting for amount, type (aerobic vs resistance), and intensity of physical activity. A prospective cohort study followed 43 479 men from the Health Professionals Follow-up Study from 1986 to 2012. At enrollment, the eligible participants were 40 years or older, were free of cancer, and reported physical activity. Follow-up rates exceeded 90% in each 2-year cycle. The amount of total physical activity expressed in metabolic equivalent of task (MET)-hours/week. Incident cancer of the digestive system encompassing the digestive tract (mouth, throat, esophagus, stomach, small intestine, and colorectum) and digestive accessory organs (pancreas, gallbladder, and liver). Over 686 924 person-years, we documented 1370 incident digestive system cancers. Higher levels of physical activity were associated with lower digestive system cancer risk (hazard ratio [HR], 0.74 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.59-0.93; P value for trend = .003). The inverse association was more evident with digestive tract cancers (HR, 0.66 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.51-0.87) than with digestive accessary organ cancers. Aerobic exercise was particularly beneficial against digestive system cancers, with the optimal benefit observed at approximately 30 MET-hours/week (HR, 0.68; 95% CI, 0.56-0.83; P value for nonlinearity = .02). Moreover, as long as the same level of MET-hour score was achieved from aerobic exercise, the magnitude of risk reduction was similar regardless of intensity of aerobic exercise. Physical activity, as indicated by MET-hours/week, was inversely associated with the risk of

  5. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a ...

  6. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  7. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  8. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  9. The past, present and future of cyber-physical systems: a focus on models.

    Science.gov (United States)

    Lee, Edward A

    2015-02-26

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  10. Causal fermion systems as a candidate for a unified physical theory

    International Nuclear Information System (INIS)

    Finster, Felix; Kleiner, Johannes

    2015-01-01

    The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction. (paper)

  11. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    Science.gov (United States)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions

  12. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE land cover change studies and integrated assessments of groundwater and surface water resources.

  13. EMODnet Physics: One-stop Portal to access Multiplatform Observing Systems

    Science.gov (United States)

    Novellino, Antonio; Benedetti, Giacomo; D'Angelo, Paolo; Gorringe, Patrick; Thjisse, Peter; Schaap, Dick; Pouliquen, Sylvie; Manzella, Giuseppe

    2016-04-01

    The EMODnet Physics is being developed through a stepwise approach in three major stages and is currently in its second phase of development (2013 - 2016). It is a one-stop portal to access to near real time and historical achieved data sets. It provides a combined array of services and functionalities (such as dynamic map facility for viewing and downloading, dashboard reporting and machine-to-machine communication services) to users for obtaining free of charge data, meta-data and data products on the physical conditions of European sea basins and oceans. Moreover, the system provides full interoperability with third-party software through WMS service, Web Service and Web catalogues in order to exchange data and products according to the most recent standards. In particular, interoperability is assured with the IODE Ocean Data Portal with which EMODnet Physics is collaborating. EMODnet Physics is built on and it is working in coordination and cooperation EuroGOOS-ROOSs, CMEMS and the SeaDataNet network of NODCs. By means of joint activities with its three pillars and with the most relevant Organizations and associations within the sector, EMODnet is undergoing significant improvements and expansion. In the last year, EMODnet Physics has steadily enhanced the number and type of platforms covered providing high quality data integrating sources from a growing network. In particular, a major step forward sees the integration of emerging measuring systems such as HF radars, which are able to provide the resolution of surface current speeds and directions covering large regions of the coastal oceans, and that now do populate the EMODnet Platform. Nowadays the system does integrate information by more than 7.300 stations, among which 2915 moorings, 2728 drifting buoys and around 1200 ARGO floats. EMODnet Physics was also updated with two ready-to-use data products: the Ice (Copernicus CMEMS - SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_001) and Sea Level Trends (produced

  14. MAS Based Distributed Automatic Generation Control for Cyber-Physical Microgrid System

    Institute of Scientific and Technical Information of China (English)

    Zhongwen Li; Chuanzhi Zang; Peng Zeng; Haibin Yu; Hepeng Li

    2016-01-01

    The microgrid is a typical cyber-physical microgrid system(CPMS). The physical unconventional distributed generators(DGs) are intermittent and inverter-interfaced which makes them very different to control. The cyber components,such as the embedded computer and communication network,are equipped with DGs, to process and transmit the necessary information for the controllers. In order to ensure system-wide observability, controllability and stabilization for the microgrid,the cyber and physical component need to be integrated. For the physical component of CPMS, the droop-control method is popular as it can be applied in both modes of operation to improve the grid transient performance. Traditional droop control methods have the drawback of the inherent trade-off between power sharing and voltage and frequency regulation. In this paper, the global information(such as the average voltage and the output active power of the microgrid and so on) are acquired distributedly based on multi-agent system(MAS). Based on the global information from cyber components of CPMS, automatic generation control(AGC) and automatic voltage control(AVC)are proposed to deal with the drawback of traditional droop control. Simulation studies in PSCAD demonstrate the effectiveness of the proposed control methods.

  15. MAS Based Distributed Automatic Generation Control for Cyber-Physical Microgrid System

    Institute of Scientific and Technical Information of China (English)

    Zhongwen Li; Chuanzhi Zang; Peng Zeng; Haibin Yu; Hepeng Li

    2016-01-01

    The microgrid is a typical cyber-physical micro grid system (CPMS).The physical unconventional distributed generators (DGs) are intermittent and inverter-interfaced which makes them very different to control.The cyber components,such as the embedded computer and communication network,are equipped with DGs,to process and transmit the necessary information for the controllers.In order to ensure system-wide observability,controllability and stabilization for the microgrid,the cyber and physical component need to be integrated.For the physical component of CPMS,the droop-control method is popular as it can be applied in both modes of operation to improve the grid transient performance.Traditional droop control methods have the drawback of the inherent trade-off between power sharing and voltage and frequency regulation.In this paper,the global information (such as the average voltage and the output active power of the microgrid and so on) are acquired distributedly based on multi-agent system (MAS).Based on the global information from cyber components of CPMS,automatic generation control (AGC) and automatic voltage control (AVC) are proposed to deal with the drawback of traditional droop control.Simulation studies in PSCAD demonstrate the effectiveness of the proposed control methods.

  16. SMM-system: A mining tool to identify specific markers in Salmonella enterica.

    Science.gov (United States)

    Yu, Shuijing; Liu, Weibing; Shi, Chunlei; Wang, Dapeng; Dan, Xianlong; Li, Xiao; Shi, Xianming

    2011-03-01

    This report presents SMM-system, a software package that implements various personalized pre- and post-BLASTN tasks for mining specific markers of microbial pathogens. The main functionalities of SMM-system are summarized as follows: (i) converting multi-FASTA file, (ii) cutting interesting genomic sequence, (iii) automatic high-throughput BLASTN searches, and (iv) screening target sequences. The utility of SMM-system was demonstrated by using it to identify 214 Salmonella enterica-specific protein-coding sequences (CDSs). Eighteen primer pairs were designed based on eighteen S. enterica-specific CDSs, respectively. Seven of these primer pairs were validated with PCR assay, which showed 100% inclusivity for the 101 S. enterica genomes and 100% exclusivity of 30 non-S. enterica genomes. Three specific primer pairs were chosen to develop a multiplex PCR assay, which generated specific amplicons with a size of 180bp (SC1286), 238bp (SC1598) and 405bp (SC4361), respectively. This study demonstrates that SMM-system is a high-throughput specific marker generation tool that can be used to identify genus-, species-, serogroup- and even serovar-specific DNA sequences of microbial pathogens, which has a potential to be applied in food industries, diagnostics and taxonomic studies. SMM-system is freely available and can be downloaded from http://foodsafety.sjtu.edu.cn/SMM-system.html. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Towards soft robotic devices for site-specific drug delivery.

    Science.gov (United States)

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  18. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  19. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  20. Specification and Test of Real-Time Systems

    DEFF Research Database (Denmark)

    Nielsen, Brian

    of the system, and a set of constraint patterns which describes and enforces the timing and synchronization constraints among components. We propose new techniques for automated black box conformance testing of real-time systems against densely timed speci cations. A test generator tool examines a specification......Distributed real-time computer based systems are very complex and intrinsically difficult to specify and implement correctly; in part this is caused by the overwhelming number of possible interactions between system components, but especially by a lack of adequate methods and tools to deal...... of the desired system behavior and generates the necessary test cases. A main problem is to construct a reasonably small test suite that can be executed within allotted resources, while having a high likelihood of detecting unknown errors. Our goal has been to treat the time dimension of this problem thoroughly...

