WorldWideScience

Sample records for specific learning tasks

  1. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    Science.gov (United States)

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  2. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    Science.gov (United States)

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    Science.gov (United States)

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the

  4. Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.

    Science.gov (United States)

    Karok, Sophia; Fletcher, David; Witney, Alice G

    2017-01-08

    Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effects of inspecting and constructing part-task-specific visualizations on team and individual learning

    NARCIS (Netherlands)

    Slof, Bert; Erkens, Gijsbert; Kirschner, Paul A.; Helms-Lorenz, Michelle

    This study examined whether inspecting and constructing different part-task-specific visualizations differentially affects learning. To this end, a complex business-economics problem was structured into three phase-related part-tasks: (1) determining core concepts, (2) proposing multiple solutions,

  6. A specific implicit sequence learning deficit as an underlying cause of dyslexia? Investigating the role of attention in implicit learning tasks.

    Science.gov (United States)

    Staels, Eva; Van den Broeck, Wim

    2017-05-01

    Recently, a general implicit sequence learning deficit was proposed as an underlying cause of dyslexia. This new hypothesis was investigated in the present study by including a number of methodological improvements, for example, the inclusion of appropriate control conditions. The second goal of the study was to explore the role of attentional functioning in implicit and explicit learning tasks. In a 2 × 2 within-subjects design 4 tasks were administered in 30 dyslexic and 38 control children: an implicit and explicit serial reaction time (RT) task and an implicit and explicit contextual cueing task. Attentional functioning was also administered. The entire learning curves of all tasks were analyzed using latent growth curve modeling in order to compare performances between groups and to examine the role of attentional functioning on the learning curves. The amount of implicit learning was similar for both groups. However, the dyslexic group showed slower RTs throughout the entire task. This group difference reduced and became nonsignificant after controlling for attentional functioning. Both implicit learning tasks, but none of the explicit learning tasks, were significantly affected by attentional functioning. Dyslexic children do not suffer from a specific implicit sequence learning deficit. The slower RTs of the dyslexic children throughout the entire implicit sequence learning process are caused by their comorbid attention problems and overall slowness. A key finding of the present study is that, in contrast to what was assumed for a long time, implicit learning relies on attentional resources, perhaps even more than explicit learning does. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Task-specific effect of transcranial direct current stimulation on motor learning

    Directory of Open Access Journals (Sweden)

    Cinthia Maria Saucedo Marquez

    2013-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1, tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether these effects depend on which motor task is acquired. Here we compare whether the effect of tDCS differs when the same individual acquires (1 a Sequential Finger Tapping Task (SEQTAP and (2 a Visual Isometric Pinch Force Task (FORCE. Both tasks have been shown to be sensitive to tDCS applied over M1, however, the underlying processes mediating learning and memory formation might benefit differently from anodal-tDCS. Thirty healthy subjects were randomly assigned to an anodal-tDCS group or sham-group. Using a double-blind, sham-controlled cross-over design, tDCS was applied over M1 while subjects acquired each of the motor tasks over 3 consecutive days, with the order being randomized across subjects. We found that anodal-tDCS affected each task differently: The SEQTAP task benefited from anodal-tDCS during learning, whereas the FORCE task showed improvements only at retention. These findings suggest that anodal tDCS applied over M1 appears to have a task-dependent effect on learning and memory formation.

  8. Contingency learning is not affected by conflict experience: Evidence from a task conflict-free, item-specific Stroop paradigm.

    Science.gov (United States)

    Levin, Yulia; Tzelgov, Joseph

    2016-02-01

    A contingency learning account of the item-specific proportion congruent effect has been described as an associative stimulus-response learning process that has nothing to do with controlling the Stroop conflict. As supportive evidence, contingency learning has been demonstrated with response conflict-free stimuli, such as neutral words. However, what gives rise to response conflict and to Stroop interference in general is task conflict. The present study investigated whether task conflict can constitute a trigger or, alternatively, a booster to the contingency learning process. This was done by employing a "task conflict-free" condition (i.e., geometric shapes) and comparing it with a "task conflict" condition (i.e., neutral words). The results showed a significant contingency learning effect in both conditions, refuting the possibility that contingency learning is triggered by the presence of a task conflict. Contingency learning was also not enhanced by the task conflict experience, indicating its complete insensitivity to Stroop conflict(s). Thus, the results showed no evidence that performance optimization as a result of contingency learning is greater under conflict, implying that contingency learning is not recruited to assist the control system to overcome conflict. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Differences in perceptual learning transfer as a function of training task.

    Science.gov (United States)

    Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R

    2015-01-01

    A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.

  10. The Effect of Task-based Teaching on Incidental Vocabulary Learning in English for Specific Purposes

    OpenAIRE

    FALLAHRAFIE, Zahra; RAHMANY, Ramin; SADEGHI, Bahador

    2015-01-01

    Abstract. Learning vocabulary is an essential part of language learning linking the four skills of speaking, listening, reading and writing together. This paper considers the incidental vocabulary teaching and learning within the framework of task-based activities in the hope of improving learners’ vocabulary acquiring in English for Specific Purposes courses (ESP), concentrating on Mechanical Engineering students at Islamic Azad University of Hashtgerd, Iran. A total number of 55 male and fe...

  11. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    Directory of Open Access Journals (Sweden)

    Kalina Makowiecki

    Full Text Available In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW. We used adult wildtype (WT; C57Bl/6j and knockout (ephrin-A2⁻/⁻ mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.

  12. Self-regulated learning processes of medical students during an academic learning task.

    Science.gov (United States)

    Gandomkar, Roghayeh; Mirzazadeh, Azim; Jalili, Mohammad; Yazdani, Kamran; Fata, Ladan; Sandars, John

    2016-10-01

    This study was designed to identify the self-regulated learning (SRL) processes of medical students during a biomedical science learning task and to examine the associations of the SRL processes with previous performance in biomedical science examinations and subsequent performance on a learning task. A sample of 76 Year 1 medical students were recruited based on their performance in biomedical science examinations and stratified into previous high and low performers. Participants were asked to complete a biomedical science learning task. Participants' SRL processes were assessed before (self-efficacy, goal setting and strategic planning), during (metacognitive monitoring) and after (causal attributions and adaptive inferences) their completion of the task using an SRL microanalytic interview. Descriptive statistics were used to analyse the means and frequencies of SRL processes. Univariate and multiple logistic regression analyses were conducted to examine the associations of SRL processes with previous examination performance and the learning task performance. Most participants (from 88.2% to 43.4%) reported task-specific processes for SRL measures. Students who exhibited higher self-efficacy (odds ratio [OR] 1.44, 95% confidence interval [CI] 1.09-1.90) and reported task-specific processes for metacognitive monitoring (OR 6.61, 95% CI 1.68-25.93) and causal attributions (OR 6.75, 95% CI 2.05-22.25) measures were more likely to be high previous performers. Multiple analysis revealed that similar SRL measures were associated with previous performance. The use of task-specific processes for causal attributions (OR 23.00, 95% CI 4.57-115.76) and adaptive inferences (OR 27.00, 95% CI 3.39-214.95) measures were associated with being a high learning task performer. In multiple analysis, only the causal attributions measure was associated with high learning task performance. Self-efficacy, metacognitive monitoring and causal attributions measures were associated

  13. Task complexity, student perceptions of vocabulary learning in EFL, and task performance.

    Science.gov (United States)

    Wu, Xiaoli; Lowyck, Joost; Sercu, Lies; Elen, Jan

    2013-03-01

    The study deepened our understanding of how students' self-efficacy beliefs contribute to the context of teaching English as a foreign language in the framework of cognitive mediational paradigm at a fine-tuned task-specific level. The aim was to examine the relationship among task complexity, self-efficacy beliefs, domain-related prior knowledge, learning strategy use, and task performance as they were applied to English vocabulary learning from reading tasks. Participants were 120 second-year university students (mean age 21) from a Chinese university. This experiment had two conditions (simple/complex). A vocabulary level test was first conducted to measure participants' prior knowledge of English vocabulary. Participants were then randomly assigned to one of the learning tasks. Participants were administered task booklets together with the self-efficacy scales, measures of learning strategy use, and post-tests. Data obtained were submitted to multivariate analysis of variance (MANOVA) and path analysis. Results from the MANOVA model showed a significant effect of vocabulary level on self-efficacy beliefs, learning strategy use, and task performance. Task complexity showed no significant effect; however, an interaction effect between vocabulary level and task complexity emerged. Results from the path analysis showed self-efficacy beliefs had an indirect effect on performance. Our results highlighted the mediating role of self-efficacy beliefs and learning strategy use. Our findings indicate that students' prior knowledge plays a crucial role on both self-efficacy beliefs and task performance, and the predictive power of self-efficacy on task performance may lie in its association with learning strategy use. © 2011 The British Psychological Society.

  14. Sequence-specific procedural learning deficits in children with specific language impairment.

    Science.gov (United States)

    Hsu, Hsinjen Julie; Bishop, Dorothy V M

    2014-05-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  15. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Science.gov (United States)

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    Science.gov (United States)

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  17. Task-irrelevant emotion facilitates face discrimination learning.

    Science.gov (United States)

    Lorenzino, Martina; Caudek, Corrado

    2015-03-01

    We understand poorly how the ability to discriminate faces from one another is shaped by visual experience. The purpose of the present study is to determine whether face discrimination learning can be facilitated by facial emotions. To answer this question, we used a task-irrelevant perceptual learning paradigm because it closely mimics the learning processes that, in daily life, occur without a conscious intention to learn and without an attentional focus on specific facial features. We measured face discrimination thresholds before and after training. During the training phase (4 days), participants performed a contrast discrimination task on face images. They were not informed that we introduced (task-irrelevant) subtle variations in the face images from trial to trial. For the Identity group, the task-irrelevant features were variations along a morphing continuum of facial identity. For the Emotion group, the task-irrelevant features were variations along an emotional expression morphing continuum. The Control group did not undergo contrast discrimination learning and only performed the pre-training and post-training tests, with the same temporal gap between them as the other two groups. Results indicate that face discrimination improved, but only for the Emotion group. Participants in the Emotion group, moreover, showed face discrimination improvements also for stimulus variations along the facial identity dimension, even if these (task-irrelevant) stimulus features had not been presented during training. The present results highlight the importance of emotions for face discrimination learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Somatic Arc protein expression in hippocampal granule cells is increased in response to environmental change but independent of task-specific learning.

    Science.gov (United States)

    Cleland, J P; Willis, E F; Bartlett, P F; Vukovic, J

    2017-09-29

    Activated neurons express immediate-early genes, such as Arc. Expression of Arc in the hippocampal granule cell layer, an area crucial for spatial learning and memory, is increased during acquisition of spatial learning; however, it is unclear whether this effect is related to the task-specific learning process or to nonspecific aspects of the testing procedure (e.g. exposure to the testing apparatus and exploration of the environment). Herein, we show that Arc-positive cells numbers are increased to the same extent in the granule cell layer after both acquisition of a single spatial learning event in the active place avoidance task and exploration of the testing environment, as compared to naïve (i.e. caged) mice. Repeated exposure the testing apparatus and environment did not reduce Arc expression. Furthermore, Arc expression did not correlate with performance in both adult and aged animals, suggesting that exploration of the testing environment, rather than the specific acquisition of the active place avoidance task, induces Arc expression in the dentate granule cell layer. These findings thus suggest that Arc is an experience-induced immediate-early gene.

  19. The effect of cognitive aging on implicit sequence learning and dual tasking

    Directory of Open Access Journals (Sweden)

    Jochen eVandenbossche

    2014-02-01

    Full Text Available We investigated the influence of attentional demands on sequence-specific learning by means of the serial reaction time (SRT task (Nissen & Bullemer, 1987 in young (age 18-25 and aged (age 55-75 adults. Participants had to respond as fast as possible to a stimulus presented in one of four horizontal locations by pressing a key corresponding to the spatial position of the stimulus. During the training phase sequential blocks were accompanied by (1 no secondary task (single, (2 a secondary tone counting task (dual tone, or (3 a secondary shape counting task (dual shape. Both secondary tasks were administered to investigate whether low and high interference tasks interact with implicit learning and age. The testing phase, under baseline single condition, was implemented to assess differences in sequence-specific learning between young and aged adults. Results indicate that (1 aged subjects show less sequence learning compared to young adults, (2 young participants show similar implicit learning effects under both single and dual task conditions when we account for explicit awareness, and (3 aged adults demonstrate reduced learning when the primary task is accompanied with a secondary task, even when explicit awareness is included as a covariate in the analysis. These findings point to implicit learning deficits under dual task conditions that can be related to cognitive aging, demonstrating the need for sufficient cognitive resources while performing a sequence learning task.

  20. Elementary School Students' Strategic Learning: Does Task-Type Matter?

    Science.gov (United States)

    Malmberg, Jonna; Järvelä, Sanna; Kirschner, Paul A.

    2014-01-01

    This study investigated what types of learning patterns and strategies elementary school students use to carry out ill- and well-structured tasks. Specifically, it was investigated which and when learning patterns actually emerge with respect to students' task solutions. The present study uses computer log file traces to investigate how…

  1. Multi-task Vector Field Learning.

    Science.gov (United States)

    Lin, Binbin; Yang, Sen; Zhang, Chiyuan; Ye, Jieping; He, Xiaofei

    2012-01-01

    Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both of which are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the predictor functions and the vector fields simultaneously. MTVFL has the following key properties. (1) The vector fields MTVFL learns are close to the gradient fields of the predictor functions. (2) Within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace. (3) The vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach.

  2. Integrating English for Specific Purposes Courseware into Task-Based Learning in a Context of Preparing for International Trade Fairs

    Science.gov (United States)

    Tsai, Shu-Chiao

    2013-01-01

    This study reports on integrating courseware for participating in international trade fairs into English for specific purposes (ESP) instruction at a technical university in Taiwan. An Information and Communication Technology (ICT) approach combining courseware integration with Task Based Learning (TBL), was adopted. Evaluation of implementing…

  3. Perceptual learning is specific to the trained structure of information.

    Science.gov (United States)

    Cohen, Yamit; Daikhin, Luba; Ahissar, Merav

    2013-12-01

    What do we learn when we practice a simple perceptual task? Many studies have suggested that we learn to refine or better select the sensory representations of the task-relevant dimension. Here we show that learning is specific to the trained structural regularities. Specifically, when this structure is modified after training with a fixed temporal structure, performance regresses to pretraining levels, even when the trained stimuli and task are retained. This specificity raises key questions as to the importance of low-level sensory modifications in the learning process. We trained two groups of participants on a two-tone frequency discrimination task for several days. In one group, a fixed reference tone was consistently presented in the first interval (the second tone was higher or lower), and in the other group the same reference tone was consistently presented in the second interval. When following training, these temporal protocols were switched between groups, performance of both groups regressed to pretraining levels, and further training was needed to attain postlearning performance. ERP measures, taken before and after training, indicated that participants implicitly learned the temporal regularity of the protocol and formed an attentional template that matched the trained structure of information. These results are consistent with Reverse Hierarchy Theory, which posits that even the learning of simple perceptual tasks progresses in a top-down manner, hence can benefit from temporal regularities at the trial level, albeit at the potential cost that learning may be specific to these regularities.

  4. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task.

    Science.gov (United States)

    Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.

  5. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    Science.gov (United States)

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  6. Task-Oriented Spoken Dialog System for Second-Language Learning

    Science.gov (United States)

    Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun

    2016-01-01

    This paper introduces a Dialog-Based Computer Assisted second-Language Learning (DB-CALL) system using task-oriented dialogue processing technology. The system promotes dialogue with a second-language learner for a specific task, such as purchasing tour tickets, ordering food, passing through immigration, etc. The dialog system plays a role of a…

  7. Integrating the Use of Interdisciplinary Learning Activity Task in Creating Students' Mathematical Knowledge

    Science.gov (United States)

    Mahanin, Hajah Umisuzimah Haji; Shahrill, Masitah; Tan, Abby; Mahadi, Mar Aswandi

    2017-01-01

    This study investigated the use of interdisciplinary learning activity task to construct students' knowledge in Mathematics, specifically on the topic of scale drawing application. The learning activity task involved more than one academic discipline, which is Mathematics, English Language, Art, Geography and integrating the Brunei Darussalam…

  8. Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals

    Science.gov (United States)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo

    2011-01-01

    Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054

  9. Elementary school students’ strategic learning and quality of strategy use: Does task type matter?

    NARCIS (Netherlands)

    Malmberg, Jonna; Järvelä, Sanna; Kirschner, Paul A.

    2018-01-01

    This study investigated what types of learning patterns and strategies elementary school students use to carry out ill- and- well-structured tasks. Specifically, it was investigated which and when learning patterns actually emerge with respect to students’ task solutions. The present study uses

  10. Multi-task learning with group information for human action recognition

    Science.gov (United States)

    Qian, Li; Wu, Song; Pu, Nan; Xu, Shulin; Xiao, Guoqiang

    2018-04-01

    Human action recognition is an important and challenging task in computer vision research, due to the variations in human motion performance, interpersonal differences and recording settings. In this paper, we propose a novel multi-task learning framework with group information (MTL-GI) for accurate and efficient human action recognition. Specifically, we firstly obtain group information through calculating the mutual information according to the latent relationship between Gaussian components and action categories, and clustering similar action categories into the same group by affinity propagation clustering. Additionally, in order to explore the relationships of related tasks, we incorporate group information into multi-task learning. Experimental results evaluated on two popular benchmarks (UCF50 and HMDB51 datasets) demonstrate the superiority of our proposed MTL-GI framework.

  11. High variability impairs motor learning regardless of whether it affects task performance.

    Science.gov (United States)

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of

  12. Interference in ballistic motor learning: specificity and role of sensory error signals

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    2011-01-01

    Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlap......Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity...... in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non......-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic...

  13. The specificity of learned parallelism in dual-memory retrieval.

    Science.gov (United States)

    Strobach, Tilo; Schubert, Torsten; Pashler, Harold; Rickard, Timothy

    2014-05-01

    Retrieval of two responses from one visually presented cue occurs sequentially at the outset of dual-retrieval practice. Exclusively for subjects who adopt a mode of grouping (i.e., synchronizing) their response execution, however, reaction times after dual-retrieval practice indicate a shift to learned retrieval parallelism (e.g., Nino & Rickard, in Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 373-388, 2003). In the present study, we investigated how this learned parallelism is achieved and why it appears to occur only for subjects who group their responses. Two main accounts were considered: a task-level versus a cue-level account. The task-level account assumes that learned retrieval parallelism occurs at the level of the task as a whole and is not limited to practiced cues. Grouping response execution may thus promote a general shift to parallel retrieval following practice. The cue-level account states that learned retrieval parallelism is specific to practiced cues. This type of parallelism may result from cue-specific response chunking that occurs uniquely as a consequence of grouped response execution. The results of two experiments favored the second account and were best interpreted in terms of a structural bottleneck model.

  14. Multi-task feature learning by using trace norm regularization

    Directory of Open Access Journals (Sweden)

    Jiangmei Zhang

    2017-11-01

    Full Text Available Multi-task learning can extract the correlation of multiple related machine learning problems to improve performance. This paper considers applying the multi-task learning method to learn a single task. We propose a new learning approach, which employs the mixture of expert model to divide a learning task into several related sub-tasks, and then uses the trace norm regularization to extract common feature representation of these sub-tasks. A nonlinear extension of this approach by using kernel is also provided. Experiments conducted on both simulated and real data sets demonstrate the advantage of the proposed approach.

  15. Task Demands in OSCEs Influence Learning Strategies.

    Science.gov (United States)

    Lafleur, Alexandre; Laflamme, Jonathan; Leppink, Jimmie; Côté, Luc

    2017-01-01

    Models on pre-assessment learning effects confirmed that task demands stand out among the factors assessors can modify in an assessment to influence learning. However, little is known about which tasks in objective structured clinical examinations (OSCEs) improve students' cognitive and metacognitive processes. Research is needed to support OSCE designs that benefit students' metacognitive strategies when they are studying, reinforcing a hypothesis-driven approach. With that intent, hypothesis-driven physical examination (HDPE) assessments ask students to elicit and interpret findings of the physical exam to reach a diagnosis ("Examine this patient with a painful shoulder to reach a diagnosis"). When studying for HDPE, students will dedicate more time to hypothesis-driven discussions and practice than when studying for a part-task OSCE ("Perform the shoulder exam"). It is expected that the whole-task nature of HDPE will lead to a hypothesis-oriented use of the learning resources, a frequent use of adjustment strategies, and persistence with learning. In a mixed-methods study, 40 medical students were randomly paired and filmed while studying together for two hypothetical OSCE stations. Each 25-min study period began with video cues asking to study for either a part-task OSCE or an HDPE. In a crossover design, sequences were randomized for OSCEs and contents (shoulder or spine). Time-on-task for discussions or practice were categorized as "hypothesis-driven" or "sequence of signs and maneuvers." Content analysis of focus group interviews summarized students' perception of learning resources, adjustment strategies, and persistence with learning. When studying for HDPE, students allocate significantly more time for hypothesis-driven discussions and practice. Students use resources contrasting diagnoses and report persistence with learning. When studying for part-task OSCEs, time-on-task is reversed, spent on rehearsing a sequence of signs and maneuvers. OSCEs with

  16. Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification

    OpenAIRE

    Zhang, Chenrui; Peng, Yuxin

    2018-01-01

    Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific feat...

  17. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    Science.gov (United States)

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  18. Incidental orthographic learning during a color detection task.

    Science.gov (United States)

    Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R

    2017-09-01

    Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Motivated Learning with Digital Learning Tasks: What about Autonomy and Structure?

    Science.gov (United States)

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2012-01-01

    In the present study, the ways in which digital learning tasks contribute to students' intrinsic motivation and learning outcomes were examined. In particular, this study explored the relative contributions of autonomy support and the provision of structure in digital learning tasks. Participants were 320 fifth- and sixth-grade students from eight…

  20. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Robust visual tracking via structured multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-11-09

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing lp,q mixed norms (specifically p∈2,∞ and q=1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L1 tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, 2011) is a special case of our MTT formulation (denoted as the L11 tracker) when p=q=1. Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. © 2012 Springer Science+Business Media New York.

  2. Domain-specific and domain-general constraints on word and sequence learning.

    Science.gov (United States)

    Archibald, Lisa M D; Joanisse, Marc F

    2013-02-01

    The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.

  3. Probabilistic Category Learning in Developmental Dyslexia: Evidence from Feedback and Paired-Associate Weather Prediction Tasks

    Science.gov (United States)

    Gabay, Yafit; Vakil, Eli; Schiff, Rachel; Holt, Lori L.

    2015-01-01

    Objective Developmental dyslexia is presumed to arise from specific phonological impairments. However, an emerging theoretical framework suggests that phonological impairments may be symptoms stemming from an underlying dysfunction of procedural learning. Method We tested procedural learning in adults with dyslexia (n=15) and matched-controls (n=15) using two versions of the Weather Prediction Task: Feedback (FB) and Paired-associate (PA). In the FB-based task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of response. In the PA-based learning task, participants viewed the cue and its associated outcome simultaneously without overt response or feedback. In both versions, participants trained across 150 trials. Learning was assessed in a subsequent test without presentation of the outcome, or corrective feedback. Results The Dyslexia group exhibited impaired learning compared with the Control group on both the FB and PA versions of the weather prediction task. Conclusions The results indicate that the ability to learn by feedback is not selectively impaired in dyslexia. Rather it seems that the probabilistic nature of the task, shared by the FB and PA versions of the weather prediction task, hampers learning in those with dyslexia. Results are discussed in light of procedural learning impairments among participants with dyslexia. PMID:25730732

  4. Learner Perspectives on Task Design for Oral-Visual eTandem Language Learning

    Science.gov (United States)

    El-Hariri, Yasmin

    2016-01-01

    Constituting a more specific form of online collaboration, eTandem Language Learning (eTLL) shows great potential for non-formal, self-directed language learning. Research in this field, particularly regarding task design, is still scarce. Focusing on their beliefs and attitudes, this article examines what learners think about how…

  5. TMI-2 Lessons Learned Task Force. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    In its final report reviewing the Three Mile Island accident, the TMI-2 Lessons Learned Task Force has suggested change in several fundamental aspects of basic safety policy for nuclear power plants. Changes in nuclear power plant design and operations and in the regulatory process are discussed in terms of general goals. The appendix sets forth specific recommendations for reaching these goals

  6. Self-Efficacy, Task Complexity and Task Performance: Exploring Interactions in Two Versions of Vocabulary Learning Tasks

    Science.gov (United States)

    Wu, Xiaoli; Lowyck, Joost; Sercu, Lies; Elen, Jan

    2012-01-01

    The present study aimed for better understanding of the interactions between task complexity and students' self-efficacy beliefs and students' use of learning strategies, and finally their interacting effects on task performance. This investigation was carried out in the context of Chinese students learning English as a foreign language in a…

  7. Explicit goal-driven attention, unlike implicitly learned attention, spreads to secondary tasks.

    Science.gov (United States)

    Addleman, Douglas A; Tao, Jinyi; Remington, Roger W; Jiang, Yuhong V

    2018-03-01

    To what degree does spatial attention for one task spread to all stimuli in the attended region, regardless of task relevance? Most models imply that spatial attention acts through a unitary priority map in a task-general manner. We show that implicit learning, unlike endogenous spatial cuing, can bias spatial attention within one task without biasing attention to a spatially overlapping secondary task. Participants completed a visual search task superimposed on a background containing scenes, which they were told to encode for a later memory task. Experiments 1 and 2 used explicit instructions to bias spatial attention to one region for visual search; Experiment 3 used location probability cuing to implicitly bias spatial attention. In location probability cuing, a target appeared in one region more than others despite participants not being told of this. In all experiments, search performance was better in the cued region than in uncued regions. However, scene memory was better in the cued region only following endogenous guidance, not after implicit biasing of attention. These data support a dual-system view of top-down attention that dissociates goal-driven and implicitly learned attention. Goal-driven attention is task general, amplifying processing of a cued region across tasks, whereas implicit statistical learning is task-specific. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Measuring learning potential in people with schizophrenia: A comparison of two tasks.

    Science.gov (United States)

    Rempfer, Melisa V; McDowd, Joan M; Brown, Catana E

    2017-12-01

    Learning potential measures utilize dynamic assessment methods to capture performance changes following training on a cognitive task. Learning potential has been explored in schizophrenia research as a predictor of functional outcome and there have been calls for psychometric development in this area. Because the majority of learning potential studies have utilized the Wisconsin Card Sorting Test (WCST), we extended this work using a novel measure, the Rey Osterrieth Complex Figure Test (ROCFT). This study had the following aims: 1) to examine relationships among different learning potential indices for two dynamic assessment tasks, 2) to examine the association between WCST and ROCFT learning potential measures, and 3) to address concurrent validity with a performance-based measure of functioning (Test of Grocery Shopping Skills; TOGSS). Eighty-one adults with schizophrenia or schizoaffective disorder completed WCST and ROCFT learning measures and the TOGSS. Results indicated the various learning potential computational indices are intercorrelated and, similar to other studies, we found support for regression residuals and post-test scores as optimal indices. Further, we found modest relationships between the two learning potential measures and the TOGSS. These findings suggest learning potential includes both general and task-specific constructs but future research is needed to further explore this question. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    Science.gov (United States)

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  10. Human reinforcement learning subdivides structured action spaces by learning effector-specific values.

    Science.gov (United States)

    Gershman, Samuel J; Pesaran, Bijan; Daw, Nathaniel D

    2009-10-28

    Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning-such as prediction error signals for action valuation associated with dopamine and the striatum-can cope with this "curse of dimensionality." We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to "divide and conquer" reinforcement learning over high-dimensional action spaces.

  11. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    Science.gov (United States)

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  12. Statistical word learning in children with autism spectrum disorder and specific language impairment.

    Science.gov (United States)

    Haebig, Eileen; Saffran, Jenny R; Ellis Weismer, Susan

    2017-11-01

    Word learning is an important component of language development that influences child outcomes across multiple domains. Despite the importance of word knowledge, word-learning mechanisms are poorly understood in children with specific language impairment (SLI) and children with autism spectrum disorder (ASD). This study examined underlying mechanisms of word learning, specifically, statistical learning and fast-mapping, in school-aged children with typical and atypical development. Statistical learning was assessed through a word segmentation task and fast-mapping was examined in an object-label association task. We also examined children's ability to map meaning onto newly segmented words in a third task that combined exposure to an artificial language and a fast-mapping task. Children with SLI had poorer performance on the word segmentation and fast-mapping tasks relative to the typically developing and ASD groups, who did not differ from one another. However, when children with SLI were exposed to an artificial language with phonemes used in the subsequent fast-mapping task, they successfully learned more words than in the isolated fast-mapping task. There was some evidence that word segmentation abilities are associated with word learning in school-aged children with typical development and ASD, but not SLI. Follow-up analyses also examined performance in children with ASD who did and did not have a language impairment. Children with ASD with language impairment evidenced intact statistical learning abilities, but subtle weaknesses in fast-mapping abilities. As the Procedural Deficit Hypothesis (PDH) predicts, children with SLI have impairments in statistical learning. However, children with SLI also have impairments in fast-mapping. Nonetheless, they are able to take advantage of additional phonological exposure to boost subsequent word-learning performance. In contrast to the PDH, children with ASD appear to have intact statistical learning, regardless of

  13. Investigating Antecedents of Task Commitment and Task Attraction in Service Learning Team Projects

    Science.gov (United States)

    Schaffer, Bryan S.; Manegold, Jennifer G.

    2018-01-01

    The authors investigated the antecedents of team task cohesiveness in service learning classroom environments. Focusing on task commitment and task attraction as key dependent variables representing cohesiveness, and task interdependence as the primary independent variable, the authors position three important task action phase processes as…

  14. Baseline performance and learning rate of conceptual and perceptual skill-learning tasks: the effect of moderate to severe traumatic brain injury.

    Science.gov (United States)

    Vakil, Eli; Lev-Ran Galon, Carmit

    2014-01-01

    Existing literature presents a complex and inconsistent picture of the specific deficiencies involved in skill learning following traumatic brain injury (TBI). In an attempt to address this difficulty, individuals with moderate to severe TBI (n = 29) and a control group (n = 29) were tested with two different skill-learning tasks: conceptual (i.e., Tower of Hanoi Puzzle, TOHP) and perceptual (i.e., mirror reading, MR). Based on previous studies of the effect of divided attention on these tasks and findings regarding the effect of TBI on conceptual and perceptual priming tasks, it was predicted that the group with TBI would show impaired baseline performance compared to controls in the TOHP task though their learning rate would be maintained, while both baseline performance and learning rate on the MR task would be maintained. Consistent with our predictions, overall baseline performance of the group with TBI was impaired in the TOHP test, while the learning rate was not. The learning rate on the MR task was preserved but, contrary to our prediction, response time of the group with TBI was slower than that of controls. The pattern of results observed in the present study was interpreted to possibly reflect an impairment of both the frontal lobes as well as that of diffuse axonal injury, which is well documented as being affected by TBI. The former impairment affects baseline performance of the conceptual learning skill, while the latter affects the overall slower performance of the perceptual learning skill.

  15. Applications of Task-Based Learning in TESOL

    Science.gov (United States)

    Shehadeh, Ali, Ed.; Coombe, Christine, Ed.

    2010-01-01

    Why are many teachers around the world moving toward task-based learning (TBL)? This shift is based on the strong belief that TBL facilitates second language acquisition and makes second language learning and teaching more principled and effective. Based on insights gained from using tasks as research tools, this volume shows how teachers can use…

  16. Deep imitation learning for 3D navigation tasks.

    Science.gov (United States)

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  17. A New Semantic List Learning Task to Probe Functioning of the Papez Circuit

    Science.gov (United States)

    Schallmo, Michael-Paul; Kassel, Michelle T.; Weisenbach, Sara L.; Walker, Sara J.; Guidotti-Breting, Leslie M.; Rao, Julia A.; Hazlett, Kathleen E.; Considine, Ciaran M.; Sethi, Gurpriya; Vats, Naalti; Pecina, Marta; Welsh, Robert C.; Starkman, Monica N.; Giordani, Bruno; Langenecker, Scott A.

    2016-01-01

    Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites. PMID:26313512

  18. Not all choices are created equal: Task-relevant choices enhance motor learning compared to task-irrelevant choices.

    Science.gov (United States)

    Carter, Michael J; Ste-Marie, Diane M

    2017-12-01

    Lewthwaite et al. (2015) reported that the learning benefits of exercising choice (i.e., their self-controlled condition) are not restricted to task-relevant features (e.g., feedback). They found that choosing one's golf ball color (Exp. 1) or choosing which of two tasks to perform at a later time plus which of two artworks to hang (Exp. 2) resulted in better retention than did being denied these same choices (i.e., yoked condition). The researchers concluded that the learning benefits derived from choice, whether irrelevant or relevant to the to-be-learned task, are predominantly motivational because choice is intrinsically rewarding and satisfies basic psychological needs. However, the absence of a group that made task-relevant choices and the lack of psychological measures significantly weakened their conclusions. Here, we investigated how task-relevant and task-irrelevant choices affect motor-skill learning. Participants practiced a spatiotemporal motor task in either a task-relevant group (choice over feedback schedule), a task-irrelevant group (choice over the color of an arm-wrap plus game selection), or a no-choice group. The results showed significantly greater learning in the task-relevant group than in both the task-irrelevant and no-choice groups, who did not differ significantly. Critically, these learning differences were not attributed to differences in perceptions of competence or autonomy, but instead to superior error-estimation abilities. These results challenge the perspective that motivational influences are the root cause of self-controlled learning advantages. Instead, the findings add to the growing evidence highlighting that the informational value gained from task-relevant choices makes a greater relative contribution to these advantages than motivational influences do.

  19. Training self-assessment and task-selection skills to foster self-regulated learning: Do trained skills transfer across domains?

    Science.gov (United States)

    Raaijmakers, Steven F; Baars, Martine; Paas, Fred; van Merriënboer, Jeroen J G; van Gog, Tamara

    2018-01-01

    Students' ability to accurately self-assess their performance and select a suitable subsequent learning task in response is imperative for effective self-regulated learning. Video modeling examples have proven effective for training self-assessment and task-selection skills, and-importantly-such training fostered self-regulated learning outcomes. It is unclear, however, whether trained skills would transfer across domains. We investigated whether skills acquired from training with either a specific, algorithmic task-selection rule or a more general heuristic task-selection rule in biology would transfer to self-regulated learning in math. A manipulation check performed after the training confirmed that both algorithmic and heuristic training improved task-selection skills on the biology problems compared with the control condition. However, we found no evidence that students subsequently applied the acquired skills during self-regulated learning in math. Future research should investigate how to support transfer of task-selection skills across domains.

  20. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    Science.gov (United States)

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  1. Considerations for Task Analysis Methods and Rapid E-Learning Development Techniques

    Directory of Open Access Journals (Sweden)

    Dr. Ismail Ipek

    2014-02-01

    Full Text Available The purpose of this paper is to provide basic dimensions for rapid training development in e-learning courses in education and business. Principally, it starts with defining task analysis and how to select tasks for analysis and task analysis methods for instructional design. To do this, first, learning and instructional technologies as visions of the future were discussed. Second, the importance of task analysis methods in rapid e-learning was considered, with learning technologies as asynchronous and synchronous e-learning development. Finally, rapid instructional design concepts and e-learning design strategies were defined and clarified with examples, that is, all steps for effective task analysis and rapid training development techniques based on learning and instructional design approaches were discussed, such as m-learning and other delivery systems. As a result, the concept of task analysis, rapid e-learning development strategies and the essentials of online course design were discussed, alongside learner interface design features for learners and designers.

  2. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  3. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Ayala Bloch

    Full Text Available Physical and psychosocial rehabilitation following spinal cord injury (SCI leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined.To test the hypothesis that spinal cord injury (SCI in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures.Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits.There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures.The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment.

  4. Task-Specific Training and Job Design

    OpenAIRE

    Felipe Balmaceda

    2006-01-01

    This paper provides a simple theoretical framework based on a new type of human capital introduced by Gibbons and Waldman (2004), called task-specific training, to understand job design. Mainly, in the presence of task-specific training, promotions might result ex-post in the underutilization of human capital and thus firms at the time of designing jobs should attempt to diversify this risk.

  5. Identifying Learning Patterns of Children at Risk for Specific Reading Disability

    Science.gov (United States)

    Barbot, Baptiste; Krivulskaya, Suzanna; Hein, Sascha; Reich, Jodi; Thuma, Philip E.; Grigorenko, Elena L.

    2016-01-01

    Differences in learning patterns of vocabulary acquisition in children at risk (+SRD) and not at risk (-SRD) for Specific Reading Disability (SRD) were examined using a microdevelopmental paradigm applied to the multi-trial Foreign Language Learning Task (FLLT; Baddeley et al., 1995). The FLLT was administered to 905 children from rural…

  6. The Effects of Study Tasks in a Computer-Based Chemistry Learning Environment

    Science.gov (United States)

    Urhahne, Detlef; Nick, Sabine; Poepping, Anna Christin; Schulz , Sarah Jayne

    2013-01-01

    The present study examines the effects of different study tasks on the acquisition of knowledge about acids and bases in a computer-based learning environment. Three different task formats were selected to create three treatment conditions: learning with gap-fill and matching tasks, learning with multiple-choice tasks, and learning only from text…

  7. Deep Multi-Task Learning for Tree Genera Classification

    Science.gov (United States)

    Ko, C.; Kang, J.; Sohn, G.

    2018-05-01

    The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.

  8. Task-based incidental vocabulary learning in L2 Arabic: The role of proficiency and task performance

    Directory of Open Access Journals (Sweden)

    Ayman A. Mohamed

    2016-03-01

    Full Text Available This study tests the claim that word learning in a second language are contingent upon a task’s involvement load (i.e. the amount of need, search, and evaluation it imposes, as proposed by Laufer and Hulstijn (2001. Fifty-three English-speaking learners of Arabic were assigned to one of three vocabulary learning tasks that varied in the degree of involvement: reading comprehension with glosses (low, fill-in-the-gap task (medium, and sentence writing (high. Ten words, selected based on a pretest, were targeted in the tasks. Results showed a main effect of task, with the sentence writing task yielding the highest rates of vocabulary learning, followed by the gap-fill task, and finally the reading comprehension task. A significant correlation was found between accuracy of performance across participants and their subsequent vocabulary acquisition in the immediate posttest. Within groups, only the performance of the writing group correlated significantly with their posttest scores. Results of the present study validate the hypothesis and point to multiple factors at play in incidental vocabulary acquisition. The study provides further arguments to refine the hypothesis and implement pedagogical practices that accommodate incidental learning in foreign language settings.

  9. Learning and transfer of category knowledge in an indirect categorization task.

    Science.gov (United States)

    Helie, Sebastien; Ashby, F Gregory

    2012-05-01

    Knowledge representations acquired during category learning experiments are 'tuned' to the task goal. A useful paradigm to study category representations is indirect category learning. In the present article, we propose a new indirect categorization task called the "same"-"different" categorization task. The same-different categorization task is a regular same-different task, but the question asked to the participants is about the stimulus category membership instead of stimulus identity. Experiment 1 explores the possibility of indirectly learning rule-based and information-integration category structures using the new paradigm. The results suggest that there is little learning about the category structures resulting from an indirect categorization task unless the categories can be separated by a one-dimensional rule. Experiment 2 explores whether a category representation learned indirectly can be used in a direct classification task (and vice versa). The results suggest that previous categorical knowledge acquired during a direct classification task can be expressed in the same-different categorization task only when the categories can be separated by a rule that is easily verbalized. Implications of these results for categorization research are discussed.

  10. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    Science.gov (United States)

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.

  11. It's the situation that matters : Affective involvement in context-oriented learning tasks

    NARCIS (Netherlands)

    Fechner, Sabine; van Vorst, H.; Kölbach, E.; Sumfleth, E.

    2014-01-01

    This chapter focuses on the evaluation of affective variables in contextbased learning (cbl) environments. Although the majority of studies in the field have shown positive effects on attitude, the need to investigate specific elements of cbl tasks has become evident. On the basis of prior research

  12. The Effect of MALL-Based Tasks on EFL Learners' Grammar Learning

    Science.gov (United States)

    Khodabandeh, Farzaneh; Alian, Jalal ed-din; Soleimani, Hassan

    2017-01-01

    Many studies have confirmed the importance of tasks on language learning. Nowadays, many teachers apply different kinds of tasks in their classrooms. The current study investigated the effect of mobile assisted language learning tasks (MALL) on participants' English grammar learning. The researcher administered a pre-validated grammar test to 90…

  13. Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task.