  1. Methodology for proliferation resistance and physical protection of Generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Bari, R.; Peterson, P.; Nishimura, R.; Roglans-Ribas, J.

    2005-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts. Under the auspices of the Generation IV International Forum an international experts group has been chartered to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems and support design optimization to enhance robustness against proliferation, theft and sabotage. The assessment framework consists of identifying the threats to be considered, defining the PR and PP measures required to evaluate the resistance of a nuclear system to proliferation, theft or sabotage, and establishing quantitative methods to evaluate the proposed measures. The defined PR and PP measures are based on the design of the system (e.g., materials, processes, facilities), and institutional measures (e.g., safeguards, access control). The assessment methodology uses analysis of pathways' with respect to specific threats to determine the PR and PP measures. Analysis requires definition of the threats (i.e. objective, capability, strategy), decomposition of the system into its relevant elements (e.g., reactor core, fuel recycle facility, fuel storage), and identification of targets. (author)

  2. HTR core physics and transient analyses by the Panthermix code system

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.

  3. A cyber-physical system for senior collapse detection

    Science.gov (United States)

    Grewe, Lynne; Magaña-Zook, Steven

    2014-06-01

    Senior Collapse Detection (SCD) is a system that uses cyber-physical techniques to create a "smart home" system to predict and detect the falling of senior/geriatric participants in home environments. This software application addresses the needs of millions of senior citizens who live at home by themselves and can find themselves in situations where they have fallen and need assistance. We discuss how SCD uses imagery, depth and audio to fuse and interact in a system that does not require the senior to wear any devices allowing them to be more autonomous. The Microsoft Kinect Sensor is used to collect imagery, depth and audio. We will begin by discussing the physical attributes of the "collapse detection problem". Next, we will discuss the task of feature extraction resulting in skeleton and joint tracking. Improvements in error detection of joint tracking will be highlighted. Next, we discuss the main module of "fall detection" using our mid-level skeleton features. Attributes including acceleration, position and room environment factor into the SCD fall detection decision. Finally, how a detected fall and the resultant emergency response are handled will be presented. Results in a home environment will be given.

  4. HAL/S-FC compiler system specifications

    Science.gov (United States)

    1976-01-01

    This document specifies the informational interfaces within the HAL/S-FC compiler, and between the compiler and the external environment. This Compiler System Specification is for the HAL/S-FC compiler and its associated run time facilities which implement the full HAL/S language. The HAL/S-FC compiler is designed to operate stand-alone on any compatible IBM 360/370 computer and within the Software Development Laboratory (SDL) at NASA/JSC, Houston, Texas.

  5. Physical protection as the most important part of the national system of combating illicit trafficking

    International Nuclear Information System (INIS)

    Mishchenko, V.

    2002-01-01

    Full text: It is now obvious today that illicit trafficking, including its most dangerous manifestations proliferation of nuclear weapons, smuggling of nuclear materials and equipment - present a serious threat to the international community. To defeat this evil is possible only by joint efforts, by undertaken protective measures on national and international level. Joint efforts should be directed at fulfilling three main tasks as follows: safe and reliable handling of nuclear material, effective measures of its physical protection, accountancy and control in order to prevent proliferation; joint activities of intelligence customs and law-enforcement authorities directed at prevention of international trafficking and marketing of stolen goods; joint activities directed at identification and prevention of illegal supply and demand of fissionable materials counteracting thereby various criminal structures. In order to solve these problems an international regime should be established. Such regime will define a number of criteria and demands to be met by-the states to ensure effective combat illicit trafficking. The international regime should be based on national systems of combating illicit trafficking, which include measures for prevention, detection and response regarding illicit trafficking in each specific state of across its borders. When undertaking these measures one should take into account specific characteristics of the state, its unique features and its geography, political and economic situation, as well as different types of potential threat of proliferation of nuclear weapons; availability of materials subjected to illicit trafficking in this state, general situation of criminal trafficking in this state, general situation of criminal trafficking with radioactive materials, potential consumers and suppliers, market features, possible incentives for crime etc. In the paper I would like to reflect the vital components of national systems for combating

  6. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  7. Fundamentals of linear systems for physical scientists and engineers

    CERN Document Server

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  8. Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Djouadi, Seddik M [ORNL; Melin, Alexander M [ORNL; Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Dong, Jin [ORNL; Drira, Anis [ORNL

    2015-01-01

    As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signals are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.

  9. A. Butovsky about the system of physical education in Sweden

    Directory of Open Access Journals (Sweden)

    Bubka S.N.

    2012-06-01

    Full Text Available The article presents an analysis of A. Butovsky's views on the physical education in Sweden, and, first of all, on the system of Swedish gymnastics. Alexey Butovsky got acquainted with it in 1892 while visiting that country on a mission trip, and later he generalized that system in some of his works. Positive and negative points of Swedish physical education, the role of the Royal Gymnastics Central Institute in Stockholm are examined, and some prominent figures of Sweden, who governed it at different periods, are characterized. Aspects of various exercises from this system are accentuated. It is marked that the Swedish gymnastics on the orientation, on principle differed composition of exercises and method of their application from other gymnastic systems in XIX century. It is underlined that exercises of the Swedish gymnastics differ naturalness of poses and motions, absence in them of maximal efforts, hard and rough motions.

  10. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    Science.gov (United States)

    Lee, Edward A.

    2015-01-01

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486

  11. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    Directory of Open Access Journals (Sweden)

    Edward A. Lee

    2015-02-01

    Full Text Available This paper is about better engineering of cyber-physical systems (CPSs through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems, which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  12. Are Total, Intensity- and Domain-Specific Physical Activity Levels Associated with Life Satisfaction among University Students?

    Science.gov (United States)

    Pedišić, Željko; Greblo, Zrinka; Phongsavan, Philayrath; Milton, Karen; Bauman, Adrian E.

    2015-01-01

    Background Thorough information about the relationship between physical activity (PA) and life satisfaction is still lacking. Therefore, this study examined the cross-sectional relationships between life satisfaction and meeting the World Health Organization (WHO) moderate to vigorous-intensity PA recommendations, total volume and duration of PA, intensity-specific PA (walking, moderate- and vigorous-intensity), domain-specific PA (work, transport-related, domestic, and leisure-time), and 11 domain and intensity-specific PA types among university students. Additionally, we examined the associations between life satisfaction and gender, age, disposable income, community size, smoking, alcohol intake, body mass index (BMI), and self-rated health. Methods The study included a random sample of 1750 university students in Zagreb, Croatia (response rate = 71.7%; 62.4% females; mean age 21.5 ± 1.8 years), using the International Physical Activity Questionnaire — long form and the Satisfaction with Life Scale. Results Higher life satisfaction was associated with female gender (β = 0.13; p = life satisfaction and size of community (p = 0.567), smoking status (p = 0.056), alcohol consumption (p = 0.058), or BMI (p = 0.508). Among all PA variables, only leisure-time vigorous-intensity PA was significantly associated with life satisfaction after adjustments for socio-demographic characteristics, lifestyle and self-rated general health (β = 0.06; p = 0.045). Conclusions This study indicated a weak positive relationship between leisure-time vigorous-intensity PA and life satisfaction, whilst no such association was found for other PA variables. These findings underscore the importance of analyzing domain and intensity-specific PA levels in future studies among university students, as drawing conclusions about the relationship between PA and life satisfaction based on total PA levels only may be misleading. PMID:25695492

  13. Dynamics of dissipative systems and computational physics

    International Nuclear Information System (INIS)

    Adam, Gh.; Scutaru, H.; Ixaru, L.; Adam, S.; Rizea, M.; Stefanescu, E.; Mihalache, D.; Mazilu, D.; Crasovan, L.

    2002-01-01

    given. These coefficients describe correlated transitions of the system and environment particles, depending on the dissipative two-body potential V, the populations f(ε α ), f(ε β ) and the densities g(ε α ), g(ε β ) of the environment states. Therefrom we infer that for a normal Fermi-Dirac distribution of the environment particles, the decay processes are favored in comparison with the excitation ones, while for a reversed distribution of the environment populations the excitations are favored. Concerning the second topics approached in the frame of this project one starts from admitting that the topologic charge of a soliton is an integer number 's' which arises in the axial symmetric solution of the local amplitude of the electromagnetic wave, A(z, x, y) = U(z, r) exp (isθ) of the (2+1)-dimensional Ginzburg-Landau equation. The 's' parameter is also called 'spin' or 'vorticity'. The investigation conducted within this topics has been directed along two main lines: (i) The study of fundamental phenomena concerning vortex solitons in dissipative (open) systems, and (ii) Comparison of the specific properties of the vortex type solitons in Hamiltonian (conservative) systems and in dissipative systems. The following fundamental results have been obtained: 1. Formulation of the relevant physical model and identification of the values of the physical parameters of the model. 2. Systematic analysis of the stable localized solutions of the (2+1)-dimensional Ginzburg-Landau equation in media characterized by cubic saturable nonlinearities. 3. Extensive numerical simulations of the (2+1)-dimensional Ginzburg-Landau equation in polar coordinates resulting in the demonstration of the occurrence of stable two-dimensional solutions characterized by axial symmetry both for non-vanishing 'spin' (annular, vortex type solitons) and vanishing 'spin' (fundamental solitons). The study of the propagation of these solitons under azimuthal perturbations demonstrates soliton

  14. On-board system for physical and microphysical measurements

    International Nuclear Information System (INIS)

    Ravaut, M.; Allet, C.; Dole, B.; Gribkoff, A.; Schibler, P.; Charpentier, C.

    1981-10-01

    This report presents the system of physical and microphysical measurement instrumentation on board the HUREL-DUBOIS HD 34 aircraft, built in cooperation with the Institut National d'Astronomie et de Geophysique (I.N.A.G.) and the Institut Geographique National (I.G.N.). The feasibility study of the system was carried out in the first half of 1978 and took shape in an on-site proving campaign in November 1979. As a result, the on-board system was able to participate in the BUGEY experimental campaign of March 1980, a glimpse of which is given in this report [fr

  15. Conceptual design of technical security systems for Russian nuclear facilities physical protection

    International Nuclear Information System (INIS)

    Izmailov, A.V.

    1995-01-01

    Conceptual design of technical security systems (TSS) used in the early stages of physical protection systems (PPS) design for Russia nuclear facilities is discussed. The importance of work carried out in the early stages was noted since the main design solutions are being made within this period (i.e. selection of a structure of TSS and its components). The methods of analysis and synthesis of TSS developed by ''Eleron'' (MINATOM of Russia) which take into account the specific conditions of Russian nuclear facilities and a scope of equipment available are described in the review. TSS effectiveness assessment is based on a probability theory and a simulation. The design procedure provides for a purposeful choice of TSS competitive options including a ''cost-benefit'' criterion and taking into account a prechosen list of design basis threats to be used for a particular facility. The attention is paid to a practical aspect of the methods application as well as to the bilateral Russian-American scientific and technical co-operation in the PPS design field

  16. SPECIFICS OF ADOLESCENT ATTITUDE TO PHYSICAL TRAINING AND SPORTS

    Directory of Open Access Journals (Sweden)

    E.V. Antonova

    2009-01-01

    Full Text Available Over the past years, the role of physical education and sports in youth health improvement has deteriorated, the public status of physical training for purposes of health improvement and promotion has fallen. The article outlines the results of a study of attitudes to physical education and sports among 310 senior grades in secondary schools of the town of Zhukovsky in Moscow region under the program of research into health-saving behaviours in adolescents. Along with a low sports activity most adolescents of both sexes do not do morning exercises at all. At the same time, their overall motor performance is also at a very low level. The sedentary life style becomes a dominant feature in the development of younger generation.Key words: adolescents, attitude to sports, motor performance.

  17. Study of seismic data acquisition using physical modeling system; Butsuri model jikken sochi wo mochiita data shutoku gijutsu ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, R; Tsuru, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-10-01

    For the physical modeling system of Technology Research Center, Japan National Oil Corporation, data acquisition on the ocean and ground can be simulated using models. This system can provide data for verification of the data processing and elastic wave simulation algorithm. This can also provide data for decision of experiment specifications by making a model simulating the underground structure of the given test field. The model used for the physical modeling system is a gradient multilayer model with six-layer structure. Depth migration before stacking was conducted using data obtained through two acquisition methods, i.e., up-dip acquisition and down-dip acquisition. The depth migration before stacking was performed for data obtained by up-dip acquisition in addition to the records obtained by down-dip acquisition. Consequently, a definite reflection surface was observed, which has not been observed from the processing results of down-dip acquisition data. 9 figs.

  18. Promoting Reflective Physics Teaching Through the Use of Collaborative Learning Annotation System

    Science.gov (United States)

    Milner-Bolotin, Marina

    2018-05-01

    Effective physics teaching requires extensive knowledge of physics, relevant pedagogies, and modern educational technologies that can support student learning. Acquiring this knowledge is a challenging task, considering how fast modern technologies and expectations of student learning outcomes and of teaching practices are changing Therefore 21st-century physics teachers should be supported in developing a different way of thinking about technology-enhanced physics teaching and learning. We call it Deliberate Pedagogical Thinking with Technology, and base it on the original Pedagogical Content Knowledge and Technological Pedagogical Content Knowledge frameworks. However, unlike the two aforementioned frameworks, the Deliberate Pedagogical Thinking with Technology emphasizes not only teachers' knowledge, but also their attitudes and dispositions about using digital tools in order to support student learning. This paper examines how an online system that allows an ongoing discussion of videos uploaded on it by the students can support reflection in physics teacher education. Examples of using such a system in physics teacher education and teacher-candidates' feedback on their experiences with it are also discussed.

  19. NATO Advanced Research Workshop on Recent advances in Nonlinear Dynamics and Complex System Physics

    CERN Document Server

    Casati, Giulio; Complex Phenomena in Nanoscale Systems

    2009-01-01

    Nanoscale physics has become one of the rapidly developing areas of contemporary physics because of its direct relevance to newly emerging area, nanotechnologies. Nanoscale devices and quantum functional materials are usually constructed based on the results of fundamental studies on nanoscale physics. Therefore studying physical phenomena in nanosized systems is of importance for progressive development of nanotechnologies. In this context study of complex phenomena in such systems and using them for controlling purposes is of great practical importance. Namely, such studies are brought together in this book, which contains 27 papers on various aspects of nanoscale physics and nonlinear dynamics.

  20. Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications.

    Directory of Open Access Journals (Sweden)

    Tai-Yin Chiu

    Full Text Available The ability to engineer synthetic systems in the biochemical context is constantly being improved and has a profound societal impact. Linear system design is one of the most pervasive methods applied in control tasks, and its biochemical realization has been proposed by Oishi and Klavins and advanced further in recent years. However, several technical issues remain unsolved. Specifically, the design process is not fully automated from specification at the transfer function level, systems once designed often lack dynamic adaptivity to environmental changes, matching rate constants of reactions is not always possible, and implementation may be approximative and greatly deviate from the specifications. Building upon the work of Oishi and Klavins, this paper overcomes these issues by introducing a design flow that transforms a transfer-function specification of a linear system into a set of chemical reactions, whose input-output response precisely conforms to the specification. This system is implementable using the DNA strand displacement technique. The underlying configurability is embedded into primitive components and template modules, and thus the entire system is adaptive. Simulation of DNA strand displacement implementation confirmed the feasibility and superiority of the proposed synthesis flow.

  1. Physical Interpretation of Laboratory Friction Laws in the Context of Damage Physics

    Science.gov (United States)

    Rundle, J. B.; Tiampo, K. F.; Martins, J. S.; Klein, W.