    Science.gov (United States)

    Wirzberger, Maria; Esmaeili Bijarsari, Shirin; Rey, Günter Daniel

    2017-09-01

    Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Interleaved Practice in Multi-Dimensional Learning Tasks: Which Dimension Should We Interleave?

    Science.gov (United States)

    Rau, Martina A.; Aleven, Vincent; Rummel, Nikol

    2013-01-01

    Research shows that multiple representations can enhance student learning. Many curricula use multiple representations across multiple task types. The temporal sequence of representations and task types is likely to impact student learning. Research on contextual interference shows that interleaving learning tasks leads to better learning results…

  15. Leadership for Learning: Tasks of Learning Culture

    Science.gov (United States)

    Corrigan, Joe

    2012-01-01

    This is a comparative analysis of leadership related to organizational culture and change that occurred at a large Canadian university during a twenty year period 1983-2003. From an institutional development perspective, leadership is characterized as a culture creation and development responsibility. By centering on the tasks of learning culture,…

  16. Cerebellar tDCS does not enhance performance in an implicit categorization learning task

    NARCIS (Netherlands)

    M.C. Verhage (Claire); E. Avila (Eric); M.A. Frens (Maarten); O. Donchin (Opher); J.N. van der Geest (Jos)

    2017-01-01

    textabstractBackground: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates

  17. ROBOT LEARNING OF OBJECT MANIPULATION TASK ACTIONS FROM HUMAN DEMONSTRATIONS

    Directory of Open Access Journals (Sweden)

    Maria Kyrarini

    2017-08-01

    Full Text Available Robot learning from demonstration is a method which enables robots to learn in a similar way as humans. In this paper, a framework that enables robots to learn from multiple human demonstrations via kinesthetic teaching is presented. The subject of learning is a high-level sequence of actions, as well as the low-level trajectories necessary to be followed by the robot to perform the object manipulation task. The multiple human demonstrations are recorded and only the most similar demonstrations are selected for robot learning. The high-level learning module identifies the sequence of actions of the demonstrated task. Using Dynamic Time Warping (DTW and Gaussian Mixture Model (GMM, the model of demonstrated trajectories is learned. The learned trajectory is generated by Gaussian mixture regression (GMR from the learned Gaussian mixture model.  In online working phase, the sequence of actions is identified and experimental results show that the robot performs the learned task successfully.

  18. Mapping Learning Outcomes and Assignment Tasks for SPIDER Activities

    Directory of Open Access Journals (Sweden)

    Lyn Brodie

    2011-05-01

    Full Text Available Modern engineering programs have to address rapidly changing technical content and have to enable students to develop transferable skills such as critical evaluation, communication skills and lifelong learning. This paper introduces a combined learning and assessment activity that provides students with opportunities to develop and practice their soft skills, but also extends their theoretical knowledge base. Key tasks included self directed inquiry, oral and written communication as well as peer assessment. To facilitate the SPIDER activities (Select, Prepare and Investigate, Discuss, Evaluate, Reflect, a software tool has been implemented in the learning management system Moodle. Evidence shows increased student engagement and better learning outcomes for both transferable as well as technical skills. The study focuses on generalising the relationship between learning outcomes and assignment tasks as well as activities that drive these tasks. Trail results inform the approach. Staff evaluations and their views of assignments and intended learning outcomes also supported this analysis.

  19. Shape-specific perceptual learning in a figure-ground segregation task.

    Science.gov (United States)

    Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M

    2006-03-01

    What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.

  20. Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents

    Science.gov (United States)

    Herting, Megan M.; Nagel, Bonnie J.

    2012-01-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. PMID:22610054

  1. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents.

    Science.gov (United States)

    Herting, Megan M; Nagel, Bonnie J

    2012-08-01

    In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. Published by Elsevier B.V.

  2. Distraction during learning with hypermedia: Difficult tasks help to keep task goals on track

    Directory of Open Access Journals (Sweden)

    Katharina eScheiter

    2014-03-01

    Full Text Available In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and

  3. Can Task-based Learning Approach Help Attract Students with Diverse Backgrounds Learn Chinese at A Danish University?

    DEFF Research Database (Denmark)

    Ruan, Youjin; Duan, Xiaoju; Wang, Li

    2013-01-01

    Task-based method is regarded as a meaningful approach for promoting interaction and collaboration in language learning. In an elective Chinese language beginner course at Aalborg University, Denmark, a selection of tasks are designed and used to attract the students’ interests in learning a new...... and study programs showed good interests in this method and the course itself. Nevertheless, it is necessary to study the concrete effect of various types of tasks to maximize the learning outcome....... foreign language. Chinese culture elements are also integrated into the tasks and the learning process. By analyzing seven items of a post-course survey, this paper investigates the learners’ opinions towards the Task-based language teaching and learning method and toward the method of integrating culture...

  4. A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning and consolidation.

    Science.gov (United States)

    Savic, Branislav; Müri, René; Meier, Beat

    Transcranial direct current stimulation (tDCS) is assumed to affect cortical excitability and dependent on the specific stimulation conditions either to increase or decrease learning. The purpose of this study was to modulate implicit task sequence learning with tDCS. As cortico-striatal loops are critically involved in implicit task sequence learning, tDCS was applied above the dorsolateral prefrontal cortex (DLPFC). In Experiment 1, anodal, cathodal, or sham tDCS was applied before the start of the sequence learning task. In Experiment 2, stimulation was applied during the sequence learning task. Consolidation of learning was assessed after 24 h. The results of both experiments showed that implicit task sequence learning occurred consistently but it was not modulated by different tDCS conditions. Similarly, consolidation measured after a 24 h-interval including sleep was also not affected by stimulation. These results indicate that a single session of DLPFC tDCS is not sufficient to modulate implicit task sequence learning. This study adds to the accumulating evidence that tDCS may not be as effective as originally thought. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Cross-Cultural Study of Task Specificity in Creativity

    Science.gov (United States)

    Storme, Martin; Lubart, Todd; Myszkowski, Nils; Cheung, Ping Chung; Tong, Toby; Lau, Sing

    2017-01-01

    This study provides new evidence concerning task specificity in creativity--examining through a cross-cultural perspective the extent to which performance in graphic versus verbal creativity tasks (domain specificity) and in divergent versus convergent creativity tasks (process specificity) are correlated. The relations between different…

  6. Agent-specific learning signals for self-other distinction during mentalising.

    Directory of Open Access Journals (Sweden)

    Sam Ereira

    2018-04-01

    Full Text Available Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG enabled us to track neural representations of prediction errors (PEs and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.

  7. Robot Learning from Demonstration: A Task-level Planning Approach

    Directory of Open Access Journals (Sweden)

    Staffan Ekvall

    2008-09-01

    Full Text Available In this paper, we deal with the problem of learning by demonstration, task level learning and planning for robotic applications that involve object manipulation. Preprogramming robots for execution of complex domestic tasks such as setting a dinner table is of little use, since the same order of subtasks may not be conceivable in the run time due to the changed state of the world. In our approach, we aim to learn the goal of the task and use a task planner to reach the goal given different initial states of the world. For some tasks, there are underlying constraints that must be fulfille, and knowing just the final goal is not sufficient. We propose two techniques for constraint identification. In the first case, the teacher can directly instruct the system about the underlying constraints. In the second case, the constraints are identified by the robot itself based on multiple observations. The constraints are then considered in the planning phase, allowing the task to be executed without violating any of them. We evaluate our work on a real robot performing pick-and-place tasks.

  8. Impedance learning for robotic contact tasks using natural actor-critic algorithm.

    Science.gov (United States)

    Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul

    2010-04-01

    Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

  9. TMI-2 Lessons Learned Task Force status report and short-term recommendations

    International Nuclear Information System (INIS)

    1979-07-01

    Review of the Three Mile Island accident by the TMI-2 Lessons Learned Task Force has disclosed a number of actions in the areas of design and analysis and plant operations that the Task Force recommends be required in the short term to provide substantial additional protection which is required for the public health and safety. All nuclear power plants in operation or in various stages of construction or licensing action are affected to varying degrees by the specific recommendations. The Task Force is continuing work in areas of general safety criteria, systems design requirements, nuclear power plant operations, and nuclear power plant licensing

  10. Task Repetition Effects on L1 Use in EFL Child Task-Based Interaction

    Science.gov (United States)

    Azkarai, Agurtzane; García Mayo, María del Pilar

    2017-01-01

    Research has shown that tasks provide second language (L2) learners with many opportunities to learn the L2. Task repetition has been claimed to benefit L2 learning since familiarity with procedure and/or content gives learners the chance to focus on more specific aspects of language. Most research on task repetition has focused on adult…

  11. Heuristic for Task-Worker Assignment with Varying Learning Slopes

    Directory of Open Access Journals (Sweden)

    Wipawee Tharmmaphornphilas

    2010-04-01

    Full Text Available Fashion industry has variety products, so the multi-skilled workers are required to improve flexibility in production and assignment. Generally the supervisor will assign task to the workers based on skill and skill levels of worker. Since in fashion industry new product styles are launched more frequently and the order size tends to be smaller, the workers always learn when the raw material and the production process changes. Consequently they require less time to produce the succeeding units of a task based on their learning ability. Since the workers have both experience and inexperience workers, so each worker has different skill level and learning ability. Consequently, the assignment which assumed constant skill level is not proper to use. This paper proposes a task-worker assignment considering worker skill levels and learning abilities. Processing time of each worker changes along production period due to a worker learning ability. We focus on a task-worker assignment in a fashion industry where tasks are ordered in series; the number of tasks is greater than the number of workers. Therefore, workers can perform multiple assignments followed the precedence restriction as an assembly line balancing problem. The problem is formulated in an integer linear programming model with objective to minimize makespan. A heuristic is proposed to determine the lower bound (LB and the upper bound (UB of the problem and the best assignment is determined. The performance of the heuristic method is tested by comparing quality of solution and computational time to optimal solutions.

  12. Visual Perceptual Learning and its Specificity and Transfer: A New Perspective

    Directory of Open Access Journals (Sweden)

    Cong Yu

    2011-05-01

    Full Text Available Visual perceptual learning is known to be location and orientation specific, and is thus assumed to reflect the neuronal plasticity in the early visual cortex. However, in recent studies we created “Double training” and “TPE” procedures to demonstrate that these “fundamental” specificities of perceptual learning are in some sense artifacts and that learning can completely transfer to a new location or orientation. We proposed a rule-based learning theory to reinterpret perceptual learning and its specificity and transfer: A high-level decision unit learns the rules of performing a visual task through training. However, the learned rules cannot be applied to a new location or orientation automatically because the decision unit cannot functionally connect to new visual inputs with sufficient strength because these inputs are unattended or even suppressed during training. It is double training and TPE training that reactivate these new inputs, so that the functional connections can be strengthened to enable rule application and learning transfer. Currently we are investigating the properties of perceptual learning free from the bogus specificities, and the results provide some preliminary but very interesting insights into how training reshapes the functional connections between the high-level decision units and sensory inputs in the brain.

  13. Tasks and learner motivation in learning Chinese as a foreign language

    DEFF Research Database (Denmark)

    Ruan, Youjin; Duan, Xiaoju; Du, Xiangyun

    2015-01-01

    This study focuses on how beginner learners in a task-based teaching and learning (TBTL) environment perceive what is motivating to them in the process of learning Chinese as a foreign language (CFL) at Aalborg University (AAU), Denmark. Drawing upon empirical data from surveys, group interviews...... and participant observation, this study explores which kinds of tasks are perceived as motivating from the students’ perspective and which characteristics the learners associate with motivating tasks. The study indicates that it is important to consider the learners’ affective factors and learning situation...... factors, which can boost learners’ intrinsic motivation, when designing a task, especially at a beginning stage of foreign language learning, and to integrate cultural elements into tasks as an added value to motivate learners. Finally, this study identifies challenges and barriers related to TBTL...

  14. Cognitive deficits are a matter of emotional context: inflexible strategy use mediates context-specific learning impairments in OCD.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Westermann, Stefan; Exner, Cornelia

    2015-01-01

    The present study examines the interplay between cognitive deficits and emotional context in obsessive-compulsive disorder (OCD) and social phobia (SP). Specifically, this study examines whether the inflexible use of efficient learning strategies in an emotional context underlies impairments in probabilistic classification learning (PCL) in OCD, and whether PCL impairments are specific to OCD. Twenty-three participants with OCD, 30 participants with SP and 30 healthy controls completed a neutral and an OCD-specific PCL task. OCD participants failed to adopt efficient learning strategies and showed fewer beneficial strategy switches than controls only in an OCD-specific context, but not in a neutral context. Additionally, OCD participants did not show any explicit memory impairments. Number of beneficial strategy switches in the OCD-specific task mediated the difference in PCL performance between OCD and control participants. Individuals with SP were impaired in both PCL tasks. In contrast to neuropsychological models postulating general cognitive impairments in OCD, the present findings suggest that it is the interaction between cognition and emotion that is impaired in OCD. Specifically, activated disorder-specific fears may impair the flexible adoption of efficient learning strategies and compromise otherwise unimpaired PCL. Impairments in PCL are not specific to OCD.

  15. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks.

    Science.gov (United States)

    Berka, Chris; Levendowski, Daniel J; Lumicao, Michelle N; Yau, Alan; Davis, Gene; Zivkovic, Vladimir T; Olmstead, Richard E; Tremoulet, Patrice D; Craven, Patrick L

    2007-05-01

    The ability to continuously and unobtrusively monitor levels of task engagement and mental workload in an operational environment could be useful in identifying more accurate and efficient methods for humans to interact with technology. This information could also be used to optimize the design of safer, more efficient work environments that increase motivation and productivity. The present study explored the feasibility of monitoring electroencephalo-graphic (EEG) indices of engagement and workload acquired unobtrusively and quantified during performance of cognitive tests. EEG was acquired from 80 healthy participants with a wireless sensor headset (F3-F4,C3-C4,Cz-POz,F3-Cz,Fz-C3,Fz-POz) during tasks including: multi-level forward/backward-digit-span, grid-recall, trails, mental-addition, 20-min 3-Choice Vigilance, and image-learning and memory tests. EEG metrics for engagement and workload were calculated for each 1 -s of EEG. Across participants, engagement but not workload decreased over the 20-min vigilance test. Engagement and workload were significantly increased during the encoding period of verbal and image-learning and memory tests when compared with the recognition/ recall period. Workload but not engagement increased linearly as level of difficulty increased in forward and backward-digit-span, grid-recall, and mental-addition tests. EEG measures correlated with both subjective and objective performance metrics. These data in combination with previous studies suggest that EEG engagement reflects information-gathering, visual processing, and allocation of attention. EEG workload increases with increasing working memory load and during problem solving, integration of information, analytical reasoning, and may be more reflective of executive functions. Inspection of EEG on a second-by-second timescale revealed associations between workload and engagement levels when aligned with specific task events providing preliminary evidence that second

  16. Optimizing the number of steps in learning tasks for complex skills.

    Science.gov (United States)

    Nadolski, Rob J; Kirschner, Paul A; van Merriënboer, Jeroen J G

    2005-06-01

    Carrying out whole tasks is often too difficult for novice learners attempting to acquire complex skills. The common solution is to split up the tasks into a number of smaller steps. The number of steps must be optimized for efficient and effective learning. The aim of the study is to investigate the relation between the number of steps provided to learners and the quality of their learning of complex skills. It is hypothesized that students receiving an optimized number of steps will learn better than those receiving either the whole task in only one step or those receiving a large number of steps. Participants were 35 sophomore law students studying at Dutch universities, mean age=22.8 years (SD=3.5), 63% were female. Participants were randomly assigned to 1 of 3 computer-delivered versions of a multimedia programme on how to prepare and carry out a law plea. The versions differed only in the number of learning steps provided. Videotaped plea-performance results were determined, various related learning measures were acquired and all computer actions were logged and analyzed. Participants exposed to an intermediate (i.e. optimized) number of steps outperformed all others on the compulsory learning task. No differences in performance on a transfer task were found. A high number of steps proved to be less efficient for carrying out the learning task. An intermediate number of steps is the most effective, proving that the number of steps can be optimized for improving learning.

  17. End-task versus in-task feedback to increase procedural learning retention during spinal anaesthesia training of novices.

    Science.gov (United States)

    Lean, Lyn Li; Hong, Ryan Yee Shiun; Ti, Lian Kah

    2017-08-01

    Communication of feedback during teaching of practical procedures is a fine balance of structure and timing. We investigate if continuous in-task (IT) or end-task feedback (ET) is more effective in teaching spinal anaesthesia to medical students. End-task feedback was hypothesized to improve both short-term and long-term procedural learning retention as experiential learning promotes active learning after encountering errors during practice. Upon exposure to a 5-min instructional video, students randomized to IT or ET feedbacks were trained using a spinal simulator mannequin. A blinded expert tested the students using a spinal anaesthesia checklist in the short term (immediate) and long-term (average 4 months). Sixty-five students completed the training and testing. There were no differences in demographics of age or gender within IT or ET distributions. Both short-term and long-term learning retention of spinal anaesthesia ET feedback proved to be better (P feedback. The time taken for ET students was shorter at long-term testing. End-task feedback improves both short-term and long-term procedural learning retention.

  18. [Connectionist models of social learning: a case of learning by observing a simple task].

    Science.gov (United States)

    Paignon, A; Desrichard, O; Bollon, T

    2004-03-01

    alone is not sufficient to ensure accurate reproduction and must be made functional through the production phase (Deakin & Proteau, 2000). Results obtained through a second simulation replicate those produced by Bandura & Jeffery (1973), who observed that the individual tested following the retention phase recalled recorded information better than he realized in the production phase. The outcome of a third simulation shows that, when performing the transfer task, agents performed the task all the more effectively when they were required to learn a simple path which facilitated knowledge transfer to an adjacent situation. New explanatory assumptions of the mechanics of learning through observation may be produced through OLEANNet. Thus, observed deterioration between memorization and production is caused by successive approximations which occur in the acquisition phase then in the production phase. Further, depending on the type of learning undergone by agents, use of representation as a production guide induces a more or less stringent constraint in the approximation of actual behaviour. This results, during the transfer task, in the ability to effectively generalize acquired knowledge where such knowledge is not specifically related to the task at hand. In conclusion, connectionist model architecture appears valid for modeling learning through observation as defined by Bandura (1977). However, certain limitations appear during implementation, especially in terms of the observed behaviour's availability and the planning of produced behaviours that future developments are liable to counter.

  19. Asymmetrical learning between a tactile and visual serial RT task

    NARCIS (Netherlands)

    Abrahamse, E.L.; van der Lubbe, Robert Henricus Johannes; Verwey, Willem B.

    2007-01-01

    According to many researchers, implicit learning in the serial reaction-time task is predominantly motor based and therefore should be independent of stimulus modality. Previous research on the task, however, has focused almost completely on the visual domain. Here we investigated sequence learning

  20. Robust visual tracking via multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra

    2012-01-01

    In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates

  1. Studying different tasks of implicit learning across multiple test sessions conducted on the web

    Directory of Open Access Journals (Sweden)

    Werner eSævland

    2016-06-01

    Full Text Available Implicit learning is usually studied through individual performance on a single task, with the most common tasks being Serial Reaction Time task (SRT; Nissen and Bullemer, 1987, Dynamic System Control task (DSC; (Berry and Broadbent, 1984 and artificial Grammar Learning task (AGL; (Reber, 1967. Few attempts have been made to compare performance across different implicit learning tasks within the same experiment. The current experiment was designed study the relationship between performance on the DSC Sugar factory task (Berry and Broadbent, 1984 and the Alternating Serial Reaction Time task (ASRT; (Howard and Howard, 1997. We also addressed another limitation to traditional implicit learning experiments, namely that implicit learning is usually studied in laboratory settings over a restricted time span lasting for less than an hour (Berry and Broadbent, 1984; Nissen and Bullemer, 1987; Reber, 1967. In everyday situations, implicit learning is assumed to involve a gradual accumulation of knowledge across several learning episodes over a larger time span (Norman and Price, 2012. One way to increase the ecological validity of implicit learning experiments could be to present the learning material repeatedly across shorter experimental sessions (Howard and Howard, 1997; Cleeremans and McClelland, 1991. This can most easily be done by using a web-based setup that participants can access from home. We therefore created an online web-based system for measuring implicit learning that could be administered in either single or multiple sessions. Participants (n = 66 were assigned to either a single-session or a multi-session condition. Learning and the degree of conscious awareness of the learned regularities was compared across condition (single vs. multiple sessions and tasks (DSC vs. ASRT. Results showed that learning on the two tasks was not related. However, participants in the multiple sessions condition did show greater improvements in reaction

  2. Robust visual tracking via multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-06-01

    In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in MTT. By employing popular sparsity-inducing p, q mixed norms (p D; 1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L 1 tracker [15] is a special case of our MTT formulation (denoted as the L 11 tracker) when p q 1. The learning problem can be efficiently solved using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, MTT is computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that MTT methods consistently outperform state-of-the-art trackers. © 2012 IEEE.

  3. Multisensory perceptual learning is dependent upon task difficulty.

    Science.gov (United States)

    De Niear, Matthew A; Koo, Bonhwang; Wallace, Mark T

    2016-11-01

    There has been a growing interest in developing behavioral tasks to enhance temporal acuity as recent findings have demonstrated changes in temporal processing in a number of clinical conditions. Prior research has demonstrated that perceptual training can enhance temporal acuity both within and across different sensory modalities. Although certain forms of unisensory perceptual learning have been shown to be dependent upon task difficulty, this relationship has not been explored for multisensory learning. The present study sought to determine the effects of task difficulty on multisensory perceptual learning. Prior to and following a single training session, participants completed a simultaneity judgment (SJ) task, which required them to judge whether a visual stimulus (flash) and auditory stimulus (beep) presented in synchrony or at various stimulus onset asynchronies (SOAs) occurred synchronously or asynchronously. During the training session, participants completed the same SJ task but received feedback regarding the accuracy of their responses. Participants were randomly assigned to one of three levels of difficulty during training: easy, moderate, and hard, which were distinguished based on the SOAs used during training. We report that only the most difficult (i.e., hard) training protocol enhanced temporal acuity. We conclude that perceptual training protocols for enhancing multisensory temporal acuity may be optimized by employing audiovisual stimuli for which it is difficult to discriminate temporal synchrony from asynchrony.

  4. Task-Based Language Learning and Teaching: An Action-Research Study

    Science.gov (United States)

    Calvert, Megan; Sheen, Younghee

    2015-01-01

    The creation, implementation, and evaluation of language learning tasks remain a challenge for many teachers, especially those with limited experience with using tasks in their teaching. This action-research study reports on one teacher's experience of developing, implementing, critically reflecting on, and modifying a language learning task…

  5. Tool Choice for E-Learning: Task-Technology Fit through Media Synchronicity

    Science.gov (United States)

    Sun, Jun; Wang, Ying

    2014-01-01

    One major challenge in online education is how to select appropriate e-learning tools for different learning tasks. Based on the premise of Task-Technology Fit Theory, this study suggests that the effectiveness of student learning in online courses depends on the alignment between two. Furthermore, it conceptualizes the formation of such a fit…

  6. Task design for improving students’ engagement in mathematics learning

    Science.gov (United States)

    Khairunnisa

    2018-01-01

    This article analysed the importance of task design as one of the instruments in the learning and its application in several studies. Through task design, students engage in learning caused them enthusiastically in expressing ideas, opinion or knowledge of them. Thus, the teacher was able to gain an idea of knowledge belonging to students. By using this information, teachers are able to develop the thinking ability of students.

  7. A Task-Cycling Pedagogy Using Stimulated Refelction and Audio-Conferencing in Foreign Language Learning

    Directory of Open Access Journals (Sweden)

    Mike Levy

    2004-05-01

    Full Text Available The aim of this paper is to describe a task-cycling pedagogy for language learning using a technique we have called Stimulated Reflection. This pedagogical approach has been developed in the light of the new technology options available, especially those that facilitate audiovisual forms of interaction among language learners and teachers. In this instance, the pedagogy is implemented in the context of introducing students to audio-conferencing (A-C tools as a support for their ongoing independent learning. The approach is designed to develop a balance for learners between attention to fluency and meaning on one hand, and form and accuracy on the other. The particular focus here is on the learning of Italian as a foreign language, although the ideas and principles are presented with a view to the teaching and learning of any language. The article is in three parts. The first considers appropriate theoretical frameworks for the use of technology-mediated tools in language learning, with a particular emphasis on the focus-on-form literature and task design (Doughty, 2003; Doughty & Williams, 1998; Skehan, 1998. The second part sets out the approach we have taken in the Italian project and discusses specifically the idea of task cycling (Willis, 1996 and Stimulated Reflection. The third part presents extracts of stimulated reflection episodes that serve to illustrate the new pedagogic approach.

  8. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    Science.gov (United States)

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  9. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task.

    Directory of Open Access Journals (Sweden)

    Pavel Sanda

    2017-09-01

    Full Text Available Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making.

  10. E-learning, dual-task, and cognitive load: The anatomy of a failed experiment.

    Science.gov (United States)

    Van Nuland, Sonya E; Rogers, Kem A

    2016-01-01

    The rising popularity of commercial anatomy e-learning tools has been sustained, in part, due to increased annual enrollment and a reduction in laboratory hours across educational institutions. While e-learning tools continue to gain popularity, the research methodologies used to investigate their impact on learning remain imprecise. As new user interfaces are introduced, it is critical to understand how functionality can influence the load placed on a student's memory resources, also known as cognitive load. To study cognitive load, a dual-task paradigm wherein a learner performs two tasks simultaneously is often used, however, its application within educational research remains uncommon. Using previous paradigms as a guide, a dual-task methodology was developed to assess the cognitive load imposed by two commercial anatomical e-learning tools. Results indicate that the standard dual-task paradigm, as described in the literature, is insensitive to the cognitive load disparities across e-learning tool interfaces. Confounding variables included automation of responses, task performance tradeoff, and poor understanding of primary task cognitive load requirements, leading to unreliable quantitative results. By modifying the secondary task from a basic visual response to a more cognitively demanding task, such as a modified Stroop test, the automation of secondary task responses can be reduced. Furthermore, by recording baseline measures for the primary task as well as the secondary task, it is possible for task performance tradeoff to be detected. Lastly, it is imperative that the cognitive load of the primary task be designed such that it does not overwhelm the individual's ability to learn new material. © 2015 American Association of Anatomists.

  11. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  12. Using Goal Setting and Task Analysis to Enhance Task-Based Language Learning and Teaching

    Science.gov (United States)

    Rubin, Joan

    2015-01-01

    Task-Based Language Learning and Teaching has received sustained attention from teachers and researchers for over thirty years. It is a well-established pedagogy that includes the following characteristics: major focus on authentic and real-world tasks, choice of linguistic resources by learners, and a clearly defined non-linguistic outcome. This…

  13. Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed...

  14. Selective visual attention and motivation: the consequences of value learning in an attentional blink task.

    Science.gov (United States)

    Raymond, Jane E; O'Brien, Jennifer L

    2009-08-01

    Learning to associate the probability and value of behavioral outcomes with specific stimuli (value learning) is essential for rational decision making. However, in demanding cognitive conditions, access to learned values might be constrained by limited attentional capacity. We measured recognition of briefly presented faces seen previously in a value-learning task involving monetary wins and losses; the recognition task was performed both with and without constraints on available attention. Regardless of available attention, recognition was substantially enhanced for motivationally salient stimuli (i.e., stimuli highly predictive of outcomes), compared with equally familiar stimuli that had weak or no motivational salience, and this effect was found regardless of valence (win or loss). However, when attention was constrained (because stimuli were presented during an attentional blink, AB), valence determined recognition; win-associated faces showed no AB, but all other faces showed large ABs. Motivational salience acts independently of attention to modulate simple perceptual decisions, but when attention is limited, visual processing is biased in favor of reward-associated stimuli.

  15. Addressing grammar in the interaction task-based learning environment

    Directory of Open Access Journals (Sweden)

    Davis Brent M.

    2017-01-01

    Full Text Available One of the major problems in language teaching is developing grammatical accuracy. This paper proposes that using error correction based on a functional grammar in a task-based learning approach may be a suitable solution. Towards this end an emic (using categories intrinsic to the language functional grammar of the verb phrase is proposed and a description of how this fits into the focus on form component of task-based learning is provided.

  16. Learning and inference using complex generative models in a spatial localization task.

    Science.gov (United States)

    Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N

    2016-01-01

    A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.

  17. The importance of task appropriateness in computer-supported collaborative learning

    Directory of Open Access Journals (Sweden)

    Kathy Buckner

    1999-12-01

    Full Text Available The study of learning in collaborative electronic environments is becoming established as Computer Supported Collaborative Learning (CSCL - an emergent sub-discipline of the more established Computer Supported Co-operative Work (CSCW discipline (Webb, 1995. Using computers for the development of shared understanding through collaboration has been explored by Crook who suggests that success may depend partly on having a clearly specified purpose or goal (Crook, 1994. It is our view that the appropriateness of the task given to the student is central to the success or otherwise of the learning experience. However, the tasks that are given to facilitate collaborative learning in face-toface situations are not always suitable for direct transfer to the electronic medium. It may be necessary to consider redesigning these tasks in relation to the medium in which they are to be undertaken and the functionality of the electronic conferencing software used.

  18. Active controllers and the time duration to learn a task

    Science.gov (United States)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  19. A Developmental Perspective in Learning the Mirror-Drawing Task

    Directory of Open Access Journals (Sweden)

    Mona Sharon Julius

    2016-03-01

    Full Text Available Is there late maturation of skill learning? This notion has been raised to explain an adult advantage in learning a variety of tasks, such as auditory temporal-interval discrimination, locomotion adaptation, and drawing visually-distorted spatial patterns (mirror-drawing. Here, we test this assertion by following the practice of the mirror-drawing task in two 5 min daily sessions separated by a 10 min break, over the course of two days, in 5–6-year-old kindergarten children, 7–8-year-old second-graders, and young adults. In the mirror-drawing task, participants were required to trace a square while looking at their hand only as a reflection in a mirror. Kindergarteners did not show learning of the visual-motor mapping, and on average, did not produce even one full side of a square correctly. Second-graders showed increased online movement control with longer strokes, and robust learning of the visual-motor mapping, resulting in a between-day increase in the number of correctly drawn sides with no loss in accuracy. Overall, kindergarteners and second-graders producing at least one correct polygon-side on Day 1 were more likely to improve their performance between days. Adults showed better performance with greater improvements in the number of correctly drawn sides between- and within-days, and in accuracy between days. It has been suggested that 5-year-olds cannot learn the task due to their inability to detect and encapsulate previously produced accurate movements. Our findings suggest, instead, that these children did not have initial, accurate performance that could be enhanced through training. Recently, it has been shown that in a simple grapho-motor task the three age-groups improved their speed of performance within a session and between-days, while maintaining accuracy scores. Taken together, these data suggest that children's motor skill learning depends on the task’s characteristics and their adopting an efficient performance

  20. Learning a locomotor task: with or without errors?

    Science.gov (United States)

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them

  1. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  2. Effect of methylphenidate on enhancement of spatial learning by novel alternated dual task.

    Science.gov (United States)

    Veetil, Praveen Kottath; Mukkadan, Joseph Kurian

    2011-01-01

    The novel alternated dual task (ADT) arranged rats to learn T-maze spontaneous alternation task and radial arm maze (RAM) task alternatively, and by doing ADT, rats could acquire the tasks more easily than non alternated dual task (NADT) group. Also retention capacity of ADT group was significantly more and ADT help to learn a complex task faster than learning it in isolation from other tasks. In the present study effect of methylphenidate (MPD), a mood elevator, known to enhance learning and memory, on ADT procedure is assessed. Also effect of ADT procedure and MPD on spatial learning and memory are compared. Different groups were assigned by administering MPD (intraperitoneal injection at a dose of 3 mg/kg body weight) during different phases of behavioural experiments, and control groups received saline injection. MPD administration increased both acquisition and retention capacities. The amelioration attained for retention of complex task by ADT procedure, could be achieved by NADT rats only by administration of MPD. The influence of ADT procedure on acquisition and retention of TM and RAM tasks were similar to the effects of MPD, especially for the RAM task. MPD at low dose is found to enhance the learning and memory capacity in rats, than deteriorating it, supporting the use of MPD as a drug to treat attention deficit hyperactive disorder. The recent reports suggesting the effect of MPD only on retention and not on acquisition could not be confirmed, as enhancement for both acquisition and retention was found in this study.

  3. Statistical Learning in Specific Language Impairment and Autism Spectrum Disorder: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Rita Obeid

    2016-08-01

    Full Text Available Impairments in statistical learning might be a common deficit among individuals with Specific Language Impairment (SLI and Autism Spectrum Disorder (ASD. Using meta-analysis, we examined statistical learning in SLI (14 studies, 15 comparisons and ASD (13 studies, 20 comparisons to evaluate this hypothesis. Effect sizes were examined as a function of diagnosis across multiple statistical learning tasks (Serial Reaction Time, Contextual Cueing, Artificial Grammar Learning, Speech Stream, Observational Learning, Probabilistic Classification. Individuals with SLI showed deficits in statistical learning relative to age-matched controls g = .47, 95% CI [.28, .66], p < .001. In contrast, statistical learning was intact in individuals with ASD relative to controls, g = –.13, 95% CI [–.34, .08], p = .22. Effect sizes did not vary as a function of task modality or participant age. Our findings inform debates about overlapping social-communicative difficulties in children with SLI and ASD by suggesting distinct underlying mechanisms. In line with the procedural deficit hypothesis (Ullman & Pierpont, 2005, impaired statistical learning may account for phonological and syntactic difficulties associated with SLI. In contrast, impaired statistical learning fails to account for the social-pragmatic difficulties associated with ASD.

  4. PENGGUNAAN METODE TASK-BASED LEARNING UNTUK MENINGKATKAN KETERAMPILAN MENULIS MAHASISWA

    Directory of Open Access Journals (Sweden)

    Tri Kusnawati

    2014-04-01

    Full Text Available This study aims to increase the writing skills of students of French Education Department of Language and Art Faculty of Yogyakarta State University by using the task-based learning method in Expression Ecrite IV teaching. This is a classroom action research project consisting of two cycles. The subjects’ of the study were 15 students who took Writing IV (Expression Ecrite IV including the lecturer. Data were collected using a test, an observation, and a questionnaire. The data of the use of teaching method of task-based learning in Expression Ecrite IV obtained by using an observation and a questionnaire was interpreted qualitatively, while the data of students’ learning achievement in writing was analyzed quantitatively. Findings show that the use of learning method of task-based learning in Expression Ecrite IV could increase writing skills of the students. It was shown by the better comprehension and the mastery of materials. It was proven by the increase of the means in the posttest, that were 6.3 in cycle 1 and 7.2 in cycle 2. Besides, there was an improvement of learning process of writing skill IV as indicated by decreasing students’ passivity and increasing participation in meaningful learning activities.

  5. Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach.

    Science.gov (United States)

    Han, Hu; K Jain, Anil; Shan, Shiguang; Chen, Xilin

    2017-08-10

    Face attribute estimation has many potential applications in video surveillance, face retrieval, and social media. While a number of methods have been proposed for face attribute estimation, most of them did not explicitly consider the attribute correlation and heterogeneity (e.g., ordinal vs. nominal and holistic vs. local) during feature representation learning. In this paper, we present a Deep Multi-Task Learning (DMTL) approach to jointly estimate multiple heterogeneous attributes from a single face image. In DMTL, we tackle attribute correlation and heterogeneity with convolutional neural networks (CNNs) consisting of shared feature learning for all the attributes, and category-specific feature learning for heterogeneous attributes. We also introduce an unconstrained face database (LFW+), an extension of public-domain LFW, with heterogeneous demographic attributes (age, gender, and race) obtained via crowdsourcing. Experimental results on benchmarks with multiple face attributes (MORPH II, LFW+, CelebA, LFWA, and FotW) show that the proposed approach has superior performance compared to state of the art. Finally, evaluations on a public-domain face database (LAP) with a single attribute show that the proposed approach has excellent generalization ability.

  6. How do task characteristics affect learning and performance? The roles of variably mapped and dynamic tasks.

    Science.gov (United States)

    Macnamara, Brooke N; Frank, David J

    2018-05-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Robust visual tracking via structured multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra

    2012-01-01

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary

  8. The Role of Subjective Task Value in Service-Learning Engagement among Chinese College Students.

    Science.gov (United States)

    Li, Yulan; Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan

    2016-01-01

    Most service-learning studies in higher education focused on its effects on students' development. The dynamic processes and mechanisms of students' development during service-learning, however, have not been explored thoroughly. Student engagement in service-learning may affect service-learning outcomes and be affected by subjective task value at the same time. The present study aimed to explore the effect of subjective task value on Chinese college student engagement during service-learning. Fifty-four Chinese college students participated in a 9-weeks service-learning program of interacting with children with special needs. Students' engagement and subjective task value were assessed via self-report questionnaires and 433 weekly reflective journals. The results indicated that the cognitive, emotional and behavioral engagement of Chinese college students demonstrated different developmental trends during service-learning process. Subjective task value played an essential role in student engagement in service-learning activities. However, the role of subjective task value varied with different stages. Finally, the implications for implementing service-learning in Chinese education were discussed.

  9. The Role of Subjective Task Value in Service-Learning Engagement among Chinese College Students

    Science.gov (United States)

    Li, Yulan; Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan

    2016-01-01

    Most service-learning studies in higher education focused on its effects on students’ development. The dynamic processes and mechanisms of students’ development during service-learning, however, have not been explored thoroughly. Student engagement in service-learning may affect service-learning outcomes and be affected by subjective task value at the same time. The present study aimed to explore the effect of subjective task value on Chinese college student engagement during service-learning. Fifty-four Chinese college students participated in a 9-weeks service-learning program of interacting with children with special needs. Students’ engagement and subjective task value were assessed via self-report questionnaires and 433 weekly reflective journals. The results indicated that the cognitive, emotional and behavioral engagement of Chinese college students demonstrated different developmental trends during service-learning process. Subjective task value played an essential role in student engagement in service-learning activities. However, the role of subjective task value varied with different stages. Finally, the implications for implementing service-learning in Chinese education were discussed. PMID:27445919

  10. Task-specific reorganization of the auditory cortex in deaf humans.

    Science.gov (United States)

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  11. Autonomous Learning through Task-Based Instruction in Fully Online Language Courses

    Science.gov (United States)

    Lee, Lina

    2016-01-01

    This study investigated the affordances for autonomous learning in a fully online learning environment involving the implementation of task-based instruction in conjunction with Web 2.0 technologies. To that end, four-skill-integrated tasks and digital tools were incorporated into the coursework. Data were collected using midterm reflections,…

  12. Task-Based Language Teaching and Expansive Learning Theory

    Science.gov (United States)

    Robertson, Margaret

    2014-01-01

    Task-Based Language Teaching (TBLT) has become increasingly recognized as an effective pedagogy, but its location in generalized sociocultural theories of learning has led to misunderstandings and criticism. The purpose of this article is to explain the congruence between TBLT and Expansive Learning Theory and the benefits of doing so. The merit…

  13. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks.

    Science.gov (United States)

    Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele

    2012-12-01

    We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes. Copyright © 2012 Society for Psychophysiological Research.

  14. THE ROLE OF TASK-INDUCED INVOLVEMENT IN VOCABULARY LEARNING OF IRANIAN LANGUAGE LEARNERS

    Directory of Open Access Journals (Sweden)

    Fatemeh Khonamri

    2013-01-01

    Full Text Available This study investigated Laufer and Hustijn’s (2001 Involvement Load Hypothesis in vocabulary learning. It comprised two experiments. Experiment 1 examined whether two tasks with equal involvement load but different distribution of components would yield the same result in initial learning and retention of target words. Experiment 2 investigated whether two tasks, one input and another output, with equal involvement load and the same distribution of components would result in equivalent initial learning and retention of target words. 126 advanced English learners completed one of three vocabulary learning tasks that equated in the amount of involvement they induced: sentence writing, fill-in, and translation (L2-L1. Receptive knowledge of the target words was assessed immediately after treatment and two weeks later, and one month interval after the first delayed posttest. The result of t-test for Experiment 1 showed that when two tasks had equal involvement load but different distribution of components they resulted in similar amounts of initial learning and retention of new words. The findings of Experiment 2 indicated when two tasks, one input and another output, had equal involvement load and the same distribution of components, they led to superiority of fill-in task over translation task in initial vocabulary learning, however, not in retention of new words.