    2002-12-01

    Frictional on sliding surfaces is ultimately related to processes of surface damage, and can be understood in the context of the physics of dynamical threshold systems. Threshold systems are known to be some of the most important nonlinear, self-organizing systems in nature, including networks of earthquake faults, neural networks, superconductors and semiconductors, and the World Wide Web, as well as political, social, and ecological systems. All of these systems have dynamics that are strongly correlated in space and time, and all typically display a multiplicity of spatial and temporal scales. Here we discuss the physics of self-organization and damage in earthquake threshold systems at the "microscopic" laboratory scale, in which consideration of results from simulations leads to dynamical equations that can be used to derive results obtained from sliding friction experiments, specifically, the empirical "rate-and-state" friction equations of Ruina. Paradoxically, in all of these dissipative systems, long-range interactions induce the existence of locally ergodic dynamics, even though the dissipation of energy is involved. The existence of dissipative effects leads to the appearance of a "leaky threshold" dynamics, equivalent to a new scaling field that controls the size of nucleation events relative to the size of the background fluctuations. The corresponding appearance of a mean field spinodal leads to a general coarse-grained equation, which expresses the balance between rate of stress supplied, and rate of stress dissipated in the processes leading to surface damage. We can use ideas from thermodynamics and kinetics of phase transitions to develop the exact form of the rate-and-state equations, giving clear physical meaning to all terms and variables. Ultimately, the self-organizing dynamics arise from the appearance of an energy landscape in these systems, which in turn arises from the strong correlations and mean field nature of the physics.

  2. Integrated ICT System for Teaching Physical Sciences in a Robotic Laboratory

    Directory of Open Access Journals (Sweden)

    Spyros Kopsidas

    2009-11-01

    Full Text Available The Information and Communication Technologies provide economically feasible and effective means to assist individuals with kinetic disabilities in numerous activities concerning educational purposes. As the technology is increasingly used in everyday environments, an early response of the existing methods to teach the Physical Sciences to individuals with kinetic disabilities is our innovative system. The work presented in this article is part of the “Smart and Adaptable Information System for Supporting Physics Experiments in a Robotic Laboratory” (SAIS-PEaRL research project.

  3. Analysis of vulnerability to intrusion - a software for aid in training, design, and implementation of physical system

    International Nuclear Information System (INIS)

    Tangdan

    2002-01-01

    Full text: In this paper, we discuss briefly the developed level of physical protection system (PPS) in different Chinese history stage, and the relation between PPS and society, politics, military and security. It reveals the current status of application of PPS in China, and the level of design, implementation, evaluation and products. We also discuss the developing direction and applying tendency of PPS in future China. We mainly introduce a software using the ASD to evaluate the effectiveness of the PPS at a facility. It is used for training, design, and implementation of physical system. It identifies the path which adversaries can follow to accomplish sabotage or theft. For a specific PPS and threat, the most vulnerable path can be determined. The path probability of interruption P(I) establishes of the total PPS. Especially, we introduce how to specify threat characteristics bases the situation of present Chinese society, based global and local threat development. We also introduce how to build a data base of different elements based on the level of crime at present China. (author)

  4. Multiple representations in physics education

    CERN Document Server

    Duit, Reinders; Fischer, Hans E

    2017-01-01

    This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementati...

  5. On the use of a standard spreadsheet to model physical systems in school teaching*

    Science.gov (United States)

    Quale, Andreas

    2012-05-01

    In the teaching of physics at upper secondary school level (K10-K12), the students are generally taught to solve problems analytically, i.e. using the dynamics describing a system (typically in the form of differential equations) to compute its evolution in time, e.g. the motion of a body along a straight line or in a plane. This reduces the scope of problems, i.e. the kind of problems that are within students' capabilities. To make the tasks mathematically solvable, one is restricted to very idealized situations; more realistic problems are too difficult (or even impossible) to handle analytically with the mathematical abilities that may be expected from students at this level. For instance, ordinary ballistic trajectories under the action of gravity, when air resistance is included, have been 'out of reach'; in school textbooks such trajectories are generally assumed to take place in a vacuum. Another example is that according to Newton's law of universal gravitation satellites will in general move around a large central body in elliptical orbits, but the students can only deal with the special case where the orbit is circular, thus precluding (for example) a verification and discussion of Kepler's laws. It is shown that standard spreadsheet software offers a tool that can handle many such realistic situations in a uniform way, and display the results both numerically and graphically on a computer screen, quite independently of whether the formal description of the physical system itself is 'mathematically tractable'. The method employed, which is readily accessible to high school students, is to perform a numerical integration of the equations of motion, exploiting the spreadsheet's capability of successive iterations. The software is used to model and study motion of bodies in external force fields; specifically, ballistic trajectories in a homogeneous gravity field with air resistance and satellite motion in a centrally symmetric gravitational field. The

  6. System studies for quasi-steady-state advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated

  7. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  8. Physical security system effectiveness evaluation: a status report

    International Nuclear Information System (INIS)

    Todd, J.L.; Nickell, W.C.

    1975-01-01

    A method to permit objective comparisons of physical security systems is under development and is expected to be useful in the optimization of system design and in cost benefit analysis. The procedure involves identifying the possible or potential characteristics of a postulated adversary, the counter-measures to deny or diminish adversary success and the response capabilities of the defender. These, in conjunction with system definition information, are evaluated by the use of analytical models which provide a menas of ranking systems against threats. The status of this effort and an overview of the methodology with a brief description of various models being considered for use in effective evaluation are discussed. (U.S.)

  9. The Development of Enterprise Systems based on Cyber- Physical Systems Principles

    Directory of Open Access Journals (Sweden)

    Ioan Ştefan Sacală

    2014-12-01

    Full Text Available Research in the area of Cyber-Physical Systems (CPS and Internet of Things (IoT become, in the last 3 years a priority for both research entities and companies. Implementing Enterprise Systems based on the two paradigms is focused on merging real and virtual objects and thus deals with an increased degree of complexity. The aim of the present paper is to discuss an Enterprise Architecture and a Framework based on the integration of CPS and IoT technologies within Enterprise Systems. An important aspect is related to process mining implemented in two focus areas: the ability to generate business processes from data acquired from sensors and the ability to integrate sensor acquired data with existing business processes.

  10. Mac protocols for cyber-physical systems

    CERN Document Server

    Xia, Feng

    2015-01-01

    This book provides a literature review of various wireless MAC protocols and techniques for achieving real-time and reliable communications in the context of cyber-physical systems (CPS). The evaluation analysis of IEEE 802.15.4 for CPS therein will give insights into configuration and optimization of critical design parameters of MAC protocols. In addition, this book also presents the design and evaluation of an adaptive MAC protocol for medical CPS, which exemplifies how to facilitate real-time and reliable communications in CPS by exploiting IEEE 802.15.4 based MAC protocols. This book wil

  11. DIRAC in Large Particle Physics Experiments

    Science.gov (United States)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  12. Gender-specific changes in physical activity pattern in Iran: national surveillance of risk factors of non-communicable diseases (2007-2011).

    Science.gov (United States)

    Koohpayehzadeh, Jalil; Etemad, Koorosh; Abbasi, Mehrshad; Meysamie, Alipasha; Sheikhbahaei, Sara; Asgari, Fereshteh; Noshad, Sina; Hafezi-Nejad, Nima; Rafei, Ali; Mousavizadeh, Mostafa; Khajeh, Elias; Ebadi, Maryam; Nakhjavani, Manouchehr; Esteghamati, Alireza

    2014-04-01

    This study describes the gender-specific pattern of physical activity (PA) in Iran 2011. The 4-year changes in PA levels (domains) are also determined according to the Iran's national surveys conducted on 2007 and 2011. Physical activity assessed based on the global physical activity questionnaire. In all, 4,121 (2007), and 7,436 (2011) adults were analyzed. Based on 2011 survey, 56.4 %, 39.2 %, and 74.4 % of participants were physically inactive at work, commuting and recreation, respectively. In all domains of PA, males showed a higher degree of activity (min/day) than females (P value physical inactivity was increased from 15 % (2007) to 21.5 % (2011) (P value physical activity (MET × min/week) and the duration of commuting activity were noted in both genders. Work-related activity was dramatically decreased in females. However, the time spent in recreational activity remained relatively constant. This report indicating that the Iranian population, particularly females, have become less active during the survey period. Physical inactivity should receive more attention as a public health issue.