  15. Collaborative Tasks in Wiki-Based Environment in EFL Learning

    Science.gov (United States)

    Zou, Bin; Wang, Dongshuo; Xing, Minjie

    2016-01-01

    Wikis provide users with opportunities to post and edit messages to collaborate in the language learning process. Many studies have offered findings to show positive impact of Wiki-based language learning for learners. This paper explores the effect of collaborative task in error correction for English as a Foreign Language learning in an online…

  16. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  17. The effect of the external regulator's absence on children's speech use, manifested self-regulation, and task performance during learning tasks

    NARCIS (Netherlands)

    Agina, Adel M.; Agina, Adel Masaud; Kommers, Petrus A.M.; Steehouder, M.F.

    2011-01-01

    The present study was conducted to explore the effect of the absence of the external regulators on children’s use of speech (private/social), task performance, and self-regulation during learning tasks. A novel methodology was employed through a computer-based learning environment that proposed

  18. Learning trajectories for speech motor performance in children with specific language impairment.

    Science.gov (United States)

    Richtsmeier, Peter T; Goffman, Lisa

    2015-01-01

    Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Science.gov (United States)

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Informal learning of secondary-school students and learning tasks of the family

    Directory of Open Access Journals (Sweden)

    Sanja Berčnik

    2006-12-01

    Full Text Available The' author speaks about the role of informal learning for young people and their family, differences about spending free-time and possibilities of using free-time for informal learning. The presupposition is that while learning scope is constantly expanding, also learning tasks of the family are increasing. Because of different social environments of young people, there is a question, what are actual possibilities for informal learning in their domestic environment and how this affects their development. The most important question, which must be asked according to the author is, whether parents are ware of their influence, of the influence of their actions on development and learning of their children.

  1. Pathological gamblers are more vulnerable to the illusion of control in a standard associative learning task

    Directory of Open Access Journals (Sweden)

    Cristina eOrgaz

    2013-06-01

    Full Text Available An illusion of control is said to occur when a person believes that he or she controls an outcome that is uncontrollable. Pathological gambling has often been related to an illusion of control, but the assessment of the illusion has generally used introspective methods in domain-specific (i.e., gambling situations. The illusion of control of pathological gamblers, however, could be a more general problem, affecting other aspects of their daily life. Thus, we tested them using a standard associative learning task which is known to produce illusions of control in most people under certain conditions. The results showed that the illusion was significantly stronger in pathological gamblers than in a control undiagnosed sample. This suggests (a that the experimental tasks used in basic associative learning research could be used to detect illusions of control in gamblers in a more indirect way, as compared to introspective and domain-specific questionnaires; and (b, that in addition to gambling-specific problems, pathological gamblers may have a higher-than-normal illusion of control in their daily life.

  2. Microevaluating Learners' Task-Specific Motivation in a Task-Based Business Spanish Course

    Science.gov (United States)

    Torres, Julio; Serafini, Ellen J.

    2016-01-01

    Scholars of task-based language teaching (TBLT) advocate for the identification of learners' communicative needs to inform syllabus design, particularly in language for specific purposes contexts (e.g., Long 2015). However, little research has applied TBLT principles in designing Spanish for specific purposes curricula. Moreover, despite the…

  3. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle...

  4. Robust Online Multi-Task Learning with Correlative and Personalized Structures

    KAUST Repository

    Yang, Peng

    2017-06-29

    Multi-Task Learning (MTL) can enhance a classifier\\'s generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline setting and suffers from expensive training cost and poor scalability. To address such issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm; the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. However, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. Experimental results on a number of real-world applications also verify the efficacy of our approaches.

  5. Robust Online Multi-Task Learning with Correlative and Personalized Structures

    KAUST Repository

    Yang, Peng; Zhao, Peilin; Gao, Xin

    2017-01-01

    Multi-Task Learning (MTL) can enhance a classifier's generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline setting and suffers from expensive training cost and poor scalability. To address such issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm; the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. However, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. Experimental results on a number of real-world applications also verify the efficacy of our approaches.

  6. Task type and incidental L2 vocabulary learning: Repetition versus ...

    African Journals Online (AJOL)

    This study investigated the effect of task type on incidental L2 vocabulary learning. The different tasks investigated in this study differed in terms of repetition of encounters and task involvement load. In a within-subjects design, 72 Iranian learners of English practised 18 target words in three exercise conditions: three ...

  7. Identifying beneficial task relations for multi-task learning in deep neural networks

    DEFF Research Database (Denmark)

    Bingel, Joachim; Søgaard, Anders

    2017-01-01

    Multi-task learning (MTL) in deep neural networks for NLP has recently received increasing interest due to some compelling benefits, including its potential to efficiently regularize models and to reduce the need for labeled data. While it has brought significant improvements in a number of NLP...

  8. Designing Digital Problem Based Learning Tasks that Motivate Students

    Science.gov (United States)

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2013-01-01

    This study examines whether teachers are able to apply the principles of autonomy support and structure support in designing digital problem based learning (PBL) tasks. We examine whether these tasks are more autonomy- and structure-supportive and whether primary and secondary school students experience greater autonomy, competence, and motivation…

  9. Evaluation of social interaction, task management, and trust among dental hygiene students in a collaborative learning environment.

    Science.gov (United States)

    Saylor, Catherine D; Keselyak, Nancy T; Simmer-Beck, Melanie; Tira, Daniel

    2011-02-01

    The purpose of this study was to evaluate the impact of collaborative learning on the development of social interaction, task management, and trust in dental hygiene students. These three traits were assessed with the Teamwork Assessment Scale in two different learning environments (traditional lecture/lab and collaborative learning environment). A convenience sample of fifty-six entry-level dental hygiene students taking an introductory/preclinic course at two metropolitan area dental hygiene programs provided comparable experimental and control groups. Factor scores were computed for the three traits, and comparisons were conducted using the Ryan-Einot-Gabriel-Welsh multiple comparison procedure among specific cell comparisons generated from a two-factor repeated measures ANOVA. The results indicate that the collaborative learning environment influenced dental hygiene students positively regarding the traits of social interaction, task management, and trust. However, comparing dental hygiene students to undergraduate students overall indicates that dental hygiene students already possess somewhat higher levels of these traits. Future studies on active learning strategies should examine factors such as student achievement and explore other possible active learning methodologies.

  10. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    Science.gov (United States)

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement... learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable... learning of policies in Dec-POMDPs, established performance bounds, evaluated these algorithms both theoretically and empirically, The views

  11. Training self-assessment and task-selection skills : A cognitive approach to improving self-regulated learning

    NARCIS (Netherlands)

    Kostons, Danny; van Gog, Tamara; Paas, Fred

    For self-regulated learning to be effective, students need to be able to accurately assess their own performance on a learning task and use this assessment for the selection of a new learning task. Evidence suggests, however, that students have difficulties with accurate self-assessment and task

  12. Multi-population genomic prediction using a multi-task Bayesian learning model.

    Science.gov (United States)

    Chen, Liuhong; Li, Changxi; Miller, Stephen; Schenkel, Flavio

    2014-05-03

    Genomic prediction in multiple populations can be viewed as a multi-task learning problem where tasks are to derive prediction equations for each population and multi-task learning property can be improved by sharing information across populations. The goal of this study was to develop a multi-task Bayesian learning model for multi-population genomic prediction with a strategy to effectively share information across populations. Simulation studies and real data from Holstein and Ayrshire dairy breeds with phenotypes on five milk production traits were used to evaluate the proposed multi-task Bayesian learning model and compare with a single-task model and a simple data pooling method. A multi-task Bayesian learning model was proposed for multi-population genomic prediction. Information was shared across populations through a common set of latent indicator variables while SNP effects were allowed to vary in different populations. Both simulation studies and real data analysis showed the effectiveness of the multi-task model in improving genomic prediction accuracy for the smaller Ayshire breed. Simulation studies suggested that the multi-task model was most effective when the number of QTL was small (n = 20), with an increase of accuracy by up to 0.09 when QTL effects were lowly correlated between two populations (ρ = 0.2), and up to 0.16 when QTL effects were highly correlated (ρ = 0.8). When QTL genotypes were included for training and validation, the improvements were 0.16 and 0.22, respectively, for scenarios of the low and high correlation of QTL effects between two populations. When the number of QTL was large (n = 200), improvement was small with a maximum of 0.02 when QTL genotypes were not included for genomic prediction. Reduction in accuracy was observed for the simple pooling method when the number of QTL was small and correlation of QTL effects between the two populations was low. For the real data, the multi-task model achieved an

  13. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems

    OpenAIRE

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed...

  14. Concrete and abstract visualizations in history learning tasks

    NARCIS (Netherlands)

    Prangsma, Maaike; Van Boxtel, Carla; Kanselaar, Gellof; Kirschner, Paul A.

    2010-01-01

    Prangsma, M. E., Van Boxtel, C. A. M., Kanselaar, G., & Kirschner, P. A. (2009). Concrete and abstract visualizations in history learning tasks. British Journal of Educational Psychology, 79, 371-387.

  15. The effect of encoding conditions on learning in the prototype distortion task.

    Science.gov (United States)

    Lee, Jessica C; Livesey, Evan J

    2017-06-01

    The prototype distortion task demonstrates that it is possible to learn about a category of physically similar stimuli through mere observation. However, there have been few attempts to test whether different encoding conditions affect learning in this task. This study compared prototypicality gradients produced under incidental learning conditions in which participants performed a visual search task, with those produced under intentional learning conditions in which participants were required to memorize the stimuli. Experiment 1 showed that similar prototypicality gradients could be obtained for category endorsement and familiarity ratings, but also found (weaker) prototypicality gradients in the absence of exposure. In Experiments 2 and 3, memorization was found to strengthen prototypicality gradients in familiarity ratings in comparison to visual search, but there were no group differences in participants' ability to discriminate between novel and presented exemplars. Although the Search groups in Experiments 2 and 3 produced prototypicality gradients, they were no different in magnitude to those produced in the absence of stimulus exposure in Experiment 1, suggesting that incidental learning during visual search was not conducive to producing prototypicality gradients. This study suggests that learning in the prototype distortion task is not implicit in the sense of resulting automatically from exposure, is affected by the nature of encoding, and should be considered in light of potential learning-at-test effects.

  16. Horses fail to use social learning when solving spatial detour tasks

    DEFF Research Database (Denmark)

    Rørvang, Maria Vilain; Peerstrup Ahrendt, Line; Christensen, Janne Winther

    2015-01-01

    Social animals should have plenty of opportunities to learn from conspecifics, but most studies have failed to document social learning in horses. This study investigates whether young Icelandic horses can learn a spatial detour task through observation of a trained demonstrator horse of either...... the same age (Experiments 1 and 2, n = 22) or older (Experiment 3, n = 24). Observer horses were allowed to observe the demonstrator being led three times through the detour route immediately before being given the opportunity to solve the task themselves. Controls were allowed only to observe...

  17. The relationship between explicit learning and consciousness-raising tasks within a communicative language context

    Directory of Open Access Journals (Sweden)

    Roscioli, Deise Caldart

    2015-01-01

    Full Text Available This study aims at investigating whether consciousness-raising tasks, used in a communicative learning environment of EFL, can be considered a valid instrument for eliciting explicit learning in that context. Five participants enrolled in the second level of a language course answered a cycle of tasks that intended to teach the use of comparatives. The materials used in this study consisted of a pre-task, consciousness-raising tasks, an untimed grammaticality judgment test, and a self-report questionnaire. Results showed that the instruments used in this research were of a valid nature for eliciting explicit learning. The findings also provide empirical support regarding the importance of consciousness-raising tasks to assist students’ second language learning in a communicative classroom environment. Despite being a small scale research, this study may contribute to a greater understanding of the SLA processes within a communicative context and highlight the importance of explicit knowledge learning within a meaning focused approach

  18. How well do elderly people cope with uncertainty in a learning task?

    Science.gov (United States)

    Chasseigne, G; Grau, S; Mullet, E; Cama, V

    1999-11-01

    The relation between age, task complexity and learning performance in a Multiple Cue Probability Learning task was studied by systematically varying the level of uncertainty present in the task, keeping constant the direction of relationships. Four age groups were constituted: young adults (mean age = 21), middle-aged adults (45), elderly people (69) and very elderly people (81). Five uncertainty levels were considered: predictability = 0.96, 0.80, 0.64, 0.48, and 0.32. All relationships involved were direct ones. A strong effect of uncertainty on 'control', a measure of the subject's consistency with respect to a linear model, was found. This effect was essentially a linear one. To each decrement in predictability of the task corresponded an equal decrement in participants' level of control. This level of decrement was the same, regardless of the age of the participant. It can be concluded that elderly people cope with uncertainty in probability learning tasks as well as young adults.

  19. Age-related changes in learning across early childhood: a new imitation task.

    Science.gov (United States)

    Dickerson, Kelly; Gerhardstein, Peter; Zack, Elizabeth; Barr, Rachel

    2013-11-01

    Imitation plays a critical role in social and cognitive development, but the social learning mechanisms contributing to the development of imitation are not well understood. We developed a new imitation task designed to examine social learning mechanisms across the early childhood period. The new task involves assembly of abstract-shaped puzzle pieces in an arbitrary sequence on a magnet board. Additionally, we introduce a new scoring system that extends traditional goal-directed imitation scoring to include measures of both children's success at copying gestures (sliding the puzzle pieces) and goals (connecting the puzzle pieces). In Experiment 1, we demonstrated an age-invariant baseline from 1.5 to 3.5 years of age, accompanied by age-related changes in success at copying goals and gestures from a live demonstrator. In Experiment 2, we applied our new task to learning following a video demonstration. Imitation performance in the video demonstration group lagged behind that of the live demonstration group, showing a protracted video deficit effect. Across both experiments, children were more likely to copy gestures at earlier ages, suggesting mimicry, and only later copy both goals and gestures, suggesting imitation. Taken together, the findings suggest that different social learning strategies may predominate in imitation learning dependent upon the degree of object affordance, task novelty, and task complexity. © 2012 Wiley Periodicals, Inc.

  20. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    Science.gov (United States)

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Courseware Integration into Task-Based Learning: A Case Study of Multimedia Courseware-Supported Oral Presentations for Non-English Major Students

    Science.gov (United States)

    Tsai, Shu-Chiao

    2011-01-01

    This study reports on the integration of English for Specific Purposes (ESP) multimedia courseware for oral presentations into a self-learning and elective program for non-English major students in an English as a Foreign Language (EFL) setting. A computer-aided instruction approach, combined with a task-based learning approach, was adopted.…

  2. Authentic tasks in higher education: Studying design principles for assessment

    NARCIS (Netherlands)

    van Keulen, H.; van den Berg, I.; Ramaekers, S.

    2006-01-01

    Students may benefit significantly from learning through authentic tasks. But how do we assess their learning outcomes, taking into account the specific characteristics of authentic tasks? In the second presentation of this symposium on design principles for authentic tasks we present and discuss

  3. Assessment for Learning Tasks and the Peer Assessment Process

    Science.gov (United States)

    Lauf, Lorraine; Dole, Shelley

    2010-01-01

    A program of Assessment for Learning (AfL) was implemented with 107 Year 12 students as part of their preparation for a major external test. Students completed extended mathematics tasks and selected student responses were used for peer assessment purposes. This paper reports on two of the AfL elements, namely task selection and peer assessment as…

  4. Relationships among Individual Task Self-Efficacy, Self-Regulated Learning Strategy Use and Academic Performance in a Computer-Supported Collaborative Learning Environment

    Science.gov (United States)

    Wilson, Kimberly; Narayan, Anupama

    2016-01-01

    This study investigates relationships between self-efficacy, self-regulated learning strategy use and academic performance. Participants were 96 undergraduate students working on projects with three subtasks (idea generation task, methodical task and data collection) in a blended learning environment. Task self-efficacy was measured with…

  5. Later learning stages in procedural memory are impaired in children with Specific Language Impairment.

    Science.gov (United States)

    Desmottes, Lise; Meulemans, Thierry; Maillart, Christelle

    2016-01-01

    According to the Procedural Deficit Hypothesis (PDH), difficulties in the procedural memory system may contribute to the language difficulties encountered by children with Specific Language Impairment (SLI). Most studies investigating the PDH have used the sequence learning paradigm; however these studies have principally focused on initial sequence learning in a single practice session. The present study sought to extend these investigations by assessing the consolidation stage and longer-term retention of implicit sequence-specific knowledge in 42 children with or without SLI. Both groups of children completed a serial reaction time task and were tested 24h and one week after practice. Results showed that children with SLI succeeded as well as children with typical development (TD) in the early acquisition stage of the sequence learning task. However, as training blocks progressed, only TD children improved their sequence knowledge while children with SLI did not appear to evolve any more. Moreover, children with SLI showed a lack of the consolidation gains in sequence knowledge displayed by the TD children. Overall, these results were in line with the predictions of the PDH and suggest that later learning stages in procedural memory are impaired in SLI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    Science.gov (United States)

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Learning to see the difference specifically alters the most informative V4 neurons.

    Science.gov (United States)

    Raiguel, Steven; Vogels, Rufin; Mysore, Santosh G; Orban, Guy A

    2006-06-14

    Perceptual learning is an instance of adult plasticity whereby training in a sensory (e.g., a visual task) results in neuronal changes leading to an improved ability to perform the task. Yet studies in primary visual cortex have found that changes in neuronal response properties were relatively modest. The present study examines the effects of training in an orientation discrimination task on the response properties of V4 neurons in awake rhesus monkeys. Results indicate that the changes induced in V4 are indeed larger than those in V1. Nonspecific effects of training included a decrease in response variance, and an increase in overall orientation selectivity in V4. The orientation-specific changes involved a local steepening in the orientation tuning curve around the trained orientation that selectively improved orientation discriminability at the trained orientation. Moreover, these changes were largely confined to the population of neurons whose orientation tuning was optimal for signaling small differences in orientation at the trained orientation. Finally, the modifications were restricted to the part of the tuning curve close to the trained orientation. Thus, we conclude that it is the most informative V4 neurons, those most directly involved in the discrimination, that are specifically modified by perceptual learning.

  8. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    Science.gov (United States)

    2008-08-01

    Mountain Car. However, because the source task uses a car with a motor more than twice as powerful as in the 3D task, the tran- sition function learned in...powerful car motor or changing the surface friction of the hill • s: changing the range of the state variables • si: changing where the car starts...Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological variations, and system approaches, 1994. Mazda Ahmadi, Matthew E

  9. The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks.

    Science.gov (United States)

    Butcher, Peter A; Ivry, Richard B; Kuo, Sheng-Han; Rydz, David; Krakauer, John W; Taylor, Jordan A

    2017-09-01

    Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly ( experiment 1 ) or gradually ( experiment 2 ). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability ( experiment 3 ). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials. NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory

  10. Learning stochastic reward distributions in a speeded pointing task.

    Science.gov (United States)

    Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C

    2008-04-23

    Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.

  11. Accuracy Feedback Improves Word Learning from Context: Evidence from a Meaning-Generation Task

    Science.gov (United States)

    Frishkoff, Gwen A.; Collins-Thompson, Kevyn; Hodges, Leslie; Crossley, Scott

    2016-01-01

    The present study asked whether accuracy feedback on a meaning generation task would lead to improved contextual word learning (CWL). Active generation can facilitate learning by increasing task engagement and memory retrieval, which strengthens new word representations. However, forced generation results in increased errors, which can be…

  12. Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.

    Science.gov (United States)

    Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi

    2014-02-01

    This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.

  13. Measurement of functional task difficulty during motor learning: What level of difficulty corresponds to the optimal challenge point?

    Science.gov (United States)

    Akizuki, Kazunori; Ohashi, Yukari

    2015-10-01

    The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Learning Task Knowledge from Dialog and Web Access

    Directory of Open Access Journals (Sweden)

    Vittorio Perera

    2015-06-01

    Full Text Available We present KnoWDiaL, an approach for Learning and using task-relevant Knowledge from human-robot Dialog and access to the Web. KnoWDiaL assumes that there is an autonomous agent that performs tasks, as requested by humans through speech. The agent needs to “understand” the request, (i.e., to fully ground the task until it can proceed to plan for and execute it. KnoWDiaL contributes such understanding by using and updating a Knowledge Base, by dialoguing with the user, and by accessing the web. We believe that KnoWDiaL, as we present it, can be applied to general autonomous agents. However, we focus on our work with our autonomous collaborative robot, CoBot, which executes service tasks in a building, moving around and transporting objects between locations. Hence, the knowledge acquired and accessed consists of groundings of language to robot actions, and building locations, persons, and objects. KnoWDiaL handles the interpretation of voice commands, is robust regarding speech recognition errors, and is able to learn commands involving referring expressions in an open domain, (i.e., without requiring a lexicon. We present in detail the multiple components of KnoWDiaL, namely a frame-semantic parser, a probabilistic grounding model, a web-based predicate evaluator, a dialog manager, and the weighted predicate-based Knowledge Base. We illustrate the knowledge access and updates from the dialog and Web access, through detailed and complete examples. We further evaluate the correctness of the predicate instances learned into the Knowledge Base, and show the increase in dialog efficiency as a function of the number of interactions. We have extensively and successfully used KnoWDiaL in CoBot dialoguing and accessing the Web, and extract a few corresponding example sequences from captured videos.

  15. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  16. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  17. Concrete and abstract visualizations in history learning tasks

    NARCIS (Netherlands)

    Prangsma, M.E.; van Boxtel, C.A.M.; Kanselaar, G.; Kirschner, P.A.

    2009-01-01

    Background: History learning requires that students understand historical phenomena, abstract concepts and the relations between them. Students have problems grasping, using and relating complex historical developments and structures. Aims: A study was conducted to determine the effects of tasks

  18. Group social rank is associated with performance on a spatial learning task.

    Science.gov (United States)

    Langley, Ellis J G; van Horik, Jayden O; Whiteside, Mark A; Madden, Joah R

    2018-02-01

    Dominant individuals differ from subordinates in their performances on cognitive tasks across a suite of taxa. Previous studies often only consider dyadic relationships, rather than the more ecologically relevant social hierarchies or networks, hence failing to account for how dyadic relationships may be adjusted within larger social groups. We used a novel statistical method: randomized Elo-ratings, to infer the social hierarchy of 18 male pheasants, Phasianus colchicus , while in a captive, mixed-sex group with a linear hierarchy. We assayed individual learning performance of these males on a binary spatial discrimination task to investigate whether inter-individual variation in performance is associated with group social rank. Task performance improved with increasing trial number and was positively related to social rank, with higher ranking males showing greater levels of success. Motivation to participate in the task was not related to social rank or task performance, thus indicating that these rank-related differences are not a consequence of differences in motivation to complete the task. Our results provide important information about how variation in cognitive performance relates to an individual's social rank within a group. Whether the social environment causes differences in learning performance or instead, inherent differences in learning ability predetermine rank remains to be tested.

  19. Using dual-task methodology to dissociate automatic from nonautomatic processes involved in artificial grammar learning.

    Science.gov (United States)

    Hendricks, Michelle A; Conway, Christopher M; Kellogg, Ronald T

    2013-09-01

    Previous studies have suggested that both automatic and intentional processes contribute to the learning of grammar and fragment knowledge in artificial grammar learning (AGL) tasks. To explore the relative contribution of automatic and intentional processes to knowledge gained in AGL, we utilized dual-task methodology to dissociate automatic and intentional grammar- and fragment-based knowledge in AGL at both acquisition and at test. Both experiments used a balanced chunk strength grammar to assure an equal proportion of fragment cues (i.e., chunks) in grammatical and nongrammatical test items. In Experiment 1, participants engaged in a working memory dual-task either during acquisition, test, or both acquisition and test. The results showed that participants performing the dual-task during acquisition learned the artificial grammar as well as the single-task group, presumably by relying on automatic learning mechanisms. A working memory dual-task at test resulted in attenuated grammar performance, suggesting a role for intentional processes for the expression of grammatical learning at test. Experiment 2 explored the importance of perceptual cues by changing letters between the acquisition and test phase; unlike Experiment 1, there was no significant learning of grammatical information for participants under dual-task conditions in Experiment 2, suggesting that intentional processing is necessary for successful acquisition and expression of grammar-based knowledge under transfer conditions. In sum, it appears that some aspects of learning in AGL are indeed relatively automatic, although the expression of grammatical information and the learning of grammatical patterns when perceptual similarity is eliminated both appear to require explicit resources. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Semi-supervised Learning for Phenotyping Tasks.

    Science.gov (United States)

    Dligach, Dmitriy; Miller, Timothy; Savova, Guergana K

    2015-01-01

    Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual chart review.

  1. Technology-enhanced learning on campus: insights from EUNIS e-Learning Task Force

    OpenAIRE

    Ferrell, Gill; Alves, Paulo; Bubas, Goran; Engert, Steffi; Epelboin, Yves; Madey, Jan; Palma, José; Piteira, Martinha; Restivo, T.M.; Ribeiro, Ligia; Sidelmann Rossen, Dorte; Soares, Filomena; Uhomoibhi, James

    2011-01-01

    In 2010 the EUNIS e-Learning Task Force (ELTF) members collaborated on a review of tools and technologies in use across our member institutions. One of the key features of that paper was the use of technology to give off-campus learners, such as distance learners, those undertaking field studies and learners in the workplace a richly supported learning experience. Building on the success of that collaboration, the ELTF members have turned their attention this year to the use of technology on ...

  2. Presentation-Practice-Production and Task-Based Learning in the Light of Second Language Learning Theories.

    Science.gov (United States)

    Ritchie, Graeme

    2003-01-01

    Features of presentation-practice-production (PPP) and task-based learning (TBL) models for language teaching are discussed with reference to language learning theories. Pre-selection of target structures, use of controlled repetition, and explicit grammar instruction in a PPP lesson are given. Suggests TBL approaches afford greater learning…

  3. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Cha, Kenny H.; Richter, Caleb D.

    2017-12-01

    Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p  =  0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.

  4. Investigating Language Learning Activity Using a CALL Task in the Self-access Centre

    Directory of Open Access Journals (Sweden)

    Carlos Montoro

    2011-09-01

    Full Text Available This article describes a small study of the language learning activity of individual learners using a CALL task in a self-access environment. The research focuses on the nature of the language learning activity, the most salient elements that make up its structure and major disturbances observed between and within some of those elements. It is set in the context of computer-assisted language learning (CALL and activity theory. A CALL task designed by the authors was made available online to be used as a research and learning tool. Empirical data was collected from two participants using ethnographic tools, such as participant observation and stimulated recall sessions. The analysis focuses on disturbances mainly involving the subject (i.e., the learner, mediating artefacts (e.g., the CALL task, the community (e.g., management and other self-access centre users and the object of the activity (i.e., learning English. It is recommended that future studies should look deeper into contradictions in the learning activity from a cultural-historical perspective.

  5. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2016-01-01

    Full Text Available Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals’ skill level, a factor that might be considered in mirror therapy research.

  6. Expectancy-value theory in persistence of learning effects in schizophrenia: role of task value and perceived competency.

    Science.gov (United States)

    Choi, Jimmy; Fiszdon, Joanna M; Medalia, Alice

    2010-09-01

    Expectancy-value theory, a widely accepted model of motivation, posits that expectations of success on a learning task and the individual value placed on the task are central determinants of motivation to learn. This is supported by research in healthy controls suggesting that beliefs of self-and-content mastery can be so influential they can predict the degree of improvement on challenging cognitive tasks even more so than general cognitive ability. We examined components of expectancy-value theory (perceived competency and task value), along with baseline arithmetic performance and neuropsychological performance, as possible predictors of learning outcome in a sample of 70 outpatients with schizophrenia randomized to 1 of 2 different arithmetic learning conditions and followed up after 3 months. Results indicated that as with nonpsychiatric samples, perceived self-competency for the learning task was significantly related to perceptions of task value attributed to the learning task. Baseline expectations of success predicted persistence of learning on the task at 3-month follow-up, even after accounting for variance attributable to different arithmetic instruction, baseline arithmetic ability, attention, and self-reports of task interest and task value. We also found that expectation of success is a malleable construct, with posttraining improvements persisting at follow-up. These findings support the notion that expectancy-value theory is operative in schizophrenia. Thus, similar to the nonpsychiatric population, treatment benefits may be enhanced and better maintained if remediation programs also focus on perceptions of self-competency for the training tasks. Treatment issues related to instilling self-efficacy in cognitive recovery programs are discussed.

  7. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Science.gov (United States)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  8. First-order and higher order sequence learning in specific language impairment.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-02-01

    A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    Science.gov (United States)

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. How attention can create synaptic tags for the learning of working memories in sequential tasks.

    Directory of Open Access Journals (Sweden)

    Jaldert O Rombouts

    2015-03-01

    Full Text Available Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions.

  11. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    Science.gov (United States)

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  12. Dynamic, continuous multitasking training leads to task-specific improvements but does not transfer across action selection tasks

    Science.gov (United States)

    Bender, Angela D.; Filmer, Hannah L.; Naughtin, Claire K.; Dux, Paul E.

    2017-12-01

    The ability to perform multiple tasks concurrently is an ever-increasing requirement in our information-rich world. Despite this, multitasking typically compromises performance due to the processing limitations associated with cognitive control and decision-making. While intensive dual-task training is known to improve multitasking performance, only limited evidence suggests that training-related performance benefits can transfer to untrained tasks that share overlapping processes. In the real world, however, coordinating and selecting several responses within close temporal proximity will often occur in high-interference environments. Over the last decade, there have been notable reports that training on video action games that require dynamic multitasking in a demanding environment can lead to transfer effects on aspects of cognition such as attention and working memory. Here, we asked whether continuous and dynamic multitasking training extends benefits to tasks that are theoretically related to the trained tasks. To examine this issue, we asked a group of participants to train on a combined continuous visuomotor tracking task and a perceptual discrimination task for six sessions, while an active control group practiced the component tasks in isolation. A battery of tests measuring response selection, response inhibition, and spatial attention was administered before and immediately after training to investigate transfer. Multitasking training resulted in substantial, task-specific gains in dual-task ability, but there was no evidence that these benefits generalized to other action control tasks. The findings suggest that training on a combined visuomotor tracking and discrimination task results in task-specific benefits but provides no additional value for untrained action selection tasks.

  13. Research Priorities in Limb and Task-Specific Dystonias

    Science.gov (United States)

    Pirio Richardson, Sarah; Altenmüller, Eckart; Alter, Katharine; Alterman, Ron L.; Chen, Robert; Frucht, Steven; Furuya, Shinichi; Jankovic, Joseph; Jinnah, H. A.; Kimberley, Teresa J.; Lungu, Codrin; Perlmutter, Joel S.; Prudente, Cecília N.; Hallett, Mark

    2017-01-01

    Dystonia, which causes intermittent or sustained abnormal postures and movements, can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in either the upper or lower limbs and may be task-specific causing abnormal motor performance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, be associated with parkinsonian disorders. The true prevalence of focal limb dystonia is not known and is likely currently underestimated, leaving a knowledge gap and an opportunity for future research. The pathophysiology of focal limb dystonia shares some commonalities with other dystonias with a loss of inhibition in the central nervous system and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional imaging studies revealed abnormalities in several anatomical networks that involve the cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing cause from effect in both physiology and imaging studies to permit focus on most relevant biological correlates of dystonia. There is no specific therapy for the treatment of limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is often applied to focal limb and task-specific dystonia. Various rehabilitation techniques have been applied and rehabilitation interventions may improve outcomes, but small sample size and lack of direct comparisons between methods to evaluate comparative efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have been explored in small studies with design limitations that do not yet clearly provide direction for larger clinical trials that could support new clinical therapies. Given these gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified priorities for future research including: the development of

  14. Research Priorities in Limb and Task-Specific Dystonias

    Directory of Open Access Journals (Sweden)

    Sarah Pirio Richardson

    2017-05-01

    Full Text Available Dystonia, which causes intermittent or sustained abnormal postures and movements, can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in either the upper or lower limbs and may be task-specific causing abnormal motor performance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, be associated with parkinsonian disorders. The true prevalence of focal limb dystonia is not known and is likely currently underestimated, leaving a knowledge gap and an opportunity for future research. The pathophysiology of focal limb dystonia shares some commonalities with other dystonias with a loss of inhibition in the central nervous system and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional imaging studies revealed abnormalities in several anatomical networks that involve the cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing cause from effect in both physiology and imaging studies to permit focus on most relevant biological correlates of dystonia. There is no specific therapy for the treatment of limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is often applied to focal limb and task-specific dystonia. Various rehabilitation techniques have been applied and rehabilitation interventions may improve outcomes, but small sample size and lack of direct comparisons between methods to evaluate comparative efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have been explored in small studies with design limitations that do not yet clearly provide direction for larger clinical trials that could support new clinical therapies. Given these gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified priorities for future research including

  15. Heuristic Task Analysis on E-Learning Course Development: A Formative Research Study

    Science.gov (United States)

    Lee, Ji-Yeon; Reigeluth, Charles M.

    2009-01-01

    Utilizing heuristic task analysis (HTA), a method developed for eliciting, analyzing, and representing expertise in complex cognitive tasks, a formative research study was conducted on the task of e-learning course development to further improve the HTA process. Three instructional designers from three different post-secondary institutions in the…

  16. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion.

    Science.gov (United States)

    May, Zacnicte; Fouad, Karim; Shum-Siu, Alice; Magnuson, David S K

    2015-09-15

    A rarely explored subject in animal research is the effect of pre-injury variables on behavioral outcome post-SCI. Low reporting of such variables may underlie some discrepancies in findings between laboratories. Particularly, intensive task-specific training before a SCI might be important, considering that sports injuries are one of the leading causes of SCI. Thus, individuals with SCI often underwent rigorous training before their injuries. In the present study, we asked whether training before SCI on a grasping task or a swimming task would influence motor recovery in rats. Swim pre-training impaired recovery of swimming 2 and 4 weeks post-injury. This result fits with the idea of motor learning interference, which posits that learning something new may disrupt learning of a new task; in this case, learning strategies to compensate for functional loss after SCI. In contrast to swimming, grasp pre-training did not influence grasping ability after SCI at any time point. However, grasp pre-trained rats attempted to grasp more times than untrained rats in the first 4 weeks post-injury. Also, lesion volume of grasp pre-trained rats was greater than that of untrained rats, a finding which may be related to stress or activity. The increased participation in rehabilitative training of the pre-trained rats in the early weeks post-injury may have potentiated spontaneous plasticity in the spinal cord and counteracted the deleterious effect of interference and bigger lesions. Thus, our findings suggest that pre-training plays a significant role in recovery after CNS damage and needs to be carefully controlled for. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  18. Optimizing learning of a locomotor task: amplifying errors as needed.

    Science.gov (United States)

    Marchal-Crespo, Laura; López-Olóriz, Jorge; Jaeger, Lukas; Riener, Robert

    2014-01-01

    Research on motor learning has emphasized that errors drive motor adaptation. Thereby, several researchers have proposed robotic training strategies that amplify movement errors rather than decrease them. In this study, the effect of different robotic training strategies that amplify errors on learning a complex locomotor task was investigated. The experiment was conducted with a one degree-of freedom robotic stepper (MARCOS). Subjects were requested to actively coordinate their legs in a desired gait-like pattern in order to track a Lissajous figure presented on a visual display. Learning with three different training strategies was evaluated: (i) No perturbation: the robot follows the subjects' movement without applying any perturbation, (ii) Error amplification: existing errors were amplified with repulsive forces proportional to errors, (iii) Noise disturbance: errors were evoked with a randomly-varying force disturbance. Results showed that training without perturbations was especially suitable for a subset of initially less-skilled subjects, while error amplification seemed to benefit more skilled subjects. Training with error amplification, however, limited transfer of learning. Random disturbing forces benefited learning and promoted transfer in all subjects, probably because it increased attention. These results suggest that learning a locomotor task can be optimized when errors are randomly evoked or amplified based on subjects' initial skill level.

  19. Adolescents with specific learning disabilities - perceptions of specific learning disabilities in the environment of secondary schools

    OpenAIRE

    Pospíšilová, Zuzana

    2012-01-01

    The thesis focuses on adolescents with specific learning disabilities in the milieu of secondary schools. It is divided into a theoretical part and an empirical part. The first part introduces a topic of specific learning disabilities in the developmental stage of adolescence. It first describes the most relevant aspects of adolescent development. The attention is then paid to typical manifestations of specific learning disabilities in adolescence, and also to secondary symptoms usually conne...

  20. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Science.gov (United States)

    Pascucci, David; Mastropasqua, Tommaso; Turatto, Massimo

    2015-01-01

    Task Irrelevant Perceptual Learning (TIPL) shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  1. With task experience students learn to ignore the content, not just the location of irrelevant information

    NARCIS (Netherlands)

    Rop, Gertjan; Verkoeijen, Peter P J L; van Gog, Tamara

    2017-01-01

    Presentation of irrelevant additional information hampers learning. However, using a word-learning task, recent research demonstrated that an initial negative effect of mismatching pictures on learning no longer occurred once learners gained task experience. It is unclear, however, whether learners

  2. AExaCTT - Aerobic Exercise and Consecutive Task-specific Training for the upper limb after stroke: Protocol for a randomised controlled pilot study.

    Science.gov (United States)

    Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette

    2017-09-01

    Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.

  3. Changes in prefrontal neuronal activity after learning to perform a spatial working memory task.

    Science.gov (United States)

    Qi, Xue-Lian; Meyer, Travis; Stanford, Terrence R; Constantinidis, Christos

    2011-12-01

    The prefrontal cortex is considered essential for learning to perform cognitive tasks though little is known about how the representation of stimulus properties is altered by learning. To address this issue, we recorded neuronal activity in monkeys before and after training on a task that required visual working memory. After the subjects learned to perform the task, we observed activation of more prefrontal neurons and increased activity during working memory maintenance. The working memory-related increase in firing rate was due mostly to regular-spiking putative pyramidal neurons. Unexpectedly, the selectivity of neurons for stimulus properties and the ability of neurons to discriminate between stimuli decreased as the information about stimulus properties was apparently present in neural firing prior to training and neuronal selectivity degraded after training in the task. The effect was robust and could not be accounted for by differences in sampling sites, selection of neurons, level of performance, or merely the elapse of time. The results indicate that, in contrast to the effects of perceptual learning, mastery of a cognitive task degrades the apparent stimulus selectivity as neurons represent more abstract information related to the task. This effect is countered by the recruitment of more neurons after training.

  4. Visual paired-associate learning: in search of material-specific effects in adult patients who have undergone temporal lobectomy.

    Science.gov (United States)

    Smith, Mary Lou; Bigel, Marla; Miller, Laurie A

    2011-02-01

    The mesial temporal lobes are important for learning arbitrary associations. It has previously been demonstrated that left mesial temporal structures are involved in learning word pairs, but it is not yet known whether comparable lesions in the right temporal lobe impair visually mediated associative learning. Patients who had undergone left (n=16) or right (n=18) temporal lobectomy for relief of intractable epilepsy and healthy controls (n=13) were administered two paired-associate learning tasks assessing their learning and memory of pairs of abstract designs or pairs of symbols in unique locations. Both patient groups had deficits in learning the designs, but only the right temporal group was impaired in recognition. For the symbol location task, differences were not found in learning, but again a recognition deficit was found for the right temporal group. The findings implicate the mesial temporal structures in relational learning. They support a material-specific effect for recognition but not for learning and recall of arbitrary visual and visual-spatial associative information. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Self-Control of Task Difficulty During Early Practice Promotes Motor Skill Learning.

    Science.gov (United States)

    Andrieux, Mathieu; Boutin, Arnaud; Thon, Bernard

    2016-01-01

    This study was designed to determine whether the effect of self-control of task difficulty on motor learning is a function of the period of self-control administration. In a complex anticipation-coincidence task that required participants to intercept 3 targets with a virtual racquet, the task difficulty was either self-controlled or imposed to the participants in the two phases of the acquisition session. First, the results confirmed the beneficial effects of self-control over fully prescribed conditions. Second, the authors also demonstrated that a partial self-control of task difficulty better promotes learning than does a complete self-controlled procedure. Overall, the results revealed that these benefits are increased when this choice is allowed during early practice. The findings are discussed in terms of theoretical and applied perspectives.

  6. Social learning of an associative foraging task in zebrafish

    Science.gov (United States)

    Zala, Sarah M.; Määttänen, Ilmari

    2013-05-01

    The zebrafish ( Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  7. One-year retention of general and sequence-specific skills in a probabilistic, serial reaction time task.