  13. Experiences of Teacher Evaluation Systems on High School Physical Education Programs

    Science.gov (United States)

    Phillips, Sharon R.; Mercier, Kevin; Doolittle, Sarah

    2017-01-01

    Primary objective: Teacher evaluation is being revamped by policy-makers. The marginalized status of physical education has protected this subject area from reform for many decades, but in our current era of system-wide, data-based decision-making, physical education is no longer immune. Standardized and local testing, together with structured…

  14. Modeling and analysis of real-time and embedded systems with UML and MARTE developing cyber-physical systems

    CERN Document Server

    Selic, Bran

    2013-01-01

    Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE explains how to apply the complex MARTE standard in practical situations. This approachable reference provides a handy user guide, illustrating with numerous examples how you can use MARTE to design and develop real-time and embedded systems and software. Expert co-authors Bran Selic and Sébastien Gérard lead the team that drafted and maintain the standard and give you the tools you need apply MARTE to overcome the limitations of cyber-physical systems. The functional sophistication required of modern cyber-physical

  15. Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems

    Science.gov (United States)

    2017-05-24

    control systems, it was determined that this project will employ the model of a Ship Chilled Water Distribution System as a central use case. This model...Siemens Corporation Corporate Technology Unrestricted. Distribution Statement A. Approved for public...release; distribution is unlimited. Page 1 of 4 Secure & Resilient Functional Modeling for Navy Cyber-Physical Systems FY17 Quarter 1 Technical Progress

  16. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2013-01-01

    This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the p...

  17. Interactive information system on the nuclear physics properties of nuclides and radioactive decay chains

    International Nuclear Information System (INIS)

    Plyaskin, V.I.; Kosilov, R.A.; Manturov, G.N.

    2001-01-01

    A brief review is given of a computerized information system on the nuclear physics properties of nuclides and radioactive decay chains. The main difference between the system presented here and those already in existence is that these evaluated databases of nuclear physics constants are linked to a set of programs, thus enabling analysis of a wide range of problems regarding various nuclear physics applications. (author)

  18. The 110 GHz Gyrotron System on DIII-D: Gyrotron Tests and Physics Results

    International Nuclear Information System (INIS)

    Lohr, J.; Calahan, P.; Callis, R.W.

    1999-01-01

    The DIII-D tokamak has installed a system with three gyrotrons at the 1 MW level operating at 110 GHz. Physics experiments on electron cyclotron current drive, heating, and transport have been performed. Good efficiency has been achieved both for on-axis and off-axis current drive with relevance for control of the current density profile leading to advanced regimes of tokamak operation, although there is a difference between off-axis ECCD efficiency inside and outside the magnetic axis. Heating efficiency is excellent and electron temperatures up to 10 keV have been achieved. The gyrotron system is versatile, with poloidal scan and control of the polarization of the injected rf beam. Phase correcting mirrors form a Gaussian beam and focus it into the waveguide. Both perpendicular and oblique launch into the tokamak have been used. Three different gyrotron designs are installed and therefore unique problems specific to each have been encountered, including parasitic oscillations, mode hops during modulation and polarization control problems. Two of the gyrotrons suffered damage during operations, one due to filament failure and one due to a vacuum leak. The repairs and subsequent testing will be described. The transmission system uses evacuated, windowless waveguide and the three gyrotrons have output windows of three different materials. One gyrotron uses a diamond window and generates a Gaussian beam directly. The development of the system and specific tests and results from each of the gyrotrons will be presented. The DIII-D project has committed to an upgrade of the system, which will add three gyrotrons in the 1 MW class, all using diamond output windows, to permit operation at up to ten seconds per pulse at one megawatt output for each gyrotron

  19. A statistical physics perspective on criticality in financial markets

    International Nuclear Information System (INIS)

    Bury, Thomas

    2013-01-01

    Stock markets are complex systems exhibiting collective phenomena and particular features such as synchronization, fluctuations distributed as power-laws, non-random structures and similarity to neural networks. Such specific properties suggest that markets operate at a very special point. Financial markets are believed to be critical by analogy to physical systems, but little statistically founded evidence has been given. Through a data-based methodology and comparison to simulations inspired by the statistical physics of complex systems, we show that the Dow Jones and index sets are not rigorously critical. However, financial systems are closer to criticality in the crash neighborhood. (paper)

  20. The brain as a dynamic physical system.

    Science.gov (United States)

    McKenna, T M; McMullen, T A; Shlesinger, M F

    1994-06-01

    The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.

  1. Workshop on data acquisition and trigger system simulations for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.

  2. Workshop on data acquisition and trigger system simulations for high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit ampersand The Design of a Queue for this Circuit; Fast Data Compression ampersand Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ ampersand Online Processing at the SSC; Planned Enhancements to MODSEM II ampersand SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies

  3. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    International Nuclear Information System (INIS)

    C.A Kouts

    2006-01-01

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others

  4. A comparison of data management systems used in high energy physics

    International Nuclear Information System (INIS)

    Hansl-Kozanecka, T.

    1992-04-01

    Data-management systems for defining data and manipulating them with FORTRAN programs have become increasingly important. We compare three systems that were developed within the high-energy physics community: BOS, JAZELLE and ZEBRA. (orig.)

  5. Application of smart cards in physical and information security systems

    International Nuclear Information System (INIS)

    Dreifus, H.N.

    1988-01-01

    Smart Cards, integrated circuits embedded into credit cards, have been proposed for many computer and physical security applications. The cards have shown promise in improving both the security and monitoring of systems ranging from computer network identification through physical protection and access control. With the increasing computational power embedded within these cards, advanced encryption techniques such as public key cryptography can now be realized, enabling more sophisticated uses

  6. Developments in entanglement theory and applications to relevant physical systems

    OpenAIRE

    Lamata Manuel, Lucas

    2007-01-01

    This Thesis is devoted to the analysis of entanglement in relevant physical systems. Entanglement is the conducting theme of this research, though I do not dedicate to a single topic, but consider a wide scope of physical situations. I have followed mainly three lines of research for this Thesis, with a series of different works each, which are, Entanglement and Relativistic Quantum Theory, Continuous-variable entanglement, and Multipartite entanglement.

  7. Modular safety interlock system for high energy physics experiments

    International Nuclear Information System (INIS)

    Kieffer, J.; Golceff, B.V.

    1980-10-01

    A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements

  8. Use of global positioning system for physical activity research in youth

    DEFF Research Database (Denmark)

    Alberico, Claudia Oliveira; Schipperijn, Jasper; Reis, Rodrigo S

    2017-01-01

    The built environment is an important factor associated with physical activity and sedentary behavior during adolescence. This study presents the methods for objective assessment of context-specific moderate to vigorous physical activity (MVPA) and sedentary behavior (SB), as well as describes...... as important contexts: home, school, transport and leisure. The majority of participants (n=80) were boys (46; 57.5%), with a normal BMI (52; 65.0%) and a mean age (SD) of 14.5 (5.5) years. Adolescents spent most of their time at home, engaging in sedentary behavior. Overall, the largest proportion of MVPA...

  9. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    Science.gov (United States)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  10. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  11. Specific terms glossary for subjects taught in Physical Culture first year career

    Directory of Open Access Journals (Sweden)

    Ana Isel Rodríguez Cruz

    2016-08-01

    Full Text Available Contents comprehension is an important element in the learning process; present didactic ways demand from teaching styles that favor communicative competence in the students. Taking into account the relevance of this topic in the teaching learning process it was decided to develop the present work, which has the objective to offer the students a tool that allow them an efficient comprehension of the contents they receive in the Physical Culture first year career subjects. To fulfil the goal a glossary with specific terms of basketball, chess, swimming, athletics, basic gymnastics, and morphology was designed starting from the results of the initial diagnosis, the scientific observation, as well as the detail revision of the normative documents that rule Communicative Spanish subject. The glossary use favor the students´ texts comprehension development from the mentioned subject.

  12. Physical illness in patients with severe mental disorders. II. Barriers to care, monitoring and treatment guidelines, plus recommendations at the system and individual level

    Science.gov (United States)

    DE HERT, MARC; COHEN, DAN; BOBES, JULIO; CETKOVICH-BAKMAS, MARCELO; LEUCHT, STEFAN; M. NDETEI, DAVID; W. NEWCOMER, JOHN; UWAKWE, RICHARD; ASAI, ITSUO; MÖLLER, HANS-JURGEN; GAUTAM, SHIV; DETRAUX, JOHAN; U. CORRELL, CHRISTOPH

    2011-01-01

    Physical disorders are, compared to the general population, more prevalent in people with severe mental illness (SMI). Although this excess morbidity and mortality is largely due to modifiable lifestyle risk factors, the screening and assessment of physical health aspects remains poor, even in developed countries. Moreover, specific patient, provider, treatment and system factors act as barriers to the recognition and to the management of physical diseases in people with SMI. Psychiatrists can play a pivotal role in the improvement of the physical health of these patients by expanding their task from clinical psychiatric care to the monitoring and treatment of crucial physical parameters. At a system level, actions are not easy to realize, especially for developing countries. However, at an individual level, even simple and very basic monitoring and treatment actions, undertaken by the treating clinician, can already improve the problem of suboptimal medical care in this population. Adhering to monitoring and treatment guidelines will result in a substantial enhancement of physical health outcomes. Furthermore, psychiatrists can help educate and motivate people with SMI to address their suboptimal lifestyle, including smoking, unhealthy diet and lack of exercise. The adoption of the recommendations presented in this paper across health care systems throughout the world will contribute to a significant improvement in the medical and related psychiatric health outcomes of patients with SMI. PMID:21633691

  13. Time-stamping system for nuclear physics experiments at RIKEN RIBF

    International Nuclear Information System (INIS)

    Baba, H.; Ichihara, T.; Ohnishi, T.; Takeuchi, S.; Yoshida, K.; Watanabe, Y.; Ota, S.; Shimoura, S.; Yoshinaga, K.