    Science.gov (United States)

    Romano, Jennifer C; Howard, James H; Howard, Darlene V

    2010-05-01

    Procedural skills such as riding a bicycle and playing a musical instrument play a central role in daily life. Such skills are learned gradually and are retained throughout life. The present study investigated 1-year retention of procedural skill in a version of the widely used serial reaction time task (SRTT) in young and older motor-skill experts and older controls in two experiments. The young experts were college-age piano and action video-game players, and the older experts were piano players. Previous studies have reported sequence-specific skill retention in the SRTT as long as 2 weeks but not at 1 year. Results indicated that both young and older experts and older non-experts revealed sequence-specific skill retention after 1 year with some evidence that general motor skill was retained as well. These findings are consistent with theoretical accounts of procedural skill learning such as the procedural reinstatement theory as well as with previous studies of retention of other motor skills.

  8. Stress before extinction learning enhances and generalizes extinction memory in a predictive learning task.

    Science.gov (United States)

    Meir Drexler, Shira; Hamacher-Dang, Tanja C; Wolf, Oliver T

    2017-05-01

    In extinction learning, the individual learns that a previously acquired association (e.g. between a threat and its predictor) is no longer valid. This learning is the principle underlying many cognitive-behavioral psychotherapeutic treatments, e.g. 'exposure therapy'. However, extinction is often highly-context dependent, leading to renewal (relapse of extinguished conditioned response following context change). We have previously shown that post-extinction stress leads to a more context-dependent extinction memory in a predictive learning task. Yet as stress prior to learning can impair the integration of contextual cues, here we aim to create a more generalized extinction memory by inducing stress prior to extinction. Forty-nine men and women learned the associations between stimuli and outcomes in a predictive learning task (day 1), extinguished them shortly after an exposure to a stress/control condition (day 2), and were tested for renewal (day 3). No group differences were seen in acquisition and extinction learning, and a renewal effect was present in both groups. However, the groups differed in the strength and context-dependency of the extinction memory. Compared to the control group, the stress group showed an overall reduced recovery of responding to the extinguished stimuli, in particular in the acquisition context. These results, together with our previous findings, demonstrate that the effects of stress exposure on extinction memory depend on its timing. While post-extinction stress makes the memory more context-bound, pre-extinction stress strengthens its consolidation for the acquisition context as well, making it potentially more resistant to relapse. These results have implications for the use of glucocorticoids as extinction-enhancers in exposure therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems.

    Science.gov (United States)

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.

  10. Novel-word learning deficits in Mandarin-speaking preschool children with specific language impairments.

    Science.gov (United States)

    Chen, Yuchun; Liu, Huei-Mei

    2014-01-01

    Children with SLI exhibit overall deficits in novel word learning compared to their age-matched peers. However, the manifestation of the word learning difficulty in SLI was not consistent across tasks and the factors affecting the learning performance were not yet determined. Our aim is to examine the extent of word learning difficulties in Mandarin-speaking preschool children with SLI, and to explore the potent influence of existing lexical knowledge on to the word learning process. Preschool children with SLI (n=37) and typical language development (n=33) were exposed to novel words for unfamiliar objects embedded in stories. Word learning tasks including the initial mapping and short-term repetitive learning were designed. Results revealed that Mandarin-speaking preschool children with SLI performed as well as their age-peers in the initial form-meaning mapping task. Their word learning difficulty was only evidently shown in the short-term repetitive learning task under a production demand, and their learning speed was slower than the control group. Children with SLI learned the novel words with a semantic head better in both the initial mapping and repetitive learning tasks. Moderate correlations between stand word learning performances and scores on standardized vocabulary were found after controlling for children's age and nonverbal IQ. The results suggested that the word learning difficulty in children with SLI occurred in the process of establishing a robust phonological representation at the beginning stage of word learning. Also, implicit compound knowledge is applied to aid word learning process for children with and without SLI. We also provide the empirical data to validate the relationship between preschool children's word learning performance and their existing receptive vocabulary ability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Didactical design based on sharing and jumping tasks for senior high school chemistry learning

    Science.gov (United States)

    Fatimah, I.; Hendayana, S.; Supriatna, A.

    2018-05-01

    The purpose of this research is to develop the didactical design of senior high school chemistry learning based on sharing and jumping tasks in shift equilibrium chemistry. Sharing tasks used to facilitate students slow learners with help by other students of fast learners so they engage in learning. While jumping tasks used to challenge fast learners students so they didn’t feel bored in learning. In developing the didactic design, teacher activity is not only to focus on students and learning materials but also on the relationship between students and learning materials. The results of the analysis teaching plan of shift equilibrium chemistry in attached Senior High School to Indonesia University of Education showed that the learning activities more focus on how the teacher teaches instead of how the process of students’ learning. The use of research method is didactical design research (DDR). Didactical design consisted of three steps i.e. (a) analysing didactical condition before learning, (b) analyzing metapedadidactical, and (c) analyzing retrospective. Data were collected by test, observations, interviews, documentation and recordings (audio and video).The result showed that the didactical design on shift equilibrium chemistry was valid.

  12. Valence of Facial Cues Influences Sheep Learning in a Visual Discrimination Task

    Directory of Open Access Journals (Sweden)

    Lucille G. A. Bellegarde

    2017-11-01

    Full Text Available Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emotional states of neutral (ruminating in the home pen or negative valence (social isolation or aggressive interaction. Sheep (n = 35 first had to learn a discrimination task with colored cards. Animals that reached the learning criterion (n = 16 were then presented with pairs of images of the face of a single individual taken in the neutral situation and in one of the negative situations. Finally, sheep had to generalize what they had learned to new pairs of images of faces taken in the same situation, but of a different conspecific. All sheep that learned the discrimination task with colored cards reached the learning criterion with images of faces. Sheep that had to associate a negative image with a food reward learned faster than sheep that had to associate a neutral image with a reward. With the exception of sheep from the aggression-rewarded group, sheep generalized this discrimination to images of faces of different individuals. Our results suggest that sheep can perceive the emotional valence displayed on faces of conspecifics and that this valence affects learning processes.

  13. The Impact of Students' Temporal Perspectives on Time-on-Task and Learning Performance in Game Based Learning

    Science.gov (United States)

    Romero, Margarida; Usart, Mireia

    2013-01-01

    The use of games for educational purposes has been considered as a learning methodology that attracts the students' attention and may allow focusing individuals on the learning activity through the [serious games] SG game dynamic. Based on the hypothesis that students' Temporal Perspective has an impact on learning performance and time-on-task,…

  14. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Directory of Open Access Journals (Sweden)

    David Pascucci

    Full Text Available Task Irrelevant Perceptual Learning (TIPL shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  15. E-learning task analysis making temporal evolution graphics on symptoms of waves and the ability to solve problems

    Science.gov (United States)

    Rosdiana, L.; Widodo, W.; Nurita, T.; Fauziah, A. N. M.

    2018-04-01

    This study aimed to describe the ability of pre-service teachers to create graphs, solve the problem of spatial and temporal evolution on the symptoms of vibrations and waves. The learning was conducted using e-learning method. The research design is a quasi-experimental design with one-shot case study. The e-learning contained learning materials and tasks involving answering tasks, making questions, solving their own questions, and making graphs. The participants of the study was 28 students of Science Department, Universitas Negeri Surabaya. The results obtained by using the e-learning were that the students’ ability increase gradually from task 1 to task 3 (the tasks consisted of three tasks). Additionally, based on the questionnaire with 28 respondents, it showed that 24 respondents stated that making graphs via e-learning were still difficult. Four respondents said that it was easy to make graphs via e-learning. Nine respondents stated that the e-learning did not help them in making graphs and 19 respondents stated that the e-learning help in creating graphs. The conclusion of the study is that the students was able to make graphs on paper sheet, but they got difficulty to make the graphs in e-learning (the virtual form).

  16. The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks

    Science.gov (United States)

    Sami, Saber; Robertson, Edwin M.

    2014-01-01

    Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period. PMID:24623776

  17. Fear of negative evaluation biases social evaluation inference: evidence from a probabilistic learning task.

    Science.gov (United States)

    Button, Katherine S; Kounali, Daphne; Stapinski, Lexine; Rapee, Ronald M; Lewis, Glyn; Munafò, Marcus R

    2015-01-01

    Fear of negative evaluation (FNE) defines social anxiety yet the process of inferring social evaluation, and its potential role in maintaining social anxiety, is poorly understood. We developed an instrumental learning task to model social evaluation learning, predicting that FNE would specifically bias learning about the self but not others. During six test blocks (3 self-referential, 3 other-referential), participants (n = 100) met six personas and selected a word from a positive/negative pair to finish their social evaluation sentences "I think [you are / George is]…". Feedback contingencies corresponded to 3 rules, liked, neutral and disliked, with P[positive word correct] = 0.8, 0.5 and 0.2, respectively. As FNE increased participants selected fewer positive words (β = -0.4, 95% CI -0.7, -0.2, p = 0.001), which was strongest in the self-referential condition (FNE × condition 0.28, 95% CI 0.01, 0.54, p = 0.04), and the neutral and dislike rules (FNE × condition × rule, p = 0.07). At low FNE the proportion of positive words selected for self-neutral and self-disliked greatly exceeded the feedback contingency, indicating poor learning, which improved as FNE increased. FNE is associated with differences in processing social-evaluative information specifically about the self. At low FNE this manifests as insensitivity to learning negative self-referential evaluation. High FNE individuals are equally sensitive to learning positive or negative evaluation, which although objectively more accurate, may have detrimental effects on mental health.

  18. The Impact of Learning Task Design on Students' Situational Interest in Physical Education

    Science.gov (United States)

    Roure, Cédric; Pasco, Denis

    2018-01-01

    Purpose: Based on the framework of interest, studies have shown that teachers can enhance students' situational interest (SI) by manipulating the components of learning tasks. The purpose of this study was to examine the impact of learning task design on students' SI in physical education (PE). Method: The participants were 167 secondary school…

  19. Post-task Effects on EEG Brain Activity Differ for Various Differential Learning and Contextual Interference Protocols

    Directory of Open Access Journals (Sweden)

    Diana Henz

    2018-01-01

    Full Text Available A large body of research has shown superior learning rates in variable practice compared to repetitive practice. More specifically, this has been demonstrated in the contextual interference (CI and in the differential learning (DL approach that are both representatives of variable practice. Behavioral studies have indicate different learning processes in CI and DL. Aim of the present study was to examine immediate post-task effects on electroencephalographic (EEG brain activation patterns after CI and DL protocols that reveal underlying neural processes at the early stage of motor consolidation. Additionally, we tested two DL protocols (gradual DL, chaotic DL to examine the effect of different degrees of stochastic fluctuations within the DL approach with a low degree of fluctuations in gradual DL and a high degree of fluctuations in chaotic DL. Twenty-two subjects performed badminton serves according to three variable practice protocols (CI, gradual DL, chaotic DL, and a repetitive learning protocol in a within-subjects design. Spontaneous EEG activity was measured before, and immediately after each 20-min practice session from 19 electrodes. Results showed distinguishable neural processes after CI, DL, and repetitive learning. Increases in EEG theta and alpha power were obtained in somatosensory regions (electrodes P3, P7, Pz, P4, P8 in both DL conditions compared to CI, and repetitive learning. Increases in theta and alpha activity in motor areas (electrodes C3, Cz, C4 were found after chaotic DL compared to gradual DL, and CI. Anterior areas (electrodes F3, F7, Fz, F4, F8 showed increased activity in the beta and gamma bands after CI. Alpha activity was increased in occipital areas (electrodes O1, O2 after repetitive learning. Post-task EEG brain activation patterns suggest that DL stimulates the somatosensory and motor system, and engages more regions of the cortex than repetitive learning due to a tighter stimulation of the motor and

  20. Optimizing the number of steps in learning tasks for complex skills.

    NARCIS (Netherlands)

    Nadolski, Rob; Kirschner, Paul A.; Van Merriënboer, Jeroen

    2007-01-01

    Background. Carrying out whole tasks is often too difficult for novice learners attempting to acquire complex skills. The common solution is to split up the tasks into a number of smaller steps. The number of steps must be optimised for efficient and effective learning. Aim. The aim of the study is

  1. Code-specific learning rules improve action selection by populations of spiking neurons.

    Science.gov (United States)

    Friedrich, Johannes; Urbanczik, Robert; Senn, Walter

    2014-08-01

    Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

  2. Performance of children with developmental dyslexia on high and low topological entropy artificial grammar learning task.

    Science.gov (United States)

    Katan, Pesia; Kahta, Shani; Sasson, Ayelet; Schiff, Rachel

    2017-07-01

    Graph complexity as measured by topological entropy has been previously shown to affect performance on artificial grammar learning tasks among typically developing children. The aim of this study was to examine the effect of graph complexity on implicit sequential learning among children with developmental dyslexia. Our goal was to determine whether children's performance depends on the complexity level of the grammar system learned. We conducted two artificial grammar learning experiments that compared performance of children with developmental dyslexia with that of age- and reading level-matched controls. Experiment 1 was a high topological entropy artificial grammar learning task that aimed to establish implicit learning phenomena in children with developmental dyslexia using previously published experimental conditions. Experiment 2 is a lower topological entropy variant of that task. Results indicated that given a high topological entropy grammar system, children with developmental dyslexia who were similar to the reading age-matched control group had substantial difficulty in performing the task as compared to typically developing children, who exhibited intact implicit learning of the grammar. On the other hand, when tested on a lower topological entropy grammar system, all groups performed above chance level, indicating that children with developmental dyslexia were able to identify rules from a given grammar system. The results reinforced the significance of graph complexity when experimenting with artificial grammar learning tasks, particularly with dyslexic participants.

  3. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory

    Science.gov (United States)

    Uematsu, Akira; Tan, Bao Zhen

    2015-01-01

    Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494

  4. 34 CFR 300.307 - Specific learning disabilities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Specific learning disabilities. 300.307 Section 300.307... Educational Placements Additional Procedures for Identifying Children with Specific Learning Disabilities § 300.307 Specific learning disabilities. (a) General. A State must adopt, consistent with § 300.309...

  5. Procedural learning in Tourette syndrome, ADHD, and comorbid Tourette-ADHD: Evidence from a probabilistic sequence learning task.

    Science.gov (United States)

    Takács, Ádám; Shilon, Yuval; Janacsek, Karolina; Kóbor, Andrea; Tremblay, Antoine; Németh, Dezső; Ullman, Michael T

    2017-10-01

    Procedural memory, which is rooted in the basal ganglia, plays an important role in the implicit learning of motor and cognitive skills. Few studies have examined procedural learning in either Tourette syndrome (TS) or Attention Deficit Hyperactivity Disorder (ADHD), despite basal ganglia abnormalities in both of these neurodevelopmental disorders. We aimed to assess procedural learning in children with TS (n=13), ADHD (n=22), and comorbid TS-ADHD (n=20), as well as in typically developing children (n=21). Procedural learning was measured with a well-studied implicit probabilistic sequence learning task, the alternating serial reaction time task. All four groups showed evidence of sequence learning, and moreover did not differ from each other in sequence learning. This result, from the first study to examine procedural memory across TS, ADHD and comorbid TS-ADHD, is consistent with previous findings of intact procedural learning of sequences in both TS and ADHD. In contrast, some studies have found impaired procedural learning of non-sequential probabilistic categories in TS. This suggests that sequence learning may be spared in TS and ADHD, while at least some other forms of learning in procedural memory are impaired, at least in TS. Our findings indicate that disorders associated with basal ganglia abnormalities do not necessarily show procedural learning deficits, and provide a possible path for more effective diagnostic tools, and educational and training programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Maximiliano Rapanelli

    Full Text Available Circuit modification associated with learning and memory involves multiple events, including the addition and remotion of newborn cells trough adulthood. Adult neurogenesis and gliogenesis were mainly described in models of voluntary exercise, enriched environments, spatial learning and memory task; nevertheless, it is unknown whether it is a common mechanism among different learning paradigms, like reward dependent tasks. Therefore, we evaluated cell proliferation, neurogenesis, astrogliogenesis, survival and neuronal maturation in the medial prefrontal cortex (mPFC and the hippocampus (HIPP during learning an operant conditioning task. This was performed by using endogenous markers of cell proliferation, and a bromodeoxiuridine (BrdU injection schedule in two different phases of learning. Learning an operant conditioning is divided in two phases: a first phase when animals were considered incompletely trained (IT, animals that were learning the task when they performed between 50% and 65% of the responses, and a second phase when animals were considered trained (Tr, animals that completely learned the task when they reached 100% of the responses with a latency time lower than 5 seconds. We found that learning an operant conditioning task promoted cell proliferation in both phases of learning in the mPFC and HIPP. Additionally, the results presented showed that astrogliogenesis was induced in the medial prefrontal cortex (mPFC in both phases, however, the first phase promoted survival of these new born astrocytes. On the other hand, an increased number of new born immature neurons was observed in the HIPP only in the first phase of learning, whereas, decreased values were observed in the second phase. Finally, we found that neuronal maturation was induced only during the first phase. This study shows for the first time that learning a reward-dependent task, like the operant conditioning, promotes neurogenesis, astrogliogenesis, survival and

  7. Position-aware deep multi-task learning for drug-drug interaction extraction.

    Science.gov (United States)

    Zhou, Deyu; Miao, Lei; He, Yulan

    2018-05-01

    A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework. The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Multimedia Design Principles in the Psychomotor Domain: The Effect of Multimedia and Spatial Contiguity on Students' Learning of Basic Life Support with Task Cards

    Science.gov (United States)

    Iserbyt, Peter; Mols, Liesbet; Elen, Jan; Behets, Daniel

    2012-01-01

    This study adds to the literature by introducing multimedia research in the psychomotor area. In this study, 87 freshman students in pedagogy used task cards to learn Basic Life Support (BLS), a psychomotor skill consisting of nine lifesaving actions to be performed in a specific order. Task cards are printed materials and are often implemented…

  9. Individual personality differences in goats predict their performance in visual learning and non-associative cognitive tasks.

    Science.gov (United States)

    Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G

    2017-01-01

    Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. WHY ADULTS LEARN: INTERPRETING ADULTS’ REASONS TO PARTICIPATE IN EDUCATION IN TERMS OF ECCLES’ SUBJECTIVE TASK VALUE

    Directory of Open Access Journals (Sweden)

    Julia Gorges

    2016-01-01

    Full Text Available Psychological research shows that subjective task value, a basic component of expectancyvalue theory as outlined by Eccles, predicts task choice (e.g., going to graduate school. However, Eccles’ approach has not been used to investigate adult learning so far. Therefore, the present study investigated a specific form of subjective task value and task choice, namely adults’ subjective task value of participation in education. Based on expectancy-value theory, qualitative content analyses of 16 interviews with adult learners (aged between 21 and 67 from varying age groups and educational backgrounds show a differentiation of positive value according to points of reference and a revised conceptualisation of cost as an independent component of subjective task value with four subcomponents. Apparently people estimate positive value and cost separately at first and only later weigh these components against each other to arrive at an overall evaluation of subjective task value, which, in turn, predicts participation in education. Moreover, results suggest a distinction between anticipated subjective task value prior to participation and subjective task value based on experience (i.e., in hindsight. Benefits of using expectancy-value theory for future research on adults’ participation in education are discussed.

  11. Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.

    Science.gov (United States)

    Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J

    2018-01-01

    Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.

  12. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Directory of Open Access Journals (Sweden)

    Thomas D. GRIFFIN

    2012-10-01

    Full Text Available The main goal for the current study was to investigate whether individual differences in domaingeneral thinking dispositions might affect learning from multiple-document inquiry tasks in science.Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be different from what has been observed in the past from those documents. Understanding was assessed with two measures: an essay task and an inference verification task. Domain-general thinking dispositions were assessed with a Commitment to Logic, Evidence, and Reasoning (CLEAR thinking scale. The measures of understanding wereuniquely predicted by both reading skills and CLEAR thinking scores, and these effects were not attributable to prior knowledge or interest. The results suggest independent roles for thinkingdispositions and reading ability when students read to learn from multiple-document inquiry tasks in science.

  13. Task Experience as a Boundary Condition for the Negative Effects of Irrelevant Information on Learning

    Science.gov (United States)

    Rop, Gertjan; van Wermeskerken, Margot; de Nooijer, Jacqueline A.; Verkoeijen, Peter P. J. L.; van Gog, Tamara

    2018-01-01

    Research on multimedia learning has shown that learning is hampered when a multimedia message includes extraneous information that is not relevant for the task, because processing the extraneous information uses up scarce attention and working memory resources. However, eye-tracking research suggests that task experience might be a boundary…

  14. Sucrose Responsiveness, Learning Success, and Task Specialization in Ants

    Science.gov (United States)

    Perez, Margot; Rolland, Uther; Giurfa,, Martin; d'Ettorre, Patrizia

    2013-01-01

    Social insects possess remarkable learning capabilities, which are crucial for their ecological success. They also exhibit interindividual differences in responsiveness to environmental stimuli, which underlie task specialization and division of labor. Here we investigated for the first time the relationships between sucrose responsiveness,…

  15. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee

    Science.gov (United States)

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.

    2017-01-01

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727

  16. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee.

    Science.gov (United States)

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J

    2017-10-11

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.

  17. Task Complexity Modulates Sleep-Related Offline Learning in Sequential Motor Skills

    Directory of Open Access Journals (Sweden)

    Klaus Blischke

    2017-07-01

    Full Text Available Recently, a number of authors have advocated the introduction of gross motor tasks into research on sleep-related motor offline learning. Such tasks are often designed to be more complex than traditional key-pressing tasks. However, until now, little effort has been undertaken to scrutinize the role of task complexity in any systematic way. Therefore, the effect of task complexity on the consolidation of gross motor sequence memory was examined by our group in a series of three experiments. Criterion tasks always required participants to produce unrestrained arm movement sequences by successively fitting a small peg into target holes on a pegboard. The sequences always followed a certain spatial pattern in the horizontal plane. The targets were visualized prior to each transport movement on a computer screen. The tasks differed with respect to sequence length and structural complexity. In each experiment, half of the participants initially learned the task in the morning and were retested 12 h later following a wake retention interval. The other half of the subjects underwent practice in the evening and was retested 12 h later following a night of sleep. The dependent variables were the error rate and total sequence execution time (inverse to the sequence execution speed. Performance generally improved during acquisition. The error rate was always low and remained stable during retention. The sequence execution time significantly decreased again following sleep but not after waking when the sequence length was long and structural complexity was high. However, sleep-related offline improvements were absent when the sequence length was short or when subjects performed a highly regular movement pattern. It is assumed that the occurrence of sleep-related offline performance improvements in sequential motor tasks is associated with a sufficient amount of motor task complexity.

  18. Fear of Negative Evaluation Biases Social Evaluation Inference: Evidence from a Probabilistic Learning Task

    Science.gov (United States)

    Button, Katherine S.; Kounali, Daphne; Stapinski, Lexine; Rapee, Ronald M.; Lewis, Glyn; Munafò, Marcus R.

    2015-01-01

    Background Fear of negative evaluation (FNE) defines social anxiety yet the process of inferring social evaluation, and its potential role in maintaining social anxiety, is poorly understood. We developed an instrumental learning task to model social evaluation learning, predicting that FNE would specifically bias learning about the self but not others. Methods During six test blocks (3 self-referential, 3 other-referential), participants (n = 100) met six personas and selected a word from a positive/negative pair to finish their social evaluation sentences “I think [you are / George is]…”. Feedback contingencies corresponded to 3 rules, liked, neutral and disliked, with P[positive word correct] = 0.8, 0.5 and 0.2, respectively. Results As FNE increased participants selected fewer positive words (β = −0.4, 95% CI −0.7, −0.2, p = 0.001), which was strongest in the self-referential condition (FNE × condition 0.28, 95% CI 0.01, 0.54, p = 0.04), and the neutral and dislike rules (FNE × condition × rule, p = 0.07). At low FNE the proportion of positive words selected for self-neutral and self-disliked greatly exceeded the feedback contingency, indicating poor learning, which improved as FNE increased. Conclusions FNE is associated with differences in processing social-evaluative information specifically about the self. At low FNE this manifests as insensitivity to learning negative self-referential evaluation. High FNE individuals are equally sensitive to learning positive or negative evaluation, which although objectively more accurate, may have detrimental effects on mental health. PMID:25853835

  19. Improving Language Production Using Subtitled Similar Task Videos

    Science.gov (United States)

    Arslanyilmaz, Abdurrahman; Pedersen, Susan

    2010-01-01

    This study examines the effects of subtitled similar task videos on language production by nonnative speakers (NNSs) in an online task-based language learning (TBLL) environment. Ten NNS-NNS dyads collaboratively completed four communicative tasks, using an online TBLL environment specifically designed for this study and a chat tool in…

  20. Different Neuroplasticity for Task Targets and Distractors

    Science.gov (United States)

    Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.

    2011-01-01

    Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective

  1. Different neuroplasticity for task targets and distractors.

    Directory of Open Access Journals (Sweden)

    Elsie Y Spingath

    2011-01-01

    Full Text Available Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from

  2. Thrive or overload? The effect of task complexity on novices' simulation-based learning.

    Science.gov (United States)

    Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam

    2016-09-01

    Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p Education.

  3. Video-task assessment of learning and memory in Macaques (Macaca mulatta) - Effects of stimulus movement on performance

    Science.gov (United States)

    Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.

    1989-01-01

    Effects of stimulus movement on learning, transfer, matching, and short-term memory performance were assessed with 2 monkeys using a video-task paradigm in which the animals responded to computer-generated images by manipulating a joystick. Performance on tests of learning set, transfer index, matching to sample, and delayed matching to sample in the video-task paradigm was comparable to that obtained in previous investigations using the Wisconsin General Testing Apparatus. Additionally, learning, transfer, and matching were reliably and significantly better when the stimuli or discriminanda moved than when the stimuli were stationary. External manipulations such as stimulus movement may increase attention to the demands of a task, which in turn should increase the efficiency of learning. These findings have implications for the investigation of learning in other populations, as well as for the application of the video-task paradigm to comparative study.

  4. Canonical Correlational Models of Students’ Perceptions of Assessment Tasks, Motivational Orientations, and Learning Strategies

    Directory of Open Access Journals (Sweden)

    Hussain Alkharusi

    2013-01-01

    Full Text Available The present study aims at deriving correlational models of students' perceptions of assessment tasks, motivational orientations, and learning strategies using canonical analyses. Data were collected from 198 Omani tenth grade students. Results showed that high degrees of authenticity and transparency in assessment were associated with positive students' self-efficacy and task value. Also, high degrees of authenticity, transparency, and diversity in assessment were associated with a strong reliance on deep learning strategies; whereas a high degree of congruence with planned learning and a low degree of authenticity were associated with more reliance on surface learning strategies. Implications for classroom assessment practice and research were discussed.

  5. Stroop-like effects in a new-code learning task: A cognitive load theory perspective.

    Science.gov (United States)

    Hazan-Liran, Batel; Miller, Paul

    2017-09-01

    To determine whether and how learning is biased by competing task-irrelevant information that creates extraneous cognitive load, we assessed the efficiency of university students with a learning paradigm in two experiments. The paradigm asked participants to learn associations between eight words and eight digits. We manipulated congruity of the digits' ink colour with the words' semantics. In Experiment 1 word stimuli were colour words (e.g., blue, yellow) and in Experiment 2 colour-related word concepts (e.g., sky, banana). Marked benefits and costs on learning due to variation in extraneous cognitive load originating from processing task-irrelevant information were evident. Implications for cognitive load theory and schooling are discussed.

  6. Learning tasks as a possible treatment for DNA lesions induced by oxidative stress in hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    DragoCrneci; Radu Silaghi-Dumitrescu

    2013-01-01

    Reactive oxygen species have been implicated in conditions ranging from cardiovascular dysfunc-tion, arthritis, cancer, to aging and age-related disorders. The organism developed several path-ways to counteract these effects, with base excision repair being responsible for repairing one of the major base lesions (8-oxoG) in al organisms. Epidemiological evidence suggests that cognitive stimulation makes the brain more resilient to damage or degeneration. Recent studies have linked enriched environment to reduction of oxidative stressin neurons of mice with Alzheimer’s dis-ease-like disease, but given its complexity it is not clear what specific aspect of enriched environ-ment has therapeutic effects. Studies from molecular biology have shown that the protein p300, which is a transcription co-activator required for consolidation of memories during specific learning tasks, is at the same time involved in DNA replication and repair, playing a central role in the long-patch pathway of base excision repair. Based on the evidence, we propose that learning tasks such as novel object recognition could be tested as possible methods of base excision repair faci-litation, hence inducing DNA repair in the hippocampal neurons. If this method proves to be effective, it could be the start for designing similar tasks for humans, as a behavioral therapeutic complement to the classical drug-based therapy in treating neurodegenerative disorders. This review presents the current status of therapeutic methods used in treating neurodegenerative diseases induced by reactive oxygen species and proposes a new approach based on existing data.

  7. No effects of transcranial DLPFC stimulation on implicit task sequence learning and consolidation.

    Science.gov (United States)

    Savic, Branislav; Cazzoli, Dario; Müri, René; Meier, Beat

    2017-08-29

    Neurostimulation of the dorsolateral prefrontal cortex (DLPFC) can modulate performance in cognitive tasks. In a recent study, however, transcranial direct current stimulation (tDCS) of the DLPFC did not affect implicit task sequence learning and consolidation in a paradigm that involved bimanual responses. Because bimanual performance increases the coupling between homologous cortical areas of the hemispheres and left and right DLPFC were stimulated separately the null findings may have been due to the bimanual setup. The aim of the present study was to test the effect of neuro-stimulation on sequence learning in a uni-manual setup. For this purpose two experiments were conducted. In Experiment 1, the DLPFC was stimulated with tDCS. In Experiment 2 the DLPFC was stimulated with transcranial magnetic stimulation (TMS). In both experiments, consolidation was measured 24 hours later. The results showed that sequence learning was present in all conditions and sessions, but it was not influenced by stimulation. Likewise, consolidation of sequence learning was robust across sessions, but it was not influenced by stimulation. These results replicate and extend previous findings. They indicate that established tDCS and TMS protocols on the DLPFC do not influence implicit task sequence learning and consolidation.

  8. Emergence of motor synergy in vertical reaching task via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2013-01-01

    The dynamics of multijoint limbs often causes complex dynamic interaction torques which are the inertial effect of other joints motion. It is known that Cerebellum takes important role in a motor learning by developing the internal model. In this paper, we propose a novel computational control paradigm in vertical reaching task which involves the management of interaction torques and gravitational effect. The obtained results demonstrate that the proposed method is valid for acquiring motor synergy in the system with actuation redundancy and resulted in the energy efficient solutions. It is highlighted that the tacit learning in vertical reaching task can bring computational adaptability and optimality with model-free and cost-function-free approach differently from previous studies.

  9. Emotion-based learning: Insights from the Iowa Gambling Task

    Directory of Open Access Journals (Sweden)

    Oliver Hugh Turnbull

    2014-03-01

    Full Text Available Interest in the cognitive and/or emotional basis of complex decision-making, and the related phenomenon of emotion-based learning, has been heavily influenced by the Iowa Gambling Task. A number of psychological variables have been investigated as potentially important in understanding emotion-based learning. This paper reviews the extent to which humans are explicitly aware of how we make such decisions; the biasing influence of pre-existing emotional labels; and the extent to which emotion-based systems are anatomically and functionally independent of episodic memory. Systematic review suggests that (i an aspect of conscious awareness does appear to be readily achieved during the IGT, but as a relatively unfocused emotion-based ‘gut-feeling’, akin to intuition; (ii Several studies have manipulated the affective pre-loading of IGT tasks, and make it clear that such labelling has a substantial influence on performance, an experimental manipulation similar to the phenomenon of prejudice. (iii Finally, it appears that complex emotion-based learning can remain intact despite profound amnesia, at least in some neurological patients, a finding with a range of potentially important clinical implications: in the management of dementia; in explaining infantile amnesia; and in understanding of the possible mechanisms of psychotherapy.

  10. Towards a unified theory of task-specific motivation

    NARCIS (Netherlands)

    De Brabander, Cornelis; Martens, Rob

    2014-01-01

    This study aims to integrate the current proliferation of motivation theories in a Unified Model of Task-specific Motivation (UMTM). According to this model readiness for action results from an interaction between four relatively independent types of valences that can be classified as affective or

  11. Gender Effects When Learning Manipulative Tasks from Instructional Animations and Static Presentations

    Science.gov (United States)

    Wong, Mona; Castro-Alonso, Juan C.; Ayres, Paul; Paas, Fred

    2015-01-01

    Humans have an evolved embodied cognition that equips them to deal easily with the natural movements of object manipulations. Hence, learning a manipulative task is generally more effective when watching animations that show natural motions of the task, rather than equivalent static pictures. The present study was completed to explore this…

  12. Sleep stages, memory and learning.

    Science.gov (United States)

    Dotto, L

    1996-04-15

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance.

  13. Point Topography and Within-Session Learning Are Important Predictors of Pet Dogs’ (Canis lupus familiaris Performance on Human Guided Tasks

    Directory of Open Access Journals (Sweden)

    Dorey, Nicole R.

    2013-07-01

    Full Text Available Pet domestic dogs (Canis lupus familiaris are generally considered successful on object choice tasks, reliably following human points to a target. However, defining the specific topography of the point types utilized and assessing the potential for dogs to generalize their responses across similar point types has received little attention. In Experiment 1, we assessed pet dogs’ performance on an object choice task utilizing nine different point types that varied across the dimensions of movement, duration, and distance. These dimensions reliably predicted the performance of pet dogs on this task. In Experiment 2, pet dogs presented with nine different point types in the order of increasing difficulty performed better on more difficult point types than both naive dogs and dogs experiencing the nine points in the order of decreasing difficulty. In Experiment 3, we manipulated the attentional state of the experimenter (as in perspective taking studies and found that human orientation was not a strong predictor of performance on pointing tasks. The results of this study indicate that dogs do not reliably follow all point types without additional training or experience. Furthermore, dogs appear to continuously learn about the dimensions of human points, adjusting their behavior accordingly, even over the course of experimental testing. These findings bring claims of pet dogs’ spontaneous success on pointing tasks into question. The ability to learn about, and respond flexibly to, human gestures may benefit pet dogs living in human homes more than a spontaneous responsiveness to specific gesture types.

  14. Task path planning, scheduling and learning for free-ranging robot systems

    Science.gov (United States)

    Wakefield, G. Steve

    1987-01-01

    The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.

  15. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Science.gov (United States)

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  16. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Directory of Open Access Journals (Sweden)

    Vito Trianni

    Full Text Available The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled. However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  17. Positive versus Negative Communication Strategies in Task-Based Learning

    Science.gov (United States)

    Rohani, Siti

    2013-01-01

    This study aimed at describing how the implementation of Task-Based Learning (TBL) would shape or change students' use of oral communication strategies. Students' problems and strategies to solve the problems during the implementation of TBL were also explored. The study was a mixed method, employing both quantitative and qualitative analysis…

  18. Towards Sustaining Levels of Reflective Learning: How Do Transformational Leadership, Task Interdependence, and Self-Efficacy Shape Teacher Learning in Schools?

    Directory of Open Access Journals (Sweden)

    Arnoud Oude Groote Beverborg

    2015-03-01

    Full Text Available Whereas cross-sectional research has shown that transformational leadership, task interdependence, and self-efficacy are positively related to teachers’ engagement in reflective learning activities, the causal direction of these relations needs further inquiry. At the same time, individual teacher learning might play a mutual role in strengthening school-level capacity for sustained improvement. Building on previous research, this longitudinal study therefore examines how transformational leadership, task interdependence, self-efficacy, and teachers’ engagement in self-reflection mutually affect each other over time. Questionnaire data gathered on three measurement occasions from 655 Dutch Vocational Education and Training teachers was analyzed using a multivariate Latent Difference Score model. Results indicate that self-reflection and task interdependence reciprocally influence each other’s change. A considerate and stimulating transformational leader was found to contribute to this process. Change in self-efficacy was influenced by self-reflection, indicating that learning leads to competency beliefs. Together, the findings point to the important role transformational leadership practices play in facilitating teamwork, and sustaining teachers’ levels of learning in schools.

  19. Task-based Language Learning in Bilingual Montessori Elementary Schools: Customizing Foreign Language Learning and Promoting L2 Speaking Skills

    Directory of Open Access Journals (Sweden)

    Jana Winnefeld

    2012-01-01

    Full Text Available Foreign language learning has been a part of German elementary schools for several years now. Montessori schools focusing on individual learning, i.e. mostly independent from the teacher and based on auto-education, interest, and free choice, are also asked to teach an L2. The original lack of a concept of L2 learning for this environment has brought forth different approaches. Bilingual education seems to be feasible and applicable in Montessori education. The downside to this is that even in a bilingual classroom the Montessori way of learning may not allow for very much oral production of the foreign language. The role of L2 production (cf. Swain 1985, 1995, 2005 for language acquisition has been theoretically claimed and empirically investigated. Output can have a positive influence on L2 learning (cf. e.g. Izumi 2002, Keck et al. 2006. This also applies to interaction (cf. Long 1996, where negotiation of meaning and modified output are factors supporting L2 development (cf. e.g. de la Fuente 2002, McDonough 2005. Task-based Language Learning (TBLL presents itself as one way to promote oral language production and to provide opportunities for meaning-negotiation. Especially tasks with required information exchange and a closed outcome have been shown to be beneficial for the elicitation of negotiation of meaning and modified output. This paper argues that TBLL is a promising approach for the facilitation of L2 production and thus the development of speaking skills in a Montessori context. It also hypothesizes that TBLL can be implemented in a bilingual Montessori environment while still making the Montessori way of learning possible. Different tasks on various topics, examples of which are presented in this article, can lay the foundation for this. Offering such tasks in a bilingual Montessori elementary classroom promises to foster language production and the use of communication strategies like negotiation of meaning, both being

  20. Using principles of learning to inform language therapy design for children with specific language impairment.

    Science.gov (United States)

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  1. Cueing and Anxiety in a Visual Concept Learning Task.

    Science.gov (United States)

    Turner, Philip M.

    This study investigated the relationship of two anxiety measures (the State-Trait Anxiety Inventory-Trait Form and the S-R Inventory of Anxiousness-Exam Form) to performance on a visual concept-learning task with embedded criterial information. The effect on anxiety reduction of cueing criterial information was also examined, and two levels of…

  2. Training Self-Regulated Learning Skills with Video Modeling Examples: Do Task-Selection Skills Transfer?

    Science.gov (United States)

    Raaijmakers, Steven F.; Baars, Martine; Schaap, Lydia; Paas, Fred; van Merriënboer, Jeroen; van Gog, Tamara

    2018-01-01

    Self-assessment and task-selection skills are crucial in self-regulated learning situations in which students can choose their own tasks. Prior research suggested that training with video modeling examples, in which another person (the model) demonstrates and explains the cyclical process of problem-solving task performance, self-assessment, and…

  3. Using a task-based approach to teaching and learning Chinese as a Foreign Language in a university beginner's level class

    DEFF Research Database (Denmark)

    Ruan, Youjin; Duan, Xiaoju; Wang, Li

    2015-01-01

    to learning Chinese as a foreign language. Chinese culture elements were also integrated into the tasks and the learning process. By analysing seven items of a post-course survey, this paper investigates the learners’ opinions toward the task-based language teaching and learning method, as well as the methods......The task-based method is regarded as an effective approach for promoting interaction and collaboration in language learning. In a beginner Chinese language course offered as an elective at Aalborg University, Denmark, a selection of tasks was designed and used to attract the students’ interests...... used in integrating culture with the language learning in this course. The results indicated that course participants were generally positive about their learning experiences and processes during the course. They appreciated not only the task-based method, but also the ways in which culture...

  4. Effects of Task Instruction on Autobiographical Memory Specificity in Young and Older Adults

    Science.gov (United States)

    Ford, Jaclyn Hennessey; Rubin, David C.; Giovanello, Kelly S.

    2013-01-01

    Older adults tend to retrieve autobiographical information that is overly general (i.e. not restricted to a single event, termed the overgenerality effect) relative to young adults’ specific memories. A vast majority of studies that have reported overgenerality effects explicitly instruct participants to retrieve specific memories, thereby requiring participants to maintain task goals, inhibit inappropriate responses, and control their memory search. Since these processes are impaired in healthy aging, it is important to determine whether such task instructions influence the magnitude of the overgenerality effect in older adults. In the current study, participants retrieved autobiographical memories during presentation of musical clips. Task instructions were manipulated to separate age-related differences in the specificity of underlying memory representations from age-related differences in following task instructions. Whereas young adults modulated memory specificity based on task demands, older adults did not. These findings suggest that reported rates of overgenerality in older adults’ memories may include age-related differences in memory representation, as well as differences in task compliance. Such findings provide a better understanding of the underlying cognitive mechanisms involved in age-related changes in autobiographical memory and may also be valuable for future research examining effects of overgeneral memory on general well-being. PMID:23915176

  5. Effects of task instruction on autobiographical memory specificity in young and older adults.

    Science.gov (United States)

    Ford, Jaclyn Hennessey; Rubin, David C; Giovanello, Kelly S

    2014-01-01

    Older adults tend to retrieve autobiographical information that is overly general (i.e., not restricted to a single event, termed the overgenerality effect) relative to young adults' specific memories. A vast majority of studies that have reported overgenerality effects explicitly instruct participants to retrieve specific memories, thereby requiring participants to maintain task goals, inhibit inappropriate responses, and control their memory search. Since these processes are impaired in healthy ageing, it is important to determine whether such task instructions influence the magnitude of the overgenerality effect in older adults. In the current study participants retrieved autobiographical memories during presentation of musical clips. Task instructions were manipulated to separate age-related differences in the specificity of underlying memory representations from age-related differences in following task instructions. Whereas young adults modulated memory specificity based on task demands, older adults did not. These findings suggest that reported rates of overgenerality in older adults' memories might include age-related differences in memory representation, as well as differences in task compliance. Such findings provide a better understanding of the underlying cognitive mechanisms involved in age-related changes in autobiographical memory and may also be valuable for future research examining effects of overgeneral memory on general well-being.

  6. Minimal groups increase young children's motivation and learning on group-relevant tasks.

    Science.gov (United States)

    Master, Allison; Walton, Gregory M

    2013-01-01

    Three experiments (N = 130) used a minimal group manipulation to show that just perceived membership in a social group boosts young children's motivation for and learning from group-relevant tasks. In Experiment 1, 4-year-old children assigned to a minimal "puzzles group" persisted longer on a challenging puzzle than children identified as the "puzzles child" or children in a control condition. Experiment 2 showed that this boost in motivation occurred only when the group was associated with the task. In Experiment 3, children assigned to a minimal group associated with word learning learned more words than children assigned an analogous individual identity. The studies demonstrate that fostering shared motivations may be a powerful means by which to shape young children's academic outcomes. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  7. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  8. Specific learning disabilities in children: deficits and neuropsychological profile.

    Science.gov (United States)

    Kohli, Adarsh; Malhotra, Savita; Mohanty, Manju; Khehra, Nitasha; Kaur, Manreet

    2005-06-01

    The public is gradually becoming aware of specific learning disabilities (SLDs), which are very often the cause of academic difficulties. The aim of the study was to assess the SLDs in the clinic population at the Child and Adolescent Psychiatry Clinic at the Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh using the National Institute of Mental Health and Neurosciences SLD index and subsequently to assess the children's neuropsychological functions using a battery of tests. Thirty-five children in the age range of 7-14 years (both boys and girls) were recruited as the cohort, diagnosed clinically and assessed using the battery of tests for SLDs and neuropsychological tests consisting of the PGIMER memory scale for children, the Wisconsin card sorting test, the Bender visuo-motor gestalt test and Malin's intelligence scale for Indian children. The study revealed deficits in language and writing skills and impairments in specific areas of memory, executive functions and perceptuo-motor tasks. Identification of SLDs is useful in drawing up a treatment plan specific for a particular child.

  9. A 1-night operant learning task without food-restriction differentiates among mouse strains in an automated home-cage environment.

    Science.gov (United States)

    Remmelink, Esther; Loos, Maarten; Koopmans, Bastijn; Aarts, Emmeke; van der Sluis, Sophie; Smit, August B; Verhage, Matthijs

    2015-04-15

    Individuals are able to change their behavior based on its consequences, a process involving instrumental learning. Studying instrumental learning in mice can provide new insights in this elementary aspect of cognition. Conventional appetitive operant learning tasks that facilitate the study of this form of learning in mice, as well as more complex operant paradigms, require labor-intensive handling and food deprivation to motivate the animals. Here, we describe a 1-night operant learning protocol that exploits the advantages of automated home-cage testing and circumvents the interfering effects of food restriction. The task builds on behavior that is part of the spontaneous exploratory repertoire during the days before the task. We compared the behavior of C57BL/6J, BALB/cJ and DBA/2J mice and found various differences in behavior during this task, but no differences in learning curves. BALB/cJ mice showed the largest instrumental learning response, providing a superior dynamic range and statistical power to study instrumental learning by using this protocol. Insights gained with this home-cage-based learning protocol without food restriction will be valuable for the development of other, more complex, cognitive tasks in automated home-cages. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    Science.gov (United States)

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  11. Non-adjacent dependency learning in Cantonese-speaking\\ud children with and without a history of specific language\\ud impairment

    OpenAIRE

    Iao, L-S; Ng, LY; Wong, AMY; Lee, OT

    2017-01-01

    Purpose: This study investigated non-adjacent dependency learning in Cantonese-speaking children with and without a history of Specific Language Impairment (SLI) in an artificial linguistic context.\\ud \\ud Method: Sixteen Cantonese-speaking children with SLI history and 16 Cantonese-speaking children with typical language development (TLD) were tested with a non-adjacent dependency learning task using artificial languages that mimic Cantonese.\\ud \\ud Results: Children with TLD performed above...

  12. Successfully Carrying out Complex Learning-Tasks through Guiding Teams' Qualitative and Quantitative Reasoning

    Science.gov (United States)

    Slof, B.; Erkens, G.; Kirschner, P. A.; Janssen, J.; Jaspers, J. G. M.

    2012-01-01

    This study investigated whether and how scripting learners' use of representational tools in a computer supported collaborative learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely…

  13. Improved posttraumatic acquisition of a place learning task after repeated administration of a serotonergic agonist 8-OH-DPA

    DEFF Research Database (Denmark)

    Mala, Hana; Mogensen, Jesper

    2008-01-01

    specifically to 5-HT1A receptor subtypes. The effects were evaluated in terms of functional performance on an allocentric place learning task.    Participants/Materials/Methods: 68 animals served as experimental subjects. Initially, the rats were divided into 6 experimental groups, three of which were...... was given a single dose (5mg/kg/b.w.) of 8-OH-DPAT immediately after surgery (SINGLE TREATM), and one group was treated with daily administration of 8-OH-DPAT (5mg/kg/b.w.) for the six subsequent days (the first administration taking place immediately after surgery) (REPEATED TREATM). The acquisition...... of the water maze based place learning task started on the 8th day after surgery and continued daily for the next 25 days.   Results: The results show that within the lesioned groups, the group that was subjected to repeated administration of 8-OH-DPAT (REPEAT TREATM) showed a significantly improved...

  14. Understanding Human Hand Gestures for Learning Robot Pick-and-Place Tasks

    Directory of Open Access Journals (Sweden)

    Hsien-I Lin

    2015-05-01

    Full Text Available Programming robots by human demonstration is an intuitive approach, especially by gestures. Because robot pick-and-place tasks are widely used in industrial factories, this paper proposes a framework to learn robot pick-and-place tasks by understanding human hand gestures. The proposed framework is composed of the module of gesture recognition and the module of robot behaviour control. For the module of gesture recognition, transport empty (TE, transport loaded (TL, grasp (G, and release (RL from Gilbreth's therbligs are the hand gestures to be recognized. A convolution neural network (CNN is adopted to recognize these gestures from a camera image. To achieve the robust performance, the skin model by a Gaussian mixture model (GMM is used to filter out non-skin colours of an image, and the calibration of position and orientation is applied to obtain the neutral hand pose before the training and testing of the CNN. For the module of robot behaviour control, the corresponding robot motion primitives to TE, TL, G, and RL, respectively, are implemented in the robot. To manage the primitives in the robot system, a behaviour-based programming platform based on the Extensible Agent Behavior Specification Language (XABSL is adopted. Because the XABSL provides the flexibility and re-usability of the robot primitives, the hand motion sequence from the module of gesture recognition can be easily used in the XABSL programming platform to implement the robot pick-and-place tasks. The experimental evaluation of seven subjects performing seven hand gestures showed that the average recognition rate was 95.96%. Moreover, by the XABSL programming platform, the experiment showed the cube-stacking task was easily programmed by human demonstration.

  15. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2018-06-01

    Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.

  16. Interindividual Differences in Learning Performance: The Effects of Age, Intelligence, and Strategic Task Approach

    Science.gov (United States)

    Kliegel, Matthias; Altgassen, Mareike

    2006-01-01

    The present study investigated fluid and crystallized intelligence as well as strategic task approaches as potential sources of age-related differences in adult learning performance. Therefore, 45 young and 45 old adults were asked to learn pictured objects. Overall, young participants outperformed old participants in this learning test. However,…

  17. Integration of Teaching Processes and Learning Assessment in the Prefrontal Cortex during a Video Game Teaching-learning Task.

    Science.gov (United States)

    Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi

    2016-01-01

    Human teaching is a social interaction that supports reciprocal and dynamical feedback between the teacher and the student. The prefrontal cortex (PFC) is a region of particular interest due to its demonstrated role in social interaction. In the present study, we evaluated the PFC activity simultaneously in two individuals playing the role of a teacher and student in a video game teaching-learning task. For that, we used two wearable near-infrared spectroscopy (NIRS) devices in order to elucidate the neural mechanisms underlying cognitive interactions between teachers and students. Fifteen teacher-student pairs in total ( N = 30) participated in this study. Each teacher was instructed to teach the video game to their student partner, without speaking. The PFC activity was simultaneously evaluated in both participants using a wearable 16-channel NIRS system during the video game teaching-learning task. Two sessions, each including a triplet of a 30-s teaching-learning task, were performed in order to evaluate changes in PFC activity after advancement of teaching-learning state. Changes in the teachers' left PFC activity between the first and second session positively correlated with those observed in students ( r = 0.694, p = 0.004). Moreover, among teachers, multiple regression analysis revealed a correlation between the left PFC activity and the assessment gap between one's own teaching and the student's understanding ( β = 0.649, p = 0.009). Activity in the left PFC changed synchronously in both teachers and students after advancement of the teaching-learning state. The left PFC of teachers may be involved in integrating information regarding one's own teaching process and the student's learning state. The present observations indicate that simultaneous recording and analysis of brain activity data during teacher-student interactions may be useful in the field of educational neuroscience.

  18. The Differential Effects of Task Complexity on Domain-Specific and Peer Assessment Skills

    Science.gov (United States)

    van Zundert, Marjo J.; Sluijsmans, Dominique M. A.; Konings, Karen D.; van Merrienboer, Jeroen J. G.

    2012-01-01

    In this study the relationship between domain-specific skills and peer assessment skills as a function of task complexity is investigated. We hypothesised that peer assessment skills were superposed on domain-specific skills and will therefore suffer more when higher cognitive load is induced by increased task complexity. In a mixed factorial…

  19. THE SPECIFIC AND GENERAL NATURE OF LOGISTICS TASKS

    Directory of Open Access Journals (Sweden)

    Beáta Sz. G. Pató

    2016-12-01

    Full Text Available There are many ways to define and to describe jobs and assigning to people. This is a key issue in both blue collar and in white collar jobs. This analysis focuses on the work content of jobs in logistics. However, the methodology allows the exploration of closely related issues to determine competence requirements as well. Jobs can be seen to have bearing on many areas including effectiveness, efficiency of individual and organizational level, social and political issues. The purpose of the research carried out by authors was to identify the necessary competencies in logistics jobs. It included the analysis of the tasks using company document (job description analysis in order to identify the tasks and required competencies. Researchers extracted and then standardized the verb - noun pairs which described the tasks. The frequency of these pairs gave the weight of the task in a job. This method allowed the researchers to determine the overlapping rate of activities in different fields (trade, transport, comprehensive activities. It was found that the most different/independent field in the terms of similarities is warehousing. Results suggest the rethinking of the training content in order to find the right balance between the general and specific competencies. They also help organizations to optimize the composition of cross-functional staff.

  20. Quality of E-Learners’ Time and Learning Performance Beyond Quantitative Time-on-Task

    Directory of Open Access Journals (Sweden)

    Margarida Romero

    2011-06-01

    Full Text Available AbstractAlong with the amount of time spent learning (or time-on-task, the quality of learning time has a real influence on learning performance. Quality of time in online learning depends on students’ time availability and their willingness to devote quality cognitive time to learning activities. However, the quantity and quality of the time spent by adult e-learners on learning activities can be reduced by professional, family, and social commitments. Considering that the main time pattern followed by most adult e-learners is a professional one, it may be beneficial for online education programs to offer a certain degree of flexibility in instructional time that might allow adult learners to adjust their learning times to their professional constraints. However, using the time left over once professional and family requirements have been fulfilled could lead to a reduction in quality time for learning. This paper starts by introducing the concept of quality of learning time from an online student-centred perspective. The impact of students’ time-related variables (working hours, time-on-task engagement, time flexibility, time of day, day of week is then analyzed according to individual and collaborative grades achieved during an online master’s degree program. The data show that both students’ time flexibility (r = .98 and especially their availability to learn in the morning are related to better grades in individual (r = .93 and collaborative activities (r = .46.

  1. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an

  2. Finance Students' Experiences of Lecture-Based Active Learning Tasks

    Science.gov (United States)

    McCullough, Kerry; Munro, Nicholas

    2018-01-01

    Consistent with current higher education concerns with student engagement and the student experience, this study explored third-year undergraduate Finance students' experiences of lecture-based active learning tasks. Finance students from the 2012 and 2014 cohorts from a South African university were invited to complete an anonymous questionnaire…

  3. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Science.gov (United States)

    Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne; Salas, Carlos R.

    2012-01-01

    The main goal for the current study was to investigate whether individual differences in domain-general thinking dispositions might affect learning from multiple-document inquiry tasks in science. Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be…

  4. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  5. An Exploratory Study into Perceived Task Complexity, Topic Specificity and Usefulness for Integrated Search

    DEFF Research Database (Denmark)

    Ingwersen, Peter; Lioma, Christina; Larsen, Birger

    2012-01-01

    We investigate the relations between user perceptions of work task complexity, topic specificity, and usefulness of retrieved results. 23 academic researchers submitted detailed descriptions of 65 real-life work tasks in the physics domain, and assessed documents retrieved from an integrated...... collection consisting of full text research articles in PDF, abstracts, and bibliographic records [6]. Bibliographic records were found to be more precise than full text PDFs, regardless of task complexity and topic specificity. PDFs were found to be more useful. Overall, for higher task complexity and topic...

  6. Procedural learning in Parkinson's disease, specific language impairment, dyslexia, schizophrenia, developmental coordination disorder, and autism spectrum disorders: A second-order meta-analysis.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-10-01

    The serial reaction time task (SRTT) has been used to study procedural learning in clinical populations. In this report, second-order meta-analysis was used to investigate whether disorder type moderates performance on the SRTT. Using this approach to quantitatively summarise past research, it was tested whether autism spectrum disorder, developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment differentially affect procedural learning on the SRTT. The main analysis revealed disorder type moderated SRTT performance (p=0.010). This report demonstrates comparable levels of procedural learning impairment in developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment. However, in autism, procedural learning is spared. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.

  8. Motivating Learning in Mathematics Through Collaborative Problem Solving: A Focus on Using Rich Tasks

    Directory of Open Access Journals (Sweden)

    Nasreen Hussain

    2014-06-01

    Full Text Available This paper is based on the concept that lively and interactive math classes are possible by incorporating rich tasks to meet the needs of students operating at different levels in the classrooms. A study was carried out to find out the impact on learning and motivation of using rich tasks at secondary level in the maths class by incorporating co-operative learning. Qualitative research paradigm was opted for the study using an action research approach and the data were collected through two semi-structured interviews conducted at the onset of the research and after the intervention. Few important findings indicate that rich tasks demand different levels of challenge and extend opportunities to those students who need them.

  9. The Effectiveness of the Continuation Task on Second Language Learning of English Articles

    Science.gov (United States)

    Jiang, Lin

    2015-01-01

    This article aims to uncover how alignment in the continuation task affects second language (L2) learning of English articles. Two classes of 47 Chinese students participated in the study which employed a pretest-treatment-posttest research design and lasted for a period of 20 weeks. One class received the continuation task treatment, during which…

  10. Expectancy-Value Theory in Persistence of Learning Effects in Schizophrenia: Role of Task Value and Perceived Competency

    OpenAIRE

    Choi, Jimmy; Fiszdon, Joanna M.; Medalia, Alice

    2010-01-01

    Expectancy-value theory, a widely accepted model of motivation, posits that expectations of success on a learning task and the individual value placed on the task are central determinants of motivation to learn. This is supported by research in healthy controls suggesting that beliefs of self-and-content mastery can be so influential they can predict the degree of improvement on challenging cognitive tasks even more so than general cognitive ability. We examined components of expectancy-value...

  11. Teaching Foreign Languages to Pupils with Specific Learning Disability

    OpenAIRE

    VOLDÁNOVÁ, Veronika

    2015-01-01

    This diploma thesis deals with the topic of specific learning disability. In the theoretical part I define the term specific learning disability and I mention the related terms. I deal with the history, types and causes of specific learning disability, further I describe the possibilities of diagnostics and re-education concerning specific learning disability. I also attend to the situation of a pupil in the family and school background. The main attention is especially paid to teaching forei...

  12. Task-Driven Dictionary Learning Based on Mutual Information for Medical Image Classification.

    Science.gov (United States)

    Diamant, Idit; Klang, Eyal; Amitai, Michal; Konen, Eli; Goldberger, Jacob; Greenspan, Hayit

    2017-06-01

    We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification. Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task using a mutual information-based criterion. Additionally, we generate relevance maps to visualize and localize the decision of the automatic classification algorithm. These maps demonstrate how the algorithm works and show the spatial layout of the most relevant words. We applied our algorithm to three different tasks: chest x-ray pathology identification (of four pathologies: cardiomegaly, enlarged mediastinum, right consolidation, and left consolidation), liver lesion classification into four categories in computed tomography (CT) images and benign/malignant clusters of microcalcifications (MCs) classification in breast mammograms. Validation was conducted on three datasets: 443 chest x-rays, 118 portal phase CT images of liver lesions, and 260 mammography MCs. The proposed method improves the classical BoVW method for all tested applications. For chest x-ray, area under curve of 0.876 was obtained for enlarged mediastinum identification compared to 0.855 using classical BoVW (with p-value 0.01). For MC classification, a significant improvement of 4% was achieved using our new approach (with p-value = 0.03). For liver lesion classification, an improvement of 6% in sensitivity and 2% in specificity were obtained (with p-value 0.001). We demonstrated that classification based on informative selected set of words results in significant improvement. Our new BoVW approach shows promising results in clinically important domains. Additionally, it can discover relevant parts of images for the task at hand without explicit annotations for training data. This can provide computer-aided support for medical experts in challenging image analysis tasks.

  13. How task characteristics and social support relate to managerial learning: empirical evidence from Dutch home care.

    Science.gov (United States)

    Ouweneel, A P Else; Taris, Toon W; Van Zolingen, Simone J; Schreurs, Paul J G

    2009-01-01

    Researchers have revealed that managers profit most from informal and on-the-job learning. Moreover, research has shown that task characteristics and social support affect informal learning. On the basis of these insights, the authors examined the effects of task characteristics (psychological job demands, job control) and social support from the supervisor and colleagues on informal on-the-job learning among 1588 managers in the Dutch home-care sector. A regression analysis revealed that high demands, high control, and high colleague and supervisor support were each associated with high levels of informal learning. The authors found no evidence for statistical interactions among the effects of these concepts. They concluded that to promote managers' informal workplace learning, employers should especially increase job control.

  14. The performance of cleaner wrasse, Labroides dimidiatus, in a reversal learning task varies across experimental paradigms

    Directory of Open Access Journals (Sweden)

    Simon Gingins

    2018-05-01

    Full Text Available Testing performance in controlled laboratory experiments is a powerful tool for understanding the extent and evolution of cognitive abilities in non-human animals. However, cognitive testing is prone to a number of potential biases, which, if unnoticed or unaccounted for, may affect the conclusions drawn. We examined whether slight modifications to the experimental procedure and apparatus used in a spatial task and reversal learning task affected performance outcomes in the bluestreak cleaner wrasse, Labroides dimidiatus (hereafter “cleaners”. Using two-alternative forced-choice tests, fish had to learn to associate a food reward with a side (left or right in their holding aquarium. Individuals were tested in one of four experimental treatments that differed slightly in procedure and/or physical set-up. Cleaners from all four treatment groups were equally able to solve the initial spatial task. However, groups differed in their ability to solve the reversal learning task: no individuals solved the reversal task when tested in small tanks with a transparent partition separating the two options, whereas over 50% of individuals solved the task when performed in a larger tank, or with an opaque partition. These results clearly show that seemingly insignificant details to the experimental set-up matter when testing performance in a spatial task and might significantly influence the outcome of experiments. These results echo previous calls for researchers to exercise caution when designing methodologies for cognition tasks to avoid misinterpretations.

  15. The performance of cleaner wrasse, Labroides dimidiatus, in a reversal learning task varies across experimental paradigms.

    Science.gov (United States)

    Gingins, Simon; Marcadier, Fanny; Wismer, Sharon; Krattinger, Océane; Quattrini, Fausto; Bshary, Redouan; Binning, Sandra A

    2018-01-01

    Testing performance in controlled laboratory experiments is a powerful tool for understanding the extent and evolution of cognitive abilities in non-human animals. However, cognitive testing is prone to a number of potential biases, which, if unnoticed or unaccounted for, may affect the conclusions drawn. We examined whether slight modifications to the experimental procedure and apparatus used in a spatial task and reversal learning task affected performance outcomes in the bluestreak cleaner wrasse, Labroides dimidiatus (hereafter "cleaners"). Using two-alternative forced-choice tests, fish had to learn to associate a food reward with a side (left or right) in their holding aquarium. Individuals were tested in one of four experimental treatments that differed slightly in procedure and/or physical set-up. Cleaners from all four treatment groups were equally able to solve the initial spatial task. However, groups differed in their ability to solve the reversal learning task: no individuals solved the reversal task when tested in small tanks with a transparent partition separating the two options, whereas over 50% of individuals solved the task when performed in a larger tank, or with an opaque partition. These results clearly show that seemingly insignificant details to the experimental set-up matter when testing performance in a spatial task and might significantly influence the outcome of experiments. These results echo previous calls for researchers to exercise caution when designing methodologies for cognition tasks to avoid misinterpretations.

  16. Web 2.0 Tasks in Action: EFL Learning in the U.S. Embassy School Election Project 2012

    Directory of Open Access Journals (Sweden)

    Joannis Kaliampos

    2014-10-01

    Full Text Available Exploring topics that are personally relevant and interesting to young adult English as a foreign language (EFL learners remains a core challenge in language teaching. At the same time, the advent of Web 2.0 applications has many repercussions for authentic language learning. The “U.S. Embassy School Election Project 2012” has addressed these questions by combining a close focus on the U.S. Presidential Election with an interactive project scenario. Over 1,400 students across Germany participated in this project and produced an election forecast for an assigned U.S. state based on a survey of regional news media and social network data. Their predictions were in many cases more accurate than those of major U.S. broadcasting networks. This paper discusses the general educational potential of such projects in the contexts of computer-assisted language learning (CALL, intercultural learning, and learning in a task-based project environment. The authors have applied a multimodal qualitative approach to analyze tasks and learner perceptions of tasks in the context of the election project. In a first step, the micro-perspective of the perception of web-based tasks is investigated by example of one selected task cycle and a focus group of three learners. The second part of the analysis represents a bird’s-eye view on the learner products arising out of such tasks.

  17. Upper Extremity Motor Learning among Individuals with Parkinson's Disease: A Meta-Analysis Evaluating Movement Time in Simple Tasks

    Directory of Open Access Journals (Sweden)

    K. Felix

    2012-01-01

    Full Text Available Motor learning has been found to occur in the rehabilitation of individuals with Parkinson's disease (PD. Through repetitive structured practice of motor tasks, individuals show improved performance, confirming that motor learning has probably taken place. Although a number of studies have been completed evaluating motor learning in people with PD, the sample sizes were small and the improvements were variable. The purpose of this meta-analysis was to determine the ability of people with PD to learn motor tasks. Studies which measured movement time in upper extremity reaching tasks and met the inclusion criteria were included in the analysis. Results of the meta-analysis indicated that people with PD and neurologically healthy controls both demonstrated motor learning, characterized by a decrease in movement time during upper extremity movements. Movement time improvements were greater in the control group than in individuals with PD. These results support the findings that the practice of upper extremity reaching tasks is beneficial in reducing movement time in persons with PD and has important implications for rehabilitation.

  18. A Measure of Student Involvement in Learning: Time-on-Task.

    Science.gov (United States)

    Anderson, Lorin W.

    The importance of appropriate task relevant behaviors as a necessary condition for school learning has long been noted. This paper suggests a multiple measure of one set of student classroom behaviors, presents a brief theoretical basis for the measure, provides some empirical support for the use of the measure, and indicates some educational…

  19. Order short-term memory is not specifically impaired in dyslexia and does not affect orthographic learning

    Directory of Open Access Journals (Sweden)

    Eva eStaels

    2014-09-01

    Full Text Available This article reports two studies that investigate short-term memory (STM deficits in dyslexic children and explores the relationship between short-term memory and reading acquisition. In the first experiment, thirty-six dyslexic children and sixty-one control children performed an item STM task and a serial order STM task. The results of this experiment show that dyslexic children do not suffer from a specific serial order STM deficit. In addition, the results demonstrate that phonological processing skills are as closely related to both item STM and serial order STM. However, nonverbal intelligence was more strongly involved in serial order STM than in item STM. In the second experiment, the same two STM tasks were administered and reading acquisition was assessed by measuring orthographic learning in a group of one hundred and eighty-eight children. The results of this study show that orthographic learning is exclusively related to item STM and not to order STM. It is concluded that serial order STM is not the right place to look for a causal explanation of reading disability, nor for differences in word reading acquisition.

  20. Multimodal Task-Driven Dictionary Learning for Image Classification

    Science.gov (United States)

    2015-12-18

    recognition, multi-view face recognition, multi-view action recognition, and multimodal biometric recognition. It is also shown that, compared to the...improvement in several multi-task learning applications such as target classification, biometric recognitions, and multiview face recognition [12], [14], [17...relevant samples from other modalities for a given unimodal query. However, α1 α2 …αS D1 … Index finger Thumb finger … Iris x1 x2 xS D2 DS … … … J o in

  1. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.

    Science.gov (United States)

    Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang

    2010-04-10

    Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering

  2. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study

    Directory of Open Access Journals (Sweden)

    Xue Hong

    2010-04-01

    Full Text Available Abstract Background Gene silencing using exogenous small interfering RNAs (siRNAs is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to

  3. POSITIVE VERSUS NEGATIVE COMMUNICATION STRATEGIES IN TASK-BASED LEARNING

    Directory of Open Access Journals (Sweden)

    Siti Rohani

    2013-07-01

    Full Text Available This study aimed at describing how the implementation of Task Based Learning (TBL would shape or change students’ use of oral communication strategies. Students’ problems and strategies to solve the problems during the implementation of TBL were also explored. The study was a mixed method, employing both quantitative and qualitative analysis throughmulti-methods of questionnaire, interviews, focus group discussion, learning journals, and classroom observation. Participants were 26 second year students of the State Polytechnic of Malang. Data collection was conducted for one semester. Findingsshow linguistic and non-linguistic problems encountered by students during one-semester implementation of TBL. Students also performedincreased use of positive strategies but reduced use of negative strategies after the implementation of TBL.

  4. EEG Beta Power but Not Background Music Predicts the Recall Scores in a Foreign-Vocabulary Learning Task.

    Science.gov (United States)

    Küssner, Mats B; de Groot, Annette M B; Hofman, Winni F; Hillen, Marij A

    2016-01-01

    As tantalizing as the idea that background music beneficially affects foreign vocabulary learning may seem, there is-partly due to a lack of theory-driven research-no consistent evidence to support this notion. We investigated inter-individual differences in the effects of background music on foreign vocabulary learning. Based on Eysenck's theory of personality we predicted that individuals with a high level of cortical arousal should perform worse when learning with background music compared to silence, whereas individuals with a low level of cortical arousal should be unaffected by background music or benefit from it. Participants were tested in a paired-associate learning paradigm consisting of three immediate word recall tasks, as well as a delayed recall task one week later. Baseline cortical arousal assessed with spontaneous EEG measurement in silence prior to the learning rounds was used for the analyses. Results revealed no interaction between cortical arousal and the learning condition (background music vs. silence). Instead, we found an unexpected main effect of cortical arousal in the beta band on recall, indicating that individuals with high beta power learned more vocabulary than those with low beta power. To substantiate this finding we conducted an exact replication of the experiment. Whereas the main effect of cortical arousal was only present in a subsample of participants, a beneficial main effect of background music appeared. A combined analysis of both experiments suggests that beta power predicts the performance in the word recall task, but that there is no effect of background music on foreign vocabulary learning. In light of these findings, we discuss whether searching for effects of background music on foreign vocabulary learning, independent of factors such as inter-individual differences and task complexity, might be a red herring. Importantly, our findings emphasize the need for sufficiently powered research designs and exact replications

  5. EEG Beta Power but Not Background Music Predicts the Recall Scores in a Foreign-Vocabulary Learning Task.

    Directory of Open Access Journals (Sweden)

    Mats B Küssner

    Full Text Available As tantalizing as the idea that background music beneficially affects foreign vocabulary learning may seem, there is-partly due to a lack of theory-driven research-no consistent evidence to support this notion. We investigated inter-individual differences in the effects of background music on foreign vocabulary learning. Based on Eysenck's theory of personality we predicted that individuals with a high level of cortical arousal should perform worse when learning with background music compared to silence, whereas individuals with a low level of cortical arousal should be unaffected by background music or benefit from it. Participants were tested in a paired-associate learning paradigm consisting of three immediate word recall tasks, as well as a delayed recall task one week later. Baseline cortical arousal assessed with spontaneous EEG measurement in silence prior to the learning rounds was used for the analyses. Results revealed no interaction between cortical arousal and the learning condition (background music vs. silence. Instead, we found an unexpected main effect of cortical arousal in the beta band on recall, indicating that individuals with high beta power learned more vocabulary than those with low beta power. To substantiate this finding we conducted an exact replication of the experiment. Whereas the main effect of cortical arousal was only present in a subsample of participants, a beneficial main effect of background music appeared. A combined analysis of both experiments suggests that beta power predicts the performance in the word recall task, but that there is no effect of background music on foreign vocabulary learning. In light of these findings, we discuss whether searching for effects of background music on foreign vocabulary learning, independent of factors such as inter-individual differences and task complexity, might be a red herring. Importantly, our findings emphasize the need for sufficiently powered research designs and

  6. FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.

    Science.gov (United States)

    Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie

    2017-06-01

    In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.

  7. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task

    DEFF Research Database (Denmark)

    Kumar, Abhishek; Grigoriadis, Joannis; Trulsson, Mats

    2015-01-01

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor...... movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with ten 10 trials) of the task before and after a short-term (approximately 30min) training. The accuracy of the split and vertical jaw...... task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights on into how humans learn oral motor behaviors or the kind of adaptation...

  8. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-06

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

  9. Training self-assessment and task-selection skills: A cognitive approach to improving self-regulated learning

    NARCIS (Netherlands)

    Kostons, Danny; Van Gog, Tamara; Paas, Fred

    2012-01-01

    Kostons, D., Van Gog, T., & Paas, F. (2012). Training self-assessment and task-selection skills: A cognitive approach to improving self-regulated learning. Learning and Instruction, 22(2), 121-132. doi:10.1016/j.learninstruc.2011.08.004

  10. Learning to spell from reading: general knowledge about spelling patterns influences memory for specific words.

    Science.gov (United States)

    Pacton, Sébastien; Borchardt, Gaëlle; Treiman, Rebecca; Lété, Bernard; Fayol, Michel

    2014-05-01

    Adults often learn to spell words during the course of reading for meaning, without intending to do so. We used an incidental learning task in order to study this process. Spellings that contained double n, r and t which are common doublets in French, were learned more readily by French university students than spellings that contained less common but still legal doublets. When recalling or recognizing the latter, the students sometimes made transposition errors, doubling a consonant that often doubles in French rather than the consonant that was originally doubled (e.g., tiddunar recalled as tidunnar). The results, found in three experiments using different nonwords and different types of instructions, show that people use general knowledge about the graphotactic patterns of their writing system together with word-specific knowledge to reconstruct spellings that they learn from reading. These processes contribute to failures and successes in memory for spellings, as in other domains.

  11. A dissociation between engagement and learning: Enthusiastic instructions fail to reliably improve performance on a memory task.

    Directory of Open Access Journals (Sweden)

    Benjamin A Motz

    Full Text Available Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning.

  12. A dissociation between engagement and learning: Enthusiastic instructions fail to reliably improve performance on a memory task.

    Science.gov (United States)

    Motz, Benjamin A; de Leeuw, Joshua R; Carvalho, Paulo F; Liang, Kaley L; Goldstone, Robert L

    2017-01-01

    Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning.

  13. Autism: Too eager to learn? Event related potential findings of increased dependency on intentional learning in a serial reaction time task.

    Science.gov (United States)

    Zwart, Fenny S; Vissers, Constance Th W M; van der Meij, Roemer; Kessels, Roy P C; Maes, Joseph H R

    2017-09-01

    It has been suggested that people with autism spectrum disorder (ASD) have an increased tendency to use explicit (or intentional) learning strategies. This altered learning may play a role in the development of the social communication difficulties characterizing ASD. In the current study, we investigated incidental and intentional sequence learning using a Serial Reaction Time (SRT) task in an adult ASD population. Response times and event related potentials (ERP) components (N2b and P3) were assessed as indicators of learning and knowledge. Findings showed that behaviorally, sequence learning and ensuing explicit knowledge were similar in ASD and typically developing (TD) controls. However, ERP findings showed that learning in the TD group was characterized by an enhanced N2b, while learning in the ASD group was characterized by an enhanced P3. These findings suggest that learning in the TD group might be more incidental in nature, whereas learning in the ASD group is more intentional or effortful. Increased intentional learning might serve as a strategy for individuals with ASD to control an overwhelming environment. Although this led to similar behavioral performances on the SRT task, it is very plausible that this intentional learning has adverse effects in more complex social situations, and hence contributes to the social impairments found in ASD. Autism Res 2017, 10: 1533-1543. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.

    Science.gov (United States)

    Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A

    2012-03-01

    One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.

  15. Chinese Preservice Teachers' Professional Identity Links with Education Program Performance: The Roles of Task Value Belief and Learning Motivations.

    Science.gov (United States)

    Zhang, Yan; Hawk, Skyler T; Zhang, Xiaohui; Zhao, Hongyu

    2016-01-01

    Professional identity is a key issue spanning the entirety of teachers' career development. Despite the abundance of existing research examining professional identity, its link with occupation-related behavior at the primary career stage (i.e., GPA in preservice education) and the potential process that underlies this association is still not fully understood. This study explored the professional identity of Chinese preservice teachers, and its links with task value belief, intrinsic learning motivation, extrinsic learning motivation, and performance in the education program. Grade-point average (GPA) of courses (both subject and pedagogy courses) was examined as an indicator of performance, and questionnaires were used to measure the remaining variables. Data from 606 preservice teachers in the first 3 years of a teacher-training program indicated that: (1) variables in this research were all significantly correlated with each other, except the correlation between intrinsic learning motivation and program performance; (2) professional identity was positively linked to task value belief, intrinsic and extrinsic learning motivations, and program performance in a structural equation model (SEM); (3) task value belief was positively linked to intrinsic and extrinsic learning motivation; (4) higher extrinsic (but not intrinsic) learning motivation was associated with increased program performance; and (5) task value belief and extrinsic learning motivation were significant mediators in the model.

  16. Chinese Preservice Teachers’ Professional Identity Links with Education Program Performance: The Roles of Task Value Belief and Learning Motivations

    Science.gov (United States)

    Zhang, Yan; Hawk, Skyler T.; Zhang, Xiaohui; Zhao, Hongyu

    2016-01-01

    Professional identity is a key issue spanning the entirety of teachers’ career development. Despite the abundance of existing research examining professional identity, its link with occupation-related behavior at the primary career stage (i.e., GPA in preservice education) and the potential process that underlies this association is still not fully understood. This study explored the professional identity of Chinese preservice teachers, and its links with task value belief, intrinsic learning motivation, extrinsic learning motivation, and performance in the education program. Grade-point average (GPA) of courses (both subject and pedagogy courses) was examined as an indicator of performance, and questionnaires were used to measure the remaining variables. Data from 606 preservice teachers in the first 3 years of a teacher-training program indicated that: (1) variables in this research were all significantly correlated with each other, except the correlation between intrinsic learning motivation and program performance; (2) professional identity was positively linked to task value belief, intrinsic and extrinsic learning motivations, and program performance in a structural equation model (SEM); (3) task value belief was positively linked to intrinsic and extrinsic learning motivation; (4) higher extrinsic (but not intrinsic) learning motivation was associated with increased program performance; and (5) task value belief and extrinsic learning motivation were significant mediators in the model. PMID:27199810

  17. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  18. Task Experience as a Boundary Condition for the Negative Effects of Irrelevant Information on Learning

    NARCIS (Netherlands)

    G. Rop (Gertjan); M. van Wermeskerken (Margot); J.A. de Nooijer (Jacqueline); P.P.J.L. Verkoeijen (Peter); T.A.J.M. van Gog (Tamara)

    2016-01-01

    textabstractResearch on multimedia learning has shown that learning is hampered when a multimedia message includes extraneous information that is not relevant for the task, because processing the extraneous information uses up scarce attention and working memory resources. However, eye-tracking

  19. Chromatic Perceptual Learning but No Category Effects without Linguistic Input.

    Science.gov (United States)

    Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.

  20. Neural Correlates of Expert Behavior During a Domain-Specific Attentional Cueing Task in Badminton Players.

    Science.gov (United States)

    Wang, Chun-Hao; Tu, Kuo-Cheng

    2017-06-01

    The present study aimed to investigate the neural correlates associated with sports expertise during a domain-specific task in badminton players. We compared event-related potentials activity from collegiate male badminton players and a set of matched athletic controls when they performed a badminton-specific attentional cueing task in which the uncertainty and validity were manipulated. The data showed that, regardless of cue type, the badminton players had faster responses along with greater P3 amplitudes than the athletic controls on the task. Specifically, the contingent negative variation amplitude was smaller for the players than for the controls in the condition involving higher uncertainty. Such an effect, however, was absent in the condition with lower uncertainty. We conclude that expertise in sports is associated with proficient modulation of brain activity during cognitive and motor preparation, as well as response execution, when performing a task related to an individual's specific sport domain.

  1. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  2. Improving Learning Tasks for Mentally Handicapped People Using AmI Environments Based on Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Diego Martín

    2018-01-01

    Full Text Available A prototype to improve learning tasks for mentally handicapped people is shown in this research paper using ambient intelligence techniques and based on cyber-physical systems. The whole system is composed of a worktable, a cyber-glove (both with several RFID and NFC detection zones, and an AmI software application for modeling and workflow guidance. A case study was carried out by the authors where sixteen mentally handicapped people and 3 trainers were involved in the experiment. The experiment consisted in the execution of several memorization tasks of movements of objects using the approach presented in this paper. The results obtained were very interesting, indicating that this kind of solutions are feasible and allow the learning of complex tasks to some types of mentally handicapped people. In addition, at the end of the paper are presented some lessons learned after performing the experimentation.

  3. Nonadjacent Dependency Learning in Cantonese-Speaking Children With and Without a History of Specific Language Impairment.

    Science.gov (United States)

    Iao, Lai-Sang; Ng, Lai Yan; Wong, Anita Mei Yin; Lee, Oi Ting

    2017-03-01

    This study investigated nonadjacent dependency learning in Cantonese-speaking children with and without a history of specific language impairment (SLI) in an artificial linguistic context. Sixteen Cantonese-speaking children with a history of SLI and 16 Cantonese-speaking children with typical language development (TLD) were tested with a nonadjacent dependency learning task using artificial languages that mimic Cantonese. Children with TLD performed above chance and were able to discriminate between trained and untrained nonadjacent dependencies. However, children with a history of SLI performed at chance and were not able to differentiate trained versus untrained nonadjacent dependencies. These findings, together with previous findings from English-speaking adults and adolescents with language impairments, suggest that individuals with atypical language development, regardless of age, diagnostic status, language, and culture, show difficulties in learning nonadjacent dependencies. This study provides evidence for early impairments to statistical learning in individuals with atypical language development.