    2015-01-01

    A time-stamping system for nuclear physics experiments has been introduced at the RIKEN Radioactive Isotope Beam Factory. Individual trigger signals can be applied for separate data acquisition (DAQ) systems. After the measurements are complete, separately taken data are merged based on the time-stamp information. In a typical experiment, coincidence trigger signals are formed from multiple detectors to take desired events only. The time-stamping system allows the use of minimum bias triggers. Since coincidence conditions are given by software, a variety of physics events can be flexibly identified. The live time for a DAQ system is important when attempting to determine reaction cross-sections. However, the combined live time for separate DAQ systems is not clearly known because it depends not only on the DAQ dead time but also on the coincidence conditions. Using the proposed time-stamping system, all trigger timings can be acquired, so that the combined live time can be easily determined. The combined live time is also estimated using Monte Carlo simulations, and the results are compared with the directly measured values in order to assess the accuracy of the simulation

  14. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  15. Statistical Physics of Complex Substitutive Systems

    Science.gov (United States)

    Jin, Qing

    Diffusion processes are central to human interactions. Despite extensive studies that span multiple disciplines, our knowledge is limited to spreading processes in non-substitutive systems. Yet, a considerable number of ideas, products, and behaviors spread by substitution; to adopt a new one, agents must give up an existing one. This captures the spread of scientific constructs--forcing scientists to choose, for example, a deterministic or probabilistic worldview, as well as the adoption of durable items, such as mobile phones, cars, or homes. In this dissertation, I develop a statistical physics framework to describe, quantify, and understand substitutive systems. By empirically exploring three collected high-resolution datasets pertaining to such systems, I build a mechanistic model describing substitutions, which not only analytically predicts the universal macroscopic phenomenon discovered in the collected datasets, but also accurately captures the trajectories of individual items in a complex substitutive system, demonstrating a high degree of regularity and universality in substitutive systems. I also discuss the origins and insights of the parameters in the substitution model and possible generalization form of the mathematical framework. The systematical study of substitutive systems presented in this dissertation could potentially guide the understanding and prediction of all spreading phenomena driven by substitutions, from electric cars to scientific paradigms, and from renewable energy to new healthy habits.

  16. Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System

    International Nuclear Information System (INIS)

    Gao Hai-Tao; Yang Sheng-Bo; Zhu Er-Lin; Sun Qing-Lin; Chen Zeng-Qiang; Kang Xiao-Feng

    2013-01-01

    Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost

  17. Physics issues in mirror and tandem mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1984-01-01

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed

  18. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  19. Embedded computing technology for highly-demanding cyber-physical systems

    NARCIS (Netherlands)

    Jóźwiak, L.

    2015-01-01

    The recent spectacular progress in the microelectronic, information, communication, material and sensor technologies created a big stimulus towards development of much more sophisticated, coherent and fit to use, smart communicating cyber-physical systems (CPS). The huge and rapidly developing

  20. INMM Physical Protection Technical Working Group Workshops

    International Nuclear Information System (INIS)

    Williams, J.D.

    1982-01-01

    The Institute of Nuclear Materials Management (INMM) established the Physical Protection Technical Working Group to be a focal point for INMM activities related to the physical protection of nuclear materials and facilities. The Technical Working Group has sponsored workshops with major emphasis on intrusion detection systems, entry control systems, and security personnel training. The format for these workshops has consisted of a series of small informal group discussions on specific subject matter which allows direct participation by the attendees and the exchange of ideas, experiences, and insights. This paper will introduce the reader to the activities of the Physical Protection Technical Working Group, to identify the workshops which have been held, and to serve as an introduction to the following three papers of this session

  1. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  2. Physics of mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies

  3. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A [ed.

    1996-12-31

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.).

  4. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    International Nuclear Information System (INIS)

    Racz, A.

    1995-01-01

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.)

  5. Quantum physics and human language

    International Nuclear Information System (INIS)

    Hartle, James B

    2007-01-01

    Human languages employ constructions that tacitly assume specific properties of the limited range of phenomena they evolved to describe. These assumed properties are true features of that limited context, but may not be general or precise properties of all the physical situations allowed by fundamental physics. In brief, human languages contain 'excess baggage' that must be qualified, discarded, or otherwise reformed to give a clear account in the context of fundamental physics of even the everyday phenomena that the languages evolved to describe. The surest route to clarity is to express the constructions of human languages in the language of fundamental physical theory, not the other way around. These ideas are illustrated by an analysis of the verb 'to happen' and the word 'reality' in special relativity and the modern quantum mechanics of closed systems

  6. Future Research on Cyber-Physical Emergency Management Systems

    Directory of Open Access Journals (Sweden)

    Fang-Jing Wu

    2013-06-01

    Full Text Available Cyber-physical systems that include human beings and vehicles in a built environment, such as a building or a city, together with sensor networks and decision support systems have attracted much attention. In emergencies, which also include mobile searchers and rescuers, the interactions among civilians and the environment become much more diverse, and the complexity of the emergency response also becomes much greater. This paper surveys current research on sensor-assisted evacuation and rescue systems and discusses the related research issues concerning communication protocols for sensor networks, as well as several other important issues, such as the integrated asynchronous control of large-scale emergency response systems, knowledge discovery for rescue and prototyping platforms. Then, we suggest directions for further research.

  7. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  8. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  9. Validation of Web-Based Physical Activity Measurement Systems Using Doubly Labeled Water

    Science.gov (United States)

    Yamaguchi, Yukio; Yamada, Yosuke; Tokushima, Satoru; Hatamoto, Yoichi; Sagayama, Hiroyuki; Kimura, Misaka; Higaki, Yasuki; Tanaka, Hiroaki

    2012-01-01

    Background Online or Web-based measurement systems have been proposed as convenient methods for collecting physical activity data. We developed two Web-based physical activity systems—the 24-hour Physical Activity Record Web (24hPAR WEB) and 7 days Recall Web (7daysRecall WEB). Objective To examine the validity of two Web-based physical activity measurement systems using the doubly labeled water (DLW) method. Methods We assessed the validity of the 24hPAR WEB and 7daysRecall WEB in 20 individuals, aged 25 to 61 years. The order of email distribution and subsequent completion of the two Web-based measurements systems was randomized. Each measurement tool was used for a week. The participants’ activity energy expenditure (AEE) and total energy expenditure (TEE) were assessed over each week using the DLW method and compared with the respective energy expenditures estimated using the Web-based systems. Results The mean AEE was 3.90 (SD 1.43) MJ estimated using the 24hPAR WEB and 3.67 (SD 1.48) MJ measured by the DLW method. The Pearson correlation for AEE between the two methods was r = .679 (P WEB and 3.80 (SD 1.36) MJ by the DLW method. The Pearson correlation for AEE between the two methods was r = .144 (P = .54). The Bland-Altman 95% limits of agreement ranged from –3.83 to 4.81 MJ between the two methods. The Pearson correlation for TEE between the two methods was r = .590 (P = .006). The average input times using terminal devices were 8 minutes and 10 seconds for the 24hPAR WEB and 6 minutes and 38 seconds for the 7daysRecall WEB. Conclusions Both Web-based systems were found to be effective methods for collecting physical activity data and are appropriate for use in epidemiological studies. Because the measurement accuracy of the 24hPAR WEB was moderate to high, it could be suitable for evaluating the effect of interventions on individuals as well as for examining physical activity behavior. PMID:23010345

  10. Long-term Associations Between Physical Frailty and Performance in Specific Cognitive Domains.

    Science.gov (United States)