  4. Post-Learning Sleep Transiently Boosts Context Specific Operant Extinction Memory

    Directory of Open Access Journals (Sweden)

    Marion Inostroza

    2017-04-01

    Full Text Available Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote. Rats were trained in an operant conditioning task (lever press in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall or after 48 h (Remote, in the extinction context B and in a novel context C. The two main findings were: (i at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.

  5. Affordances of telecollaboration tools for English for Specific Purposes online learning

    Directory of Open Access Journals (Sweden)

    Ana Sevilla-Pavón

    2016-11-01

    Full Text Available This paper explores students’ perceptions of the affordances of different telecollaboration tools used in an innovation project for English for Specific Purposes online learning carried out between the University of Valencia (Spain and Wofford College (South Carolina, United States during the school year 2015-2016. Different tools for synchronous and asynchronous communication were used. The asynchronous tools included a discussion forum, a wiki, social networking websites and Google forms; while the tools used for synchronous communication were text, voice and video chat, videoconferencing tools and Google Drive. All the tools were accessible through the online platform used in the project, Google+. By using these tools, students from both sides of the Atlantic Ocean carried out a number of activities and tasks through online telecollaborative methods, involving both synchronous and asynchronous communication. The tasks completed by students through the use of the different tools were aimed at fostering distance online collaboration among American and Spanish students for the development of their linguistic, intercultural and digital literacies.

  6. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  7. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    Science.gov (United States)

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cognitive Developmental Level Gender, and the Development of Learned Helplessness on Mathematical Calculation and Reasoning Tasks.

    Science.gov (United States)

    Monaco, Nanci M.; Gentile, J. Ronald

    1987-01-01

    This study was designed to test whether a learned helplessness treatment would decrease performance on mathematical tasks and to extend learned helplessness findings to include the cognitive development dimension. Results showed no differential advantages to either sex in resisting effects of learned helplessness or in benefiting from strategy…

  9. The effectiveness of robotic training depends on motor task characteristics.

    Science.gov (United States)

    Marchal-Crespo, Laura; Rappo, Nicole; Riener, Robert

    2017-12-01

    Previous research suggests that the effectiveness of robotic training depends on the motor task to be learned. However, it is still an open question which specific task's characteristics influence the efficacy of error-modulating training strategies. Motor tasks can be classified based on the time characteristics of the task, in particular the task's duration (discrete vs. continuous). Continuous tasks require movements without distinct beginning or end. Discrete tasks require fast movements that include well-defined postures at the beginning and the end. We developed two games, one that requires a continuous movement-a tracking task-and one that requires discrete movements-a fast reaching task. We conducted an experiment with thirty healthy subjects to evaluate the effectiveness of three error-modulating training strategies-no guidance, error amplification (i.e., repulsive forces proportional to errors) and haptic guidance-on self-reported motivation and learning of the continuous and discrete games. Training with error amplification resulted in better motor learning than haptic guidance, besides the fact that error amplification reduced subjects' interest/enjoyment and perceived competence during training. Only subjects trained with error amplification improved their performance after training the discrete game. In fact, subjects trained without guidance improved the performance in the continuous game significantly more than in the discrete game, probably because the continuous task required greater attentional levels. Error-amplifying training strategies have a great potential to provoke better motor learning in continuous and discrete tasks. However, their long-lasting negative effects on motivation might limit their applicability in intense neurorehabilitation programs.

  10. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  11. Task-specific modulation of effective connectivity during two simple unimanual motor tasks: A 122-channel EEG study

    DEFF Research Database (Denmark)

    Herz, Damian M.; Christensen, Mark S.; Reck, Christiane

    2012-01-01

    Neural oscillations are thought to underlie coupling of spatially remote neurons and gating of information within the human sensorimotor system. Here we tested the hypothesis that different unimanual motor tasks are specifically associated with distinct patterns of oscillatory coupling in human...

  12. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  13. Learning-induced uncertainty reduction in perceptual decisions is task-dependent

    Directory of Open Access Journals (Sweden)

    Feitong eYang

    2014-05-01

    Full Text Available Perceptual decision making in which decisions are reached primarily from extracting and evaluating sensory information requires close interactions between the sensory system and decision-related networks in the brain. Uncertainty pervades every aspect of this process and can be considered related to either the stimulus signal or decision criterion. Here, we investigated the learning-induced reduction of both the signal and criterion uncertainty in two perceptual decision tasks based on two Glass pattern stimulus sets. This was achieved by manipulating spiral angle and signal level of radial and concentric Glass patterns. The behavioral results showed that the participants trained with a task based on criterion comparison improved their categorization accuracy for both tasks, whereas the participants who were trained on a task based on signal detection improved their categorization accuracy only on their trained task. We fitted the behavioral data with a computational model that can dissociate the contribution of the signal and criterion uncertainties. The modeling results indicated that the participants trained on the criterion comparison task reduced both the criterion and signal uncertainty. By contrast, the participants who were trained on the signal detection task only reduced their signal uncertainty after training. Our results suggest that the signal uncertainty can be resolved by training participants to extract signals from noisy environments and to discriminate between clear signals, which are evidenced by reduced perception variance after both training procedures. Conversely, the criterion uncertainty can only be resolved by the training of fine discrimination. These findings demonstrate that uncertainty in perceptual decision-making can be reduced with training but that the reduction of different types of uncertainty is task-dependent.

  14. Greek Young Adults with Specific Learning Disabilities Seeking Learning Assessments

    Science.gov (United States)

    Bonti, Eleni; Bampalou, Christina E.; Kouimtzi, Eleni M.; Kyritsis, Zacharias

    2018-01-01

    The purpose of this study is to investigate the reasons why Greek young adults with Specific Learning Disabilities (SLD) seek learning assessments. The study sample consisted of 106 adults meeting Diagnostic and Statistical Manual of Mental Disorders criteria for SLD. Data were collected through self-report records (clinical interview) of adults…

  15. Automated personnel data base system specifications, Task V. Final report

    International Nuclear Information System (INIS)

    Bartley, H.J.; Bocast, A.K.; Deppner, F.O.; Harrison, O.J.; Kraas, I.W.

    1978-11-01

    The full title of this study is 'Development of Qualification Requirements, Training Programs, Career Plans, and Methodologies for Effective Management and Training of Inspection and Enforcement Personnel.' Task V required the development of an automated personnel data base system for NRC/IE. This system is identified as the NRC/IE Personnel, Assignment, Qualifications, and Training System (PAQTS). This Task V report provides the documentation for PAQTS including the Functional Requirements Document (FRD), the Data Requirements Document (DRD), the Hardware and Software Capabilities Assessment, and the Detailed Implementation Schedule. Specific recommendations to facilitate implementation of PAQTS are also included

  16. Chinese preservice teachers’ professional identity links with education program performance: The roles of task value belief and learning motivations

    Directory of Open Access Journals (Sweden)

    Yan eZhang

    2016-04-01

    Full Text Available AbstractProfessional identity is a key issue spanning the entirety of teachers’ career development. Despite the abundance of existing research examining professional identity, its link with occupation-related behavior at the primary career stage (i.e., GPA in preservice education and the potential process that underlies this association is still not fully understood. This study explored the professional identity of Chinese preservice teachers, and its links with task value belief, intrinsic learning motivation, extrinsic learning motivation, and performance in the education program. Grade-point average (GPA of courses (both subject and pedagogy courses was examined as an indicator of performance, and questionnaires were used to measure the remaining variables. Data from 606 preservice teachers in the first three years of a teacher-training program indicated that: (1 variables in this research were all significantly correlated with each other, except the correlation between intrinsic learning motivation and program performance; (2 professional identity was positively linked to task value belief, intrinsic and extrinsic learning motivations, and program performance in a structural equation model (SEM; (3 task value belief was positively linked to intrinsic and extrinsic learning motivation; (4 higher extrinsic (but not intrinsic learning motivation was associated with increased program performance; and (5 task value belief and extrinsic learning motivation were significant mediators in the model.

  17. A Task-Based Language Teaching Approach to Developing Metacognitive Strategies for Listening Comprehension

    Science.gov (United States)

    Chou, Mu-Hsuan

    2017-01-01

    In second (L2) or foreign language (FL) learning, learning strategies help learners perform tasks, solve specific problems, and compensate for learning deficits. Of the strategy types, metacognitive strategies manage and regulate the construction of L2 or FL knowledge. Although learning strategies are frequently taught via teacher demonstration,…

  18. Working memory and novel word learning in children with hearing impairment and children with specific language impairment.

    Science.gov (United States)

    Hansson, K; Forsberg, J; Löfqvist, A; Mäki-Torkko, E; Sahlén, B

    2004-01-01

    Working memory is considered to influence a range of linguistic skills, i.e. vocabulary acquisition, sentence comprehension and reading. Several studies have pointed to limitations of working memory in children with specific language impairment. Few studies, however, have explored the role of working memory for language deficits in children with hearing impairment. The first aim was to compare children with mild-to-moderate bilateral sensorineural hearing impairment, children with a preschool diagnosis of specific language impairment and children with normal language development, aged 9-12 years, for language and working memory. The special focus was on the role of working memory in learning new words for primary school age children. The assessment of working memory included tests of phonological short-term memory and complex working memory. Novel word learning was assessed according to the methods of. In addition, a range of language tests was used to assess language comprehension, output phonology and reading. Children with hearing impairment performed significantly better than children with a preschool diagnosis of specific language impairment on tasks assessing novel word learning, complex working memory, sentence comprehension and reading accuracy. No significant correlation was found between phonological short-term memory and novel word learning in any group. The best predictor of novel word learning in children with specific language impairment and in children with hearing impairment was complex working memory. Furthermore, there was a close relationship between complex working memory and language in children with a preschool diagnosis of specific language impairment but not in children with hearing impairment. Complex working memory seems to play a significant role in vocabulary acquisition in primary school age children. The interpretation is that the results support theories suggesting a weakened influence of phonological short-term memory on novel word

  19. The Role of Self-Regulated Learning Capacities in Iranian EFL Undergraduates’ Argumentative Writing Task Performance

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khomeijani Farahani

    2017-09-01

    Full Text Available The current study was an attempt to explore the relationship between Iranian EFL learners’ self-regulatory capacities and their argumentative writing task performance in order to analyze measures of complexity, accuracy, and fluency (CAF. To this end, 44 Iranian EFL undergraduates majoring in English literature at the University of Tehran were recruited based on convenience sampling to participate in this study. Employing a correlational design, the participants were required to perform an argumentative writing task and complete the Motivated Strategies for Learning Questionnaire designed by Pintrich, Smith, Garcia, and McKeachie (1991. Pearson product moment correlation indicated a significant relationship between self-regulated learning and writing task performance in relation to CAF measures. In addition, the results of multiple regression showed that resource management strategies and value component predicted 56.9% of grammatical accuracy of writing task. It was also shown that resource management strategies, value, and expectancy components predicted 56.5% of lexical complexity of writing task. Lastly, cognitive and metacognitive strategies, expectancy, and value components predicted 55.2% of the fluency of writing task. The findings of this study informs EFL writing pedagogy and English language teachers and syllabus designers  with regard to the benefits of applying self-regulatory strategies in teaching and assessing writing.

  20. The effects of response cost and species-typical behaviors on a daily time-place learning task.

    Science.gov (United States)

    Deibel, Scott H; Thorpe, Christina M

    2013-03-01

    Two theories that have been hypothesized to mediate acquisition in daily time-place learning (TPL) tasks were investigated in a free operant daily TPL task: the response cost hypothesis and the species-typical behavior hypothesis. One lever at the end of one of the choice arms of a T-maze provided food in the morning, and 6 h later, a lever in the other choice arm provided food. Four groups were used to assess the effect of two possible sources of response cost: physical effort of the task and costs associated with foraging ecology. One group was used to assess the effect of explicitly allowing for species-typical behaviors. If only first arm choice data were considered, there was little evidence of learning. However, both first press and percentage of presses on the correct lever prior to the first reinforcement revealed evidence of TPL in most rats tested. Unexpectedly, the high response cost groups for both of the proposed sources did not perform better than the low response cost groups. The groups that allowed animals to display species-typical behaviors performed the worst. Skip session probe trials confirmed that the majority of the rats that acquired the task were using a circadian timing strategy. The results from the present study suggest that learning in free operant daily TPL tasks might not be dependent on response cost.

  1. CONFIDENCE MASTERY AS THE FUNDAMENTAL TASK IN LEARNING A FOREIGN LANGUAGE

    Directory of Open Access Journals (Sweden)

    KOTEKOVÁ, Daniela

    2013-06-01

    Full Text Available The aim of language learning is not only to achieve an academic success carried out by a fluent speaking; mastering the grammar and vocabulary but it should also focus on the psychological comfort and the intrinsic readiness of the students to participate in their education - to receive and perform. The learners’ self-esteem plays the fundamental role in any language classroom but gaining it is the task on its own and can be quite a challenge for the teachers. How students feel is closely related to their ability to learn. Teachers’ task is thus not only to provide knowledge and information but first of all they should immerse themselves into the student’s mind and discover the best way to awake learner’s will to communicate. This paper focuses on two kinds of aspects participating on the emotional state of the learner, academic and psychological. The students of two different levels of English have answered the questionnaire, assessing their attitude, anxiety and motivation towards learning English. Each opinion has been evaluated and put into relationship with the ability to relax, understand, learn and enjoy at the same time. Their analyses have become the base of several teaching techniques that would build and encourage the students’ confidence as the main condition to start any cognitive process. If confidence is the cause or the outcome of mastering a foreign language was the question asked and answered in this work. Confidence mastery has thus played the fundamental role in the present survey.

  2. Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence.

    Science.gov (United States)

    Ahn, Woo-Young; Vassileva, Jasmin

    2016-04-01

    Recent animal and human studies reveal distinct cognitive and neurobiological differences between opiate and stimulant addictions; however, our understanding of the common and specific effects of these two classes of drugs remains limited due to the high rates of polysubstance-dependence among drug users. The goal of the current study was to identify multivariate substance-specific markers classifying heroin dependence (HD) and amphetamine dependence (AD), by using machine-learning approaches. Participants included 39 amphetamine mono-dependent, 44 heroin mono-dependent, 58 polysubstance dependent, and 81 non-substance dependent individuals. The majority of substance dependent participants were in protracted abstinence. We used demographic, personality (trait impulsivity, trait psychopathy, aggression, sensation seeking), psychiatric (attention deficit hyperactivity disorder, conduct disorder, antisocial personality disorder, psychopathy, anxiety, depression), and neurocognitive impulsivity measures (Delay Discounting, Go/No-Go, Stop Signal, Immediate Memory, Balloon Analogue Risk, Cambridge Gambling, and Iowa Gambling tasks) as predictors in a machine-learning algorithm. The machine-learning approach revealed substance-specific multivariate profiles that classified HD and AD in new samples with high degree of accuracy. Out of 54 predictors, psychopathy was the only classifier common to both types of addiction. Important dissociations emerged between factors classifying HD and AD, which often showed opposite patterns among individuals with HD and AD. These results suggest that different mechanisms may underlie HD and AD, challenging the unitary account of drug addiction. This line of work may shed light on the development of standardized and cost-efficient clinical diagnostic tests and facilitate the development of individualized prevention and intervention programs for HD and AD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems.

    Science.gov (United States)

    Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S

    2005-01-01

    Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.

  4. Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Rodolfo S. Simões

    2018-02-01

    Full Text Available Medicinal chemistry projects involve some steps aiming to develop a new drug, such as the analysis of biological targets related to a given disease, the discovery and the development of drug candidates for these targets, performing parallel biological tests to validate the drug effectiveness and side effects. Approaches as quantitative study of activity-structure relationships (QSAR involve the construction of predictive models that relate a set of descriptors of a chemical compound series and its biological activities with respect to one or more targets in the human body. Datasets used to perform QSAR analyses are generally characterized by a small number of samples and this makes them more complex to build accurate predictive models. In this context, transfer and multi-task learning techniques are very suitable since they take information from other QSAR models to the same biological target, reducing efforts and costs for generating new chemical compounds. Therefore, this review will present the main features of transfer and multi-task learning studies, as well as some applications and its potentiality in drug design projects.

  5. Relationship between Usefulness Assessments and Perceptions of Work Task Complexity and Search Topic Specificity: An Exploratory Study

    DEFF Research Database (Denmark)

    Ingwersen, Peter; Wang, Peiling

    2012-01-01

    This research investigates the relations between the usefulness assessments of retrieved documents and the perceptions of task complexity and search topic specificity. Twenty-three academic researchers submitted 65 real task-based information search topics. These task topics were searched...... in an integrated document collection consisting of full text research articles in PDFs, abstracts, and bibliographic records (the iSearch Test Collection in Physics). The search results were provided to the researchers who, as task performers, made assessments of usefulness using a four-point sale (highly, fairly......, marginally, or not useful). In addition, they also assessed the perceived task complexity (highly, fairly, and routine/low) and the perceived specificity of the search topic (highly, fairly, and generic/low). It is found that highly specific topics associate with all degrees of task complexity, whereas...

  6. Patients with Parkinson's disease learn to control complex systems-an indication for intact implicit cognitive skill learning.

    Science.gov (United States)

    Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther

    2006-01-01

    Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.

  7. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  8. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  9. Cognitive flexibility in young children: General or task-specific capacity?

    Science.gov (United States)

    Deák, Gedeon O; Wiseheart, Melody

    2015-10-01

    Cognitive flexibility is the ability to adapt to changing tasks or problems. To test whether cognitive flexibility is a coherent cognitive capacity in young children, we tested 3- to 5-year-olds' performance on two forms of task switching, rule-based (Three Dimension Changes Card Sorting, 3DCCS) and inductive (Flexible Induction of Meaning-Animates and Objects, FIM-Ob and FIM-An), as well as tests of response speed, verbal working memory, inhibition, and reasoning. Results suggest that cognitive flexibility is not a globally coherent trait; only the two inductive word-meaning (FIM) tests showed high inter-test coherence. Task- and knowledge-specific factors also determine children's flexibility in a given test. Response speed, vocabulary size, and causal reasoning skills further predicted individual and age differences in flexibility, although they did not have the same predictive relation with all three flexibility tests. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Designing on-demand education for simultaneous development of domain-specific and self-directed learning skills

    NARCIS (Netherlands)

    Taminiau, E.M.C.; Kester, L.; Corbalan Perez, G.; Spector, J.M.; Kirschner, P.A.; Merriënboer, J.J.G. van

    2015-01-01

    On-demand education enables individual learners to choose their learning pathways according to their own learning needs. They must use self-directed learning (SDL) skills involving self-assessment and task selection to determine appropriate pathways for learning. Learners who lack these skills must

  11. Designing on-demand education for simultaneous development of domain-specific and self-directed learning skills

    NARCIS (Netherlands)

    Taminiau, Bettine; Kester, Liesbeth; Corbalan, Gemma; Spector, J. Michael; Kirschner, Paul A.; Van Merriënboer, Jeroen

    2016-01-01

    On-demand education enables individual learners to choose their learning pathways according to their own learning needs. They must use self-directed learning (SDL) skills involving self-assessment and task selection to determine appropriate pathways for learning. Learners who lack these skills must

  12. Task-specific singing dystonia: vocal instability that technique cannot fix.

    Science.gov (United States)

    Halstead, Lucinda A; McBroom, Deanna M; Bonilha, Heather Shaw

    2015-01-01

    Singer's dystonia is a rare variation of focal laryngeal dystonia presenting only during specific tasks in the singing voice. It is underdiagnosed since it is commonly attributed to technique problems including increased muscle tension, register transition, or wobble. Singer's dystonia differs from technique-related issues in that it is task- and/or pitch-specific, reproducible and occurs independently from the previously mentioned technical issues.This case series compares and contrasts profiles of four patients with singer's dystonia to increase our knowledge of this disorder. This retrospective case series includes a detailed case history, results of singing evaluations from individual voice teachers, review of singing voice samples by a singing voice specialist, evaluation by a laryngologist with endoscopy and laryngeal electromyography (LEMG), and spectral analysis of the voice samples by a speech-language pathologist. Results demonstrate the similarities and unique differences of individuals with singer's dystonia. Response to treatment and singing status varied from nearly complete relief of symptoms with botulinum toxin injections to minor relief of symptoms and discontinuation of singing. The following are the conclusions from this case series: (1) singer's dystonia exists as a separate entity from technique issues, (2) singer's dystonia is consistent with other focal task-specific dystonias found in musicians, (3) correctly diagnosing singer's dystonia allows singer's access to medical treatment of dystonia and an opportunity to modify their singing repertoire to continue singing with the voice they have, and (4) diagnosis of singer's dystonia requires careful sequential multidisciplinary evaluation to isolate the instability and confirm dystonia by LEMG and spectral voice analysis. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Beads task vs. box task: The specificity of the jumping to conclusions bias.

    Science.gov (United States)

    Balzan, Ryan P; Ephraums, Rachel; Delfabbro, Paul; Andreou, Christina

    2017-09-01

    Previous research involving the probabilistic reasoning 'beads task' has consistently demonstrated a jumping-to-conclusions (JTC) bias, where individuals with delusions make decisions based on limited evidence. However, recent studies have suggested that miscomprehension may be confounding the beads task. The current study aimed to test the conventional beads task against a conceptually simpler probabilistic reasoning "box task" METHODS: One hundred non-clinical participants completed both the beads task and the box task, and the Peters et al. Delusions Inventory (PDI) to assess for delusion-proneness. The number of 'draws to decision' was assessed for both tasks. Additionally, the total amount of on-screen evidence was manipulated for the box task, and two new box task measures were assessed (i.e., 'proportion of evidence requested' and 'deviation from optimal solution'). Despite being conceptually similar, the two tasks did not correlate, and participants requested significantly less information on the beads task relative to the box task. High-delusion-prone participants did not demonstrate hastier decisions on either task; in fact, for box task, this group was observed to be significantly more conservative than low-delusion-prone group. Neither task was incentivized; results need replication with a clinical sample. Participants, and particularly those identified as high-delusion-prone, displayed a more conservative style of responding on the novel box task, relative to the beads task. The two tasks, whilst conceptually similar, appear to be tapping different cognitive processes. The implications of these results are discussed in relation to the JTC bias and the theoretical mechanisms thought to underlie it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    Science.gov (United States)

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  15. Effects of Classroom Bilingualism on Task Shifting, Verbal Memory, and Word Learning in Children

    Science.gov (United States)

    Kaushanskaya, Margarita; Gross, Megan; Buac, Milijana

    2014-01-01

    We examined the effects of classroom bilingual experience in children on an array of cognitive skills. Monolingual English-speaking children were compared with children who spoke English as the native language and who had been exposed to Spanish in the context of dual-immersion schooling for an average of two years. The groups were compared on a measure of non-linguistic task-shifting; measures of verbal short-term and working memory; and measures of word-learning. The two groups of children did not differ on measures of non-linguistic task-shifting and verbal short-term memory. However, the classroom-exposure bilingual group outperformed the monolingual group on the measure of verbal working memory and a measure of word-learning. Together, these findings indicate that while exposure to a second language in a classroom setting may not be sufficient to engender changes in cognitive control, it can facilitate verbal memory and verbal learning. PMID:24576079

  16. Effects of caloric restriction on learning and recovery of a spatial task in rats exposed to acute stress

    Directory of Open Access Journals (Sweden)

    Lamprea Rodríguez, Marisol

    2009-06-01

    Full Text Available The purpose of the present study was to describe the effects of caloric restriction on spatial learning and recovery in the Barnes maze in animals experimentally stressed before recovery of the spatial task. Male Wistar rats were exposed for two months to one of two conditions: ad libitum (AL or intermittent fasting (IF. Both groups were exposed then to an experimental form of acute stress, induced by movement restriction for 4 hours. IF subjects had better performance in learning tasks during the acquisition trials but required more time to complete the task after the stressor was applied. These results are discussed in light of previous data reported in the literature emphasizing differences in the instruments used to evaluate spatial learning and its interaction with experimentally induced stress.

  17. You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Uengoer, Metin; Schubö, Anna

    2015-11-01

    Besides visual salience and observers' current intention, prior learning experience may influence deployment of visual attention. Associative learning models postulate that observers pay more attention to stimuli previously experienced as reliable predictors of specific outcomes. To investigate the impact of learning experience on deployment of attention, we combined an associative learning task with a visual search task and measured event-related potentials of the EEG as neural markers of attention deployment. In the learning task, participants categorized stimuli varying in color/shape with only one dimension being predictive of category membership. In the search task, participants searched a shape target while disregarding irrelevant color distractors. Behavioral results showed that color distractors impaired performance to a greater degree when color rather than shape was predictive in the learning task. Neurophysiological results show that the amplified distraction was due to differential attention deployment (N2pc). Experiment 2 showed that when color was predictive for learning, color distractors captured more attention in the search task (ND component) and more suppression of color distractor was required (PD component). The present results thus demonstrate that priority in visual attention is biased toward predictive stimuli, which allows learning experience to shape selection. We also show that learning experience can overrule strong top-down control (blocked tasks, Experiment 3) and that learning experience has a longer-term effect on attention deployment (tasks on two successive days, Experiment 4). © 2015 Society for Psychophysiological Research.

  18. Grammar predicts procedural learning and consolidation deficits in children with Specific Language Impairment.

    Science.gov (United States)

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D; Alm, Per; Jennische, Margareta; Bruce Tomblin, J; Ullman, Michael T

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that these

  19. Grammar Predicts Procedural Learning and Consolidation Deficits in Children with Specific Language Impairment

    Science.gov (United States)

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D.; Alm, Per; Jennische, Margareta; Tomblin, J. Bruce; Ullman, Michael T.

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining the consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically-developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that

  20. Environmental enrichment of young adult rats (Rattus norvegicus) in different sensory modalities has long-lasting effects on their ability to learn via specific sensory channels.

    Science.gov (United States)

    Dolivo, Vassilissa; Taborsky, Michael

    2017-05-01

    Sensory modalities individuals use to obtain information from the environment differ among conspecifics. The relative contributions of genetic divergence and environmental plasticity to this variance remain yet unclear. Numerous studies have shown that specific sensory enrichments or impoverishments at the postnatal stage can shape neural development, with potential lifelong effects. For species capable of adjusting to novel environments, specific sensory stimulation at a later life stage could also induce specific long-lasting behavioral effects. To test this possibility, we enriched young adult Norway rats with either visual, auditory, or olfactory cues. Four to 8 months after the enrichment period we tested each rat for their learning ability in 3 two-choice discrimination tasks, involving either visual, auditory, or olfactory stimulus discrimination, in a full factorial design. No sensory modality was more relevant than others for the proposed task per se, but rats performed better when tested in the modality for which they had been enriched. This shows that specific environmental conditions encountered during early adulthood have specific long-lasting effects on the learning abilities of rats. Furthermore, we disentangled the relative contributions of genetic and environmental causes of the response. The reaction norms of learning abilities in relation to the stimulus modality did not differ between families, so interindividual divergence was mainly driven by environmental rather than genetic factors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality

    Directory of Open Access Journals (Sweden)

    Hrishikesh M. Rao

    2018-02-01

    Full Text Available Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

  2. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality.

    Science.gov (United States)

    Rao, Hrishikesh M; Khanna, Rajan; Zielinski, David J; Lu, Yvonne; Clements, Jillian M; Potter, Nicholas D; Sommer, Marc A; Kopper, Regis; Appelbaum, Lawrence G

    2018-01-01

    Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

  3. Task-based language teaching: how it is implemented effectively?

    Science.gov (United States)

    Somawati, N. P.; Wahyu Astuti, N. W.; Kanca, I. N.; Widanta, I. M. R. J.; Ardika, I. W. D.

    2018-01-01

    There have been a number of ideas on how task-based language teaching (TBLT) is applied in English instruction. This research attempted to investigate how the task-based language teaching (TBLT) should appropriately be implemented in vocational college. A group of twenty eight students majoring in tourism were involved as research participant. Prior to treatment, they were given pre-test (Tl) to see their basic level. The test, assessment rubric, learning materials, and learning syntax were developed and validated by an expert judge prior to their use. The treatment using task-based learning materials and learning syntax stages of “leading in - enriching - activating - naturalizing” (LEAN) was undertaken for three times. The post test (T2) was then given two days upon treatment to avoid their being able to answer the test because they just still remember of the materials during the learning. The analysis result of T1 and T2 using paired sample t-test showed that there was significant difference between means of T1 (M=6.14) and T2 (M=15.46), indicated by t (27) = -54.51, p development is recommended to use other English for specific purposes’ materials and different research participant.

  4. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task

    Directory of Open Access Journals (Sweden)

    Ken eKinjo

    2013-04-01

    Full Text Available Linearly solvable Markov Decision Process (LMDP is a class of optimal control problem in whichthe Bellman’s equation can be converted into a linear equation by an exponential transformation ofthe state value function (Todorov, 2009. In an LMDP, the optimal value function and the correspondingcontrol policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunctionproblem in a continuous state using the knowledge of the system dynamics and the action, state, andterminal cost functions.In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in whichthe dynamics of the body and the environment have to be learned from experience. We first perform asimulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynam-ics model on the derived the action policy. The result shows that a crude linear approximation of thenonlinear dynamics can still allow solution of the task, despite with a higher total cost.We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robotplatform. The state is given by the position and the size of a battery in its camera view and two neck jointangles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servocontroller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state costfunctions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics modelperformed equivalently with the optimal linear quadratic controller (LQR. In the non-quadratic task, theLMDP controller with a linear dynamics model showed the best performance. The results demonstratethe usefulness of the LMDP framework in real robot control even when simple linear models are usedfor dynamics learning.

  5. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    Science.gov (United States)

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  6. Successfully carrying out complex learning-tasks through guiding teams' qualitative and quantitative reasoning

    NARCIS (Netherlands)

    Slof, B.; Erkens, G.; Kirschner, P. A.; Janssen, J.; Jaspers, J. G. M.

    This study investigated whether and how scripting learners' use of representational tools in a computer supported collaborative learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its

  7. Selective social learning in infancy: looking for mechanisms.

    Science.gov (United States)

    Crivello, Cristina; Phillips, Sara; Poulin-Dubois, Diane

    2018-05-01

    Although there is mounting evidence that selective social learning begins in infancy, the psychological mechanisms underlying this ability are currently a controversial issue. The purpose of this study is to investigate whether theory of mind abilities and statistical learning skills are related to infants' selective social learning. Seventy-seven 18-month-olds were first exposed to a reliable or an unreliable speaker and then completed a word learning task, two theory of mind tasks, and a statistical learning task. If domain-general abilities are linked to selective social learning, then infants who demonstrate superior performance on the statistical learning task should perform better on the selective learning task, that is, should be less likely to learn words from an unreliable speaker. Alternatively, if domain-specific abilities are involved, then superior performance on theory of mind tasks should be related to selective learning performance. Findings revealed that, as expected, infants were more likely to learn a novel word from a reliable speaker. Importantly, infants who passed a theory of mind task assessing knowledge attribution were significantly less likely to learn a novel word from an unreliable speaker compared to infants who failed this task. No such effect was observed for the other tasks. These results suggest that infants who possess superior social-cognitive abilities are more apt to reject an unreliable speaker as informant. A video abstract of this article can be viewed at: https://youtu.be/zuuCniHYzqo. © 2017 John Wiley & Sons Ltd.

  8. Concerning the primary and secondary objectives in robot task definition - the "learn from humans" principle

    NARCIS (Netherlands)

    Potkonjak, V.; Tzafestas, S.; Kostic, D.

    2000-01-01

    This paper is concerned with the trajectory definition in robot tasks. Although very often ignored, the specification of robot motion is not the first step in the definition of a robot task. The task definition starts with the description of the final outcome, i.e. with the specification of the job

  9. Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task.

    Directory of Open Access Journals (Sweden)

    Thomas Akam

    2015-12-01

    Full Text Available The recently developed 'two-step' behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects' investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues.

  10. Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task

    Science.gov (United States)

    Akam, Thomas; Costa, Rui; Dayan, Peter

    2015-01-01

    The recently developed ‘two-step’ behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects’ investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues. PMID:26657806

  11. Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task.

    Science.gov (United States)

    Akam, Thomas; Costa, Rui; Dayan, Peter

    2015-12-01

    The recently developed 'two-step' behavioural task promises to differentiate model-based from model-free reinforcement learning, while generating neurophysiologically-friendly decision datasets with parametric variation of decision variables. These desirable features have prompted its widespread adoption. Here, we analyse the interactions between a range of different strategies and the structure of transitions and outcomes in order to examine constraints on what can be learned from behavioural performance. The task involves a trade-off between the need for stochasticity, to allow strategies to be discriminated, and a need for determinism, so that it is worth subjects' investment of effort to exploit the contingencies optimally. We show through simulation that under certain conditions model-free strategies can masquerade as being model-based. We first show that seemingly innocuous modifications to the task structure can induce correlations between action values at the start of the trial and the subsequent trial events in such a way that analysis based on comparing successive trials can lead to erroneous conclusions. We confirm the power of a suggested correction to the analysis that can alleviate this problem. We then consider model-free reinforcement learning strategies that exploit correlations between where rewards are obtained and which actions have high expected value. These generate behaviour that appears model-based under these, and also more sophisticated, analyses. Exploiting the full potential of the two-step task as a tool for behavioural neuroscience requires an understanding of these issues.

  12. Learning Style and Task Performance in Synchronous Computer-Mediated Communication: A Case Study of Iranian EFL Learners

    Science.gov (United States)

    Hedayati, Mohsen; Foomani, Elham Mohammadi

    2015-01-01

    The study reported here explores whether English as a foreign Language (EFL) learners' preferred ways of learning (i.e., learning styles) affect their task performance in computer-mediated communication (CMC). As Ellis (2010) points out, while the increasing use of different sorts of technology is witnessed in language learning contexts, it is…

  13. Task-related functional connectivity of the caudate mediates the association between trait mindfulness and implicit learning in older adults.

    Science.gov (United States)

    Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V

    2016-08-01

    Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.

  14. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    Science.gov (United States)

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Time to Define: Making the Specific Learning Disability Definition Prescribe Specific Learning Disability

    Science.gov (United States)

    Kavale, Kenneth A.; Spaulding, Lucinda S.; Beam, Andrea P.

    2009-01-01

    Unlike other special education categories defined in U.S. law (Individuals with Disabilities Education Act), the definition of specific learning disability (SLD) has not changed since first proposed in 1968. Thus, although the operational definition of SLD has responded to new knowledge and understanding about the construct, the formal definition…

  16. Same/different concept learning by capuchin monkeys in matching-to-sample tasks.

    Directory of Open Access Journals (Sweden)

    Valentina Truppa

    Full Text Available The ability to understand similarities and analogies is a fundamental aspect of human advanced cognition. Although subject of considerable research in comparative cognition, the extent to which nonhuman species are capable of analogical reasoning is still debated. This study examined the conditions under which tufted capuchin monkeys (Cebus apella acquire a same/different concept in a matching-to-sample task on the basis of relational similarity among multi-item stimuli. We evaluated (i the ability of five capuchin monkeys to learn the same/different concept on the basis of the number of items composing the stimuli and (ii the ability to match novel stimuli after training with both several small stimulus sets and a large stimulus set. We found the first evidence of same/different relational matching-to-sample abilities in a New World monkey and demonstrated that the ability to match novel stimuli is within the capacity of this species. Therefore, analogical reasoning can emerge in monkeys under specific training conditions.

  17. Same/Different Concept Learning by Capuchin Monkeys in Matching-to-Sample Tasks

    Science.gov (United States)

    Truppa, Valentina; Piano Mortari, Eva; Garofoli, Duilio; Privitera, Sara; Visalberghi, Elisabetta

    2011-01-01

    The ability to understand similarities and analogies is a fundamental aspect of human advanced cognition. Although subject of considerable research in comparative cognition, the extent to which nonhuman species are capable of analogical reasoning is still debated. This study examined the conditions under which tufted capuchin monkeys (Cebus apella) acquire a same/different concept in a matching-to-sample task on the basis of relational similarity among multi-item stimuli. We evaluated (i) the ability of five capuchin monkeys to learn the same/different concept on the basis of the number of items composing the stimuli and (ii) the ability to match novel stimuli after training with both several small stimulus sets and a large stimulus set. We found the first evidence of same/different relational matching-to-sample abilities in a New World monkey and demonstrated that the ability to match novel stimuli is within the capacity of this species. Therefore, analogical reasoning can emerge in monkeys under specific training conditions. PMID:21858225

  18. Evaluation of Functional Correlation of Task-Specific Muscle Synergies with Motor Performance in Patients Poststroke

    Directory of Open Access Journals (Sweden)

    Si Li

    2017-07-01

    Full Text Available The central nervous system produces movements by activating specifically programmed muscle synergies that are also altered with injuries in the brain, such as stroke. In this study, we hypothesize that there exists a positive correlation between task-specific muscle synergy and motor functions at joint and task levels in patients following stroke. The purpose here is to define and evaluate neurophysiological metrics based on task-specific muscle synergy for assessing motor functions in patients. A patient group of 10 subjects suffering from stroke and a control group of nine age-matched healthy subjects were recruited to participate in this study. Electromyography (EMG signals and movement kinematics were recorded in patients and control subjects while performing arm reaching tasks. Muscle synergies of individual patients were extracted off-line from EMG records of each patient, and a baseline pattern of muscle synergy was obtained from the pooled EMG data of all nine control subjects. Peak velocities and movement durations of each reaching movement were computed from measured kinematics. Similarity indices of matching components to those of the baseline synergy were defined by synergy vectors and time profiles, respectively, as well as by a combined similarity of vector and time profile. Results showed that pathological synergies of patients were altered from the characteristics of baseline synergy with missing components, or varied vector patterns and time profiles. The kinematic performance measured by peak velocities and movement durations was significantly poorer for the patient group than the control group. In patients, all three similarity indices were found to correlate significantly to the kinematics of movements for the reaching tasks. The correlation to the Fugl-Meyer score of arm was the highest with the vector index, the lowest with the time profile index, and in between with the combined index. These findings illustrate that the

  19. Impact of Computer Aided Learning on Children with Specific Learning Disabilities

    OpenAIRE

    The Spastic Society Of Karnataka , Bangalore

    2004-01-01

    Study conducted by The Spastics Society of Karnataka on behalf of Azim Premji Foundation to assess the effectiveness of computers in enhancing learning for children with specific learning disabilities. Azim Premji Foundation is not liable for any direct or indirect loss or damage whatsoever arising from the use or access of any information, interpretation and conclusions that may be printed in this report.; Study to assess the effectiveness of computers in enhancing learning for children with...

  20. Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats.

    Science.gov (United States)

    Grissom, Elin M; Hawley, Wayne R; Hodges, Kelly S; Fawcett-Patel, Jessica M; Dohanich, Gary P

    2013-04-01

    According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males

  1. Evaluation of a novel task specific ionic liquid for actinide ion extraction

    International Nuclear Information System (INIS)

    Paramanik, M.; Ghosh, S.K.; Raut, D.R.; Mohapatra, P.K.

    2016-01-01

    Separation of U and Pu from nuclear waste is of great relevance for a sustainable closed fuel cycle point of view. Spent fuel reprocessing by the well known PUREX process is done world wide for the recovery of U and Pu using TBP as the extractant. Room temperature ionic liquids (RTILs) have shown significantly higher extraction of metal ions, particularly at lower acidity as compared to the molecular diluents. Functionalization of ionic liquids has resulted in highly efficient task specific ionic liquids (TSILs) with superior extraction properties than the analogous extractants dissolved in ionic liquids. The present paper reports the evaluation of a novel task specific ionic liquid (TSIL) containing >P=O functional group for the extraction of actinides like U(VI) and Pu(IV)

  2. Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect

    NARCIS (Netherlands)

    Kirschner, Femke; Paas, Fred; Kirschner, Paul A.

    2010-01-01

    Kirschner, F., Paas, F., & Kirschner, P. A. (2011). Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect. Applied Cognitive Psychology, 25, 615–624. doi: 10.1002/acp.1730.

  3. Bridges to Swaziland: Using Task-Based Learning and Computer-Mediated Instruction to Improve English Language Teaching and Learning

    Science.gov (United States)

    Pierson, Susan Jacques

    2015-01-01

    One way to provide high quality instruction for underserved English Language Learners around the world is to combine Task-Based English Language Learning with Computer- Assisted Instruction. As part of an ongoing project, "Bridges to Swaziland," these approaches have been implemented in a determined effort to improve the ESL program for…

  4. Task Specific Inter-Hemispheric Coupling in Human Subthalamic Nuclei

    Directory of Open Access Journals (Sweden)

    Felix eDarvas

    2014-09-01

    Full Text Available Cortical networks and quantitative measures of connectivity are integral to the study of brain function. Despite lack of direct connections between left and right subthalamic nuclei (STN, there are apparent physiological connections. During clinical examination of patients with Parkinson’s Disease (PD, this connectivity is exploited to enhance signs of PD, yet our understanding of this connectivity is limited. We hypothesized that movement leads to synchronization of neural oscillations in bilateral STN, and we implemented phase coherence, a measure of phase-locking between cortical sites in a narrow frequency band, to demonstrate this synchronization. We analyzed task specific phase synchronization and causality between left and right STN local field potentials (LFP recorded from both hemispheres simultaneously during a cued movement task in four subjects with PD who underwent Deep Brain Stimulation (DBS surgery. We used a data driven approach to determine inter-hemispheric channel pairs and frequencies with a task specific increase in phase locking.We found significant phase locking between hemispheres in alpha frequency (8-12 Hz in all subjects concurrent with movement of either hand. In all subjects, phase synchronization increased over baseline upon or prior to hand movement onset and lasted until the motion ceased. Left and right hand movement showed similar patterns. Granger causality at the phase-locking frequencies between synchronized electrodes revealed a unidirectional causality from right to left STN regardless of which side was moved.Phase synchronization across hemispheres between basal ganglia supports existence of a bilateral network having lateralized regions of specialization for motor processing. Our results suggest this bilateral network is activated by a unilateral motor program. Understanding phase synchronization in natural brain functions is critical to development of future DBS systems that augment goal directed

  5. Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans

    NARCIS (Netherlands)

    Varma, S.; Takashima, A.; Krewinkel, S.C.; Kooten, M.E. van; Fu, L.; Medendorp, W.P.; Kessels, R.P.C.; Daselaar, S.M.

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have only used tasks involving complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant

  6. Warping similarity space in category learning by human subjects: the role of task difficulty

    OpenAIRE

    Pevtzow, Rachel; Harnad, Stevan

    1997-01-01

    In innate Categorical Perception (CP) (e.g., colour perception), similarity space is "warped," with regions of increased within-category similarity (compression) and regions of reduced between-category similarity (separation) enh ancing the category boundaries and making categorisation reliable and all-or-none rather than graded. We show that category learning can likewise warp similarity space, resolving uncertainty near category boundaries. Two Hard and two Easy texture learning tasks were ...

  7. Integration of the information problem-solving skill in an educational programme: The effects of learning with authentic tasks.

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Wopereis, Iwan

    2008-01-01

    Brand-Gruwel, S., & Wopereis, I. (2006). Integration of the information problem-solving skill in an educational programme: The effects of learning with authentic tasks. Technology, Instruction, Cognition, and Learning, 4, 243-263.

  8. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  9. Motor Learning of a Bimanual Task in Children with Unilateral Cerebral Palsy

    Science.gov (United States)

    Hung, Ya-Ching; Gordon, Andrew M.

    2013-01-01

    Children with unilateral cerebral palsy (CP) have been shown to improve their motor performance with sufficient practice. However, little is known about how they learn goal-oriented tasks. In the current study, 21 children with unilateral CP (age 4-10 years old) and 21 age-matched typically developed children (TDC) practiced a simple bimanual…

  10. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning.

    Science.gov (United States)

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, B J

    2014-06-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The present study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated. Seventy-eight of these participants completed the task during fMRI scanning. Modeling trial-by-trial learning, children and adults showed higher positive learning rates than did adolescents, suggesting that adolescents demonstrated less differentiation in their reaction times for peers who provided more positive feedback. Forming expectations about receiving positive social reinforcement correlated with neural activity within the medial prefrontal cortex and ventral striatum across age. Adolescents, unlike children and adults, showed greater insular activity during positive prediction error learning and increased activity in the supplementary motor cortex and the putamen when receiving positive social feedback regardless of the expected outcome, suggesting that peer approval may motivate adolescents toward action. While different amounts of positive social reinforcement enhanced learning in children and adults, all positive social reinforcement equally motivated adolescents. Together, these findings indicate that sensitivity to peer approval during adolescence goes beyond simple reinforcement theory accounts and suggest possible explanations for how peers may motivate adolescent behavior.

  11. Future goal setting, task motivation and learning of minority and non-minority students in Dutch schools.

    Science.gov (United States)

    Andriessen, Iris; Phalet, Karen; Lens, Willy

    2006-12-01

    Cross-cultural research on minority school achievement yields mixed findings on the motivational impact of future goal setting for students from disadvantaged minority groups. Relevant and recent motivational research, integrating Future Time Perspective Theory with Self-Determination Theory, has not yet been validated among minority students. To replicate across cultures the known motivational benefits of perceived instrumentality and internal regulation by distant future goals; to clarify when and how the future motivates minority students' educational performance. Participants in this study were 279 minority students (100 of Turkish and 179 of Moroccan origin) and 229 native Dutch students in Dutch secondary schools. Participants rated the importance of future goals, their perceptions of instrumentality, their task motivation and learning strategies. Dependent measures and their functional relations with future goal setting were simultaneously validated across minority and non-minority students, using structural equation modelling in multiple groups. As expected, Positive Perceived Instrumentality for the future increases task motivation and (indirectly) adaptive learning of both minority and non-minority students. But especially internally regulating future goals are strongly related to more task motivation and indirectly to more adaptive learning strategies. Our findings throw new light on the role of future goal setting in minority school careers: distant future goals enhance minority and non-minority students' motivation and learning, if students perceive positive instrumentality and if their schoolwork is internally regulated by future goals.

  12. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    Science.gov (United States)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  13. Dynamic Influence of Emotional States on Novel Word Learning

    Science.gov (United States)

    Guo, Jingjing; Zou, Tiantian; Peng, Danling

    2018-01-01

    Many researchers realize that it's unrealistic to isolate language learning and processing from emotions. However, few studies on language learning have taken emotions into consideration so far, so that the probable influences of emotions on language learning are unclear. The current study thereby aimed to examine the effects of emotional states on novel word learning and their dynamic changes with learning continuing and task varying. Positive, negative or neutral pictures were employed to induce a given emotional state, and then participants learned the novel words through association with line-drawing pictures in four successive learning phases. At the end of each learning phase, participants were instructed to fulfill a semantic category judgment task (in Experiment 1) or a word-picture semantic consistency judgment task (in Experiment 2) to explore the effects of emotional states on different depths of word learning. Converging results demonstrated that negative emotional state led to worse performance compared with neutral condition; however, how positive emotional state affected learning varied with learning task. Specifically, a facilitative role of positive emotional state in semantic category learning was observed but disappeared in word specific meaning learning. Moreover, the emotional modulation on novel word learning was quite dynamic and changeable with learning continuing, and the final attainment of the learned words tended to be similar under different emotional states. The findings suggest that the impact of emotion can be offset when novel words became more and more familiar and a part of existent lexicon. PMID:29695994

  14. Performance of Children with Developmental Dyslexia on High and Low Topological Entropy Artificial Grammar Learning Task

    Science.gov (United States)

    Katan, Pesia; Kahta, Shani; Sasson, Ayelet; Schiff, Rachel

    2017-01-01

    Graph complexity as measured by topological entropy has been previously shown to affect performance on artificial grammar learning tasks among typically developing children. The aim of this study was to examine the effect of graph complexity on implicit sequential learning among children with developmental dyslexia. Our goal was to determine…

  15. Student Task Analysis for the Development of E-Learning Lectural System in Basic Chemistry Courses in FKIP UMMY Solok

    Science.gov (United States)

    Afrahamiryano, A.; Ariani, D.

    2018-04-01

    The student task analysis is one part of the define stage in development research using the 4-D development model. Analysis of this task is useful to determine the level of understanding of students on lecture materials that have been given. The results of this task analysis serve as a measuring tool to determine the level of success of learning and as a basis in the development of lecture system. Analysis of this task is done by the method of observation and documentation study of the tasks undertaken by students. The results of this analysis are then described and after that triangulation are done to draw conclusions. The results of the analysis indicate that the students' level of understanding is high for theoretical and low material for counting material. Based on the results of this task analysis, it can be concluded that e-learning lecture system developed should be able to increase students' understanding on basic chemicals that are calculated.

  16. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

    Science.gov (United States)

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang

    2018-01-01

    Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. I Don’t Want to Miss a Thing – Learning Dynamics and Effects of Feedback Type and Monetary Incentive in a Paired Associate Deterministic Learning Task

    Directory of Open Access Journals (Sweden)

    Magda Gawlowska

    2017-06-01

    Full Text Available Effective functioning in a complex environment requires adjusting of behavior according to changing situational demands. To do so, organisms must learn new, more adaptive behaviors by extracting the necessary information from externally provided feedback. Not surprisingly, feedback-guided learning has been extensively studied using multiple research paradigms. The purpose of the present study was to test the newly designed Paired Associate Deterministic Learning task (PADL, in which participants were presented with either positive or negative deterministic feedback. Moreover, we manipulated the level of motivation in the learning process by comparing blocks with strictly cognitive, informative feedback to blocks where participants were additionally motivated by anticipated monetary reward or loss. Our results proved the PADL to be a useful tool not only for studying the learning process in a deterministic environment, but also, due to the varying task conditions, for assessing differences in learning patterns. Particularly, we show that the learning process itself is influenced by manipulating both the type of feedback information and the motivational significance associated with the expected monetary reward.

  18. Learning to Control Orientation and Force in a Hammering Task The Initial Stage

    NARCIS (Netherlands)

    Vernooij, Carlijn A.; Mouton, Leonora J.; Bongers, Raoul M.

    2012-01-01

    The ability to create stone tools is considered an important step in the emergence of human cognition. To further our understanding of these evolutionary processes we focused on the initial learning processes with which this percussive skill may be acquired. We studied a hammering task in which

  19. Brain noise is task dependent and region specific.

    Science.gov (United States)

    Misić, Bratislav; Mills, Travis; Taylor, Margot J; McIntosh, Anthony R

    2010-11-01

    The emerging organization of anatomical and functional connections during human brain development is thought to facilitate global integration of information. Recent empirical and computational studies have shown that this enhanced capacity for information processing enables a diversified dynamic repertoire that manifests in neural activity as irregularity and noise. However, transient functional networks unfold over multiple time, scales and the embedding of a particular region depends not only on development, but also on the manner in which sensory and cognitive systems are engaged. Here we show that noise is a facet of neural activity that is also sensitive to the task context and is highly region specific. Children (6-16 yr) and adults (20-41 yr) performed a one-back face recognition task with inverted and upright faces. Neuromagnetic activity was estimated at several hundred sources in the brain by applying a beamforming technique to the magnetoencephalogram (MEG). During development, neural activity became more variable across the whole brain, with most robust increases in medial parietal regions, such as the precuneus and posterior cingulate cortex. For young children and adults, activity evoked by upright faces was more variable and noisy compared with inverted faces, and this effect was reliable only in the right fusiform gyrus. These results are consistent with the notion that upright faces engender a variety of integrative neural computations, such as the relations among facial features and their holistic constitution. This study shows that transient changes in functional integration modulated by task demand are evident in the variability of regional neural activity.

  20. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    Science.gov (United States)

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  1. Adversarial Advantage Actor-Critic Model for Task-Completion Dialogue Policy Learning

    OpenAIRE

    Peng, Baolin; Li, Xiujun; Gao, Jianfeng; Liu, Jingjing; Chen, Yun-Nung; Wong, Kam-Fai

    2017-01-01

    This paper presents a new method --- adversarial advantage actor-critic (Adversarial A2C), which significantly improves the efficiency of dialogue policy learning in task-completion dialogue systems. Inspired by generative adversarial networks (GAN), we train a discriminator to differentiate responses/actions generated by dialogue agents from responses/actions by experts. Then, we incorporate the discriminator as another critic into the advantage actor-critic (A2C) framework, to encourage the...

  2. Performance of a visuomotor walking task in an augmented reality training setting.

    Science.gov (United States)

    Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper

    2017-12-01

    Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A 1-night operant learning task without food-restriction differentiates among mouse strains in an automated home-cage environment

    NARCIS (Netherlands)

    Remmelink, Esther; Loos, Maarten; Koopmans, Bastijn; Aarts, Emmeke; van der Sluis, Sophie; Smit, August B; Verhage, Matthijs

    2015-01-01

    Individuals are able to change their behavior based on its consequences, a process involving instrumental learning. Studying instrumental learning in mice can provide new insights in this elementary aspect of cognition. Conventional appetitive operant learning tasks that facilitate the study of this

  4. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    Science.gov (United States)

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. Copyright © 2014. Published by Elsevier B.V.

  5. Using tasks to enhance beginners’ orientations for learning Chinese as a foreign language

    DEFF Research Database (Denmark)

    Ruan, Youjin; Duan, Xiaoju; Du, Xiangyun

    2015-01-01

    , and by what these changes are caused, in a university-wide CFL course using task-based teaching and learning (TBTL). The study identifies four orientations. Results indicate that the knowledge orientation plays a vital role in the learning process, while instrumental orientation appears to be the least...... important to students. Furthermore, the study indicates that all orientations have been enhanced by the end of the course, meaning the learners have developed clearer goals for further study in a TBTL environment. We also show that several external and internal factors, such as the motivating course design...... and enhance learner motivation. The study also discusses challenges encountered in helping beginners learn a foreign language via TBTL....

  6. A Brief Introduction of Task-based Approach

    Institute of Scientific and Technical Information of China (English)

    王丹

    2012-01-01

    The task-based language teaching approach is one of the syllabus models that have been proposed in the last twenty years or so. Task-based syllabus represent a particular realization of communicative language teaching. Task-based teaching/learning helps develop students’ communicative competence, enabling them to communicate effectively in real communicating world and engage in interaction. The most active element in the process of the task-based teaching is the learner’ creativity. By exploiting this kind of creativity, learning can be made significantly more efficient and more interesting. It is well-known that the task-based teaching/learning have a rich potential for promoting successful second language learning than the traditional teaching/learning. Task-based approach is reflected not only in China but also in some other countries, such as America, Canada, Singapore, Hong Kong and son on.

  7. Cognitive Clusters in Specific Learning Disorder.

    Science.gov (United States)

    Poletti, Michele; Carretta, Elisa; Bonvicini, Laura; Giorgi-Rossi, Paolo

    The heterogeneity among children with learning disabilities still represents a barrier and a challenge in their conceptualization. Although a dimensional approach has been gaining support, the categorical approach is still the most adopted, as in the recent fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. The introduction of the single overarching diagnostic category of specific learning disorder (SLD) could underemphasize interindividual clinical differences regarding intracategory cognitive functioning and learning proficiency, according to current models of multiple cognitive deficits at the basis of neurodevelopmental disorders. The characterization of specific cognitive profiles associated with an already manifest SLD could help identify possible early cognitive markers of SLD risk and distinct trajectories of atypical cognitive development leading to SLD. In this perspective, we applied a cluster analysis to identify groups of children with a Diagnostic and Statistical Manual-based diagnosis of SLD with similar cognitive profiles and to describe the association between clusters and SLD subtypes. A sample of 205 children with a diagnosis of SLD were enrolled. Cluster analyses (agglomerative hierarchical and nonhierarchical iterative clustering technique) were used successively on 10 core subtests of the Wechsler Intelligence Scale for Children-Fourth Edition. The 4-cluster solution was adopted, and external validation found differences in terms of SLD subtype frequencies and learning proficiency among clusters. Clinical implications of these findings are discussed, tracing directions for further studies.

  8. Articulatory Control in Childhood Apraxia of Speech in a Novel Word-Learning Task

    Science.gov (United States)

    Case, Julie; Grigos, Maria I.

    2016-01-01

    Purpose: Articulatory control and speech production accuracy were examined in children with childhood apraxia of speech (CAS) and typically developing (TD) controls within a novel word-learning task to better understand the influence of planning and programming deficits in the production of unfamiliar words. Method: Participants included 16…

  9. Measuring motivation in schizophrenia: Is a general state of motivation necessary for task-specific motivation?

    Science.gov (United States)

    Choi, Jimmy; Choi, Kee-Hong; Reddy, Felice; Fiszdon, Joanna M.

    2014-01-01

    Despite the important role of motivation in rehabilitation and functional outcomes in schizophrenia, to date, there has been little emphasis on how motivation is assessed. This is important, since different measures may tap potentially discrete motivational constructs, which in turn may have very different associations to important outcomes. In the current study, we used baseline data from 71 schizophrenia spectrum outpatients enrolled in a rehabilitation program to examine the relationship between task-specific motivation, as measured by the Intrinsic Motivation Inventory (IMI), and a more general state of volition/initiation, as measured by the three item Quality of Life (QLS) motivation index. We also examined the relationship of these motivation measures to demographic, clinical and functional variables relevant to rehabilitation outcomes. The two motivation measures were not correlated, and participants with low general state motivation exhibited a full range of task-specific motivation. Only the QLS motivation index correlated with variables relevant to rehabilitation outcomes. The lack of associations between QLS motivation index and IMI subscales suggests that constructs tapped by these measures may be divergent in schizophrenia, and specifically that task-specific intrinsic motivation is not contingent on a general state of motivation. That is, even in individuals with a general low motivational state (i.e. amotivation), interventions aimed at increasing task-specific motivation may still be effective. Moreover, the pattern of interrelationships between the QLS motivation index and variables relevant to psychosocial rehabilitation supports its use in treatment outcome studies. PMID:24529609

  10. Rational drug therapy education in clinical phase carried out by task-based learning

    Science.gov (United States)

    Bilge, S. Sırrı; Akyüz, Bahar; Ağrı, Arzu Erdal; Özlem, Mıdık

    2017-01-01

    Objectives: Irrational drug use results in drug interactions, treatment noncompliance, and drug resistance. Rational pharmacotherapy education is being implemented in many faculties of medicine. Our aim is to introduce rational pharmacotherapy education by clinicians and to evaluate task-based rational drug therapy education in the clinical context. Methods: The Kirkpatrick's evaluation model was used for the evaluation of the program. The participants evaluated the program in terms of constituents of the program, utilization, and contribution to learning. Voluntary participants responded to the evaluation forms after the educational program. Data are evaluated using both quantitative and qualitative tools. SPSS (version 21) used for quantitative data for determining mean and standard deviation values. Descriptive qualitative analysis approach is used for the analysis of open-ended questions. Results: It was revealed that the program and its components have been favorable. A total 95.9% of the students consider the education to be beneficial. Simulated patients practice and personal drug choice/problem-based learning sessions were appreciated by the students in particular. 93.9% of the students stated that all students of medicine should undergo this educational program. Among the five presentations contained in the program, “The Principles of Prescribing” received the highest points (9 ± 1.00) from participating students in general evaluation of the educational program. Conclusion: This study was carried out to improve task-based rational drug therapy education. According to feedback from the students concerning content, method, resource, assessment, and program design; some important changes, especially in number of facilitators and indications, are made in rational pharmacotherapy education in clinical task-based learning program. PMID:28458432

  11. Specific transfer effects following variable priority dual-task training in older adults.

    Science.gov (United States)

    Lussier, Maxime; Bugaiska, Aurélia; Bherer, Louis

    2017-01-01

    Past divided attention training studies in older adults have suggested that variable priority training (VPT) tends to show larger improvement than fixed priority training (FPT). However, it remains unclear whether VPT leads to larger transfer effects. In this study, eighty-three older adults aged between 55 and 65 received five 1-hour sessions of VPT, FPT or of an active placebo. VPT and FPT subjects trained on a complex dual-task condition with variable stimulus timings in order to promote more flexible and self-guided strategies with regard to attentional priority devoted to the concurrent tasks. Real-time individualized feedback was provided to encourage improvement. The active placebo group attended computer classes. Near and far modality transfer tasks were used to assess the generalization of transfer effects. Results showed that VPT induced significantly larger transfer effects than FPT on a near modality transfer task. Evidence for larger transfer effects in VPT than FPT on a far modality transfer task was also observed. Furthermore, the superiority of VPT on FPT in transfer effects was specific to the ability to coordinate two concurrent tasks. Results of this study help better understand the benefits of VPT attentional training on transfer effects, which is an essential outcome for cognitive training effectiveness and relevancy.

  12. Quantum machine learning with glow for episodic tasks and decision games

    Science.gov (United States)

    Clausen, Jens; Briegel, Hans J.

    2018-02-01

    We consider a general class of models, where a reinforcement learning (RL) agent learns from cyclic interactions with an external environment via classical signals. Perceptual inputs are encoded as quantum states, which are subsequently transformed by a quantum channel representing the agent's memory, while the outcomes of measurements performed at the channel's output determine the agent's actions. The learning takes place via stepwise modifications of the channel properties. They are described by an update rule that is inspired by the projective simulation (PS) model and equipped with a glow mechanism that allows for a backpropagation of policy changes, analogous to the eligibility traces in RL and edge glow in PS. In this way, the model combines features of PS with the ability for generalization, offered by its physical embodiment as a quantum system. We apply the agent to various setups of an invasion game and a grid world, which serve as elementary model tasks allowing a direct comparison with a basic classical PS agent.

  13. The Effect of Written Corrective Feedback on the Accuracy of Output Task and Learning of Target Form

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hasannejad

    2010-05-01

    Full Text Available The effect of error feedback on the accuracy of output task types such as editing task, text reconstruction task, picture cued writing task, and dictogloss task, has not been clearly explored. Following arguments concerning that the combination of both corrective feedback and output makes it difficult to determine whether their effects were in combination or alone, the purpose of the present study is to document the role of teachers’ feedback in improving the accuracy of linguistic form in output tasks and in acquiring target form. To this end, this study compared three groups of Iranian intermediate learners (N= 93, one with direct grammar feedback, the other one with indirect grammar feedback and the last one with no grammar feedback. In terms of the target form uptake from first to subsequent text reconstruction tasks, the analysis of the data obtained within ten treatment sessions indicated that the participants, who received written corrective feedback compared to those who did not, progressed significantly from the first to the subsequent output tasks. In terms of learning, the learners who had the opportunities for receiving feedback performed significantly better than those in non- feedback condition on the production and recognition post- tests although explicit feedback rather than implicit feedback led to greater learning of target form on the production test, but no significant differences were found in relative efficacy of the two written corrective feedback types as far as the result of the recognition test was concerned.

  14. Helping reasoners succeed in the Wason selection task: when executive learning discourages heuristic response but does not necessarily encourage logic.

    Directory of Open Access Journals (Sweden)

    Sandrine Rossi

    Full Text Available Reasoners make systematic logical errors by giving heuristic responses that reflect deviations from the logical norm. Influential studies have suggested first that our reasoning is often biased because we minimize cognitive effort to surpass a cognitive conflict between heuristic response from system 1 and analytic response from system 2 thinking. Additionally, cognitive control processes might be necessary to inhibit system 1 responses to activate a system 2 response. Previous studies have shown a significant effect of executive learning (EL on adults who have transferred knowledge acquired on the Wason selection task (WST to another isomorphic task, the rule falsification task (RFT. The original paradigm consisted of teaching participants to inhibit a classical matching heuristic that sufficed the first problem and led to significant EL transfer on the second problem. Interestingly, the reasoning tasks differed in inhibiting-heuristic metacognitive cost. Success on the WST requires half-suppression of the matching elements. In contrast, the RFT necessitates a global rejection of the matching elements for a correct answer. Therefore, metacognitive learning difficulty most likely differs depending on whether one uses the first or second task during the learning phase. We aimed to investigate this difficulty and various matching-bias inhibition effects in a new (reversed paradigm. In this case, the transfer effect from the RFT to the WST could be more difficult because the reasoner learns to reject all matching elements in the first task. We observed that the EL leads to a significant reduction in matching selections on the WST without increasing logical performances. Interestingly, the acquired metacognitive knowledge was too "strictly" transferred and discouraged matching rather than encouraging logic. This finding underlines the complexity of learning transfer and adds new evidence to the pedagogy of reasoning.

  15. Helping reasoners succeed in the Wason selection task: when executive learning discourages heuristic response but does not necessarily encourage logic.

    Science.gov (United States)

    Rossi, Sandrine; Cassotti, Mathieu; Moutier, Sylvain; Delcroix, Nicolas; Houdé, Olivier

    2015-01-01

    Reasoners make systematic logical errors by giving heuristic responses that reflect deviations from the logical norm. Influential studies have suggested first that our reasoning is often biased because we minimize cognitive effort to surpass a cognitive conflict between heuristic response from system 1 and analytic response from system 2 thinking. Additionally, cognitive control processes might be necessary to inhibit system 1 responses to activate a system 2 response. Previous studies have shown a significant effect of executive learning (EL) on adults who have transferred knowledge acquired on the Wason selection task (WST) to another isomorphic task, the rule falsification task (RFT). The original paradigm consisted of teaching participants to inhibit a classical matching heuristic that sufficed the first problem and led to significant EL transfer on the second problem. Interestingly, the reasoning tasks differed in inhibiting-heuristic metacognitive cost. Success on the WST requires half-suppression of the matching elements. In contrast, the RFT necessitates a global rejection of the matching elements for a correct answer. Therefore, metacognitive learning difficulty most likely differs depending on whether one uses the first or second task during the learning phase. We aimed to investigate this difficulty and various matching-bias inhibition effects in a new (reversed) paradigm. In this case, the transfer effect from the RFT to the WST could be more difficult because the reasoner learns to reject all matching elements in the first task. We observed that the EL leads to a significant reduction in matching selections on the WST without increasing logical performances. Interestingly, the acquired metacognitive knowledge was too "strictly" transferred and discouraged matching rather than encouraging logic. This finding underlines the complexity of learning transfer and adds new evidence to the pedagogy of reasoning.

  16. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  17. Meta-Analytic Evidence for a Reversal Learning Effect on the Iowa Gambling Task in Older Adults.

    Science.gov (United States)

    Pasion, Rita; Gonçalves, Ana R; Fernandes, Carina; Ferreira-Santos, Fernando; Barbosa, Fernando; Marques-Teixeira, João

    2017-01-01

    Iowa Gambling Task (IGT) is one of the most widely used tools to assess economic decision-making. However, the research tradition on aging and the Iowa Gambling Task (IGT) has been mainly focused on the overall performance of older adults in relation to younger or clinical groups, remaining unclear whether older adults are capable of learning along the task. We conducted a meta-analysis to examine older adults' decision-making on the IGT, to test the effects of aging on reversal learning (45 studies) and to provide normative data on total and block net scores (55 studies). From the accumulated empirical evidence, we found an average total net score of 7.55 (±25.9). We also observed a significant reversal learning effect along the blocks of the IGT, indicating that older adults inhibit the prepotent response toward immediately attractive options associated with high losses, in favor of initially less attractive options associated with long-run profit. During block 1, decisions of older adults led to a negative gambling net score, reflecting the expected initial pattern of risk-taking. However, the shift toward more safe options occurred between block 2 (small-to-medium effect size) and blocks 3, 4, 5 (medium-to-large effect size). These main findings highlight that older adults are able to move from the initial uncertainty, when the possible outcomes are unknown, to decisions based on risk, when the outcomes are learned and may be used to guide future adaptive decision-making.

  18. Predictors of Processing-Based Task Performance in Bilingual and Monolingual Children

    Science.gov (United States)

    Buac, Milijana; Gross, Megan; Kaushanskaya, Margarita

    2016-01-01

    In the present study we examined performance of bilingual Spanish-English-speaking and monolingual English-speaking school-age children on a range of processing-based measures within the framework of Baddeley’s working memory model. The processing-based measures included measures of short-term memory, measures of working memory, and a novel word-learning task. Results revealed that monolinguals outperformed bilinguals on the short-term memory tasks but not the working memory and novel word-learning tasks. Further, children’s vocabulary skills and socioeconomic status (SES) were more predictive of processing-based task performance in the bilingual group than the monolingual group. Together, these findings indicate that processing-based tasks that engage verbal working memory rather than short-term memory may be better-suited for diagnostic purposes with bilingual children. However, even verbal working memory measures are sensitive to bilingual children’s language-specific knowledge and demographic characteristics, and therefore may have limited clinical utility. PMID:27179914

  19. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task

    NARCIS (Netherlands)

    van der Graaf, FHCE; Maguire, RP; Leenders, KL; de Jong, BM

    2006-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the distribution of cerebral activations related to implicitly learning a series of fixed stimulus-response combinations. In a novel - bimanual - variant of the Serial Reaction Time task (SRT), simultaneous finger movements of the two

  20. EFL learners' self-evaluation of learning processes after metatalk tasks

    Directory of Open Access Journals (Sweden)

    Rejane Teixeira Vidal

    2007-01-01

    Full Text Available Esta investigação combinou a instrução-focada-na-forma com o ensino baseado em tarefas em contexto de aprendizagem autônoma no cenário de ensino de inglês como língua estrangeira que tem por objetivo o desenvolvimento da interlíngua do aprendiz no que tange à precisão lingüística. Pretendeu-se dar uma contribuição ao entendimento de que, ao produzir a língua alvo enquanto se reflete sobre ela, o aprendiz pode consolidar conhecimento já existente assim como gerar conhecimento do que é novo para ele (Swain, 1998, ajudando-o a compreender e a tornar-se mais consciente de seu processo de aprendizagem como um todo. O estudo atingiu seus principais objetivos: trouxe evidências adicionais à reivindicação de que aprendizes eficientes compreendem o processo subjacente à sua aprendizagem e que tarefas com foco na forma que exploram o diálogo colaborativo via metafala têm o potencial de esclarecer questões do campo de estudo conhecido como "desenvolvimento do aprendiz" (Benson, 2001, além de melhorar a qualidade de sua produção lingüística.This investigation attempted to combine form-focused instruction with task-based learning in the context of autonomous learning in an English as a foreign language scenario with the aim of stretching learners' interlanguage as related to language accuracy. It intended to contribute to furthering the understanding concerning how producing the target language while reflecting on it may trigger cognitive processes that both consolidate existing knowledge and generate linguistic knowledge which is new to the learner (Swain, 1998, helping them understand and become more conscious of their learning process as a whole. The study has achieved the major aims it had set out to accomplish: it provided additional evidence for the claim that successful learners understand the process underling their own learning and that form-focused tasks which explore collaborative dialogue via metatalk have the

  1. Social Presence for Different Tasks and Perceived Learning in Online Hospitality Culture Exchange

    Science.gov (United States)

    Wang, Mei-jung; Chen, Hsueh Chu

    2013-01-01

    This study utilized online discussion and project construction tasks to determine the extent of social presence and collaborative learning for hospitality culture exchange. The online culture exchange lasted for 6 weeks from September to November 2011. Forty-four English majors from a hospitality college in Taiwan and an institute of education in…

  2. A neurocomputational theory of how explicit learning bootstraps early procedural learning.

    Science.gov (United States)

    Paul, Erick J; Ashby, F Gregory

    2013-01-01

    It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system's control of motor responses through basal ganglia-mediated loops.

  3. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning

    OpenAIRE

    Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, BJ

    2014-01-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The current study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated....

  4. Job task analysis: lessons learned from application in course development

    International Nuclear Information System (INIS)

    Meredith, J.B.

    1985-01-01

    Those at Public Service Electric and Gas Company are committed to a systematic approach to training known as Instructional System Design. Our performance-based training emphasizes the ISD process to have trainees do or perform the task whenever and wherever it is possible for the jobs for which they are being trained. Included is a brief description of our process for conducting and validating job analyses. The major thrust of this paper is primarily on the lessons that we have learned in the design and development of training programs based upon job analysis results

  5. Quality specifications in postgraduate medical e-learning: an integrative literature review leading to a postgraduate medical e-learning model.

    Science.gov (United States)

    De Leeuw, R A; Westerman, Michiel; Nelson, E; Ket, J C F; Scheele, F

    2016-07-08

    E-learning is driving major shifts in medical education. Prioritizing learning theories and quality models improves the success of e-learning programs. Although many e-learning quality standards are available, few are focused on postgraduate medical education. We conducted an integrative review of the current postgraduate medical e-learning literature to identify quality specifications. The literature was thematically organized into a working model. Unique quality specifications (n = 72) were consolidated and re-organized into a six-domain model that we called the Postgraduate Medical E-learning Model (Postgraduate ME Model). This model was partially based on the ISO-19796 standard, and drew on cognitive load multimedia principles. The domains of the model are preparation, software design and system specifications, communication, content, assessment, and maintenance. This review clarified the current state of postgraduate medical e-learning standards and specifications. It also synthesized these specifications into a single working model. To validate our findings, the next-steps include testing the Postgraduate ME Model in controlled e-learning settings.

  6. Ego Depletion Impairs Implicit Learning

    Science.gov (United States)

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  7. Ego depletion impairs implicit learning.

    Directory of Open Access Journals (Sweden)

    Kelsey R Thompson

    Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  8. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  9. Learning speaker-specific characteristics with a deep neural architecture.

    Science.gov (United States)

    Chen, Ke; Salman, Ahmad

    2011-11-01

    Speech signals convey various yet mixed information ranging from linguistic to speaker-specific information. However, most of acoustic representations characterize all different kinds of information as whole, which could hinder either a speech or a speaker recognition (SR) system from producing a better performance. In this paper, we propose a novel deep neural architecture (DNA) especially for learning speaker-specific characteristics from mel-frequency cepstral coefficients, an acoustic representation commonly used in both speech recognition and SR, which results in a speaker-specific overcomplete representation. In order to learn intrinsic speaker-specific characteristics, we come up with an objective function consisting of contrastive losses in terms of speaker similarity/dissimilarity and data reconstruction losses used as regularization to normalize the interference of non-speaker-related information. Moreover, we employ a hybrid learning strategy for learning parameters of the deep neural networks: i.e., local yet greedy layerwise unsupervised pretraining for initialization and global supervised learning for the ultimate discriminative goal. With four Linguistic Data Consortium (LDC) benchmarks and two non-English corpora, we demonstrate that our overcomplete representation is robust in characterizing various speakers, no matter whether their utterances have been used in training our DNA, and highly insensitive to text and languages spoken. Extensive comparative studies suggest that our approach yields favorite results in speaker verification and segmentation. Finally, we discuss several issues concerning our proposed approach.

  10. Elucidating poor decision-making in a rat gambling task.

    Directory of Open Access Journals (Sweden)

    Marion Rivalan

    Full Text Available Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder, pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa gambling task--the Rat Gambling Task (RGT, we identified a population of poor decision makers, and assessed how these rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility, and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making tasks and may predispose to mental disorders with similar symptoms.

  11. Vocabulary Learning in Collaborative Tasks: A Comparison of Pair and Small Group Work

    Science.gov (United States)

    Dobao, Ana Fernández

    2014-01-01

    This study examined the opportunities that pair and small group interaction offer for collaborative dialogue and second language (L2) vocabulary learning. It compared the performance of the same collaborative writing task by learners working in groups of four (n = 60) and in pairs (n = 50), focusing on the occurrence of lexical language-related…

  12. Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task.

    Science.gov (United States)

    Lohse, Keith R; Boyd, Lara A; Hodges, Nicola J

    2016-01-01

    Engagement during practice can motivate a learner to practice more, hence having indirect effects on learning through increased practice. However, it is not known whether engagement can also have a direct effect on learning when the amount of practice is held constant. To address this question, 40 participants played a video game that contained an embedded repeated sequence component, under either highly engaging conditions (the game group) or mechanically identical but less engaging conditions (the sterile group). The game environment facilitated retention over a 1-week interval. Specifically, the game group improved in both speed and accuracy for random and repeated trials, suggesting a general motor-related improvement, rather than a specific influence of engagement on implicit sequence learning. These data provide initial evidence that increased engagement during practice has a direct effect on generalized learning, improving retention and transfer of a complex motor skill.

  13. Rats socially-reared and full fed learned an autoshaping task, showing less levels of fear-like behaviour than fasted or singly-reared rats.

    Science.gov (United States)

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia

    2004-07-01

    During the learning of instrumental tasks, rats are usually fasted to increase reinforced learning. However, fasting produces several undesirable side effects. The aim of this study was to test the hypothesis that control rats, i.e. full-fed and group-reared rats, will learn an autoshaping task to the same level as fasted or singly-reared rats. The interaction between fasting and single-rearing of rats was also tested. Results showed that control rats and fasted rats acquired the autoshaping task similarly, independently of rearing condition or gender. However, fasted or singly-reared rats produced fear-like behaviour, since male rats group-reared and fasted (85% body/wt, P autoshaping task to the same level as fasted or singly-reared rats. However, fasting or single-rearing produced fear-like behaviour. Thus, the training of control rats in autoshaping tasks may be an option that improves animal welfare.

  14. Dynamic Sensor Tasking for Space Situational Awareness via Reinforcement Learning

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    2016-09-01

    This paper studies the Sensor Management (SM) problem for optical Space Object (SO) tracking. The tasking problem is formulated as a Markov Decision Process (MDP) and solved using Reinforcement Learning (RL). The RL problem is solved using the actor-critic policy gradient approach. The actor provides a policy which is random over actions and given by a parametric probability density function (pdf). The critic evaluates the policy by calculating the estimated total reward or the value function for the problem. The parameters of the policy action pdf are optimized using gradients with respect to the reward function. Both the critic and the actor are modeled using deep neural networks (multi-layer neural networks). The policy neural network takes the current state as input and outputs probabilities for each possible action. This policy is random, and can be evaluated by sampling random actions using the probabilities determined by the policy neural network's outputs. The critic approximates the total reward using a neural network. The estimated total reward is used to approximate the gradient of the policy network with respect to the network parameters. This approach is used to find the non-myopic optimal policy for tasking optical sensors to estimate SO orbits. The reward function is based on reducing the uncertainty for the overall catalog to below a user specified uncertainty threshold. This work uses a 30 km total position error for the uncertainty threshold. This work provides the RL method with a negative reward as long as any SO has a total position error above the uncertainty threshold. This penalizes policies that take longer to achieve the desired accuracy. A positive reward is provided when all SOs are below the catalog uncertainty threshold. An optimal policy is sought that takes actions to achieve the desired catalog uncertainty in minimum time. This work trains the policy in simulation by letting it task a single sensor to "learn" from its performance

  15. Learning Strategy Training in English Teaching

    Science.gov (United States)

    Arulselvi, M. Evangelin

    2016-01-01

    The fundamental task of schools is to endow students with strategies, which enable them to elaborate, transform, contrast and critically rebuild knowledge, that develops strategic knowledge. Learning strategy is the specific action to make the students better in learning a second language. Learning Strategy Training is based on problems the…

  16. Observational learning without a model is influenced by the observer's possibility to act: evidence from the Simon task.

    Science.gov (United States)

    Iani, Cristina; Rubichi, Sandro; Ferraro, Luca; Nicoletti, Roberto; Gallese, Vittorio

    2013-07-01

    We assessed whether observational learning in perceptual-motor tasks is affected by the visibility of an action producing perceived environmental effects and by the observer's possibility to act during observation. To this end, we conducted three experiments in which participants were required to observe a spatial compatibility task in which only the effects of computer-generated responses were visible before executing a Simon task. In Experiment 1, we compared the effects of a passively observed practice with either a spatially compatible or incompatible stimulus-response (S-R) association. In Experiment 2, during the observed spatially incompatible practice participants were prevented from potentially acting, either because a plexiglas barrier separated the participant from the response device rendering it out of reach; or because the participant's hands were tied; or the device affording a response was absent. In Experiment 3, the plexiglas presented an opening that could allow the participant to potentially reach and interact with it. As when the practice is physically performed, we found an elimination of the Simon effect following a spatially incompatible observed practice, suggesting that participants learned an incompatible S-R association by observing and transferred this knowledge to the subsequent Simon task. No evidence of transfer of learning was found when, during passive observation, the participant's hands were tied, or a barrier prevented him/her from potentially interacting with the device, or no response device was present. Differently, a transfer-of-learning effect was observed when the barrier presented an opening. These results suggest that learning can derive from the mere observation of action effects, even when an action is not visible, as long as the observer has the potential to act. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Optimization of perceptual learning: effects of task difficulty and external noise in older adults.