    Bunce, David; Batterham, Philip J; Mackinnon, Andrew J

    2018-02-01

    No longitudinal epidemiological research has reported associations between physical frailty and performance in specific cognitive domains. Our aim was to investigate whether such associations existed in the absence of accompanying neurodegenerative disorders such as mild cognitive impairment (MCI) and dementia. We addressed this issue in a population-based sample of 896 adults aged 70 years and older over 4 waves of data covering a 12-year period. Physical frailty was assessed and a cognitive battery included measures of processing speed, verbal fluency, face and word recognition, episodic memory and simple and choice reaction time (RT). Latent growth models showed frailty was associated with poorer baseline performance in processing speed, verbal fluency, simple and choice RT, and choice intraindividual RT variability. However, no significant effects of frailty on slopes of cognition were observed, suggesting that frailty was not associated with cognitive decline. Importantly, when the models took possible dementia into account, significant effects were retained suggesting that differences were not associated with dementia-related neurodegenerative disorders. The findings suggest that frailty-related cognitive deficits may exist independently of mechanisms underpinning neurodegenerative disorders such as MCI and dementia. If confirmed, this finding suggests a new avenue for preventative and therapeutic interventions in clinical and public health contexts for older adults. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Heavy mediums and materials (physics of the condensed state). Study of disordered systems at low temperature. Specific heat measurement in neutron irradiated quartz

    International Nuclear Information System (INIS)

    De Sa, L.

    1987-09-01

    Specific heat of neutron irradiated silicas presents characteristics evolving with radiation dose and is a good way to study properties of disordered systems. Results obtained and comparison with other experiments allow to follow amorphization and defects created by irradiation and raise hypothesis about the evolution of microscopic structure of these materials [fr

  12. Augmented Feedback System to Support Physical Therapy of Non-specific Low Back Pain

    Science.gov (United States)

    Brodbeck, Dominique; Degen, Markus; Stanimirov, Michael; Kool, Jan; Scheermesser, Mandy; Oesch, Peter; Neuhaus, Cornelia

    Low back pain is an important problem in industrialized countries. Two key factors limit the effectiveness of physiotherapy: low compliance of patients with repetitive movement exercises, and inadequate awareness of patients of their own posture. The Backtrainer system addresses these problems by real-time monitoring of the spine position, by providing a framework for most common physiotherapy exercises for the low back, and by providing feedback to patients in a motivating way. A minimal sensor configuration was identified as two inertial sensors that measure the orientation of the lower back at two points with three degrees of freedom. The software was designed as a flexible platform to experiment with different hardware, and with various feedback modalities. Basic exercises for two types of movements are provided: mobilizing and stabilizing. We developed visual feedback - abstract as well as in the form of a virtual reality game - and complemented the on-screen graphics with an ambient feedback device. The system was evaluated during five weeks in a rehabilitation clinic with 26 patients and 15 physiotherapists. Subjective satisfaction of subjects was good, and we interpret the results as encouraging indication for the adoption of such a therapy support system by both patients and therapists.

  13. Statistical physics of human beings in games: Controlled experiments

    International Nuclear Information System (INIS)

    Liang Yuan; Huang Ji-Ping

    2014-01-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems. (topical review - statistical physics and complex systems)

  14. An Integrated Cyber Security Risk Management Approach for a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Halima Ibrahim Kure

    2018-05-01

    Full Text Available A cyber-physical system (CPS is a combination of physical system components with cyber capabilities that have a very tight interconnectivity. CPS is a widely used technology in many applications, including electric power systems, communications, and transportation, and healthcare systems. These are critical national infrastructures. Cybersecurity attack is one of the major threats for a CPS because of many reasons, including complexity and interdependencies among various system components, integration of communication, computing, and control technology. Cybersecurity attacks may lead to various risks affecting the critical infrastructure business continuity, including degradation of production and performance, unavailability of critical services, and violation of the regulation. Managing cybersecurity risks is very important to protect CPS. However, risk management is challenging due to the inherent complex and evolving nature of the CPS system and recent attack trends. This paper presents an integrated cybersecurity risk management framework to assess and manage the risks in a proactive manner. Our work follows the existing risk management practice and standard and considers risks from the stakeholder model, cyber, and physical system components along with their dependencies. The approach enables identification of critical CPS assets and assesses the impact of vulnerabilities that affect the assets. It also presents a cybersecurity attack scenario that incorporates a cascading effect of threats and vulnerabilities to the assets. The attack model helps to determine the appropriate risk levels and their corresponding mitigation process. We present a power grid system to illustrate the applicability of our work. The result suggests that risk in a CPS of a critical infrastructure depends mainly on cyber-physical attack scenarios and the context of the organization. The involved risks in the studied context are both from the technical and

  15. Data acquisition systems for high energy physics experiments

    International Nuclear Information System (INIS)

    Duran, I.; Olmos, P.

    1986-01-01

    The Data Acquisition Systems most frequently used in High Energy Physics experiments is described. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experiments: NIM, CAMAC, and VMI. (author). 20 figs., 9 ref

  16. Data acquisition systems for high energy Physics experiments

    International Nuclear Information System (INIS)

    Duran, I.; Olmos, P.

    1986-01-01

    We describe here the Data Acquisition Systems most frequently used in High Energy Physics experiments. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experimental: NIM, CAMAC, FASTBUS and VME. (Author) 9 refs

  17. Generalized statistical criterion for distinguishing random optical groupings from physical multiple systems

    International Nuclear Information System (INIS)

    Anosova, Z.P.

    1988-01-01

    A statistical criterion is proposed for distinguishing between random and physical groupings of stars and galaxies. The criterion is applied to nearby wide multiple stars, triplets of galaxies in the list of Karachentsev, Karachentseva, and Shcherbanovskii, and double galaxies in the list of Dahari, in which the principal components are Seyfert galaxies. Systems that are almost certainly physical, probably physical, probably optical, and almost certainly optical are identified. The limiting difference between the radial velocities of the components of physical multiple galaxies is estimated

  18. Towards False Alarm Reduction using Fuzzy If-Then Rules for Medical Cyber Physical Systems

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Su, Chunhua

    2018-01-01

    Cyber-Physical Systems (CPS) are integrations of computation, networking and physical processes. Its process control is often referred to as embedded systems. Generally, CPS and Internet of Things (IoT) have the same basic architecture, whereas the former shows a higher combination and coordination...

  19. Optical Automatic Car Identification (OACI) : Volume 1. Advanced System Specification.

    Science.gov (United States)

    1978-12-01

    A performance specification is provided in this report for an Optical Automatic Car Identification (OACI) scanner system which features 6% improved readability over existing industry scanner systems. It also includes the analysis and rationale which ...

  20. Development of a wearable system module for monitoring physical and mental workload.

    Science.gov (United States)

    Kim, Sinbae; Nakamura, Hiromi; Yoshida, Toshihiko; Kishimoto, Masamichi; Imai, Yohsuke; Matsuki, Noriaki; Ishikawa, Takuji; Yamaguchi, Takami

    2008-11-01

    The population of most developed countries is rapidly aging, which has created a growing demand for home care. A key issue in medicine is supporting the increasing number of elderly patients, both physically and mentally. In this study, we developed a wearable computer that contained modules for measuring electrocardiograms (ECGs) and femoral artery pulse waves using an accelerometer. This system has several benefits: (a) it can provide a database server in each patient's home; (b) its high extendibility and flexibility facilitate adaptation to a patient's needs; and (c) it allows patients to keep their own data, thus protecting the privacy of personal information. To clarify the capabilities and reliability of the system, we applied it to 8 healthy young volunteers during states of physical and mental work. This system successfully detected clear ECGs and femoral artery pulse waves to calculate important bioinformation, including heart rate, pulse wave velocity, and the power spectral density of spontaneous beat-to-beat oscillations in the R-R interval. In this study, we proposed the way to provide an assessment of the physical and mental condition of the subject using analysis of the bio-information with respect to the physical and mental workloads. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical and mental conditions of older persons and patients.

  1. About role of human factors in the building of physical protection system

    International Nuclear Information System (INIS)

    Ivanov, P.