    Science.gov (United States)

    DeLoss, Denton J; Watanabe, Takeo; Andersen, George J

    2014-06-01

    Previous research has shown a wide array of age-related declines in vision. The current study examined the effects of perceptual learning (PL), external noise, and task difficulty in fine orientation discrimination with older individuals (mean age 71.73, range 65-91). Thirty-two older subjects participated in seven 1.5-h sessions conducted on separate days over a three-week period. A two-alternative forced choice procedure was used in discriminating the orientation of Gabor patches. Four training groups were examined in which the standard orientations for training were either easy or difficult and included either external noise (additive Gaussian noise) or no external noise. In addition, the transfer to an untrained orientation and noise levels were examined. An analysis of the four groups prior to training indicated no significant differences between the groups. An analysis of the change in performance post-training indicated that the degree of learning was related to task difficulty and the presence of external noise during training. In addition, measurements of pupil diameter indicated that changes in orientation discrimination were not associated with changes in retinal illuminance. These results suggest that task difficulty and training in noise are factors important for optimizing the effects of training among older individuals. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Meta-Analytic Evidence for a Reversal Learning Effect on the Iowa Gambling Task in Older Adults

    Directory of Open Access Journals (Sweden)

    Rita Pasion

    2017-10-01

    Full Text Available Iowa Gambling Task (IGT is one of the most widely used tools to assess economic decision-making. However, the research tradition on aging and the Iowa Gambling Task (IGT has been mainly focused on the overall performance of older adults in relation to younger or clinical groups, remaining unclear whether older adults are capable of learning along the task. We conducted a meta-analysis to examine older adults' decision-making on the IGT, to test the effects of aging on reversal learning (45 studies and to provide normative data on total and block net scores (55 studies. From the accumulated empirical evidence, we found an average total net score of 7.55 (±25.9. We also observed a significant reversal learning effect along the blocks of the IGT, indicating that older adults inhibit the prepotent response toward immediately attractive options associated with high losses, in favor of initially less attractive options associated with long-run profit. During block 1, decisions of older adults led to a negative gambling net score, reflecting the expected initial pattern of risk-taking. However, the shift toward more safe options occurred between block 2 (small-to-medium effect size and blocks 3, 4, 5 (medium-to-large effect size. These main findings highlight that older adults are able to move from the initial uncertainty, when the possible outcomes are unknown, to decisions based on risk, when the outcomes are learned and may be used to guide future adaptive decision-making.

  19. Quantification of a Secondary Task-Specific Tremor in a Violinist after a Temporal Lobectomy

    Directory of Open Access Journals (Sweden)

    André eLee

    2014-07-01

    Full Text Available Task-specific tremors occur mainly during certain tasks and may be highly disabling. In this case study, we report on a 66-year-old violinist who developed a task-specific tremor of the right arm only while playing the violin four weeks after a temporal lobectomy, which had been performed as a result of his temporal lobe epilepsy. Since a similar case, to our knowledge, has not been reported so far, our aim was to quantitatively assess and describe the tremor by measuring (a the electromyography (EMG activity of the wrist flexor and extensor as well as (b an accelerometer signal of the hand. We found a tremor-related frequency of about 7 Hz. Furthermore, at a similar frequency of about 7 Hz, there was coherence between the tremor acceleration and EMG-activity of the wrist flexor and extensor as well as between the tremor acceleration and coactivation. The tremorgenesis remains unclear, and possible explanations can only be speculative.

  20. Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval.

    Science.gov (United States)

    Tronel, Sophie; Sara, Susan J

    2002-01-01

    Although there is growing knowledge about intracellular mechanisms underlying neuronal plasticity and memory consolidation and reconsolidation after retrieval, information concerning the interaction among brain areas during formation and retrieval of memory is relatively sparse and fragmented. Addressing this question requires simultaneous monitoring of activity in multiple brain regions during learning, the post-acquisition consolidation period, and retrieval and subsequent reconsolidation. Immunoreaction to the immediate early gene c-fos is a powerful tool to mark neuronal activation of specific populations of neurons. Using this method, we are able to report, for the first time, post-training activation of a network of closely related brain regions, particularly in the frontal cortex and the basolateral amygdala (BLA), that is specific to the learning of an odor-reward association. On the other hand, retrieval of a well-established associative memory trace does not seem to differentially activate the same regions. The amygdala, in particular, is not engaged after retrieval, whereas the lateral habenula (LHab) shows strong activation that is restricted to animals having previously learned the association. Although intracellular mechanisms may be similar during consolidation and reconsolidation, this study indicates that different brain circuits are involved in the two processes, at least with respect to a rapidly learned olfactory task.

  1. A task specific uncertainty analysis method for least-squares-based form characterization of ultra-precision freeform surfaces

    International Nuclear Information System (INIS)

    Ren, M J; Cheung, C F; Kong, L B

    2012-01-01

    In the measurement of ultra-precision freeform surfaces, least-squares-based form characterization methods are widely used to evaluate the form error of the measured surfaces. Although many methodologies have been proposed in recent years to improve the efficiency of the characterization process, relatively little research has been conducted on the analysis of associated uncertainty in the characterization results which may result from those characterization methods being used. As a result, this paper presents a task specific uncertainty analysis method with application in the least-squares-based form characterization of ultra-precision freeform surfaces. That is, the associated uncertainty in the form characterization results is estimated when the measured data are extracted from a specific surface with specific sampling strategy. Three factors are considered in this study which include measurement error, surface form error and sample size. The task specific uncertainty analysis method has been evaluated through a series of experiments. The results show that the task specific uncertainty analysis method can effectively estimate the uncertainty of the form characterization results for a specific freeform surface measurement

  2. Older adults catch up to younger adults on a learning and memory task that involves collaborative social interaction.

    Science.gov (United States)

    Derksen, B J; Duff, M C; Weldon, K; Zhang, J; Zamba, K D; Tranel, D; Denburg, N L

    2015-01-01

    Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasises collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task (BT), a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the BT, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterised by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older.

  3. A predictive validity study of the Learning Style Questionnaire (LSQ) using multiple, specific learning criteria

    NARCIS (Netherlands)

    Kappe, F.R.; Boekholt, L.; den Rooyen, C.; van der Flier, H.

    2009-01-01

    Multiple and specific learning criteria were used to examine the predictive validity of the Learning Style Questionnaire (LSQ). Ninety-nine students in a college of higher learning in The Netherlands participated in a naturally occurring field study. The students were categorized into one of four

  4. Developing communicative competence through thinking tasks

    DEFF Research Database (Denmark)

    Maslo, Elina

    Developing communicative competence through thinking tasks - Experimenting with Thinking Approach in Danish as Second Language ClassroomSession on Innovations in the classroom, a presentation. Abstract for the conference Creativity & Thinking Skills in Learning, teaching & Management. Riga 19......-20 September 2014 Elina Maslo, Aarhus University, Department of Education, elma@edu.au.dk Summary: The goal of this presentation is to present some of the experiences with thinking tasks in the Danish language classroom, conducted in the Nordplus Nordic Language Project “Problem solving tasks for learning...... of Danish as second and foreign language in transformative learning spaces”. Two teachers have developed and tried out some thinking tasks in their classrooms, with the aim to foster the development of students´ communicative competence. The learning processes from two classrooms will be analysed...

  5. Computer Instruction in Handwriting, Spelling, and Composing for Students with Specific Learning Disabilities in Grades 4 to 9

    Science.gov (United States)

    Berninger, Virginia W.; Nagy, William; Tanimoto, Steve; Thompson, Rob; Abbott, Robert D.

    2014-01-01

    Effectiveness of iPad computerized writing instruction was evaluated for 4th to 9th graders (n=35) with diagnosed specific learning disabilities (SLDs) affecting writing: dysgraphia (impaired handwriting), dyslexia (impaired spelling), and oral and written language learning disability (OWL LD) (impaired syntax composing). Each of the 18 two-hour lessons had multiple learning activities aimed at improving subword- (handwriting), word- (spelling), and syntax- (sentence composing) level language skills by engaging all four language systems (listening, speaking, reading, and writing) to create a functional writing system. To evaluate treatment effectiveness, normed measures of handwriting, spelling, and composing were used with the exception of one non-normed alphabet writing task. Results showed that the sample as a whole improved significantly from pretest to posttest in three handwriting measures, four spelling measures, and both written and oral syntax construction measures. All but oral syntax was evaluated with pen and paper tasks, showing that the computer writing instruction transferred to better writing with pen and paper. Performance on learning activities during instruction correlated with writing outcomes; and individual students tended to improve in the impaired skill associated with their diagnosis. Thus, although computers are often used in upper elementary school and middle school in the United States (US) for accommodations (alternatives to pen and paper) for students with persisting SLDs affecting writing, this study shows computers can also be used for Tier 3 instruction to improve the writing skills of students in grades 4 to 9 with history of persisting writing disabilities. PMID:25378768

  6. Computer Instruction in Handwriting, Spelling, and Composing for Students with Specific Learning Disabilities in Grades 4 to 9.

    Science.gov (United States)

    Berninger, Virginia W; Nagy, William; Tanimoto, Steve; Thompson, Rob; Abbott, Robert D

    2015-02-01

    Effectiveness of iPad computerized writing instruction was evaluated for 4 th to 9 th graders ( n =35) with diagnosed specific learning disabilities (SLDs) affecting writing: dysgraphia (impaired handwriting), dyslexia (impaired spelling), and oral and written language learning disability (OWL LD) (impaired syntax composing). Each of the 18 two-hour lessons had multiple learning activities aimed at improving subword - (handwriting), word - (spelling), and syntax - (sentence composing) level language skills by engaging all four language systems (listening, speaking, reading, and writing) to create a functional writing system. To evaluate treatment effectiveness, normed measures of handwriting, spelling, and composing were used with the exception of one non-normed alphabet writing task. Results showed that the sample as a whole improved significantly from pretest to posttest in three handwriting measures, four spelling measures, and both written and oral syntax construction measures. All but oral syntax was evaluated with pen and paper tasks, showing that the computer writing instruction transferred to better writing with pen and paper. Performance on learning activities during instruction correlated with writing outcomes; and individual students tended to improve in the impaired skill associated with their diagnosis. Thus, although computers are often used in upper elementary school and middle school in the United States (US) for accommodations (alternatives to pen and paper) for students with persisting SLDs affecting writing, this study shows computers can also be used for Tier 3 instruction to improve the writing skills of students in grades 4 to 9 with history of persisting writing disabilities.

  7. Understanding Conservation Delays in Children with Specific Language Impairment: Task Representations Revealed in Speech and Gesture

    Science.gov (United States)

    Mainela-Arnold, Elina; Evans, Julia L.; Alibali, Martha W.

    2006-01-01

    Purpose: The authors investigated mental representations of Piagetian conservation tasks in children with specific language impairment (SLI) and typically developing peers. Children with SLI have normal nonverbal intelligence; however, they exhibit difficulties in Piagetian conservation tasks. The authors tested the hypothesis that conservation…

  8. Local and global processing in block design tasks in children with dyslexia or nonverbal learning disability.

    Science.gov (United States)

    Cardillo, Ramona; Mammarella, Irene C; Garcia, Ricardo Basso; Cornoldi, Cesare

    2017-05-01

    Visuo-constructive and perceptual abilities have been poorly investigated in children with learning disabilities. The present study focused on local or global visuospatial processing in children with nonverbal learning disability (NLD) and dyslexia compared with typically-developing (TD) controls. Participants were presented with a modified block design task (BDT), in both a typical visuo-constructive version that involves reconstructing figures from blocks, and a perceptual version in which respondents must rapidly match unfragmented figures with a corresponding fragmented target figure. The figures used in the tasks were devised by manipulating two variables: the perceptual cohesiveness and the task uncertainty, stimulating global or local processes. Our results confirmed that children with NLD had more problems with the visuo-constructive version of the task, whereas those with dyslexia showed only a slight difficulty with the visuo-constructive version, but were in greater difficulty with the perceptual version, especially in terms of response times. These findings are interpreted in relation to the slower visual processing speed of children with dyslexia, and to the visuo-constructive problems and difficulty in using flexibly-experienced global vs local processes of children with NLD. The clinical and educational implications of these findings are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cross-limb interference during motor learning.

    Directory of Open Access Journals (Sweden)

    Benedikt Lauber

    Full Text Available It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.

  10. Conduct disorders as a result of specific learning disorders

    OpenAIRE

    VOKROJOVÁ, Nela

    2012-01-01

    This thesis focuses on relationship between specific learning disorders and conduct disorders in puberty. The theoretical part explains the basic terms apearing in the thesis such as specific learning disorders, conduct disorders, puberty and prevention of conduct disorder formation. It presents Czech and foreign research which have already been done in this and related areas. The empirical part uses a quantitative method to measure anxiety and occurrence of conduct disorders in second grade ...

  11. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

    Science.gov (United States)

    Yin, Xi; Liu, Xiaoming

    2018-02-01

    This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

  12. A Neurocomputational Theory of how Explicit Learning Bootstraps Early Procedural Learning

    Directory of Open Access Journals (Sweden)

    Erick Joseph Paul

    2013-12-01

    Full Text Available It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative system depending largely on the prefrontal cortex, and a procedural (non-declarative system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system’s control of motor responses through basal ganglia-mediated loops.

  13. The Effect of Task Type and Pre-task Planning Condition on the Accuracy of Intermediate EFL Learners' Writing Performance

    Directory of Open Access Journals (Sweden)

    Seyeed Mohammad Alavi

    2012-05-01

    Full Text Available Task-based language teaching, which requires learners to transact tasks resembling their real life language needs, demands language learners to perform planning at different stages of their learning. Since various types of tasks can be used in task-based instruction, the present study examined the effect of task types and various participatory structures during pre-task planning on the quality of learners' writing performance, (i.e., accuracy. Towards this end, 120 intermediate EFL students were randomly assigned to 3 experimental groups and one control group. While the experimental groups were subjected to different pre-task planning conditions, (i.e., individual, pair, and group, the control group performed tasks without any planning. During the treatment, they experienced task modeling, presentation and completion. A factorial design was followed in the present study, and the collected data were analyzed through ANOVAs that revealed task type and pre-task planning condition influenced the writing accuracy of the participants in a way that resulted in greater accuracy in the decision-making task in the experimental groups, thereby ensuring the effectiveness of the treatment in mitigating the long-standing problem of EFL learners in achieving higher levels of accuracy when a specific task type is concerned.

  14. Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity

    Science.gov (United States)

    Sasayama, Shoko

    2016-01-01

    In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…

  15. Proactive and retroactive transfer of middle age adults in a sequential motor learning task

    NARCIS (Netherlands)

    Verneau, M.; Kamp, J. van der; Savelsbergh, G,J.; Looze, M.P. de

    2015-01-01

    We assessed the effects of aging in the transfer of motor learning in a sequential manual assembly task that is representative for real working conditions. On two different days, young (18-30years) and middle-aged adults (50-65years) practiced to build two products that consisted of the same six

  16. Robot initiative in a team learning task increases the rhythm of interaction but not the perceived engagement

    Science.gov (United States)

    Ivaldi, Serena; Anzalone, Salvatore M.; Rousseau, Woody; Sigaud, Olivier; Chetouani, Mohamed

    2014-01-01

    We hypothesize that the initiative of a robot during a collaborative task with a human can influence the pace of interaction, the human response to attention cues, and the perceived engagement. We propose an object learning experiment where the human interacts in a natural way with the humanoid iCub. Through a two-phases scenario, the human teaches the robot about the properties of some objects. We compare the effect of the initiator of the task in the teaching phase (human or robot) on the rhythm of the interaction in the verification phase. We measure the reaction time of the human gaze when responding to attention utterances of the robot. Our experiments show that when the robot is the initiator of the learning task, the pace of interaction is higher and the reaction to attention cues faster. Subjective evaluations suggest that the initiating role of the robot, however, does not affect the perceived engagement. Moreover, subjective and third-person evaluations of the interaction task suggest that the attentive mechanism we implemented in the humanoid robot iCub is able to arouse engagement and make the robot's behavior readable. PMID:24596554

  17. Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks

    Science.gov (United States)

    Kyo, Koki

    Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.

  18. Incremental learning of skill collections based on intrinsic motivation

    Science.gov (United States)

    Metzen, Jan H.; Kirchner, Frank

    2013-01-01

    Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265

  19. Task-Specific Ionic Liquids for Mars Exploration (Green Chemistry for a Red Planet)

    Science.gov (United States)

    Karr, L. J.; Curreri, P. A.; Paley, M. S.; Kaukler, W. F.; Marone, M. J.

    2012-01-01

    Ionic Liquids (ILs) are organic salts with low melting points that are liquid at or near room temperature. The combinations of available ions and task-specific molecular designability make them suitable for a huge variety of tasks. Because of their low flammability, low vapor pressure, and stability in harsh environments (extreme temperatures, hard vacuum) they are generally much safer and "greener" than conventional chemicals and are thus suitable for a wide range of applications that support NASA exploration goals. This presentation describes several of the ongoing applications that are being developed at MSFC.

  20. Can contingency learning alone account for item-specific control? Evidence from within- and between-language ISPC effects.

    Science.gov (United States)

    Atalay, Nart Bedin; Misirlisoy, Mine

    2012-11-01

    The item-specific proportion congruence (ISPC) manipulation (Jacoby, Lindsay, & Hessels, 2003) produces larger Stroop interference for mostly congruent items than mostly incongruent items. This effect has been attributed to dynamic control over word-reading processes. However, proportion congruence of an item in the ISPC manipulation is completely confounded with response contingency, suggesting the alternative hypothesis, that the ISPC effect is a result of learning response contingencies (Schmidt & Besner, 2008). The current study asks whether the ISPC effect can be explained by a pure stimulus-response contingency-learning account, or whether other control processes play a role as well, by comparing within- and between-language conditions in a bilingual task. Experiment 1 showed that contingency learning for noncolor words was larger for the within-language than the between-language condition. Experiment 2 revealed significant ISPC effects for both within- and between-language conditions; importantly, the effect was larger in the former. The results of the contingency analyses for Experiment 2 were parallel to that of Experiment 1 and did not show an interaction between contingency and congruency. Put together, these sets of results support the view that contingency-learning processes dominate color-word ISPC effects.

  1. Multilingual and Multicultural Task-Based Learning Scenarios: A Pilot Study from the MAGICC Project

    Science.gov (United States)

    Álvarez, Inma; Pérez-Cavana, María Luisa

    2015-01-01

    In this article we report on the results of a pilot study on the use of task-based multilingual and multicultural professional scenarios for higher education teachers and learners at BA and MA level. The scenarios reflect new learning outcomes and assessment criteria for the presently under-conceptualised domain of communication in multilingual…

  2. Introducing IoT and Wearable Technologies into Task-Based Language Learning for Young Children

    Science.gov (United States)

    de la Guia, Elena; Camacho, Vincent Lopez; Orozco-Barbosa, Luis; Brea Lujan, Victor M.; Penichet, Victor M. R.; Perez, Maria Lozano

    2016-01-01

    In the last few years, in an attempt to further motivate students to learn a foreign language, there has been an increasing interest in task-based teaching techniques, which emphasize communication and the practical use of language, thus moving away from the repetitive grammar-translation methods. Within this approach, the significance of…

  3. Distorted estimates of implicit and explicit learning in applications of the process-dissociation procedure to the SRT task.

    Science.gov (United States)

    Stahl, Christoph; Barth, Marius; Haider, Hilde

    2015-12-01

    We investigated potential biases affecting the validity of the process-dissociation (PD) procedure when applied to sequence learning. Participants were or were not exposed to a serial reaction time task (SRTT) with two types of pseudo-random materials. Afterwards, participants worked on a free or cued generation task under inclusion and exclusion instructions. Results showed that pre-experimental response tendencies, non-associative learning of location frequencies, and the usage of cue locations introduced bias to PD estimates. These biases may lead to erroneous conclusions regarding the presence of implicit and explicit knowledge. Potential remedies for these problems are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults.

    Science.gov (United States)

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in

  5. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yasuda

    2018-05-01

    Full Text Available Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task. Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway and dual-task performance (number of responses and correct answers. Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training

  6. Modality-specific effects on crosstalk in task switching: evidence from modality compatibility using bimodal stimulation.

    Science.gov (United States)

    Stephan, Denise Nadine; Koch, Iring

    2016-11-01

    The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.

  7. The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop

    Science.gov (United States)

    2006-10-01

    details, static websites, and an ecommerce vendor portal. The “corpus” consists of the email and world state content. The latter consists of facts...learned fact variation, and the opportunity to induce a substantial crisis workload. The conference itself was a 4-day, multi-track technical conference...General 1. I am confident I completed the task well. 2. The task was difficult to complete. 3. I could have done as good of a job without the

  8. Physical Education-in-CLIL tasks. Determining tasks characteristics through the analysis of the diaries

    Directory of Open Access Journals (Sweden)

    Josep Coral Mateu

    2013-07-01

    Full Text Available This article focuses on the characteristics of Physical Education-in-CLIL (PE-in-CLIL tasks. CLIL (Content and Language Integrated Learning is a teaching approach which uses foreign language as a tool to enhance the subject learning process. We connect PE-in-CLIL with key competences and we introduce the CLIL 4Cs framework. We establish the aims of the study, that is; to describe the features of tasks which are most suitable to PE-in-CLIL and identify integrated tasks which appeal most to learners. We use Action-Research and we collect data through diaries. The participants of the study were twenty-six learners of 5th grade of primary school. We described the strategies of rigour and quality applied and we analysed data using a qualitative data analysis software programme (NVivo. In the results, we identify both the tasks that appeal to students and the tasks that are developed successfully. In the conclusions, we provide teaching guidelines to plan successful PE-in-CLIL tasks that appeal to students. At this point, we emphasise tasks that combined both cooperative learning and oracy with motor activity and games. We also declare the necessity of incorporating scaffolding strategies in order to accommodate students’ linguistic needs and facilitate tasks development. Future CLIL research possibilities emerge in the Physical Education field of work.

  9. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task.

    Science.gov (United States)

    Ewolds, Harald E; Bröker, Laura; de Oliveira, Rita F; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system.

  10. Improving 10th Graders’ English Communicative Competence Through the Implementation of the Task-Based Learning Approach

    Directory of Open Access Journals (Sweden)

    Ana Carolina Buitrago Campo

    2016-07-01

    Full Text Available This article reports the results of an action-research project focused on improving students’ communicative competence in English through the task-based learning approach. This study was conducted in a co-educational public school in Medellín (Colombia with thirty-four tenth graders. Actions implemented include the development of a series of tasks and the definition of four thematic units consistent with the syllabus and students’ interests and needs. The results evidence students’ significant improvements in their communicative competence in English. Findings also show that implementation of the task-based approach was affected by factors related to the teachers’ role and others related to students’ performance.

  11. Context-specific control and context selection in conflict tasks.

    Science.gov (United States)

    Schouppe, Nathalie; Ridderinkhof, K Richard; Verguts, Tom; Notebaert, Wim

    2014-02-01

    This study investigated whether participants prefer contexts with relatively little cognitive conflict and whether this preference is related to context-specific control. A conflict selection task was administered in which participants had to choose between two categories that contained different levels of conflict. One category was associated with 80% congruent Stroop trials and 20% incongruent Stroop trials, while the other category was associated with only 20% congruent Stroop trials and 80% incongruent Stroop trials. As predicted, participants selected the low-conflict category more frequently, indicating that participants avoid contexts with high-conflict likelihood. Furthermore, we predicted a correlation between this preference for the low-conflict category and the control implementation associated with the categories (i.e., context-specific proportion congruency effect, CSPC effect). Results however did not show such a correlation, thereby failing to support a relationship between context control and context selection. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  13. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  14. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    Science.gov (United States)

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  15. Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks.

    Science.gov (United States)

    Kattner, Florian; Cochrane, Aaron; Green, C Shawn

    2017-09-01

    The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.

  16. Valence of facial cues influences sheep learning in a visual discrimination task

    OpenAIRE

    Bellegarde, Lucille; Erhard, Hans; Weiss, A.; Boissy, Alain; Haskell, M.J.

    2017-01-01

    Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a) whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b) whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emot...

  17. Valence of Facial Cues Influences Sheep Learning in a Visual Discrimination Task

    OpenAIRE

    Lucille G. A. Bellegarde; Lucille G. A. Bellegarde; Lucille G. A. Bellegarde; Hans W. Erhard; Alexander Weiss; Alain Boissy; Marie J. Haskell

    2017-01-01

    Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a) whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b) whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emot...

  18. Brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning.

    Science.gov (United States)

    Maier, Jonathan G; Piosczyk, Hannah; Holz, Johannes; Landmann, Nina; Deschler, Christoph; Frase, Lukas; Kuhn, Marion; Klöppel, Stefan; Spiegelhalder, Kai; Sterr, Annette; Riemann, Dieter; Feige, Bernd; Voderholzer, Ulrich; Nissen, Christoph

    2017-11-01

    Sleep modulates motor learning, but its detailed impact on performance curves remains to be fully characterized. This study aimed to further determine the impact of brief daytime periods of NREM sleep on 'offline' (task discontinuation after initial training) and 'on-task' (performance within the test session) changes in motor skill performance (finger tapping task). In a mixed design (combined parallel group and repeated measures) sleep laboratory study (n=17 'active' wake vs. sleep, n=19 'passive' wake vs. sleep), performance curves were assessed prior to and after a 90min period containing either sleep, active or passive wakefulness. We observed a highly significant, but state- (that is, sleep/wake)-independent early offline gain and improved on-task performance after sleep in comparison to wakefulness. Exploratory curve fitting suggested that the observed sleep effect most likely emerged from an interaction of training-induced improvement and detrimental 'time-on-task' processes, such as fatigue. Our results indicate that brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pedagogical entrepreneurship in learning tasks

    Directory of Open Access Journals (Sweden)

    Marit Engum Hansen

    2016-11-01

    Full Text Available Background: The action plan "Entrepreneurship in Education – from primary to higher education "(2009-2014, proposed to establish a site for digital learning materials within entrepreneurship in basic education. PedEnt (Pedagogical Entrepreneurship was launched in autumn of 2014, and both the authors have contributed to the professional development of the site. Two of the learning assignments published on PedEnt constitute the research objects of this study. Methods: Based on pedagogical entrepreneurship we present a case study of learning work carried out by students at lower and upper secondary level. Using an analysis of assignment texts and as well as with video recordings we have identified the characteristics of entrepreneurial learning methods as they were expressed through each case. Results: The analysis showed that learning assignments can be characterized as entrepreneurial because they promoted the actor role and creativity of the students. We found that the relationship between the relevance of the assignments and the context in which they are given pose an important prerequisite for the students in order to experience the learning work as meaningful. Conclusions: Entrepreneurial learning methods challenge the traditional view that theory tends to take primacy over practice. To orient learning assignments within relevant contexts gives students opportunities to experience by themselves the need for increased knowledge.

  20. Learned helplessness in chess players: the importance of task similarity and the role of skill.

    Science.gov (United States)

    Gobet, F R

    1992-01-01

    The effects of noncontingency between subjects' responses and outcomes were examined with respect to treatment-and-posttest similarity and skill in the task. The experimental design consisted of three groups. The first group had to solve chess problems with objective solutions and received veridical feedback; each member of the second group faced problems with no objective solutions, and received the same feedback as the member of the first group he was yoked with, but without any control on it; the control group received a waiting task. It was found at the end of the experiment that the group with unsolvable problems was more depressed than the two other groups. The mid-strength players were the most sensitive to the manipulation, and the weakest players showed little effect of learned helplessness. It was also found that the effects were proportional to the degree of similarity between the treatment and the posttest. The results limit the domain of applicability of the learned-helplessness model.

  1. Experience during Early Adulthood Shapes the Learning Capacities and the Number of Synaptic Boutons in the Mushroom Bodies of Honey Bees ("Apis mellifera")

    Science.gov (United States)

    Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B.; Devaud, Jean-Marc

    2017-01-01

    The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an…

  2. Pneumatic muscle actuator (PMA) task-specific resistance for potential use in microgravity exercise.

    Science.gov (United States)

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Neidhard-Doll, Amy T

    2012-07-01

    A pneumatic muscle actuator (PMA) is a device that mimics the behavior of skeletal muscle by contracting and generating force when activated. This type of actuator has a high power to weight ratio and unique characteristics which make it ideal for human interaction. PMAs, however, are difficult to control due to nonlinear dynamics. Our objective was to control a PMA as a source of task-specific resistance in simulated isokinetic strength training. Task-specific resistance will benefit those in need of strength training through a joint's range of motion, including astronauts who need to counteract muscle atrophy during prolonged spaceflight. The lightweight, clean, and compact PMA driven by pressurized air is able to produce resistance in microgravity. An open-loop control method based on a three-element phenomenological inverse model was developed to control the PMA. A motor was simultaneously controlled to act as simulated human quadriceps working against the PMA-produced resistance. For ankle weight replacement resistance profiles, the PMA control method produced resistance and PMA displacement tracking errors (RMSE) of 0.36-1.61 Nm and 0.55-1.59 mm, respectively. Motor position (simulated joint angle) tracking errors ranged from 0.47 to 2.82 degrees. Results indicate that the inverse model based control system produces task-specific PMA resistance and displacement. Closed-loop motor control was able to simulate isokinetic movement successfully. More complicated resistance profiles reveal the need for closed-loop control. Future work focuses on advancing both the PMA control strategies and the capabilities of the human simulator so that actual human operator applications can be realized.

  3. A novel task for the investigation of action acquisition.

    Directory of Open Access Journals (Sweden)

    Tom Stafford

    Full Text Available We present a behavioural task designed for the investigation of how novel instrumental actions are discovered and learnt. The task consists of free movement with a manipulandum, during which the full range of possible movements can be explored by the participant and recorded. A subset of these movements, the 'target', is set to trigger a reinforcing signal. The task is to discover what movements of the manipulandum evoke the reinforcement signal. Targets can be defined in spatial, temporal, or kinematic terms, can be a combination of these aspects, or can represent the concatenation of actions into a larger gesture. The task allows the study of how the specific elements of behaviour which cause the reinforcing signal are identified, refined and stored by the participant. The task provides a paradigm where the exploratory motive drives learning and as such we view it as in the tradition of Thorndike [1]. Most importantly it allows for repeated measures, since when a novel action is acquired the criterion for triggering reinforcement can be changed requiring a new action to be discovered. Here, we present data using both humans and rats as subjects, showing that our task is easily scalable in difficulty, adaptable across species, and produces a rich set of behavioural measures offering new and valuable insight into the action learning process.

  4. Effects of age and content of augmented feedback on learning an isometric force-production task

    NARCIS (Netherlands)

    van Dijk, Henk; Mulder, Theo; Hermens, Hermie J.

    2007-01-01

    This study addressed the interaction between age and the informational content of feedback on learning an isometric force-production task. Healthy men and women (30 young adults: 20 to 35 years; 30 older adults: 55 to 70 years) were randomly assigned to a certain type of feedback: knowledge of

  5. The future of the IMS Learning Design specification: a critical look

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    P. B. Sloep (2009). The future of the IMS Learning Design specification: a critical look. Presentation at the IMS Learning Design seminar 'The future of IMS Learning Design'. December, 10, 2009, Wollongong, Australia: University of Wollongong.

  6. The Effect of Time on Word Learning: An Examination of Decay of the Memory Trace and Vocal Rehearsal in Children with and without Specific Language Impairment

    Science.gov (United States)

    Alt, Mary; Spaulding, Tammie

    2011-01-01

    Purpose: The purpose of this study was to measure the effect of time to response in a fast-mapping word learning task for children with specific language impairment (SLI) and children with typically developing language skills (TD). Manipulating time to response allows us to examine decay of the memory trace, the use of vocal rehearsal, and their…

  7. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.

    Science.gov (United States)

    Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin

    2014-04-30

    Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effects of Multimedia Task-Based Teaching and Learning Approach on EFL Learners' Accuracy, Fluency and Complexity of Oral Production

    Science.gov (United States)

    Bava Harji, Madhubala; Gheitanchian, Mehrnaz

    2017-01-01

    Albeit Task-Based Language Teaching (TBLT) has been extensively researched, there appears to be limited studies that focus on the effects of multimedia technology (MT) enhanced TBLT approach on EFL development. A study was conducted to examine the effects of a MT imbued TBLT, i.e. Multimedia Task-Based Teaching and Learning (MMTBLT) approach on…

  9. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes.

    Science.gov (United States)

    Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick

    2017-09-01

    Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We

  10. How Does Creating a Concept Map Affect Item-Specific Encoding?

    Science.gov (United States)

    Grimaldi, Phillip J.; Poston, Laurel; Karpicke, Jeffrey D.

    2015-01-01

    Concept mapping has become a popular learning tool. However, the processes underlying the task are poorly understood. In the present study, we examined the effect of creating a concept map on the processing of item-specific information. In 2 experiments, subjects learned categorized or ad hoc word lists by making pleasantness ratings, sorting…

  11. Improving Job Performance: Workplace Learning Is the First Step

    Science.gov (United States)

    Daryoush, Younes; Silong, Abu Daud; Omar, Zohara; Othman, Jamilah

    2013-01-01

    The present study aims to contribute new knowledge to the existing literature on workplace learning and job performance. Particularly, the study analyzes contemporary literature on workplace learning and job performance, specifically formal and informal learning as well as employee task performance and contextual performance. The study…

  12. Context effects in a temporal discrimination task" further tests of the Scalar Expectancy Theory and Learning-to-Time models.

    Science.gov (United States)

    Arantes, Joana; Machado, Armando

    2008-07-01

    Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a series of test trials in order to contrast two timing models, Learning-to-Time (LeT) and Scalar Expectancy Theory (SET). The models made substantially different predictions particularly for the test trials in which the sample duration ranged from 1 s to 16 s and the choice keys were Green and Blue, the keys associated with the same 4-s samples: LeT predicted that preference for Green should increase with sample duration, a context effect, but SET predicted that preference for Green should not vary with sample duration. The results were consistent with LeT. The present study adds to the literature the finding that the context effect occurs even when the two basic discriminations are never combined in the same session.

  13. Wearable Sensors for eLearning of Manual Tasks: Using Forearm EMG in Hand Hygiene Training.

    Science.gov (United States)

    Kutafina, Ekaterina; Laukamp, David; Bettermann, Ralf; Schroeder, Ulrik; Jonas, Stephan M

    2016-08-03

    In this paper, we propose a novel approach to eLearning that makes use of smart wearable sensors. Traditional eLearning supports the remote and mobile learning of mostly theoretical knowledge. Here we discuss the possibilities of eLearning to support the training of manual skills. We employ forearm armbands with inertial measurement units and surface electromyography sensors to detect and analyse the user's hand motions and evaluate their performance. Hand hygiene is chosen as the example activity, as it is a highly standardized manual task that is often not properly executed. The World Health Organization guidelines on hand hygiene are taken as a model of the optimal hygiene procedure, due to their algorithmic structure. Gesture recognition procedures based on artificial neural networks and hidden Markov modeling were developed, achieving recognition rates of 98 . 30 % ( ± 1 . 26 % ) for individual gestures. Our approach is shown to be promising for further research and application in the mobile eLearning of manual skills.

  14. Task Specificity and the Influence of Memory on Visual Search: Comment on Vo and Wolfe (2012)

    Science.gov (United States)

    Hollingworth, Andrew

    2012-01-01

    Recent results from Vo and Wolfe (2012b) suggest that the application of memory to visual search may be task specific: Previous experience searching for an object facilitated later search for that object, but object information acquired during a different task did not appear to transfer to search. The latter inference depended on evidence that a…

  15. Segmentation of Thalamus from MR images via Task-Driven Dictionary Learning.

    Science.gov (United States)

    Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D; Prince, Jerry L

    2016-02-27

    Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is proposed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation over state-of-the-art atlas-based thalamus segmentation algorithms.

  16. Notes From the Field: Secondary Task Precision for Cognitive Load Estimation During Virtual Reality Surgical Simulation Training.

    Science.gov (United States)

    Rasmussen, Sebastian R; Konge, Lars; Mikkelsen, Peter T; Sørensen, Mads S; Andersen, Steven A W

    2016-03-01

    Cognitive load (CL) theory suggests that working memory can be overloaded in complex learning tasks such as surgical technical skills training, which can impair learning. Valid and feasible methods for estimating the CL in specific learning contexts are necessary before the efficacy of CL-lowering instructional interventions can be established. This study aims to explore secondary task precision for the estimation of CL in virtual reality (VR) surgical simulation and also investigate the effects of CL-modifying factors such as simulator-integrated tutoring and repeated practice. Twenty-four participants were randomized for visual assistance by a simulator-integrated tutor function during the first 5 of 12 repeated mastoidectomy procedures on a VR temporal bone simulator. Secondary task precision was found to be significantly lower during simulation compared with nonsimulation baseline, p impact on secondary task precision. This finding suggests that even though considerable changes in CL are reflected in secondary task precision, it lacks sensitivity. In contrast, secondary task reaction time could be more sensitive, but requires substantial postprocessing of data. Therefore, future studies on the effect of CL modifying interventions should weigh the pros and cons of the various secondary task measurements. © The Author(s) 2015.

  17. Specific de-SUMOylation triggered by acquisition of spatial learning is related to epigenetic changes in the rat hippocampus.

    Science.gov (United States)

    Castro-Gomez, Sergio; Barrera-Ocampo, Alvaro; Machado-Rodriguez, Gloria; Castro-Alvarez, John F; Glatzel, Markus; Giraldo, Marco; Sepulveda-Falla, Diego

    2013-12-04

    Histone acetyltransferase activity by transcriptional cofactors such as CREB-binding protein (CBP) and post-translational modifications by small ubiquitin-like modifier-1 (SUMO-1) have shown to be relevant for synaptic and neuronal activity. Here, we investigate whether SUMOylation of CBP plays a role in spatial learning. We assessed protein levels of CBP/p300, SUMO-1, and CBP SUMOylation in the hippocampi of rats trained on the Morris water maze task. Furthermore, we evaluated the post-translational modifications at Zif268, BDNF, and Arc/Arg3.1 promoters using chromatin immunoprecipitation with anti-Acetyl-Histone H3-Lys14 (H3K14Ac) and SUMO-1. We found that CBP/p300 protein expression is unchanged in animals trained for 7 days. However, H3K14Ac-specific histone acetyltransferase activity showed specific hyperacetylation at promoters of Zif268 and BDNF-pI but not of Arc/Arg3.1 and BDNF-pIV. In naive animals, CBP is selectively SUMOylated and the Arc/Arg3.1 promoter is differentially occupied by SUMO-1, although SUMO-1 levels are unchanged. These results suggest a specific negative regulation by SUMO-1 on CBP function and its effect on epigenetic changes triggered by spatial learning and memory processes.

  18. Using Game-Based Cooperative Learning to Improve Learning Motivation: A Study of Online Game Use in an Operating Systems Course

    Science.gov (United States)

    Jong, Bin-Shyan; Lai, Chien-Hung; Hsia, Yen-Teh; Lin, Tsong-Wuu; Lu, Cheng-Yu

    2013-01-01

    Many researchers have studied the use of game-based learning. Game-based learning takes many forms, including virtual reality, role playing, and performing tasks. For students to learn specific course content, it is important that the selected game be suited to the course. Thus far, no studies have investigated the use of game-based cooperative…

  19. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    Science.gov (United States)

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2016-09-28

    About 5% of school children have a specific learning disorder, defined as unexpected failure to acquire adequate abilities in reading, writing or mathematics that is not a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these events, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular, omega-3 and omega-6 fatty acids, which normally are abundant in the brain and in the retina, are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. 1. To assess effects on learning outcomes of supplementation of polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.2. To determine whether adverse effects of supplementation of PUFAs are reported in these children. In November 2015, we searched CENTRAL, Ovid MEDLINE, Embase, PsycINFO, 10 other databases and two trials registers. We also searched the reference lists of relevant articles. Randomised controlled trials (RCTs) or quasi-RCTs comparing PUFAs with placebo or no treatment in children younger than 18 years with specific learning disabilities, as diagnosed in accordance with the fifth (or earlier) edition of theDiagnostic and Statistical Manual of Mental Disorders (DSM-5), or the 10th (or earlier) revision of the International Classification of Diseases (ICD-10) or equivalent criteria. We included children with coexisting developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two review authors (MLT and KHT) independently screened the titles and abstracts of articles identified by the search and eliminated all studies that did not meet the inclusion criteria. We contacted study authors to ask for missing information and clarification, when needed. We used the GRADE approach to assess the quality of evidence. Two small studies

  20. Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks

    Science.gov (United States)

    Ubbens, Jordan R.; Stavness, Ian

    2017-01-01

    Plant phenomics has received increasing interest in recent years in an attempt to bridge the genotype-to-phenotype knowledge gap. There is a need for expanded high-throughput phenotyping capabilities to keep up with an increasing amount of data from high-dimensional imaging sensors and the desire to measure more complex phenotypic traits (Knecht et al., 2016). In this paper, we introduce an open-source deep learning tool called Deep Plant Phenomics. This tool provides pre-trained neural networks for several common plant phenotyping tasks, as well as an easy platform that can be used by plant scientists to train models for their own phenotyping applications. We report performance results on three plant phenotyping benchmarks from the literature, including state of the art performance on leaf counting, as well as the first published results for the mutant classification and age regression tasks for Arabidopsis thaliana. PMID:28736569