    2001-01-01

    know if this represents a threat, but it is better to consider it as a threat. Therefore, during structuring of the physical protection system in many countries (France, Canada and others) the guards are not even armed. Recently, during solution of the physical protection problems the scale inclines to the need to see, first of all, a specific person, to look for measures and ways preventing potential manifestation and preventing conditions for negative actions, and not to count on the force that should be used as an ultimate or extreme measure. (author)

  2. Formal specification and animation of a water level monitoring system

    International Nuclear Information System (INIS)

    Jackson, P.S.; Stokes, P.A.

    1993-03-01

    This report describes the Vienna Development Method (VDM), which is a formal method for software specification and development. VDM evolved out of attempts to use mathematics in programming language specifications in order to avoid ambiguities in specifications written in natural language. This report also describes the use of VDM for a real-time application, where it is used to formally specify the requirements of a water level monitoring system. The procedures and techniques used to produce an executable form (animation) of the specification are covered. (Author)

  3. Compound Tension Control of an Optical-Fiber Coil System: A Cyber-Physical System View

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2014-03-01

    Full Text Available The full-automatic optical-fiber coil winding equipment is a complex electromechanical system which contains signal acquisition, data processing, communications, and motor control. In the complex electromechanical system, the subsystems rely on wired or wireless network technology to complete the real-time perception, coordinate, accurate, and dynamitic control, and information exchange services. The paper points to the full-automatic optical-fiber coil winding equipment with the characteristics of cyber-physical system to research its numerical design. We present a novel compound tension control system based on the experimental platform dSPACE to achieve semiphysical simulation of compound tension control system and examine the functions of control system.

  4. Transfer entropy in physical systems and the arrow of time

    Science.gov (United States)

    Spinney, Richard E.; Lizier, Joseph T.; Prokopenko, Mikhail

    2016-08-01

    Recent developments have cemented the realization that many concepts and quantities in thermodynamics and information theory are shared. In this paper, we consider a highly relevant quantity in information theory and complex systems, the transfer entropy, and explore its thermodynamic role by considering the implications of time reversal upon it. By doing so we highlight the role of information dynamics on the nuanced question of observer perspective within thermodynamics by relating the temporal irreversibility in the information dynamics to the configurational (or spatial) resolution of the thermodynamics. We then highlight its role in perhaps the most enduring paradox in modern physics, the manifestation of a (thermodynamic) arrow of time. We find that for systems that process information such as those undergoing feedback, a robust arrow of time can be formulated by considering both the apparent physical behavior which leads to conventional entropy production and the information dynamics which leads to a quantity we call the information theoretic arrow of time. We also offer an interpretation in terms of optimal encoding of observed physical behavior.

  5. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  6. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    Science.gov (United States)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  7. Procurement specification high vacuum test chamber and pumping system

    International Nuclear Information System (INIS)

    1976-01-01

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown

  8. Test specifications for the waste information and control system

    International Nuclear Information System (INIS)

    Flynn, D.F.

    1994-01-01

    This document describes the test specifications for the testing of the WICS system. The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as Waste Information and Control System (WICS). The request for developing and implementing WICS has been made to the Automation and Simulation Engineering Group (ASE)

  9. Physical aspects of the US oil and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Hermelee, A.

    1979-11-01

    The purpose of this report is to describe the physical operations which take place within the petroleum and natural gas industries of the US. This information was the basis for the overall network design and the detailed data requirements for the Emergency Management Information System (EEMIS) of the US Department of Energy (DOE). Since EEMIS represents the entire oil and gas systems this report can be used to obtain a basic understanding of the entire energy system, from production to consumption, that is composed of the US oil and gas industries.

  10. CREATING AN INFORMATIONAL WEBSITE FOR PHYSICS ACADEMIC COURSE: WEB DESIGN SPECIFICS

    Directory of Open Access Journals (Sweden)

    Іryna A. Slipukhina

    2017-12-01

    Full Text Available The article is devoted to the analysis of means and methods of creating an educational informational website for the Physics academic course. The stages of technical task creation, design of the main and typical pages of the website, layout, programming, content filling and publication are considered. The analysis of libraries, frameworks and popular WordPress and Joomla CMSes has been carried out as well as usability testing. Features of ready-made tools suitable for efficient creation of such web applications are considered. The contents of the front end and back end components of the given specification, as well as their connection with AJAX, are determined. The features of the WordPress architecture and the location of JSON files for the transmission of structured information are revealed. An original Student Score plugin for WordPress, that allows managing the contents of the e-register and displaying them for a teacher and students, as well as plugins for managing electronic laboratory reporting and user administration have been created.

  11. Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population.

    Science.gov (United States)

    Chu, A H Y; van Dam, R M; Biddle, S J H; Tan, C S; Koh, D; Müller-Riemenschneider, F

    2018-04-05

    The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated

  12. System Specification for Immobilized High-Level Waste Interim Storage

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository

  13. Physical security system effectiveness evaluation, a status report

    International Nuclear Information System (INIS)

    Todd, J.L. Jr.; Nickell, W.C.

    1975-07-01

    A method to permit objective comparisons of physical security is under development and is expected to be useful in the optimization of system design and in cost benefit analysis. The procedure involves identifying the possible or potential characteristics of a postulated adversary, the countermeasures to deny or diminish adversary success, and the response capabilities of the defender. These, in conjunction with system definition information, are evaluated by the use of analytical models which provide a means of ranking systems against threats. This paper describes the status of this effort and includes an overview of the methodology with a brief description of various models being considered for use in effectiveness evaluation. (U.S.)

  14. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  15. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    Science.gov (United States)

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Geometrical modification transfer between specific meshes of each coupled physical codes. Application to the Jules Horowitz research reactor experimental devices

    International Nuclear Information System (INIS)

    Duplex, B.

    2011-01-01

    The CEA develops and uses scientific software, called physical codes, in various physical disciplines to optimize installation and experimentation costs. During a study, several physical phenomena interact, so a code coupling and some data exchanges between different physical codes are required. Each physical code computes on a particular geometry, usually represented by a mesh composed of thousands to millions of elements. This PhD Thesis focuses on the geometrical modification transfer between specific meshes of each coupled physical code. First, it presents a physical code coupling method where deformations are computed by one of these codes. Next, it discusses the establishment of a model, common to different physical codes, grouping all the shared data. Finally, it covers the deformation transfers between meshes of the same geometry or adjacent geometries. Geometrical modifications are discrete data because they are based on a mesh. In order to permit every code to access deformations and to transfer them, a continuous representation is computed. Two functions are developed, one with a global support, and the other with a local support. Both functions combine a simplification method and a radial basis function network. A whole use case is dedicated to the Jules Horowitz reactor. The effect of differential dilatations on experimental device cooling is studied. (author) [fr

  17. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  18. Physical separations soil washing system cold test results

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J.P.

    1993-07-28

    This test summary describes the objectives, methodology, and results of a physical separations soil-washing system setup and shakedown test using uncontaminated soil. The test is being conducted in preparation for a treatability test to be conducted in the North Pond of the 300-FF-1 Operable Unit. It will be used to assess the feasibility of using a physical separations process to reduce the volume of contaminated soils in the 300-FF-1 Operable Unit. The test is described in DOE-RL (1993). The setup test was conducted at an uncontrolled area located approximately 3.2 km northwest of the 300-FF-1 Operable Unit. The material processed was free of contamination. The physical separation equipment to be used in the test was transferred to the US Department of Energy (DOE) by the US Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory. On May 13, 1993, soil-washing equipment was moved to the cold test location. Design assistance and recommendation for operation was provided by the EPA.

  19. Specification of Behavioural Requirements within Compositional Multi-Agent System Design

    OpenAIRE

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, N.J.E.

    1999-01-01

    In this paper it is shown how informal and formal specification of behavioural requirements and scenarios for agents and multi-agent systems can be integrated within multi-agent system design. In particular, it is addressed how a compositional

  20. Designing a Physical Security System for Risk Reduction in a Hypothetical Nuclear Facility

    International Nuclear Information System (INIS)

    Saleh, A.A.; Abd Elaziz, M.

    2017-01-01

    Physical security in a nuclear facility means detection, prevention and response to threat, the ft, sabotage, unauthorized access and illegal transfer involving radioactive and nuclear material. This paper proposes a physical security system designing concepts to reduce the risk associated with variant threats to a nuclear facility. This paper presents a study of the unauthorized removal and sabotage in a hypothetical nuclear facility considering deter, delay and response layers. More over, the study involves performing any required upgrading to the security system by investigating the nuclear facility layout and considering all physical security layers design to enhance the weakness for risk reduction